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Chapter 1

Introduction

According to biologists, there are about 5 to 100 million species of organisms living on

Earth today. Evidence from morphological, biochemical, and gene sequence data suggests

that all organisms on Earth are genetically related, and the genealogical relationships can

be shown by a vast phylogenetic tree, the Tree of Life -a metaphor dating back over 100

years. At the leaves of this giant tree, are the species which are alive today. If we could

trace their history back down the branches of the Tree of Life, we would encounter their

ancestors, which lived thousands or millions years ago [15].

A phylogenetic or evolutional tree is a data structure shoving evolutionary rela-

tionships between biological species, or other entities. These relationships are called the

phylogeny of the species and are based upon differences or similarities in their genetic or

physical characteristics [11].

Figure 1.1: An example of a phylogenetic tree [11]

Phylogeny could be considered the ‘proof’ of evolution, and evolution is the central

unifying principle of biology. It has several major applications within biological sciences,

1



such as biological classification. It can also be applied to human understanding of life, of

biochemistry, and of evolution. Many biotechnological applications also benefit from studies

of phylogeny, and its applications in the field of medicine may directly impact patients’

lives. Phylogeny and its methods, such as cladistics, are important fields of science [19].

The main objective of the thesis is to present a detailed survey about the methods that

can be applied to construct a phylogenetic tree from given input sequences. We will also

discuss the effectiveness of these methods in practical use. The first and most critical step

in the procedure is to find an adaptable sequence alignment, which gives the data used for

the tree construction. In Chapter 2, the most common sequence alignment methods will

be described via dynamic programming. Chapter 3 focuses on different methods available

in the literature for constructing a phylogenetic tree. The most important and widely used

methods will be described in details, such as Neighbor Joining and Maximum Parsimony

and the related problems to it (Perfect phylogeny, the Steiner tree problem in phylogeny).

A linear programming approach for solving the maximum parsimony problem will also be

discussed.
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Chapter 2

Sequence Alignments

In bioinformatics, sequence alignment is a method for arranging the sequences of

DNA, RNA, or protein to identify regions of similarity that may be a consequence of

functional, structural, or evolutionary relationships between them [27]. These sequences,

for example DNA, contain information of living cells. When a cell duplicates, its DNA

molecules double, and both daughter cells contain a copy of the original cell’s DNA. How-

ever, this replication is not perfect, because the stored information can change due to

random mutations. These mutations are the cause of the vast diversity of the species living

on Earth [33].

2.1 Pairwise sequence alignment

Given two sequences as an input, we can ask how many mutations are needed to

transform one into the other. There are several types of mutations, and one can occur

more frequently than the other. We assign weights to the different the types of mutations:

frequent mutations get lower weights, rare mutations get greater weights. The weight of a

series of mutations is defined as the sum of the weights of the individual mutations. The

task is to find the minimum weight series of mutations, which transform one sequence into

another. An important question is that how can we quickly find such a minimum weight

series. A greedy algorithm finds all the possible series of mutations, and then chooses the

minimum weight, but it is too slow, since the possible number of series of mutations grows

exponentially. Therefore, dynamic programming is used to get a global solution [33].

2.1.1 Dynamic programming

Dynamic programming is often used to solve optimization problems, such as finding

the shortest path between two points. Instead of solving the original problem, it defines

and solves a set of new, smaller subproblems, then combines the solutions of the generated

subproblems to reach an overall solution.
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Without solving a subproblem multiple times, it reduces the number of computations:

it solves each subproblem only once, and stores the results. The next time when a solution

of a subproblem is needed, it can be simply looked up. This method is especially useful

when the number of subproblems grows exponentially [3, 30].

With given sequences X = (x1, . . . , xn) and Y = (y1, . . . , ym), the task is to compute

the difference or similarity between them. For every character, cost functions of insertions

(δ) and transpositions (α(xi, yj)) are given. We assume that X is transformed by the above

operations to Y, and we are looking for the minimum cost transformation. S(i) denotes

the first i characters of a sequence S, and opt(i, j) denotes the cost of transforming X(i)

into Y (j). Starting with opt(0, 0) := 0, opt(i, 0) := 0 and opt(0, j) := 0, we get the value

of opt(i, j) from the results of the previous transforming optimums, with the transposition

of xi and yj . We add the cost of this transformation to the value of opt(i− 1, j − 1):

opt(i,j) = min{α(xi, yj) + opt(i− 1, j − 1), δ + opt(i− 1, j), δ + opt(i, j − 1)},
i ≥ 1, j ≥ 1.

The running time of the algorithm is O(nm), since opt(i, j) is computed in constant

time [30].

For sequence alignment, we define a finite set of symbols Σ, and a set Σ* of finite

sequences over Σ. When comparing two DNA or protein sequences, the following transfor-

mations can be applied:

• Insertion of a character x before position i, denoted by ix ← −.

• Deletion of a character x at position i, denoted by i− ← x.

• Substitution of character x with character y at position i, denoted by iy ↔ x.

The symbol ◦ denotes the concatenations of mutations, and τ denotes a set of concate-

nations of the above mutations. T (A) = B denotes that sequence A can be transformed

with T ∈ τ into B. We define a weight function w : τ → R+ ∪ {0}. The transformation

distance between A and B is the minimum weight of transformations turning A into B:

δ(A,B) = min{w(T )|, T ∈ τ , T (A) = B}

If we assume that w satisfies the following

w(b← a) = w(a← b)

w(a← a) = 0

w(b← a) + w(c← b) ≥ w(c← a)

for any a, b, c ∈ Σ ∪ {−}, then δ is a metric on Σ*. Hence, it suffices to consider only

transformations that change each position of a sequence at most once. These series of
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transformations are visualized by sequence alignments. A pairwise sequence alignment

is displayed below - by convention, the ancestor is the sequence on top, and the descendant

is the sequence at the bottom.

A U C G U C - G A A

A - G G U A A C A -

For example, this alignment shows that there were substitutions at positions three, six

and eight, deletions at positions two and ten, and there was an insertion at the seventh

position. We call a pair of characters at a certain position an aligned pair. The weight

of the series of transformations is the sum of the weights of aligned pairs. Thus, it suffices

to find a minimum weight alignment of A and B, instead of finding the minimum weight

transformation between them [33].

Definition 1. An alignment of A and B is a pair of sequences of equal length over Σ∪{−}.
The non-gap characters of the first sequence give back A, and the non-gap characters of the

second sequence give back B. Furthermore, there is no position in which both sequences

contain the gap symbol. We call an alignment optimal, if it’s weight is minimal.

Let α∗(Ai, Bj) denote the set of optimal alignments of Ai and Bj , and w(α∗(Ai, Bj))

denote the weights of alignments in α∗(Ai, Bj). Like we described previously, the method

for finding an optimal alignment is that we calculate w(α∗(Ai, Bj)) from the previous

results: w(α∗(Ai−1, Bj)), w(α∗(Ai, Bj−1)) and w(α∗(Ai−1, Bj−1)). This calculation can

be done in constant time. It works, because if we delete the last aligned pair of an optimal

alignment of Ai and Bj , we get the optimal alignment of Ai−1 and Bj or Ai and Bj−1

or Ai−1 and Bj−1, depending on what the deleted aligned pair depicted: a deletion, an

insertion, substitution or match. Hence

w(α∗(Ai, Bj)) = min{w(α∗(Ai−1, Bj)) + w(− ← ai),

w(α∗(Ai, Bj−1)) + w(bj ← −),

w(α∗(Ai−1, Bj−1)) + w(bj ← ai)}.

We calculate the weights of optimal aligments in a D∈ R(n+1)×(m+1) matrix, where n

and m denote the lengths of the aligned sequences. This matrix is the so-called dynamic

programming table, where the di,j element (di,j is the entry at the intersection of column

i and row j) contains w(α∗(Ai, Bj)) and the rows and columns are indexed from 0 to n

and m, respectively. The initial conditions for column 0 and row 0 are the following:
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d0,0 = 0

di,0 =

i∑
k=1

w(− ← ak)

d0,j =

j∑
l=1

w(bl ← −)

The table can be filled using recursion

di,j = min{di−1,j + w(− ← ai),

di,j−1 + w(bj ← −),

di−1,j−1 + w(bj ← aj)}

The time requirement of the fill-in is O(mn). After the dynamic programming table is

filled, we can found the optimal alignments with the following method, called trace-back:

we go from the right bottom corner to the left top corner choosing cell(s) which give the

optimal value of the current cell. Stepping up from position di,j means a deletion, stepping

to the left means an insertion, and the diagonal steps can mean either a substitution or

a match, depending on whether or not ai=bj . We can represent these steps with directed

edges, thus we get a directed graph whose vertices are the cells of the dynamic programming

table. The set of optimal alignments can be represented in polynomial time and space,

despite the fact that the number of them might grow exponentially with the length of the

sequences.

There are several versions of dynamic programming algorithms applied for pairwise

sequence alignments, since the input sequences can vary: different weight functions, like

gap penalties (weighting deletions and insertions in different ways) can be introduced [33].

2.2 Multiple sequence alignment

The multiple sequence alignment problem was first introduced in the early 70’s, and by

today it became one of the most important problems in bioinformatics. Multiple alignments

are common in searching databases and deducing evolutionary relationships. It is much

more relevant than pairwise sequence alignment, since there are biologically important

patterns that cannot be revealed by the comparison of two strings, but they become clear

when many related strings are simultaneously compared. Moreover, in some cases it is

possible to demonstrate continuous changes between two strings that by themselves does

not show much similarity [26]. With the use of multiple alignments, we can also find
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the retained parts of a family of sequences, the positions which describe the functional

properties of the sequence family [33].

Definition 2. A multiple alignment of k ≥ 2 strings S = {S1, S2, . . . , Sk} is a natural

generalization of the alignment for two strings. Gaps are inserted into (or at either end of)

each of the k strings so that the resulting strings have the same length, defined to be l.

Then the strings are arrayed in k rows of l columns each, so that each character and gap

of each string is in a unique column [26].

The dynamic programming approach for the optimal pairwise alignment problem is the

basis of the dynamic programming approach for the optimal multiple alignment. To align

k sequences, we have to fill a k-dimensional dynamic programming table (a k-dimensional

hypercube), which contains an entry for each combination of the prefixes, and stores their

optimal alignment. Thus the memory requirement for k sequences of length n is Θ(nk) [33].

Even if we assume that Evolution is reversible, it is not obvious to find a good scoring

for multiple sequence alignment. We can describe the evolutionary relationships of the

sequences by a rooted binary tree.

Definition 3. A rooted binary tree is a tree in which the degree of all but one internal

nodes is 3, and one internal node has degree 2. The root of the tree is the node with degree

2. The degree 1 nodes are called leaves.

In this representation the leaves of the rooted binary tree stand for the modern species

and the root of the tree represents their common ancestor. We should define the score

of an alignment column depending on the evolutionary relationship among the species.

However, this kind of scoring is a chicken-egg problem: we want to obtain the evolutionary

relationship between the sequences we align, but it is impossible to define a score by

their evolutionary relationships without knowing it. There are several less elegant but

widespread methods for solving this problem, the most common one is the sum-of-pairs

scoring (SP). In an alignment column, it calculates a score for each pairs of characters,

and sums them [33].

The other problem with the multiple sequence alignment is that it has a running time

that grows exponentially with the number of sequences.

Theorem 4. The problem of existence of a multiple alignment with Sum-of-pairs score

(SP-score) is NP-complete.

Proof. We prove that the following version of the multiple alignment problem with SP-

score is NP-complete. Let S = {S1, S2, . . . , Sk} denote a set of sequences and let c denote

a positive integer. The question is: is there a multiple alignment for S with value at most

c? Now we reduce the shortest common supersequence problem to multiple alignment with

SP-score.
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Definition 5. Given a string S over an alphabet Σ, a supersequence S′ of S is a string

S′ = w0x1w1 . . . xkwk over Σ such that S = x1x2 . . . xk and each wi ∈ Σ∗.

A common supersequence of a set of strings S = {S1, S2, . . . Sk} is a string S over Σ

such that S is a supersequence of each Si.

Definition 6. For a finite set of sequences S over alphabet Σ and a positive integer m, the

shortest common supersequence problem is to decide whether there is a sequence S

with |S| ≤ m such that each t = t1t2 . . . tr ∈ S is a subsequence of S (i.e. S = s0t1s1 . . . trsr,

for some s0, s1, . . . , sr ).

The proof of the NP-completeness of the shortest common supersequence problem can be

found in [36]. The problem remains NP-complete even if |Σ| =2 [32].

Now we can continue the proof. Obviously, multiple alignment is in NP. The reduction

from the shortest common supersequence problem is the following. Let S denote a set of

sequences over alphabet Σ = {0, 1}, and let m denote a positive integer. We construct a

collection of sets X = {Xi,j |i, j ≥ 0, i + j = m}, where Xi,j = S ∪ {ai, bj}, where a and

b are two newly introduced letters. We may assume that each sequence in S has length at

most m. Table 2.1 shows the scores we construct for the differences of the characters.

S 0 1 a b ∆

0 2 2 1 2 1

1 2 2 2 1 1

a 1 2 0 2 1

b 2 1 2 0 1

∆ 1 1 1 1 0

Table 2.1: The score scheme

This score scheme satisfies triangle inequality. We define the positive integer c required

for the modified multiple alignment problem as c = (k − 1)||S|| + (2k + 1)m, where ||S||
denotes the total length of all sequences in S.

For proving the NP-hardness of the multiple sequence alignment, it suffices to show

that S has a supersequence of length m if and only if some Xi,j has an alignment with

value at most c.

(⇒) Suppose that we have an alignment A of the k + 2 sequences in Xi,j , with value

at most c for some (i, j). Now we consider the induced alignment of the k sequences in

S. This alignment has always score (k − 1)||S||. Consequently, the total contribution of

pairwise alignments in A involving the two sequences ai and bj is at most (2k + 1)m.

Therefore, every 0 must be aligned with an a and every 1 must be aligned with a b in A.
A supersequence S for S now can be obtained by assigning 0 to the columns containing

a’s and 1 to the other columns. The length of supersequence S is i+ j = m.
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(⇐) Let S be a supersequence for S with length m. Let i denote the number of 0’s and

let j denote the 1’s in S. Consider the set Xi,j . For each sequence t ∈ S , an alignment of

t and S exists such that each 0 in Xi (or 1 in Xj) matches a 0 (or respectively a 1) in S.

Some of the characters 0 and 1 can correspond to spaces. In order to obtain the desired

multiple alignment, we align each t in S with S, then we align the a’s in the sequence ai

with the 0’s in the sequence S, and respectively do the same for the b’s in bj and the 1’s

in S. In this alignment the letters in the columns are either 0, a and ∆ or 1, b and ∆. If we

remove sequence S from the alignment, the value will be exactly c.

Thus, by checking the value of an optimal alignment of Xi,j where i+ j = m, we can

decide in polynomial time if there is a supersequence S of length m in X [41].
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Chapter 3

Constructing a Phylogenetic Tree

There are several methods for tree construction, but most of them can be classified as

either phenetic (or in other words, distance-based) or cladistic (character-based) [38].

Figure 3.1 sums up the most widespread methods and their relations.

Figure 3.1: An overview of the major approaches of tree-construction [38]

Before describing them in detail, Table 3.1 gives a comparison between the main ap-

proaches based on their strengths and weaknesses.

3.1 Phenetic Methods

Character-based methods use algorithms that integrate evolutionary models, like (amino

acid) substitution, and compute a distance matrix (as described in Chapter 2). From this
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Method Strength Weakness

Distance-based
methods

• Uses a molecular evolution
model
• Provides branch length

• Provides only a single tree
• Different trees may result de-
pending on the order of the se-
quence entry
• Branch presented as distances
as opposed to discrete characters
• Cannot infer ancestral states
• Cannot identify individual
characters that are informative
or problematic

Character-based methods

Maximum parsimony • Minimizes the number of steps
and thus the number of addi-
tional hypothesis
• Identifies numerous parsimo-
nious trees from which a consen-
sus is calculated
• Provides diagnoses for each
clade and branch lengths in
terms of the number of changes
on each branch of a tree
• Can infer ancestral states
• Can identify individual charac-
ters that are informative or prob-
lematic

• Relatively slow compared with
NJ — particularly when dealing
with large data sets
• Lack an explicit model of evo-
lution
• As more divergent sequences
are analyzed, the degree of ho-
moplasty increases — in this case
the true evolutionary tree be-
comes less likely to be the one
with the least number of changes
and parsimony fails
• Highly unequal mutation rates
associated with rapidly evolving
lineages may lead to “long branch
attraction”

Maximum likelihood • Strong statistical foundations
• Allows comparison of different
trees, parameters and models
• Uses all of the sequence data

• Significantly slower than al-
ternative methods and computa-
tionally demanding

Table 3.1: A comparison between the main approaches [38]

matrix, the phylogenetic tree is calculated with progressive clustering.

The applied evolutionary model specifies the substitutions that occurred in the se-

quences since they began to differ from the last common ancestor. Based on this informa-

tion, the distances in the matrix refer to the number of differences (where substitutions

might have happened) between the sequences. From this numerical data, a tree is con-

structed by the following rule: the most closely related sequences are positioned on the

tree in a way that they are more distant from the other sequences [38].
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3.1.1 Unweighted pair group method with arithmetic mean (UPGMA)

The method UPGMA is a hierarchical clustering method. At each step, it makes a

higher-level cluster from the closest two clusters. Figure 3.2 shows the clustered structure

of a UPGMA tree. The approach defines the distance between two clusters A and B to be

the mean distance between elements of each cluster, which means the average of all the

distances between all objects x ∈ A and y ∈ B:

d(A,B) =
1

|A|+ |B|
∑
x∈A

∑
y∈B

d(x, y)

Figure 3.2: An example of a phylogenetic tree constructed with UPGMA [1]

The method uses the „Molecular clock hypothesis” as an evolutionary model, which

means that it assumes a constant rate of evolution. In phylogenetics, it is not a widely

used approach since it assumes certain relationships between the sequences, without these

relationships being tested for the actual data. For this reason it is only used to produce

guide-trees in the process of other sophisticated phylogenetic constructional approaches

[13]. It was shown that the optimal time for constructing the UPGMA tree is O(n2) [35].

3.1.2 The Neighbor Joining method

Neighbor Joining (NJ) was introduced in 1987 by Saitou and Nei. This approach has

become the most popular method for building phylogenetic trees, and since it was pub-

lished, the original paper has been cited over 13000 times [23]. On Figure 3.3, we can see

the genetic distance graph of the 18 human races based on 23 types of genetic information.

It was made with neighbor-joining method in 2002 by Saitou Naruya, japanese professor

at the Japanese National Institute for Genetics [9].
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Figure 3.3: An example of a phylogenetic tree constructed with NJ [9]

NJ builds a tree from the distance matrix: it contains the pairwise evolutionary dis-

tances between the elements of a set of sequences. When starting, we have a star-like tree

(as seen in Figure 3.4) which is yet unresolved. The algorithm iterates the following steps:

1. First, the algorithm calculates a new matrix Q as follows. Based on the distance

matrix with n sequences, compute

Q(i, j) = (n− 2)d(i, j)−
n∑

k=1

d(i, k)−
n∑

k=1

d(j, k),

where d(i, j) is the distance between the ith and jth sequences.

2. It finds a pair i and j (i 6= j) of sequences for which Q(i, j) has the minimum value.

Now we create a new node attached to the central node, and attach the ith and jth nodes

to it. In Figure 3.4 f and g denote these nodes, as being attached to the new node u.

3. We calculate the distance of the sequences attached to the new node from the other

sequences using formula

δ(f, u) =
1

2
d(f, g) +

1

2(n− 2)
[

n∑
k=1

d(f, k)−
n∑

k=1

d(g, k)],

δ(g, u) = δ(f, g)− δ(f, u),

where f and g denote the paired nodes joined to u, δ(f, u) and δ(g, u) denote the branch

length between its two nodes, and these lengths will not be affected by the later steps of

the construction.

4. Now we calculate the distances of the new node u from the other sequences (which

are not f and g). For each sequence k that was not involved in the previous step, let

d(u, k) =
1

2
[d(f, k) + d(g, k)− d(f, g)].
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5. Now we iterate these steps using the newly generated node u instead of f and g,

with the recalculated distances [9].

Figure 3.4: The process of tree building with NJ [9]

For a set of n sequences, the algorithm iterates (n − 3) times. First, it constructs an

n× n size matrix Q, than a (n− 1)× (n− 1) size one, etc. This implementation leads to

time complexity O(n3), but there exist implementations that are a lot faster in average [9].

The main advantage of NJ is that it is fast and provides a polynomial-time algorithm.

This makes it practical compared to the character-based methods, when a larger set of data

(hundreds or thousands of sequences) is being analyzed. In practice, the input distance

matrix is rarely correct, but if it is, which means that the matrix is ‘nearly additive’, and

in addition when the pairwise distances in the matrix differ from the true measurements by

less than half of the shortest branch length in the tree, the neighbor joining method always

gives the topologically correct tree. Even if the distance matrix is not correct, NJ often

finds the correct tree topology anyway. This correctness means that by using dissimilar

evolutionary models and sufficiently long input data, there is a high probability that NJ

constructs the real tree. Compared to the other distance-based method, UPGMA, it has
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an advantage that it does not use the ‘molecular clock hypothesis’ as it does not assume

that all changes happen at the same rate [9].

Despite these advantages, distance-based methods in general has been superseded by

other approaches which do not rely on distance data, yet provide high accuracy. There

are other significant limitations for NJ, as it computes only one tree, while character-

based methods generate several optimal or nearly optimal trees and choose the best one.

Furthermore, NJ has the undesirable feature to compute different trees depending on the

order of the input sequences, and also assigns negative values for some branch lengths in

the tree [9, 38].
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3.2 Cladistic Methods

Based on an evolutionary model and a sequence alignment, cladistic or character-based

methods find the tree which has the biggest probability to be optimal for a specific input

set of sequences. Since they are searching for an optimal tree, they are often called tree-

searching methods. The most common cladistic approaches are Maximum Parsimony (MP),

Maximum Likelihood (ML) and the group of Bayesian methods, which are variants of the

ML method [38]. From these approaches, only the MP method will be described in details

altogether with the problems related to it. We only give a brief overview on ML. The

description of Bayesian methods falls outside the scope of the thesis, since we are focusing

on computational approaches.

In these approaches, the input is a set of attributes called characters that the investi-

gated objects may possess. If these input characters are well-chosen, then the information

made of the distribution of the characteristics among the objects could deduce partial evo-

lutionary history - and it also forms a phylogenetic tree. Before starting to describe the

approaches, an important question is that where do character data come from?

When investigating biological objects (for example, species), traditionally morpholog-

ical features as characters are used. These morphological characters could be general at-

tributions like possessing a backbone or very specific features that only specialists under-

stand [26]. As these characters often describe an attribute or feature that objects either do

or do not possess, character-based problems are often binary-character problems.

Definition 7. Let M be a 0− 1 matrix of size n×m representing n objects in terms of m

characters or traits that describe the objects. Each character takes on one of two possible

states 0 or 1, and cell (p, i) of M has value 1 if and only if object p has character i [26].

Definition 8. Given an n by m binary-character matrixM for n objects, a phylogenetic

tree for M (see Figure 3.5) is a rooted tree T with exactly n leaves that obeys the following

properties.

1. Each of the n objects labels exactly one leaf of T .

2. Each of the m characters labels exactly one edge of T .

3. For any object p, the characters that label the edges along the unique path from the

root to leaf p specify all of the characters of p that is 1 [26].

Figure 3.5: A binary matrix and a phylogenetic tree built from it [10]
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This interpretation of a phylogenetic tree for a matrix gives an estimation of the evolu-

tionary history of the objects, and is based on the following assumptions

1. The root of the tree represents a specific ancestral object which has none of the

present characters. Thus, in this ancestral object, the state of each character is zero.

2. Each of the characters changes from state 0 to state 1 exactly once, and never changes

from 1 to 0.

The key feature, without which we would not consider the problem interesting, is that

each character labels exactly one edge of the tree. This edge represents an evolutionary

change, when one character (represented by this edge) converts from state zero into state

one. This means, by the second assumption, that any objects below that edge definitely

have that character. It is a very difficult task to find a set of characters that satisfies these

assumptions [26].

Characters can be also based on sequence data, like DNS or protein sequences of the

different species. For instance, examining whether or not a sequence contains a specific sub-

string makes a good binary character. However, characters based on morphological features

can be ambiguous as under some conditions similar morphological features can develop

independently or a feature could be lost and regained over time. For example, according to

the current accepted opinion in biology, wings have evolved independently several times.

Therefore, substrings in DNA sequences make a better approach for character data in

character-based reconstructions than morphological traits do.

In evolutionary studies, an increasingly important character type is the nucleotide type

in a certain position of a DNA sequence. The examined DNA sequences are generally

first multiply aligned. After the process, each column of the alignment specifies a single

character, which can be one of the states A, T , C and G. For any given species p, the

state of character i is the nucleotide at the position (p, i) in the multiple alignment. These

characters are not binary, but in some cases DNA sequences are reduced to binaries by

grouping A with G (these are called purines) and C with T (the pyrimidines). Most of the

problems in Phylogeny are binary character problems, like the Perfect Phylogeny Problem

in Section 3.2.2.1, which is a special case of the general maximum-parsimony problem [26].

3.2.1 Maximum Likelihood

Maximum likelihood estimation is a statistical method which is used to estimate the

parameters of a statistical model. It is a frequently used method in a wide range of topics,

like several statistical models (for example, linear models and discrete choice models),

communication systems, data modeling in nuclear physics, and of course, computational

phylogenetics.
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In phylogenetics, the maximum likelihood method uses statistical techniques and as-

signs probabilities for a group of possible phylogenetic trees. It is especially accurate for

building molecular phylogenies. According to several computer studies, ML has the ability

to find a correct tree in a relatively short time, and works fine for distantly related data

sets. Another strengths of the method is that it can compare different trees with different

evolutionary models within a statistical framework. However, the drawback is that even

with small data sets, it is impossible for the method to find the optimal tree for sure and

since it requires to search all the combinations of tree topology and branch length, it is a

computationally expensive method if used for more than a few sequences. There are several

heuristics to fasten the approach, like branch-and-bound or the pruning algorithm, which

is a variant of dynamic programming. It was not shown to be NP-complete to search for

optimal tree topologies defined by likelihood, but finding an optimal tree is still challeng-

ing as branch-and bound search is not yet practical for the accustomed representation of

phylogenetic trees [2, 5, 24].

3.2.2 Maximum Parsimony

Maximum parsimony (MP) is a character-based method that builds a phylogenetic tree

by minimizing the total tree length. It searches for the minimum number of evolutionary

steps required to explain a given set of data. These steps are for instance substitutions

between DNA sequences. The approach searches for all of the possible tree topologies from

the given input data, and chooses the optimal (minimal) tree. The optimum is usually

called the most parsimonious tree [7]. Searching for the optimal tree can be computa-

tionally hard, because the number of possible trees rapidly grows with the number of input

sequences. For example, the number of rooted trees in case of n input sequences is

Nr =
(2n− 3)!

2e(n−2)(n− 2)!
,

while the number of unrooted trees is

Nu =
(2n− 5)!

2e(n−3)(n− 3)!
.

This rapid growth makes it impossible to apply the method on vast data sets (Table

3.2.2 shows that even for small input sets the number of trees to be analyzed grows very

fast). When applied, maximum parsimony describes a non-parametric statistical method

for possible relations. However, it is not consistent, since the probability of producing the

evolutionary correct tree is not very high under certain conditions [6, 7].

18



Number of sequences Number of rooted

trees

Number of unrooted

trees

2 1 1

3 1 3

4 3 15

5 15 105

6 105 945

7 954 10396

Table 3.2: The number of possible trees increases rapidly with the number of inputs [6]

Maximum Likelihood can be an alternate when a problem cannot be solved with Max-

imum Parsimony. There is a connection between ML and MP: if we add to the set of

sequences some constant sequences (in which all characters are the same) and apply the

maximum likelihood method, then it will choose the most parsimonious tree [37].

In the next sections we first introduce the perfect phylogeny problem (Section

3.2.2.1), which is a special case of maximum parsimony, then we provide a clean definition

of the maximum parsimony problem by introducing a class of problems called Steiner

tree problems.

3.2.2.1 The Perfect Phylogeny Problem

Definition 9. (Perfect phylogeny problem)

Given an n × m, 0− 1 matrix M , determine whether there is a phylogenetic tree for M ,

and if so, build one [26].

The perfect phylogeny problem can be solved with an O(nm)-time algorithm, where it

takes one time unit to compare two elements. In order to be correct, first we will reorder

the columns of M . Since M is a 0− 1 -matrix, we consider its columns as binary numbers.

We sort theseM numbers into a decreasing order (thus, the largest number will be the first

column).M ′ denotes the reordered version ofM . It is easy to see thatm has a phylogenetic

tree if and only if M ′ does. We will name each character by the column containing it in

M ′. For example, character j will be to the right side inM ′ of every character i if and only

if i <j [26].

Definition 10. For any column k of M ′, let Ok denote the set of objects having state 1

in column k (i.e. the set of objects that possess character k).

If Ok strictly contains Oj , column k must be placed left from column j. Moreover, if a

column has a duplicate, they are placed together in a block following one another in M ′.

Now we state the main theorem which is the core for solving the perfect phylogeny problem.

19



Theorem 11. M ′ (or M) has a phylogenetic tree if and only if for every pair of columns

i and j, either Oi and Oj are disjoint or one contains the other.

Proof. We suppose that T is a phylogenetic tree for M ′, and consider the characters i and

j. The edge of T on which character i is changed from state 0 to state 1 is denoted by ei.

All the objects that possess character i are placed under the edge ei. For i and j one of

the following four cases must hold:

1. ei = ej ,

2. ei is on the path from the root to ej ,

3. ej is on the path from the root to ei,

4. the paths of the two individual edges diverge before reaching either ei or ej .

In case 1, the objects which possess character i and j are identical, so Oi = Oj . In case 2,

the objects which possess character j must also possess character i, so Oj ⊂ Oi. Case 3 is

symmetrical to case 2, so Oi ⊂ Oj . In case 4, Oi ∩ Oj = ∅. In all the cases either Oi and

Oj are disjoint or one contains another.

The other direction will be proved by construction. We consider the objects p and q,

and let k be the largest character in M ′ that both objects p and q possess. We state that if

p possesses a character i <k, then q must contain character i. Namely, since p contains both

i and j, Oi and Ok intersect. Thus Oi must contain Ok and q also possesses character i.

Since p and q are arbitrary choices, if q possesses a character i <k then p must also possess

i. Summarizing, M ′(p, i) = M ′(q, i) for every character i ≤ k, and M ′(p, j) = M ′(q, j) for

j >k if and only if M ′(p, j) = M ′(q, j) = 0.

In order to finish the proof, we will use keyword trees.

Definition 12. The keyword tree for a set P of patterns is a rooted directed tree K

satisfying three conditions:

1. each edge is labeled with exactly one character,

2. any two edges leaving the same node have distinct labels,

3. every pattern Pi in P maps to some node v of K such that the characters on the

path from the root to v exactly spell out Pi, and every leaf of K is mapped to some

pattern in P .

An object p gets labeled by a string, which consists of the characters possessed by p,

in the order they appear in M ′. In order to be sure that no resulting string is a prefix of

an other string, we also add an end-of-string character, let it be Ω, which was not in the

original alphabet. We already showed that the strings for objects p and q must be identical
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until some character k, and after k have no characters in common. Thus, the keyword tree

for the n strings constructed from n objects in M ′ specifies a perfect phylogeny for M ′.

We can obtain the perfect phylogeny from the keyword tree by removing the Ω symbols

from the tree edges [26].

Now we present an O(mn)-time algorithm for the perfect phylogeny problem:

1. Consider each column of M a binary number. With radix sort, sort these number

into decreasing order, so the largest number will be in the first column. Call the

resulting matrix M ′ and name each character based on its column position in M ′.

2. For each row p of M ′, construct a string that consists of the characters (in increasing

order) that p possess.

3. Build the keyword tree T from the n strings constructed in the previous step.

4. Test if T is a perfect phylogeny for M .

This algorithm can be implemented in O(mn) time if we use radix sort with pointers

[26].

3.2.2.2 Application and generalization of perfect phylogeny

Several tree-building approaches have been introduced for finding a phylogenetic tree.

However, these different methods often give different trees with different software packages.

When building a phylogenetic tree, a method relies on the comparison of a single position

in the aligned sequences. Hence, very often the resulting tree will differ in some detail,

depending on which position was used. It is an important task to determine whether two (or

more) different phylogenetic trees describe a corresponding evolutionary history. Moreover,

if they do, how to combine the trees into a single phylogenetic tree which incorporates all

the known history.

When establishing a theory of evolutionary history, it is generally accepted that several

trees (from different positions in sequences) have to be built and shown to be correspondent

in order to consider the evolutionary theory reliable. This topic is called tree compati-

bility, and is an application of perfect phylogeny [26].

Definition 13. A phylogenetic tree T ′ is a refinement of T if T can be obtained by a

series of contractions of edges of T ′.

If a tree T ′ refines T , it means that T ′ is consistent with all the evolutionary history stored

in T , while T ′ contains additional information which is not contained in T . Let T1 and T2
denote two phylogenetic trees built from a set of n objects. Assume that both T1 and T2
are binary trees, and no node except the root can have exactly one child.
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Definition 14. T1 and T2 are compatible if there exists a phylogenetic tree T3 refining

both T1 and T2.

Definition 15. Tree compatibility problem: With given trees T1 and T2, determine

whether they are compatible, and if so, give a refinement tree T3.

Let M1 be a binary matrix with n rows (for each object) and one column for each internal

node in T1. The (i, j) value ofM1 is 1 if and only if the leaf of object i is at a position below

node j. Thus, column j of M1 consists of the objects which can be found in the j-rooted

subtree of T1. For T2, matrix M2 can be constructed similarly. Matrix M3 is formed by the

union of the columns of M1 ad M2.

Theorem 16. T1 and T2 are compatible if and only if there is a phylogenetic tree for M3,

and a phylogenetic tree T3 for M3 is a refinement for both T1 and T2.

Theorem 16 reduces the tree compatibility problem to the perfect phylogeny problem,

and implies an O(n2) algorithm for solving the compatibility problem by applying the

algorithm described for perfect phylogeny [26].

In perfect phylogeny, as we previously described, each character can possess two states.

In the generalized phylogeny problem, however, a character is allowed to take on more

than two states. Thus, a perfect phylogeny for M will be a directed tree T , in which each

object labels exactly one leaf of T as seen before, but in this case we label the edges

with character-state transitions. More precisely, we label an edge with an ordered tripe

(c, x, y) meaning that character c changes from state x to state y along the labeled edge.

Just like in the binary case, each character has a starting state at the root of the tree. Each

leaf on the path P between the root and a leaf p describes the character states of an object

p. It is required that the ending states on each edge of the path to p correctly describes

the character states of object p. For every state y of a character c there is at most one

edge where the previous state of c changes to state y. This also means that there can be

at most one edge labeled with a triple starting with c and ending with y.

In the binary case, the triples labeling an edge for character c are all (c, 0, 1) [26].

Definition 17. The generalized phylogeny problem. Given a character matrix M

where each character may take on up to r states, determine if there is a perfect phylogeny

for M , and if so, construct one.

The generalized perfect phylogeny problem was first proposed in 1974 and remained an

open issue for almost 20 years [20]. Later results showed polynomial-time solution in term

of n and m (the number and length of sequences), if r (the number of character states) is

fixed to 3 or 4 [21,29].
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However, if r is a variable, the perfect phylogeny problem is NP-complete [18]. In later

studies it was shown that if r is any fixed value, the perfect phylogeny problem can be

solved in polynomial time in terms of n and m, however, r appears as an exponent in the

worst-case time bound [28].

3.2.2.3 The Steiner Problem in Phylogeny

Definition 18. Let G = (N,E) denote an undirected graph with |N | nodes and |E| edges,
with a weight w(i, j) on each edge (i, j) in E. Let X ⊆ N be a given subset of nodes. A

Steiner tree ST for X is a connected subtree of G which contains all the vertices of X,

and may contain other nodes from N −X as well. The weight of a Steiner tree ST is

the sum of the weights on the edges contained by ST, and is denoted by W (ST ). Given

a graph G and a subset of nodes X, the weighted Steiner tree problem is to find a

Steiner tree of minimum weight. In the case of all edges having weight 1, the problem is

called unweighted Steiner tree problem.

Definition 19. A d-dimensional hypercube is an undirected graph with 2d nodes, where

they are labeled with integers between 0 and 2d − 1. Two nodes are connected if and only

if their labels as binary numbers differ in precisely one bit.

Definition 20. The weighted Steiner problem on hypercubes is the weighted Steiner

tree problem where G is a hypercube. The unweighted case is when all edges have weight

1.

As previously mentioned, maximum parsimony is a problem of evolution history recon-

struction with the minimum number of mutations. A more precise definition can be given

using the concept of Steiner trees.

Definition 21. For a set X of input sequences of length d and binary character states,

the maximum-parsimony problem is the unweighted Steiner tree problem on a d-

dimensional hypercube. Each sequence of X can be described by a d-length binary vector

and thus it describes one node in the hypercube [26].

A d-dimensional hypercube has 2d nodes, so 2d possible objects could be described by a

d-length binary vector. Two sequences that differ in exactly one character will be denoted

by two adjacent nodes in the hypercube. Thus, a Steiner tree connecting a given set of

X with l edges exists if and only if there is a suitable phylogenetic tree that describes l

character-state mutations.

For a set of input sequences, each containing d binary characters, when each of the

characters are nontrivial (the case when a character is contained by some, but not all of
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the sequences), the constructed maximum-parsimony tree must have at least d mutations.

Consequently, we can view the perfect phylogeny problem as an equivalent problem for

finding a maximum-parsimony, whose cost equals to exactly d, which is the lower bound

for the costs. In the generalized case, we define the lower bound based on the fact that if

a character has r states, then there will be r − 1 places in the maximum parsimony tree

where the state-changes occur

As a result, from the viewpoint of maximum-parsimony and the Steiner tree problems,

perfect phylogeny answers the question whether the optimal Steiner tree has a greater cost

than the lower bound. For the Steiner tree-problem there is no efficient solution either

on unweighted graphs or hypercubes in particular. When r is fixed, then approximations

for the generalized perfect phylogeny problem show (see Section 3.2.2.2) that this special

problem for Steiner trees can be solved in polynomial time [26].

The unweighted Steiner tree problem on hypercubes was shown to be NP-complete in

1982 [22]. Normally, the complexity of an unweighted problem implies that the weighted

problem is at least as complex, since the unweighted case can be solved via the weighted case

by setting all weights to 1. In the case of the Steiner tree problem, the NP-completeness of

the unweighted problem does not imply that the weighted problem is NP-complete (which

in fact, is NP-hard), as was shown in [22].

Despite of the NP-hardness of the weighted Steiner tree problem on hypercubes, an

efficient algorithm with an approximation ratio less than two exists, as the weighted Steiner

tree problem on an arbitrary graph can be approximated within a bound of 11/6 [42]. Prior

to this result, the problem was approximated by the fact that the minimum spanning tree

can be used to obtain a Steiner tree if its weight is less than twice the weight of the optimal

Steiner tree [31].

In case of a hypercube, the method is the following.

1. Compute the distance d(i, j) in the hypercube between each pair of input sequences

i and j from X.

2. Let KX denote a complete, undirected graph in which a node represents an object

in X, and the weight of an edge (i, j) is d(i, j) (the distances).

3. Compute a minimum spanning tree T of KX (here, each edge of T corresponds to a

path in the hypercube).

4. Transform T by expanding its edges to their original paths in the hypercube.

5. Form a graph G′ from the paths found in Step 4, and search for a spanning tree of

G′.

The result is a Steiner tree of the set X which has total weight less than twice the weight of

an optimal Steiner tree [26]. In case of binary characters, it is unnecessary to use hypercubes
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as this computation can be done more efficiently. The approximations shown in [22] and [17]

can also be adapted for solving the maximum-parsimony problem, without explicitly using

hypercubes [26].

3.2.2.4 Finding the most parsimonious tree via Linear Programming

In this section, an integer linear programming approach will be introduced (based on

a paper by Sridhar, Lam, Blelloch, Ravi and Schwartz [40]) for finding the maximum

parsimony (or the most parsimonious phylogenetic tree) from a set of binary data. There

have been a lot of heuristics (the description of them falls out the scope of this thesis)

introduced for the maximum parsimony problem, and although they are efficient, they

cannot guarantee the optimal tree. The following linear programming method is efficient

even on larger datasets.

Maximum parsimony and its variants are NP-hard, consequently, there has been no

efficient solutions found. It can be very time-consuming, since the examined data-sets tend

to be extremely large both in population sizes and numbers of variations examined. As

described in the previous section, the maximum parsimony problem with binary-element

sequences is usually modeled by binary Steiner trees, which is an NP-hard problem. Only

some special cases can be solved, which we called the perfect phylogeny problem in Sec-

tion 3.2.2.1. However, real data-sets usually do not correspond to the perfect phylogeny

assumption. Some progress have been made by introducing the concept of near-perfect

phylogenies, which means that they differ by a fixed value from the optimum. These

approaches are efficient for moderate input size, but not for larger data-sets. Thus integer

linear programming methods (ILP) got a bigger attention, since they provide optimal so-

lutions. Although these methods do not have time-bound guarantees, they tend to have

better running times than other methods also granting optimality.

The input is a binary matrix H, as its columns correspond to the Single Nucleotide

Polymorphism (SNP) which means a character can change from state 0 to state 1.

Definition 22. The length of a phylogenetic tree T is the sum of Hamming-distances be-

tween each adjacent nodes. The problem of constructing the most parsimonious phy-

logenetic tree is to find a minimum-length phylogenetic tree T ∗.

Definition 23. The length of a phylogenetic tree T (V,E) is length(T ) =
∑

[wi : i ∈
D(u, v), uv ∈ E], where D(u, v) is the set of indices in which u and v differ.

Definition 24. A phylogenetic tree T for input I with m-length sequences is q-near

perfect (or q-imperfect) if length(T ) = m+ q.
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In Section 3.2.2.2, it was pointed out that the maximum parsimony problem is equiv-

alent to the minimum Steiner tree problem in a G graph on vertices VT . G is an m −
hypercube defined on V = {0, 1}m nodes, where VT ⊆ V corresponds to the sequences

and each two nodes are adjacent if and only if they differ in exactly one bit. Although the

Steiner-problem is NP-complete [22], the case when the phylogenetic tree is q-near perfect

can be solved in polynomial time in terms of n and m when q = O(log(poly(n,m))) [39].

However, when q is large, these approaches do not perform well.

The first step of the integer linear programming method is preprocessing - this step

reduces the size of the input data without affecting the final result. When solving the

Steiner tree problem, there are exponentially many possible subsets that can be chosen as

the Steiner nodes (VT ) and this has an influence on the complexity. The first task is to

eliminate those vertices that cannot be accepted in an optimal tree.

The method which will be used to eliminate unnecessary vertices works on m-cubes.

For an input graph H and a column c of H a split c(0)|c(1) defined by column c is a

partition of the sequences into two sets, where c(0) is a set of sequences which have 0

in the cth position and c(1) is the set of sequences which have 1 in column c. The sets

c(0) and c(1) are called blocks of c and the graph constructed from the blocks is called

Buneman-graph B(H) (see Figure 3.6) which contains the structural features of the

optimal phylogeny. Here a generalization of the Buneman-graph will be constructed as the

following

1. Each node of the Buneman-graph is an m-tuple of blocks: c1(i1), c2(i2), . . . , cm(im),

where ij = 0 or ij = 1 for all 1 ≤ j ≤ m.

2. There is one block for each column, such that any two blocks have a nonempty

intersection: cj(ij)∩ ck(ik) 6= ∅ for all 1 ≤ j, k ≤ m.

3. Two vertices in B(H) are adjacent if and only if they differ in exactly one block.

The following theorem shows why Buneman-graphs are important.

Theorem 25. For an input matrix H let T ∗H denote the optimal phylogenetic tree on H

and let B(H) denote the Buneman-graph on H. If H has binary values, then all of the

optimal phylogenetic trees T ∗H are subgraphs of B(H).

By Theorem 25, the problem can be reduced to constructing a Buneman-graph on an

input matrix H and then solving the problem on B(H). Now we show that a Buneman-

graph can be constructed efficiently.

Theorem 26. The Buneman-graph B(H) is a connected graph if in the input matrix H

all columns contains both states 0 and 1, and all pairs of columns are distinct.
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Figure 3.6: An example of a Buneman graph for five types of mouse [8]

function findBuneman(VT )

1. λ← VT , v ∈ λ
2. BunemanNeighbor(λ, v)

function BunemanNeighbor(λ, v)

for all j ∈ {1, . . . ,m}
(a) let v′ ← v, v′j ← cj(1− ij)
(b) If v′ is Buneman and v′ /∈ λ then

i. λ← λ ∪ v′

ii. BunemanNeighbor(λ, v′)

Figure 3.7: Construction of the Buneman-graph [40]

To construct the graph B(H), let i1, i2, . . . , im be the first sequence in H. It follows that

v = [c1(i1), c2(i2), . . . , cm(im)] is a vertex of B(H). There are several ways to construct

the Buneman-graph B(H). The procedure described in Figure 3.7 begins with a vertex

set VT from B(H) consistent with H. The algorithm iteratively selects a vertex v and

enumerates all its neighbors. The algorithm checks if a neighbor satisfies the conditions of

the Buneman-graph, and if so, adds it to λ, then does a recursion.

Lemma 1. The procedure shown in Figure 3.7 finds the Buneman-graph B(H) for the

given input H in time O(km), where k is the number of vertices in B(H).

Proof. The algorithm starts with vertex v ∈ B(H), and computes B(H) in a depth-first-

search order. Theorem 26 implies that all the vertices of B(H) will be examined. It visits

all the m possible neighbors of v in the m-hypercube, which takes O(m) time. For each
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vertex v ∈ B(H), the algorithm calls the function BunemanNeighbor only once. Thus, if

B(H) has k vertices, the time required for going over B(H) is O(km).

In addition to the reduction of the set of vertices of the Steiner tree problem, Theorem 25

implies that the problem can be divided into smaller, independent subproblems.

Definition 27. A pair of columns i and j conflict if the matrix H restricted to these two

columns contains all the following pairs of binaries: (0, 0), (0, 1), (1, 0), and (1, 1). Equiva-

lently, columns i and j conflict if the projection of H onto dimensions i and j contains all

the four corners of the square.

The structure of conflicts in an input I plays a significant role in providing information

for the construction of the optimal phylogenetic tree for I. In [25] it was shown that a

perfect phylogeny exists if and only if no pair of the columns conflict. In order to represent

the conflicts of H, a conflict graph G will be constructed. In G the vertices correspond

to the columns of H, and two vertices i and j are adjacent if and only if the columns i and

j conflict in H.

Theorem 28. Let χ denote the set of nontrivial connected components of the conflict graph

G, and let Visol denote the set of isolated vertices of G. An optimal Steiner tree on H is

the union of optimal Steiner trees on the separate components of G, and length(TH∗) =

|Visol|+
∑

[length(T ∗C (H ) : C ∈ χ], where C(H) denotes the matrix H restricted to the set

of columns C.

The decomposition steps are the following.

1. First construct the conflict graph G for input H, and search for the set of connected

components in G.

2. Ignore the columns which correspond to the isolated vertices Visol as they each add

exactly one edge to the final phylogeny.

3. The columns corresponding to each connected component C can be solved indepen-

dently on order to attain the perfect phylogeny.

Thus, the problem is now decomposed into matrices Hi consisting of a nontrivial connected

component.

The next step is to transform matrix Hi (from now, it will be denoted as H) in order

to reduce its size. Rows can be removed from H until all rows are distinct, as this does

not change the phylogenetic tree. Also, those trivial columns can be removed which do not

contain both stages 0 and 1 as they will not affect the size and the topology of the resulting

phylogenetic tree.
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Weights wi will be assigned to each column i. Set wi = 1 for each i. The following steps

will be performed iteratively: identify columns i and j tat are identical (up to relabeling

with 0 or 1), set wi := wi + wj and remove column j from H. In the resulting matrix

H, each pair of rows are distinct, moreover each pair of columns are distinct (even after

relabeling 0 and 1), all of the columns contain both states 0 and 1, and every column i has

weight wi ≥ 1. Hence the new input will be a matrix H and a vector w that contains the

weights of the columns of H.

Lemma 2. The length of the optimal phylogenetic tree on the pre-processed input is the

same as on the original input.

In the ILP formulation, a more general problem will be considered. We will use directed

weighted graphs for finding the minimal Steiner tree, by representing an undirected graph

with a directed graph by replacing one edge with two directed edges. The input for the

directed minimum Steiner tree problem consists of a directed graph with a set of terminals

T and a specified root vertex r ∈ T . The minimum Steiner tree will be the minimum cost

subgraph that contains a directed path from r to all other terminal vertices in T .

Let xS ∈ RE denote a vector (for a subgraph S) whose elements are edge variables

xSe and have value 1 if the subgraph S contains edge e, otherwise 0. A subset of vertices

U ⊂ V is proper if it is nonempty and does not contain all the vertices of V . For a subset

U ⊂ V , δ+(U) denotes the set of edges (u, v), with u ∈ U and v /∈ U . For a subset of edges

F ⊆ E, x(F ) =
∑
e∈F

xe. There is also a weight function on the edges denoted by w ∈ RE .

A graph cut-based ILP formulation was used in [16] for the problem of finding a mini-

mum directed r-rooted Steiner-tree:

min
∑
u,v

wu,vxu,w (1)

subject to x(δ+(U)) ≥ 1, ∀ proper U ⊂ V with r ∈ U, where T ∩ U 6= ∅ (2)

xu,v ∈ {0, 1}, for all (u, v) ∈ E. (3)

The second constraint implies that r has got a directed path towards all terminal vertices

T . Since the underlying graph here is a Buneman graph, any of the vertices can be chosen

to be the root r. The Buneman graph may have an exponential number of vertices, and

edges proportional to the size of the input matrix H. Thus, the running time for solving

this integer programming problem in worst case is doubly-exponential in m.

Now an alternative solution will be described using multicommodity flows. In this case,

one unit of flow is sent from r to every terminal. Every terminal vertex except for r will be a

sink for exactly one unit of flow, and all the Steiner vertices have perfect flow conservation.

Introduce the following variables denote for every edge (u, v) ∈ E:
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1. f tu,v are real valued, and represent the amount of flow on edge (u, v) directed towards

a terminal t,

2. su,v are binary valued and denote the presence or absence of edge (u, v).

The program is the following

min
∑
u,v

wu,vsu,v (4)

subject to
∑
v

f tu,v =
∑
v

f tv,u for all u /∈ T (5)∑
v

f tv,t = 1,
∑
v

f tt ,v = 0,
∑
v

f tr ,v = 1 for all t ∈ T (6)

0 ≤ f tu,v ≤ su,v for all t ∈ T (7)

su,v ∈ {0, 1} for all e ∈ E (8)

Constraint (5) implies that the flow is conserved on the Steiner vertices. Constraint (6) is

the inflow and outflow constraint for terminals in T . Constraint (7) implies that there is

positive flow on an edge only if the edge is present in the graph. According to the max-

flow-min-cut theorem, the solution projected onto the variables s satisfy the constraints

described by (2).

Theorem 29. All integer variables in the above linear program are binary and the solution

to the ILP gives the most parsimonious tree.

The authors of [40] has applied this ILP formulation on several versions of datasets,

and implemented the algorithm in C++. In each case, the ILP method was able to find the

optimal tree after preprocessing. This success shows that this method fills an important

practical need for fast methods which can find the optimal tree in reasonable time, even

for larger data sets.
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Chapter 4

Conclusion

Phylogeny is one of the most powerful tools in medicine research. It helps understanding

the spread of infectious diseases, or analyzing the evolution of several viruses which is very

important when designing vaccinates. It is also very helpful in the protection and diversity

conservation of endangered ecosystems or species, since phylogeny can aid in selecting the

prior species for monitoring and protecting [14].

The future prospects of the studies in phylogeny is merging phylogenetics with ge-

nomics (a genome is the total genetic content in a set of chromosomes [34]) and is called

phylogenomics. Phylogenetics focuses on the presence of a single phylogenetic marker,

an attribution or a characteristic as described in Chapter 3. On the contrary, phyloge-

nomic approaches aim to compare a whole gene content, and to investigate the presence

or absence of a set of gene families and/or gene order [38].

The approaches described in this thesis are based on the Darwinian-Mendelian model,

which assumes only vertical gene-transfers (changes occur from the parent to offspring), but

recent studies have shown that mutational events, like LGT (Lateral Gene Transfer, also

called Horizontal Gene Transfer, as it occurs horizontally, showed on Figure 4.1) strongly

influence evolution, and thus should not be ignored.

LGT is also the primary reason for bacterial antibiotic resistance and a significant

driver of genetic variation. The traditional phylogenetic approaches have difficulties when

it comes to distinguishing genes that are similar because of LGT from the genes that

are similar because they share a common ancestor. Although the standard phylogenetic

methods are effective in computing phylogenetic trees among closely related species, they

have drawbacks when comparing more distantly related organisms, as a consequence of

lateral gene transfer and the variing rates of evolution for different genes. A solution for

this problem is to compare large number of genes or entire genomes among many species, as

laterally transferred sequences behave differently from expected, and these anomalies stand

out from the pattern of evolution indicated by the majority of the data. As a consequence,

the results given by a more robust phylogenomic method will not be as influenced by these
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Figure 4.1: Vertical and horizontal gene transfers [4]

mutations as a simple phylogeny.

These studies show that instead of the concept of ‘Tree of Life’, phylogenetic analysis

must consider the network or forest indicated by the variety of vertical and horizontal gene

transfers in order to ‘see the wood from the trees’ [4, 12,38].
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