Szolvencia II

Az élet- és egészségbiztosítási kockázati modulok bemutatása egy unit-linked biztosítás példáján

Készítette: Török Krisztina
Biztosítás és pénzügyi matematika szak
Aktuárius szakirány

Témavezető: Vékás Péter
Budapesti Corvinus Egyetem
Operációkutatás és Aktuáriustudományok tanszék

Budapest, 2012
Tartalomjegyzék

1. Bevezetés .. 4
2. Mi is az a Szolvencia? A biztosítási szolvencia rendszerek bemutatása 6
3. A Lámfalussy folyamat .. 8
4. Szolvencia II főbb jellemzői .. 10
5. Belső modell .. 11
6. Szavatoló tőke számítása Standard formulával .. 12
7. Kockázatok és megelőzésük .. 13
 7.1. Mortalitási kockázat ... 13
 7.2. Hosszú élet kockázat ... 15
 7.3. Költség kockázat ... 15
 7.4. Revíziós kockázat .. 15
 7.5. Morbiditási kockázat .. 16
 7.6. Törlési kockázat .. 17
 7.7. Katasztrófa kockázat ... 18
 7.7.1. Élet ági katasztrófa kockázat .. 18
 7.7.2. Egészségügyi katasztrófa kockázat .. 19
8. Kockázatok tőkeszükséglet számítása ... 20
 8.1. Mortalitási kockázat ... 20
 8.2. Hosszú élet kockázat ... 20
 8.3. Költség kockázat ... 21
 8.4. Revíziós kockázat .. 22
 8.5. Rokkantsági - megbetegedési kockázat .. 22
 8.5.1. Élet ági morbiditási kockázat .. 22
 8.5.2. Egészségügyi morbiditási kockázat .. 23
 8.6. Törlési kockázat .. 24
 8.7. Katasztrófa kockázat ... 24
9. A modellben használt biztosítások általános bemutatása 27
 9.1. Kritikus betegségbiztosítás .. 27
 9.2. Baleseti halál illetve baleseti rokkantság esetére szóló biztosítás 28
 9.3. Unit-linked biztosítás .. 30
 9.3.1. A unit-linked biztosítás alternatívái ... 32
10. A modell bemutatása .. 33
11. A modell megvalósítása Excelben ... 35
 11.1. A profit-teszt rövid bemutatása ... 36
 11.2. Az eredmények áttekintése ... 38
12. QIS eredményének áttekintése .. 41
13. Összefoglalás ... 48
Köszönetnyilvánítás .. 49
Irodalomjegyzék: ... 50
1. Bevezetés

„A tőke szaporodásának közvetlen oka nem a munka, hanem a takarékosság. Való igaz, a szorgalmas munka teremti meg a javakat, amelyeket takarékossággal fel lehet halmozni, de bármennyit teremtsen is a munka, tőkénk sosem növekedhetne, ha nem gazdálkodnánk takarékosan és nem tartalékolnánk.”

Adam Smith

Mint ahogy a cím is jejteti, dolgozatomban a Szolvencia II témakörével foglalkozom. A Szolvencia II röviden a biztosítók szavatolótőke-követelményével illetve a tőkemegfelelésével foglalkozik. Azért választottam ezt a témát, mert amellett, hogy érdekes, nagyon fontos is. Habár a folyamat már 2005-ben elkezdődött, idén, 2012-ben is aktuális témakörnek számít. Mára a hatástanulmányok lefolytak, a szabályzatok lényegében véglegessé váltak és éppen a bevezetés kapujában állunk.

A fent felsorolt folyamatot követve alkottam meg én is a szakdolgozatomban. Először foglalkozom a jelenlegi rendszer hátrányainak bemutatásával, majd a Szolvencia II-ben megjelenő, az előző rendszerhez képesti változásokat mutatom be. Az új rendszer egész

Emellé több kiegészítő biztosítást is csatolok. A biztosítási termékek bemutatására is kitérek. Majd bemutatom a termékre felírt modell feltételezéseit, és a Microsoft Excelben történő megvalósítás módszerét is. Végül, miután a saját termékmennyezet áttekintem, a hatástanulmányok eredményét is röviden összefoglalom.
2. **Mi is az a Szolvencia? A biztosítási szolvencia rendszerek bemutatása**

Mint a legtöbb pénzügyi intézménynek, a biztosítóknak is meg kell felelniük az összes pénzügyi kötelezettségüknek az ügyfelek irányába. „A szolvencia, vagy más néven tőkemegfelelés azt jelenti, hogy egy gazdálkodó szervezet fizetőképes, tehát adott időpontban eleget tud tenni a fizetési kötelezettségeinek.”(ecopedia.hu). Annak érdekében, hogy a biztosítók minden helyzetben megtarthassák fizetőképességüket, a tartalékaikon felül bizonyos plusz tőkére van szükségük. Ennek a plusz tőkének a mértéke függ a biztosító nagyságától, fajtájától, szerződéseitől, dijbevételeitől, vállalt kockázataitól. Ezt a tőket nevezik szavatoló tőkének. Azt, hogy a biztosítóknak milyen szavatoló tőkével kell rendelkezniük, egy európai uniós direktivarendszer határozza meg. A jelenleg hatályban lévő szabályzatot Szolvencia I-nek nevezi. ¹ Ezt a szabályzást már közel 40 éve alkalmazzák, és ez idő alatt több alapvető probléma is felmerült ezzel kapcsolatban. Ezért vált szükségessé egy új szabályozási rendszer, a Szolvencia II kiépítése. ² Nézzük meg röviden, milyen problémák merültek fel a Szolvencia I rendszerrel kapcsolatban!(Hanák, 2011)

A jelenleg alkalmazott metódus nem megfelelő mértékben érzékeny a kockázat nagyságára. Bünteti a prudens szemléletben működő biztosítókat. Például ha két ugyanolyan kockázatú biztosításra az egyik biztosító nagyobb biztosítási díjat szab ki - ezzel is csökkentve saját kockázatát - a szabályozás e biztosítónak ír elő nagyobb tőkeszákségletet.

A mostani szabályozás, habár egyszerű és költséghatékony is, de mégsem azonosítja be helyesen a kockázatot.

A Szolvencia I szabályozásban használt modellek már a bevezetés idején sem voltak minden esetben jól alkalmazhatóak, mára pedig teljesen elavultnak számítanak. A vállalatirányítás szempontjából is fejlesztendő az S1 rendszer, hiszen csak kevés minőségi követelményt tartalmaz. A felügyeletektől sem követeli meg a biztosítók ilyen irányú felülvizsgálatát.

¹ A Szolvencia I jelölésére gyakran használjuk az S1 rövidítést. Ez Európa-szerte ismert, ugyanis a direktíva angol elnevezésére (Solvency I) is alkalmaz rövidítés.

² A Szolvencia II jelölésére az S2 rövidítést is fogjuk alkalmazni.
Kétféle módon is meghatározhatjuk a tőkeszükségletet. Ha a díj százalékában tesszük ezt, akkor a nagyobb díj nagyobb tőkeszükségletet von maga után. Ha a tartalék százalékában, akkor az országonként változó tartalékolási elv miatt szintén előfordulhat, hogy a tőkeszükséglet nem lesz megfelelő a kockázati kitettségnek. Fontos szempont az is, hogy a fent felsorolt problémák miatt az eredmények nem lesznek összehasonlíthatóak sem biztosítók, sem országok szintjén. Több országban is jellemző volt, hogy a Szolvencia I rendszeren felül még külön elveket határoztak meg. Ebből kifolyólag is nagy eltérések adódtak Európa szerte. Ezek az országonként különböző elvek illetve az eltérő felügyeleti szabályozás akadályozzák az egységes biztosítási piac megfelelő működését, ezáltal gyengítik az EU-n belüli versenyt is.

A jelenlegi magyar szabályozás egyszerű kvantitativ szabályokból áll. A legfontosabb feltétel az, hogy ha kiszámítjuk a tőkeszükségletet és a rendelkezésre álló szavatoló tőkét, azokra igaz legyen, hogy a rendelkezésre álló szavatoló tőke nagyobb a tőkeszükségletnél. A különböző biztosítási fajtákhoz megfelelő módon kell kiszámolni a szavatolótőke-szükségletet (SzTSz, angol elnevezés és rövidítés: Solvency Capital Requirement, SCR), majd a megfelelő módon kell ezeket az eredményeket összegezni, így végül megkapjuk a biztosító teljes tőkeszükségletét. Mint látszik, ez egy elég egyszerű, mechanizált rendszer.

A fent említett problémák miatt és a rendszer fejlesztése érdekében hozták létre az új szabályozást. Ez a Szolvencia II direktivarendszer. (Hanák, 2011)

A Szolvencia II egy hárompilléres rendszer. Az első pillér a tartalékszabályozással és a tőkemegfeleléssel, a második pillér a biztosítók vállalatirányításával és a felügyeleti résszel foglalkozik, míg a 3. pillér az adatszolgáltatást és a közzétételt szabályozza. Az S2-vel egy olyan új szabályozási rendszert szeretnének bevezetni, ami Európa szerte mindenhol alkalmazható lesz. Nagy hangsúlyt helyeznek arra is, hogy a mostani IFRS 4-gyel, illetve a bankok jelenlegi szabályozásával, a Bázel II-vel is harmonizáljon. A Bázel II egy hárompilléres tőkemegfelelési rendszer, amely a bankoknál felmerülő kockázatot és azok fedezetére felretett tőkét vizsgálja. Mivel a biztosítók is foglalkoznak befektetéssel, illetve sok biztosító bankkal együtt működik, ezért nagyon fontos, hogy a biztosítók és a bankok szabályozása harmonizáljon egymással.

Létezik egy magántőkéből finanszírozott független bizottság, az IASB (International Accounting Standards Board, Nemzetközi Számviteli Standard Testület) akiknek az a céljuk, hogy a különböző számviteli ügyekre egységes szabványt adjanak. Ezen keretekkel összességét nevezik IFRS-nek (International Financial Reporting Standards,
Nemzetközi Pénzügyi Beszámolási Standardok). Sokáig a biztosítási területtel nem is foglalkoztak, majd 1997 körül kezdtek szabályozni ezt a területet is, de még mai napig sincs teljesen összeállítva a szabályrendszer. AZ IFRS 4 almodul foglalkozik a biztosítási szerződésekkel. Jelenleg az IFRS 4 II. fázisa van készülőben. Mivel a tőkeövetelmények számolásához számtalan ponton szükségünk van számviteli fogalmakra, értékekre, mérlegételekre, ezért nagyon fontos, hogy a Szolvencia II rendszer az IFRS-szel is harmonizáljon. (IFRS hivatalos internetes felülete)

3. A Lámfalussy folyamat

Az S2 folyamatot az úgynevezett Lámfalussy folyamatból írhatjuk le (The Financial Services Authority (FSA) honlapja). Az 1. ábra segítségével könnyen átláthatjuk a Szolvencia II folyamat tervezett lépéseit, lefolyását.

A Szolvencia II bevezetésénél több probléma, hiányosság és kérdés is felmerült. Ezért 2005 óta az EIOPA (European Insurance and Occupational Pensions Authority), korábban CEIOPS (Committee of European Insurance and Occupational Pensions Supervisors) néven működő szervezet vezetésével mennyiségi hatástanulmányokat,
úgynevezett QIS-eket (Quantitative Impact Study) készítettek. A tanulmányok elkészítésében több biztosító és több ország, köztük Magyarország is részt vett. A tanulmányok és a visszajelzések segítségével folyamatosan javítják, pontosítják és bővítik a szabályrendszer, hogy a gyakorlatban alkalmazhatóbb legyen. (European Commission, The EU single market honlapja),

1. ábra: A Lámfalussy modell folyamatábrája (EIOPA honlapja)
4. Szolvencia II főbb jellemzői³

A szabályzat szerint a biztosítóknak legalább évente egyszer be kell számolniuk a felügyelet felé a szolvencia szükségletük és a pénzügyi helyzetük alakulásáról. Ha a biztosító (vagy a felügyelet) a biztosító pénzügyi helyzetében nagyobb változást észlel, akkor a tőke megfelelősségét év közben is ellenőrizni kell.

Az egyik legfontosabb változás az S1-hez képest, hogy az S2-ben, az IFRS-szel összhangban, valós értéken történő eszköz- és forrásértékelést vezettek be. A tartalékokat mindig átruházási értéken kell értékelni. Az átruházási érték azt az árat mutatja, amit a biztosítónak fizetnie kellene azért, hogy a biztosítási kötelezettségeit egy másik biztosító átvegye. A biztosítástechnikai tartalékok értékelése kétféleképpen történhet. Ha a kockázatok tartaléka a piacon megfelelő eszközökkel replikálható, akkor ezen replikáló eszközökkel kell értékelni a tartalékot. Ha ez nem lehetséges, akkor a biztosítástechnikai tartalékok értékét a legjobb becslés és a kockázati marzs összege adja. A legjobb becslés a jövőbeni pénzáram várható jelenértéke, a kockázati marzs pedig azt az összeget mutatja, amit a biztosítónak egy állomány átruházásnál a legjobb becslés értékén felül kellene fizetnie.

A biztosító a szavatoló tőkét számíthatja a standard formula vagy a belső modell szerint, amit korábban a megfelelő felügyeleti szervek jóváhagyttak. Mindkét esetben a szükséges szavatoló tőke az alapvető szavatoló tőke egy éves időtávon mért 99,5%-os VaR (Value at Risk) értékével egyezik meg. A VaR értékét a következő matematikai formulával határozhatjuk meg:

\[VaR(p) = \inf\{x | F(x) \geq p\}, \]

ahol \(F(x) \) az 1 éves időtávon mért veszteség eloszlásfüggvénye.

A minimális szavatolótőke-szükséglet (MTSz, angol elnevezéssel és rövidítéssel: Minimum Capital Requirement, MCR) körülbéül az alapvető szavatoló tőke 1 éves időhorizontú 75 - 80%-os VaR-jának felel meg. Az MTSz értékének az SzTSz 25% - 45%-os sávjába kell esnie. Az MTSz számítását negyedévente kell elvégezni. Ha a rendelkezésre álló szavatoló tőke a minimális szavatoló tőkénél kisebb,

³ A 4. fejezet az Európai Parlament és a Tanács által közöltetett, a biztosítási és viszontbiztosítási üzleti tevékenység megkezdésével és gyakorlásával (Szolvencia II) kapcsolatos irányelvek alapján készítettem (Irányelvek, 2009).
akkor a felügyelet fel is függesztheti vagy megvonhatja a biztosító működési engedélyét. Ha a rendelkezésre álló szavatoló tőke értéke meghaladja a minimális szavatolótőke-szükségletet, de nem éri el a szavatolótőke-szükségletet, akkor a felügyelet meghatározott lépéseket tehet a helyzet javítása érdekében. Optimális esetben a rendelkezésre álló szavatoló tőke meghaladja a szükséges szavatoló tőke értékét. Nekünk az SzTSz számítására van szükségünk, így a következőkben ezt nézzük meg részletesebben!

5. Belső modell

A szavatolótőke-szükségletet belső modellel vagy standard formula használatával számíthatjuk. Habár a dolgozatomban a standard formula számítását fogom bemutatni, úgy vélem mégis hasznos pár szót ejteni a belső modell használatáról is, így teljesebb képet kaphatunk az egész rendszerről. A biztosítók alkalmazhatnak teljes vagy részleges belső modellt, de ezt előtte a felügyeleti hatóságokkal jóvá kell hagyni. A belső modell mellett a felügyelet (indokolt esetben) kötelezheti a biztosítót a standard formulával való számítások elvégzésére is. Ez a másik irányba is működik, vagyis standard formulát használó biztosítók a felügyelet által kötelezhetőek belső modellel való számítások bemutatására, ha a biztosítók kockázati profilja jelentősen eltér a standard formulában feltételezettől, és így nem célszerű a standard formulával számolniuk. Ha a biztosító megkapja a belső modell alkalmazására a felügyeleti jóváhagyást, akkor később csak alaposan indokolt esetben, felügyeleti jóváhagyással térhet vissza részben vagy egészben a standard formulához. Részleges belső modell használatára is lehetőség van, ha ezt a vállalkozás kellően indokolja, és a modell összhangban van a standard formulával, abba teljes mértékben integrálható. A belső modell csak korlátozottan használható: csak az alapvető szavatolótőke-szükséglet, a működési kockázat illetve a korrekció számítására alkalmazható. Ha a felügyelet által már jóváhagyott belső modellben a későbbiekben jelentős módosítást akarnak végrehajtani, akkor azt ismételten jóvá kell hagyni.

A belső modellt felépítését és működését a biztosítóknak mindig dokumentálniuk kell.
6. Szavatoló tőke számítása Standard formulával\(^4\)

A biztosító teljes portfolióját részportfoliókra kell felosztani. Ez a felosztás nem a szerződések alapján történik, hanem a „tartalom” alapján. Vagyis az átvállalt kockázat fajtája szerint végezzük a felosztást. Így előfordulhat olyan eset, hogy egy szerződést a biztosított kockázatok alapján több részre bontunk fel. A kockázati modulok szavatolótőke-szükségletét külön számoljuk ki, és ezeket a majd később részletezett módon összesítjük. Az 2. ábra segítségével könnyen áttekinthetjük az egyes kockázati modulokat.

2. ábra: A szavatoló tőke szerinti kockázati modulok (Hanák, 2011)

A szavatoló tőke az alapvető és a kiegészítő szavatoló tőke összege. Az alapvető szavatoló tőke az eszközök és a kötelezettségek értékének különbözete csökkentve a

\[^4\] Az 5. fejezetet a CEIOPS által közöltet Solvency II Calibration Paper segítségével állítottam össze (CEIOPS, 2010).
tartott saját részvények értékével, plusz az alárendelt kötelezettségek. A kiegészítő szavatoló tőke olyan, az alapvető szavatoló tőkén kívüli tőkeelemeket foglal magában, amelyek alkalmasak a veszteségek elnyelésére (pl. be nem fizetett alaptőke, hitellevél, stb).

Az almodulok tőkeszükségletét külön-külön kiszámoljuk, majd a megfelelő korrelációs együtthatókkal összesítjük. Ezt követően az előző lépésben megkaptott kockázati modulok tőkeszükségletét szintén korrelációs együtthatókkal összesíti, és így kapjuk meg végül az alapvető szavatolótőke-szükségletet. A korrelációs együtthatókat a keretirányelvekben rögzítették.

A tőkeszükségletnek meg kell felelnie az egy éves időhorizontú 99,5 %-os VaR szintjének. De ennek nem csak a SzTSz-re, hanem az egyes kockázati modulokra külön-külön is teljesülne kell. A kockázati almodulok számítását az alábbiakban részletezem. Az én modellben főleg a halandósági, megbetegedési, törlési és katasztrófa kockázatokra lesz szükségem. Nézzük meg először közelebbről, hogy mit is jelentenek ezek a kockázatok.

7. Kockázatok és megelőzésük

7.1. Mortalitási kockázat

A halandósági kockázatot az angol elnevezésből (mortality risk) adódóan mortalitási kockázatnak is nevezzük. Bizonyos kalkulációkhoz, mint például a dijszámítás és a tartalékszámítás, a biztosító halandósági táblát használ. Ha a kockázatkozösségben ennél nagyobb valószínűséggel halnak meg az ügyfelek, akkor a

5 A kockázatok és azok megelőzői módjának összefoglalásában Dr. Banyár József két munkája volt segítségemre. (Banyár, 2011), (Banyár, 2003)
haláleseti kifizetéseknél a kifizetett összeg meghaladhatja a tartalékolt összeget. Ezt a jelenséget nevezzük mortalitási kockázatnak. Erre is szavatoló tőkét kell számolni. Vegyes vagy vegyeshez hasonló biztosítások esetében, vagyis ahol nem csak haláleseti kifizetés van, hanem előrézi kifizetés is, ott az úgynevezett természetes fedezetet is figyelembe kell venni. Ugyanis ez esetben amennyivel többen halnak meg, annyival kevesebben kapják meg az előrézi biztosítási összeget, így utóbbi tartalékából részben fedezhető a megnövekvő haláleseti kifizetések összege.

A kockázat csökkentésére még számos megoldást alkalmazhat a biztosító a szavatolótőke-képzésen kívül. Például megelőzés céljából a szerződés megkötését orvosi vizsgálathoz kötheti. Így csökkentheti az antiszelekciós kockázatot, mert a vizsgálat folyamán fény derülhet az esetlegesen eltitkolt vagy nem ismert betegségekre, vagy egyéb egészségügyi kockázati faktorokra.

A biztosító alkalmazhat még dijsúlyosbítást vagy kizárást is bizonyos esetekben. Például ha a biztosított veszélyes vegyszerrel dolgozik nap mint nap, akkor a betegségbiztosítás díját súlyosbíthatják, vagyis azért, hogy a betegségi kockázatot a biztosító átvállalja az ügyfélnek az alapdíjnál többet kell fizetnie. Vagy például ha a biztosítottnak volt már korábban súlyos szívroham, akkor a biztosító a szívrohamra nem biztosítja az ügyfelet, de ettől függetlenül más, szerződésben szereplő betegségek esetén szolgáltat. Ezt nevezzük kizárásnak.

A várakozási idő alkalmazása is a kockázatscsökkentés egyik fajtája. Ez azt jelenti, hogy a biztosító a kockázatátvállalást csak bizonyos idővel a szerződés létrejötte után kezdi meg. Bár ez biztosításonként és biztosítónként eltérő, de gyakori például a 6 hónapos várakozási idő. Ismerünk olyan súlyos következményekkel járó betegségeket, amelyek lappangás ideje igen hosszú. Így előfordulhat, hogy a szerződés megkötésekor még maga a biztosított sem tud a betegségről, lehet, hogy még az orvosi vizsgálat sem mutatja ki, mégis lappang benne egy halálos vírus. Ebben az esetben a biztosítót jelentős veszteség érni ezen a szerződésen, hiszen például az ügyfél befizet 1-2 havi biztosítási díjat - néhány ezer forint nagyságrendű összeget - és 3 hónap múlva a biztosítónak 20 millió forintos biztosítási összeget kell kifizetnie. A várakozási idő segíthet még a biztosítási csalások kivédelmében is.

A biztosító védekezhet még viszontbiztosítással is. Ha a szerződéses kockázat már túl nagy számára, annak egy részét viszontbiztosításba adhatja. Ekkor a biztosítási esemény bekövetkeztekor nem egyedül a biztosítónak kell állni a kifizetéseket, hanem a viszontbiztosításba adott rész arányában a viszontbiztosító is beszáll a kifizetésekbe.
A viszontbiztosítás alkalmazása adatszerzés szempontjából is hasznos lehet. Például kisebb vagy még nem régóta működő biztosítók esetében a tapasztalati adatok, mint például a hosszú idősoros kárhányadok, még hiányoznak. Ilyenkor a viszontbiztosító is nyújthat megfelelő adatokat.

7.2. **Hosszú élet kockázat**

A longevity kockázatot magyarul hosszú élet kockázatnak nevezzük. Ez a kockázat hasonló a mortalitási kockázathoz abból a szempontból, hogy a halandósági táblák valószínűségei és a tényleges halandóság különbözetének következményei adják a kockázatot. De itt nem a ráták növekedése okozza a problémát, hanem pont ellenkezőleg, a ráták csökkenése. Ugyanis, ha a kalkuláltan kevesebb biztosított hal meg, akkor többé élik meg a biztosítási tartam végét, vagyis több ügyfélnek kell kifizetni az elérési szolgáltatást. Ez főleg életjáradék vagy az elérési szolgáltatást nyújtó biztosítás esetében jelent kockázatot. Ezt a kockázatot a biztosító kezelheti a halandósági tábla módosításával vagy alacsony technikai kamatláb alkalmazásával.

7.3. **Költség kockázat**

A biztosítási szerződésekre mindig kapcsolódnak költségek. Az aktuáriusok minden termékre becsülnék egy költségszintet, és ezzel számolnak. Ha a tényleges költségek ezt meghaladják, akkor az a biztosítónak veszteséget jelent. Ezt a kockázatot nevezzük költség kockázatnak.

7.4. **Revíziós kockázat**

Ebben az esetben a nem-életbiztosítási kötelezettségből származó járadékok okozzák a problémát. Nézzünk például egy gépjármű felelősségbiztosítást. Ha valaki gépjármű vezetése közben balesetet okoz, és a felelősség befizetése bekövetkezett, akkor a felelősség kockázata úgy változhat, hogy a felelősség kockázata kisebb lesz, mint a biztosítónak elfizetett. Ez a kockázat a biztosítónak veszteséget jelent, mert a biztosító által kalkulált felelősségi járadék nem megfelelő lesz a baleset következményéhez.

Ebben az esetben a nem-életbiztosítási kötelezettségből származó járadékok okozzák a problémát. Nézzünk például egy gépjármű felelősségbiztosítást. Ha valaki gépjármű vezetése közben balesetet okoz, és a felelősség befizetése bekövetkezett, akkor a felelősség kockázata úgy változhat, hogy a felelősség kockázata kisebb lesz, mint a biztosítónak elfizetett. Ez a kockázat a biztosítónak veszteséget jelent, mert a biztosító által kalkulált felelősségi járadék nem megfelelő lesz a baleset következményéhez.
elegendő a kifizetésekre, így a biztosítónak vesztesége keletkezik. Ennek a veszteségnek a lehetőségét nevezzük revíziós kockázatnak.

7.5. Morbiditási kockázat

A morbiditási kockázat olyan biztosításoknál jelentkezhet, ahol valamilyen megbetegedésre vagy/és rokkantságra, azzal kapcsolatos költségekre biztosítják az ügyfelet. A megbetegedés bekövetkezési valószínűségét a halálozási rátákhoz hasonló megbetegedési ráták adják. Ugyanez igaz a rokkantsági valószínűségekre is. Ezért a morbiditási kockázat nagyon hasonló a mortalitási kockázathoz. Ha a vártnál nagyobb mértékben bejedned meg vagy/és rokkannak meg a biztosítottak, akkor a kifizetendő összeg túlnöhet a tartalékon. Ez jelenti a biztosító számára a kockázatot.

A megelőzésre ebben az esetben alkalmasak a mortalitási kockázatnál már felsorolt módszerek. Az eltítolt vagy nem ismert betegségek megelőzhetőek, a kockázati faktorok felmérhetőek az előzetes kockázatelbírálás folyamán. Dijsúlyosítással növelhetjük a tartalékunkat, kizárással megvédhetjük magunkat a túlnagy kockázattól. A várkozásai idő a betegségbiztosításoknál szintén nagyon fontos. Bizonyos betegségbiitosítások esetében, mint például a kritikus betegségbiztosítások is, fontos szempont a hosszú idősoros adatok megléte. A díjakat ugyanis a betegségbiitosítások esetében kárhányadok segítségével számolja a legtöbb biztosító, mivel az egészségügyi adatszolgáltatóktól elérhető megbetegedési valószínűségek nem biztos, hogy pontosan reprezentálják a valódi megbetegedési valószínűségeket. A betegségek valószínűsége függ a biztosított egzisztenciájától, társadalmi hovatartozásától, lakényétől (ország, akár megye szinten is), amelyek közvetetten befolyásolják egészségi állapotát is. Az előre megadott megbetegedési valószínűségek így nem feltétenül megfelelőek minden biztosító számára. A hosszú idősorokból kalkulált kárhányadok jobban reprezentálhatják a biztosító állományán a kárk alakulását. A kritikus betegségbiztosításnál egyszerre több betegségre is biztosítják az ügyfelet. Ezen betegségek bekövetkezési valószínűsége a halálozási valószínűségeknél kevésbé ingadozik, mivel (például az orvostudomány fejlődése vagy a dohányzási szokások változása miatt) a különböző betegségek trendje folyamatosan változik. A biztosítási fedezetek köré is változik, új betegségek kerülnek be a biztosítási események közé. Amíg a biztosítónak ezekről az új betegségekről nincs megfelelő adata és tapasztalata, addig érdemes kezdetben magas viszontbiztosítási hányaddal védekezni.
7.6. Törlési kockázat

A törlési kockázati almodul minden olyan opció kockázatát lefedi, ami a szerződés opció alapú kiterjesztésével vagy szüköitésével jár. A nevével ellentétben itt nem csak törlésekről beszélünk, hanem többek között a visszavásárlásokról, 30 napos felmondásról, a díjszüneteltetésről és a díjszökkentésről is. A törlés általában akkor következik be, amikor az ügyfél nem fizet díjat több mint 90 napja. Ekkor díjbelételenség miatt a biztosító törli a szerződést, és ha erre lehetőség van, visszaadja az ügyfélnek a tartalékok bizonyos százalékát. Visszavásárlásról akkor beszélünk, amikor az ügyfél megszünteti a szerződését, és a tartalékok értékének egy részét visszakapja. Ez bekövetkezhet azért, mert például az ügyfél nem tudja fizetni a díjat, szüksége van a megtakarított pénzére. Ez ellen a biztosító díjszökkentési, díjszüneteltetési, kötvényköleső- vagy részleges visszavásárlási opciók felajánlásával védekezhet. Habár ezek is a törlések körébe tartoznak, mégis megoldást nyújtanak ilyenkor, mert ezek alkalmazásánál a szerződés nem szűnik meg teljes egészsében. Ha az ügyfél számára már túl drága a biztosítás, akkor kérhet díjszökkentést, így olcsóbbá válik a biztosítása, de ekkor általában a biztosítási összeg is vonzatosan csökken. A díjszüneteltetés azt jelenti, hogy a biztosított bizonyos időre (például fél év) mentesül a díjfizetési kötelezettség alól. Lehetőség van arra, hogy az ügyfélnek kötvénykölcstől kínáljunk a biztosításának terhére, ekkor nem szűnik meg a biztosítása mégis pénzhez jut, és nem kell biztosítási díjat és banki törlesztést is fizetnie egyszerre. Sajnos a törlések kapcsán csalásokról/visszaélésekről is beszélünk kell. Ilyen visszaéléshre példa az, amikor az ügyfél megköt egy nagyobb értékű szerződést, majd pár hónapon belül, a közvetítővel megbeszélt módon, visszavásárolja azt. Ekkor a közvetítő már megkapta a jutalékát, majd kilép a cégtől, így a jutalékot már nem tudja visszaírni a biztosító. Ilyenkor általában a közvetítő jutalékának egy részét megkapja az ügyfél, így neki is megéri a csalásban való közreműködés. Az ilyen helyzetek ellen próbálnak a jutalék pár hónapos (rész) visszatartásával, vagy jutalékvisszairással védekezni. Az előbbi azt jelenti, hogy a közvetítő pár hónapig nem kap jutalékot (vagy csak egy részét kapja meg), és az adott időszak után is csak akkor, ha még mindig él a szerződés. A jutalékvisszairás esetében a közvetítő már az aláírás után megkapja a jutalékot, de a szerződés rövid időtartamon, általában 2 éven belüli felmondása esetén a jutalék egy részét a biztosító visszakövetetheti. Az első 1 vagy 2 évben a szerződés visszavásárlási értéke általában 0%-os, ami azt jelenti, hogy törlés esetén az ügyfél
lényegében semmit nem kap vissza. Így az ügyfél számára sokkal kevésbé éri meg a közvetítővel összejátszania, részt vennie az ő csalásában. Törlési kockázatoknál az ügyfelek törlesi arányának tartós emelkedése mellett az egyszeri tömeges törlesi jelentenek még kockázatot, mint például válság idején. Ez ellen nehéz védekezni. Esetleg marketing fogásokkal meg lehet erősíteni az ügyfelet abban, hogy nem érdemes a biztosítását felbontania. Díjkedvezményt vagy szolgáltatásbővítést is kinálhatunk ilyenkor, hogy megérje az ügyfélnek megtartania a biztosítását. De ezek általában rögtönzött és időszakos megoldások. Mivel ezek az események legtöbbször nem láthatóak előre, így legbiztosabb a szavatoló tőkével való védekezés.

7.7. *Katasztrófa kockázat*

A katasztrófa kockázatral foglalkozó almodul szerepel az élet, a nem-élet és az egészség kockázatokon belül is. Először vizsgáljuk az élet, majd az egészség kockázati modulban szereplő katasztrófa kockázatot!

7.7.1. **Élet ági katasztrófa kockázat**

A katasztrófa kockázat általában olyan extrém helyzetekből ered, ahol a biztosítási esemény sok biztosítottat érint, ritkán következik be (például 200 év alatt egyszer), és nehezen kalkulálható eseménynek számít, vagyis a bekövetkezési valószínűségek nehezen számíthatóak. Ilyenek például a járványok, az úgynevezett aréna kockázat, a nukleáris robbanás. A Magyarországon 2010 októberében bekövetkezett ajkai vörös iszap katasztrófa is ide tartozik. Ezen kockázati almodulon belül több fajta katasztrófáról is beszélhetünk. Egyik nagy csoport a természeti katasztrófák köre. Ilyenek például az árvíz, jégeső, földrengés vagy hurrikán okozta károkat. Másik csoport a nem természeti erőkkel összefüggő katasztrófák. Ezen belül van szándékos és nem szándékos eseményekkel összefüggő katasztrófa. Szándékos esemény például a terrorámadás. Nem szándékos események közé tartoznak például a balesetek vagy tűzesetek következményei, ipari katasztrófák vagy a repülőgép katasztrófák. Az élet kockázati modulba tartozó katasztrófa kockázat azon szerződéseknél jelent problémát, ahol a biztosítás az ügyfél halála esetén fizet. A katasztrófa kockázat esetében földrajzi jellemzők is beépülhetnek a formulába.
7.7.2. Egészségügyi katasztrófa kockázat

Az egészségügyi katasztrófa kockázat hasonlít az életági kockázathoz, de nem teljesen egyezik meg vele. Itt nem az jelenti a kockázatot, hogy egyszerre több biztosított meghal, hanem az, hogy egyszerre több biztosított megbetegszik, rövidebb vagy hosszabb távon egészségügyi ellátásra szorul, részlegesen vagy teljesen mértékben rokkanttá válik. Tehát leegyszerűsítve, a kockázatot az jelenti, hogy például egy nagy erejű bomba felrobbanásánál - amennyiben a robbantás nincs kizárva a biztosítási események közül - a biztosított eseményekből egy időben sok következik be, így a biztosító kifizetései kiugró mértékben megnőnek. Egy ilyen eseményre nagyon nehéz előre kalkulálni. De hogy a biztosító ilyenkor is meg tudjon felelni a kötelezettségeinek, ezekre az eseményekre is szavatoló tőkét kell képezni.

Az egészségügyi modulban 3 fő katasztrófa kockázati fajtával foglalkozunk: az aréna, a koncentrációs és a járvány kockázattal. Az aréna kockázatról beszéltünk már fentebb az életági modulban is. Köztudott, hogy míg egy ilyen katasztrófa sok embert fog érinteni, nem lesz mindegyik károsultnak biztosítása. Azon személyek, akik rendelkeznek biztosítással, valószínűleg nem ugyanannál a biztosító társaságnál kötöttek biztosítást. A tőkeszükségletet számoló képletben megpróbálták ezeket a hígító hatásokat figyelembe venni.

A koncentrációs kockázat nagyon hasonló az aréna kockázathoz. Azt a kockázatot próbáljuk ezzel lefedni, amikor a legtöbb biztosított egy helyen, egy időben elszennedője ugyanannak a szerencsétlenségnek. Például amikor egy város pénzügyi központjában, irodaállamokkal teli területen az egyik épület összeomlik a nem megfelelő épületszerkezet következtében vagy valamilyen természeti behatás miatt.

A járványkockázat pedig azt jelenti, amikor egy járvány következtében a megbetegedések száma megnövekszik. Itt nem feltétlenül a nagyszámú halálos kimenetel jelenti a kockázatot, hanem pl. a járvány következményeként a nagyszámú maradandó betegség vagy rokkantság és az emiatt egyszerre megjelenő, nagy összegű kárkifizetés a biztositónál.

Most nézzük meg az eddig áttekintett kockázatok tőkeszámítását!
8. Kockázatok tőkeszükséglet számítása\(^6\)

8.1. Mortalitási kockázat

A halálozási ráták stressz értékére eredetileg a CEIOPS szabályzatában (CEIOPS, 2010, 94.o.,114.o.) egységes 10% növelést javasoltak. A QIS4 hatástanulmányok visszajelzése alapján ezt megváltoztatták. Az egységes stresszparaméter alkalmazásában a résztvevők egyetértettek, de annak mértékében már nem. Meglehetősen eltérő visszajelzésekről érkeztek a paraméter nagyságával kapcsolatban: sokan túl magasnak tartották a 10%-ot, de voltak olyanok is, akik túl alacsonynak. A belső modelleket használó cégek lényegesen magasabb paramétert használtak, ugyanis a 21 darab belső modellt használó cégnél az alkalmazott stressz paraméterek 13% és 29% között voltak. Ezek alapján a CEIOPS jelenleg egy egységes 15%-os növekedési sokkparamétert javasol a kalibrálás során. Mivel nincs arra utaló jel, hogy az életbiztosítási modul és az egészségbiztosítási modul mortalitási kockázata eltérne egymástól, így a tőkeszükséglet számítását ugyanazzal a sokkparaméterrel végezzük el mindkét modul esetében.

8.2. Hosszú élet kockázat

A szavatoló tőke számítása szintén szcenárió alapú számítás. Sokkolásként a CEIOPS eredetileg a halálozási ráták egységes 25%-os csökkentését javasolta. A QIS4 tanulmányok készítésénél több ország is azt javasolta, hogy megfelelőbb lenne, ha a

Ezért a CEIOPS továbbra is a halálozási rátták állandó 25%-os csökkentését javasolja a szenáriók elkészítésénél.

8.3. Költség kockázat

A költségkockázat tőkeszükségletét is szenárió alapú stresszel számoljuk. Mivel a kockázat forrása a kalkulált költségek esetleges túl alacsony szintje, így ezt az értéket érdemes sokkolni. A standard formulában az életbiztosítási és az egészségbiztosítási modulbeli számításnál az ajánlott sokkparaméter 10%-os. Vagyis s jövőbeli költségekre kapott legjobb becslési értékét kell 10%-kal növelni.

A biztosítók általában alkalmaznak egy költséginflációs paramétert is. Ennek értékét is sokkolni kell, méghozzá 1%-os sokkot alkalmazva. Mivel ezzel a kockázattal nem számolok a modellemben, nézzünk meg most egy egyszerű példát. Ha a termék költsége a legjobb becslés szerint 5000 Ft, és a biztosító jelenleg 3%-os költséginflációval számol, akkor a szavatolótőke-számításhoz a következő módon alkalmazzuk a sokkokat:

Az első évben 5000 Ft helyett 5000 Ft \cdot 1,1 = 5500 Ft -os költséggel számolunk. Majd a második évben költséginfláció sokkolásával 5000 Ft \cdot 1,03 = 5150 Ft helyett 5500 Ft \cdot (1,03 + 0,01) = 5720 Ft -tal kell számolnunk. És így tovább az egész hátralévő tartamra.

A QIS4 visszajelzései alapján a költségkockázati stressz paramétereit megváltoztatták. De a belső modellrel való számításoknál a költség kockázat sokk szintje összhangban volt a standard formulában alkalmazott eredeti sokkal. Ezért a CEIOPS javaslata az, hogy fent felsorolt sokkparamétereket alkalmazzuk továbbra is.
8.4. Revíziós kockázat

A standard formula szerinti tőkeszükséglet számítását szintén szenzáló alapú sokkszámítással végezzük. Mivel a járadékok megnövekvő mértéke okozza a kockázatot, ezért a fizetendő járadékok esetet összegére kell alkalmaznunk egy 3%-os növekedési sokkparamétert. A QIS4-ben csak egyetlen résztvevő véleményezte ezt a kockázati modult, ebből a CEIOPS arra következtetett, hogy a kalibrációs folyamat a legtöbb (viszont) biztosító számára elfogadott.

Az egészségbiztosítási kockázati modul is tartalmaz egy revíziós kockázatot. Itt a CEIOPS az életági modulban alkalmazott 3%-os növekedési sokkon felül plusz 1%-os különleges növekedési sokkot javasol.

8.5. Rokkantsági - megbetegedési kockázat

8.5.1. Élet ági morbiditási kockázat

Itt is gyakran használjuk az angol elnevezésből származó morbiditási kockázat kifejezést. A szavatolótőke-számítás is nagyon hasonló a halálozási kockázatéhoz.

A következő sokkot ajánlotta a CEIOPS: az első évben 35 %, míg minden további évben 25%-kal kell növelni a megbetegedési-rokkantsági rátákat. Az Egyesült Királyság egy másik, alternatív modellt is javasolt. Ennél szét kell választani a kritikus betegség, a jövedelembiztosítás és a hosszú távú gondozási kötelezettségeket, és ezekre külön-külön kell tőkeszükségletet számolni. Ezen kívül számoltak egy pótlólagos szavatoló tőkét a felgyógyulási kockázatra is. A stressz paraméterek értékéről itt is eltérő visszajelzések jöttek, többen is jelezték, hogy a paraméterek túl erősek, miközben a svéd felügyelet (Swedish FSA) szerint 50% kezdő stressz paraméter megfelelőbb lenne. Az ő tanulmányuk is igazolta, hogy érdemes számolni szavatoló tőkét a felgyógyulási ráták csökkentésére, méghozzá 20%-os sokkol alkalmazva. A hatástanulmányok és a visszajelzések alapján a CEOPS jelenleg a következő sokk paramétereket javasolja: az első évben 50%, míg az ezt követő években 25 %-os
növekedést ajánl a megbetegedési-rokkantsági rátákon. Ahol lehetséges, még folyamatos 20 %-os csökkentést kell alkalmazni a megbetegedési felgyógyulási valószínűségekre. Ezt a kétféle sokkot egyszerre, kombinálva kell használni. Most pedig nézzük meg az egészségbiztosítások morbiditási kockázatának SCR számítását!

8.5.2. Egészségbiztosítási morbiditási kockázat

Az egészségbiztosítások morbiditási kockázata 3 összetevőből áll. Elsőként felül kell vizsgálni az egészségügyi károk trendjével kapcsolatos feltételezéseket, mert ez sokkal nagyobb mértékben és gyorsasággal változhat, mint például a mortalitási kockázat (az inflációs kockázat következtében). Másodszorban felül kell vizsgálni az úgynevezett becslési kockázatot, vagyis azt, hogy a múltbeli adatokon becsült értékek eltérhetnek a mai becsült értékektől. Harmadrészt szintén a becslést kell megvizsgálni más szempontokból is, például a modell jósága, vagy a véletlen hiba.

Nem létezik olyan megbízható adatbázis, amelyből megbecsülhető lenne az egészségügyi infláció szintje. Habár az egészségügyi és az élet kockázati almodul inflációs szintje eltérhet, variabilitásuk nem számottevően eltérő. Így az egészségügyi inflációs kockázat sokkparaméterének, a költségkockázat sokkparaméteréhez hasonlóan 1%-t javasolnánk. A becslési kockázat sokkparaméterét becsülhetjük a következő módon:

Feltételezhetjük, hogy a biztosítók kárszintjét megbecsülhetjük az elmúlt 5 év inflációval korrigált éves kárösszege alapján. Feltételezhetjük, hogy az éves károk eloszlása megközelítőleg normális, így a 99,5%-os VaR szintjét a következő képpen kell kiszámítani:

\[
\text{becslési hiba} = \frac{N^{-1}(0.995)}{\sqrt{5}} \cdot \sigma
\]

A német egészségbiztosítási piac adatai alapján a szórás átlagos értéke 4,4% volt, így a becslési hiba körülbél 5%-os volt. Ezt a sokkparamétert alkalmazhatjuk mi is a tőkeszámitásnál.

Ha a morbiditási kockázat leválasztható a szerződésről, akkor ez a kockázati almodult az egészségügyi kockázati modulnál kell elszámolni. De a számolási mód megfelel a fent leírtaknak.
8.6. Törlési kockázat

A számolás az előzőekhez hasonlóan sokkolt szcenáriók alkalmazásával történik. (CEIOPS, 2010, 105.o., 116.o.) Itt háromféle kockázat is felléphet, ezért háromféle szimulációt kell elvégeznünk. Vizsgálnunk kell a ráták tartós növekedését, csökkenését, illetve a tömeges törlések/visszavásárlások esetét. Amelyiknek a legnagyobb hatása van, azzal kell számolnunk. A növekedési és csökkenési sokkokra 50%-os paramétert javasolnak, míg a tömeges törlések szimulációjában azzal kell számolnunk, hogy a biztosítottak 30%-a felmondja a szerződést. Az egészség kockázati modul ehhez hasonló módon, de eltérő paraméterekkel számol. Itt a törlések sokkparamétere 20%-os. Szintén számolnunk kell növekedési illetve csökkenési sokkokkal, majd az adja a tőkeszükségletet, amelyiknek nagyobb hatása van.

8.7. Katasztrófa kockázat

Az életági katasztrófa (CEIOPS, 2010, 112.o.) kockázat tőkeszükségletét sokkolt szcenáriók segítségével számoljuk. A biztosítottak halálozási valószínűségét stresszeljük +0,0015-del a következő évre.

Az egészségbiztosítási kockázatok tőkeszükségletét többféleképpen is számítjuk a katasztrófa fajtájától függően. (CEIOPS, 2010, 167.o.) Az aréna kockázat esetén a következő képlet alapján számolunk:

\[Kat_{aréna} = S \cdot \sum_{p=termék\ típus} L_p \cdot X_p \cdot E_p \cdot MS_p, \]

ahol
\(S = \) Az eseményben érintettek száma
\(L_p = \) A biztosítás elterjedtsége a termék típusa és az ország szerint
\(X_p = \) A halálesetek, a rövid és hosszútávú rokkantságok és a sérülések aránya az adott terméktípus vonzatában
\(E_p = \) Kockázati érték, azaz az adott terméktípushoz tartozó átlagos biztosítási összeg
\(MS_p = \) Az adott társaság részesedése az adott terméktípus piacán
A koncentrációs kockázat esetén, az előző jelölésekkel élve:

\[Kat_{konzentrációs} = S \sum_{p=termék típus} X_p \cdot E_p \]

Végül a járvány kockázat esetében a tőkeszükségletet a következő képlet segítségével kaphatjuk meg:

\[Kat_{járvány} = R \cdot \sum_{p=termék típus} E_p, \]

ahol R=0,075‰.

A CEIOPS szabályzatában az R értékeinek meghatározása Joel A. Vilensky Ph.D értekezése alapján történt (Vilensky). Az Encephalitis lethargica az agyvelőgyulladás egyik formája, ami 1917 és 1928 között járványként tombolt. A tanulmány szerint 1 millió esetet jelentettek be, aminek 15%-a halálos kimenetelű volt. A világ lakossága 2 milliárd fő volt, így ezzel számolva az előfordulási arány 0,5‰, amiből a halálos esetek aránya 0,075‰.

A fent felsorolt paramétereken kívül, vagy azokat módosítva, földrajzi specifikációval is számolhatunk. Ez igaz az élet-, a nem-élet- és az egészségbiztosítási katasztrófa kockázat számításánál is. (Irányelvek, 2009, 4. szakasz/ 2. alszakasz/ 104.cikk/ 6)

Ezennel végeztünk is a nekünk kellő kockázati almodulok áttekintésével. Ha kiszámoljuk az almodulok tőkeszükségletét, akkor ezeket a megfelelő korrelációs együtthatók segítségével összegezhetjük, a következő képlet szerint:

\[SCR_{total} = \sqrt{\sum_{i,j} Corr_{i,j} \cdot SCR_i \cdot SCR_j}, \]

ahol az \(SCR_i \) és \(SCR_j \) egy-egy kockázati almodul tőkeszükségletét jelöli. A korrelációs együtthatókat megtalálhatjuk a CEIOPS szabályzatában. Az 1. táblázatban láthatjuk az életági kockázati almodulok korrelációs együtthatóit. De ezt nem csak az életkockázati almodulok összesítésére alkalmazzuk, hanem az egészségbiztosítási kockázat élet ági almoduljai esetén is. Az egészség kockázati modulon belül még összegezni kell a három kockázati almodult (élet, nem-élet és katasztrófa) is, ezek megfelelő korrelációs együtthatóit a 2. táblázatban találjuk. Az összegzés elvégzése után hasonló módon összegezzük a modulok tőkeszükségletét is. Az ehhez szükséges korrelációs együtthatókat a 3. táblázatban láthatjuk.
Az összegzéssel megkapjuk az alapvető szavatolótőke-szükséglet értékét, angol rövidítéssel BSCR-t (Basic Solvency Capital Requirements). Ezenkívül a szavatolótőke-
szükségtelthez kell még a működési kockázat és a korrekció mértéke. A működési kockázatba tartozik a vállalat belső folyamatainak hibás működéséből fakadó kockázat, az emberi hibából fakadó kockázat, a szándékos károkozás miatti kockázat illetve a külső események okozta kockázat. Ellenben nem fedezi a stratégiai döntések miatti kockázatot. A működési kockázatot képlettel lehet kiszámolni, amit a CEIOPS szabályzatában (CEIOPS, 3.7. fejezet), (Irányelvetek, IV. melléklet) találhatunk meg. A korrekció a különböző veszteségelnyelő hatások miatti korrekciót jelenti. Itt lényegében a jövőbeli nyereségek és a halaszttott adó veszteség-elnyelő képessége miatti kiigazításról beszélhetünk. A korrekció mértékét számíthatjuk modulonként a tőkeszükséglet számítás alkalmával vagy az összes paramétert sokkolva az egész modellre és ezzel kiszámoljuk a teljes tőkeszükségletet.

9. A modellben használt biztosítások általános bemutatása

9.1. Kritikus betegségbiztosítás

Az úgynevezett kritikus vagy rettegett betegségek köre elég tág. Ezek közé tartoznak például a daganatos betegségek, a szívinfarktus, agyi érketasztrófa, krónikus veselégtelenség, szervátültetés, szklerózis multiplex, vakság, bénulás, stb. A technológia és a tudomány fejlődésének köszönhetően a rettegett betegségeket, mint például a rákot, a mai orvostudomány már sokkal hatékonyabban tudja kezelni, mint korábban. Így ezek a betegségek ma már nem feltétlenül vezetnek halálhoz. Azonban a kezelések, műtétek, rehabilitációs eszközök költsége magas, a felgyógyulási folyamat pedig sokáig tarthat. Mindezen költséget a jelenlegi helyzet szerint a társadalombiztosítás csak részben támogatja, így a betegnek jelentős összegeket kell kifizetnie saját megtakarításaiból. Ha a biztosítottnál diagnosztizálják valamelyik kritikus betegséget, akkor sokszor részben, vagy teljes mértékben munkaképtelenné válik, és ezáltal a bevételük (mint például a havi állandó kereste) csökkennek vagy teljesen megszűnnek. Ezzel ellentétben a kiadások, fentebb már leírtak alapján, pont ebben az időszakban növekednek. Erre a pénzügyi hiányra nyújt fedezetet ez a biztosítási termék. A biztosított a biztosítási összegből fizetheti a kórházi ellátással

7 A fejezet elkészítésében az angol Wikipedia Critical illness insurance című cikke volt segítségemre. (Wikipedia)
kapcsolatos, illetve a rehabilitációs időszak alatt felmerülő költségeket. Azon ügyfeleknek ajánlott elsősorban ez a biztosítási termék, akik családjában nagyobb gyakorisággal fordult elő valamely rettegett betegség.

Most tekintsük át a biztosítás paramétereire is! Azt, hogy a biztosítási termék mely betegségekre nyújt szolgáltatást, a biztosító dönheti el a termékfejlesztés folyamán. A biztosított kockázati faktorai alapján (pl. munkakör, korábban már diagnosztizált betegség) a biztosító és az ügyfél közös megállapodással, szerződésben rögzített módon szűkíthetik a biztosítási szolgáltatás körét. A szerződés megkötésekor már fennálló betegségre a szerződés nem köthető meg, és a biztosítók általában türelmi időt szabnak meg, miszerint például, ha a megkötés után 3 hónapon belül a biztosított betegségek közül valamelyiket diagnosztizálják az ügyfélnél, akkor a biztosító mentesül a fizetési kötelezettsége alól.

A biztosítási összeget kaphatja az ügyfél járadék formájában vagy egy összegben. A biztosítás lehet egy életre, vagy több életre szóló. Ezen kívül az is különböző lehet, hogy a biztosító hány biztosítási eseményre fizet. Van olyan biztosítási termék, amely szerint, ha az ügyfelnél valamely betegséget diagnosztizálták, akkor kifizetéssel megszűnik a biztosítás. De létezik olyan is, ahol a biztosítási esemény többször is bekövetkezhet.

Az általam használt modellben a biztosított kritikus betegségek jellege miatt a biztosítás csak egy biztosítási eseményre terjed ki, és annak bekövetkezte után a biztosítás megszűnik. Úgy vélem, hogy ezen betegségek esetében az egyszerre fellépő nagyobb kiadások miatt (kezelések, vizsgálatok díja, gyógyszerek ára) előnyösebb lehet a biztosított számára, ha a biztosítási esemény bekövetkezteskor nem járadék formájában, hanem egy összegben kapja meg a biztosítási összeget, így modellemben ezt alkalmaztam.

9.2. Baleseti halál illetve baleseti rokkantság esetére szóló biztosítás

Az ember életében bármikor bekövetkezhet baleset. Bármenyire is elővigyázatosak vagyunk, sajnos ezzel nem kerülhetünk el minden balesetet. Például, ha valaki sokat közlekedik autóval, bármenyire is jól vezet és odafigyel minden tényezőre, más vezető figyelmetlenségéből sajnos ő is elszenvedhet komoly következményekkel járó balesetet. Ez nem csak az autóval közlekedőkre vonatkozik,
hanem a gyalogosokra, motorosokra és a kerékpárosokra is. A következő ábrán (Az Aegon Magyarország Zrt. honlapja) a 2010-es közúti balesetek eloszlását láthatjuk.

3. ábra: A 2010-es közúti balesetek főbb okai

„2010-ben összesen 16 248 személysérüléses közúti baleset történt. Ebből 645 halálos kimenetelű, 4918 a súlyos 10 685 pedig könnyű sérüléssel járt. Összesen 1 795 személy okozott ittas állapotban személysérüléses közúti balesetet.” (Az Aegon Magyarország Zrt. honlapja)

De a balesetbiztosítás káreseményeibe nem csak a közlekedési balesetek tartoznak bele, hanem a háztartási, a sport-, a munkahelyi vagy a szabadidős tevékenységek közben elszenvedett balesetek is. A legjobb esetben nincs is személyi sérülés, vagy csak enyhe, pár napon belül gyógyuló sérüléseket szenvednek el a baleset résztvevői. De sajnos ennél komolyabb következmények is előfordulhatnak, például egy hosszú távú rokkantság vagy haláleset is. Az ilyen kockázatokra nyújtanak szolgáltatást a baleseti halál és rokkantság biztosítások.

A baleseti halál esetére szóló biztosítás nagyon hasonló a kockázati életbiztosításokhoz, de fontos eltérés az, hogy míg az előzőnél bármely okú halál esetén fizet a biztosító, addig az utóbbinál csak baleseti eredetű halál esetén.

Ehhez fontos megértenünk, mi is tartozik a baleset fogalmába. Biztosítási szempontból balesetnek tekintjük a biztosított akaratától függetlenül, hirtelen fellépő, olyan külső behatást, amely következtében a balesetet követő egy vagy két évben a biztosított maradandó egészségszakosodást szenved. E fogalomba nem tartozik bele a megemelés, a rándulás,a fagyás, a napszúrá, a munkahelyi ártalom, a szívinfarktus, az öngyilkosság vagy öncsonkitás (még tudattavart állapotban sem). A biztosító általában mentesül a szolgáltatási kötelezettség alól, ha a balesetet a biztosított jogellenesen, szándékosan vagy súlyosan gondatlanul okozta. Az utóbbi eset például az, ha valaki
ittasan, kábítószer hatása alatt vagy jogosítvány nélkül vezet. Általában az extrém sportok (pl.: ejtőernyőzés, siklóernyőzés, bűvárkodás) üzése miatt vagy bizonyos veszélyes foglalkozásoknál (pl.: tesztpilóta, bányász, alpinista) a munka alatt bekövetkezett baleseteteket kizárják a biztosítási események közül.

Baleseti rokkantság esetén a baleseti haláltól kicsit eltérő módon működik a biztosítás. Ekkor ugyanis a rokkantság mértékét is figyelembe veheti a biztosító. Vagyis 100%-os rokkantság esetén kifizeti a teljes biztosítási összeget, viszont 100%-nál kisebb mértékű rokkantság esetén a biztosító gyakran a rokkantság mértékével arányos biztosítási összeget fizeti ki.

9.3. Unit-linked biztosítás

A unit-linked biztosításokat befektetési egységekhez kötött biztosításnak is szoktuk nevezni. Nem csak Nyugat-Európában, hanem már Magyarországon is egyre népszerűbb lett a biztosítások ezen fajtája. A népszerűségét az okozza, hogy ötvözi a befektetések és a vegyes biztosítások előnyeit. A unit-linked biztosítások általában egy kockázati biztosítással kapcsolódnak össze, illetve több kiegészítő biztosítást is köthet hozzájuk az ügyfél. A biztosító a beérkező díja(ka)t az ügyfél által kiválasztott befektetési alapokba fekteti be. Különböző kockázatú és hozamú eszközalapok közül választhat az ügyfél.

A terméket azért nevezik befektetési egységekhez kötött biztosításnak, mert a biztosító a beérkező díjakat egységekre átváltva különböző befektetési alapokba helyezi. Hogy melyik befektetési alapokba és milyen arányban ossza szét az összeget, azt az ügyfél határozza meg. Az arány, a befektetett tőke és az árfolyamok alapján kapjuk meg az egységeket. A tartam során a befektetési stratégián többször is változtathat az ügyfél.

A unit-linked biztosítással kapcsolatban a költségekről is érdemes beszélnünk. A biztosító általában az első egy, két vagy háromévnyi díjat elvonja és az úgynevezett kezdeti pénzalapba helyezi. Ezt az összeget vagy ennek egy részét a költségek fedezésére használja fel, például a szerzési jutalék, orvosi vizsgálat költségére. Az ügyfél felé a biztosító azt kommunikálja, hogy (általában) 10 éven keresztül vonja el

8 A 9.3. alfejezetet Banyár József könyvének segítségével állítottam össze. (Banyár, 2003, 139.o.)
kezdeti egységeket. A tényleges elvonandó mennyiséget úgy kell kiszámítani, hogy a 10. év végére az ügyfél felé komunikált és a tényleges pénzalap értéke „összeérjen”. Ha az ügyfél a tartam közben visszavásárolja a szerződését, akkor problémát okozhatna, ha alacsonyabb összeg lenne a kezdeti pénzalapban, mint amiről ő tud. A visszavásárlási értékek segítenek itt is: a visszavásárlási arányokat a tényleges és az ügyfél felé komunikált pénzalap értékének hányadosával adjuk meg. Általában ennél az aránynál valamivel kisebb visszavásárlási arányt határoz meg a biztosító, így nem érheti veszteség. Az első 1-3 biztosítási év után befolyt díjak pedig a felhalmozási pénzalapba kerülnek. Itt hozammal gyarapodnak, és a tartam végén a biztosított megkapja a pénzalap aktuális értékét. Ha a biztosítás a biztosítási esemény bekövetkezésével szűnik meg, akkor a biztosított vagy a kedvezményezett kifizetésként általában a pénzalap aktuális értéke és a biztosítási összeg közül a nagyobbat kapja meg. De olyan termékek is vannak a biztosítási piaca, ahol ebben az esetben az ügyfél vagy a kedvezményezett megkapja a pénzalap aktuális értékét és a biztosítási összeget is. A modellben ez utóbbi kifizetés típust alkalmaztam.

Tipikusan befektetés alapú biztosításokra jellemző költség az eladási és vételi árfolyam különbsége. Ezt a következőképpen kommunikálják az ügyfél felé: Amikor az ügyfél díjat fizet be, akkor egységeket vesz meg a biztosítótól. Amikor pedig a pénzalap értékét kifizetik az ügyfélnek, akkor azt úgy tekintjük, mintha a biztosított adna el egységeket a biztosítónak. Ezen tranzakciók árfolyamkülönbsége miatti veszteségre von el a biztosító egy meghatározott összeget a díjból. Ezt allokációs költségnek is nevezzük. A unit-linked biztosítások esetén is van úgynevezett adminisztrációs vagy kezelési költség. Ha a befektetési alapok átcsoportosítására kerül sor, akkor a biztosító felszámlíthat alapváltási költséget. Ez lehet fix összegű vagy az átcsoportosított összeg bizonyos százaléka is. A unit-linked termékeknél a befektetési eszközalapok kezelésének is van költsége. A befektetési alapkezelő által felszámites vagyonykezelési díjat alapkezelési költségek nevezzük.

A unit-linked biztosításokat minimum 10 évre érdemes megkötni, mert egyrésztt hosszabb távon érhetünk el nagyobb hozamot rajta, másrésztt pedig a mai jogszabályok alapján a unit-linked biztosítás lejárási szolgáltatása kamatadó mentes a 10. év után. A 10 évnél korábban történő megszűntetést (a visszavásárlási tábla miatt) csak nagy büntetéssel teheti meg az ügyfél, ezért is érdemes a biztosítását legalább 10 évig megtartania.
A unit-linked befektetések alternatívái lehetnek a befektetési alapkezelők által nyújtott befektetések illetve a banki befektetések, pénzlektétek. (Gonda, 2005)

9.3.1. A unit-linked biztosítás alternatívái

A befektetési alapkezelő összegyűjt a kisbefektetők pénzét egy pénzalapba, majd ezt menedzseli a tartam során. Előnye az, hogy a befektetőnek nem kell az alapok alakulását figyelemmel kísérnie, megteszi helyette az alapkezelő szervezet. Így ha bármilyen gond adódik az ügyfél befektetési konstrukciójával, azt szakmailag megfelelően képzett munkaerő időben észreveszi, és megteszi a szükséges lépéseket. Ezzel szemben a unit-linked biztosítások esetében ajánlott, hogy az ügyfél folyamatosan figyelemmel kísérje az általa választott eszközalapok pénzügyi alakulását, hiszen csak ő tud változtatni befektetési konstrukcióján, a biztosító nem teheti meg ezt helyette. Bár néhány biztosító napjainkban már nyújt ilyen jellegű szolgáltatást is. Bizonyos esetekben, ha az ügyfél nem változtat befektetési konstrukcióján, előfordulhat, hogy sokat veszít a befektetésén.

A unit-linked biztosításoknak nagy előnye az alapkezelővel szemben, hogy itt az ügyfél plusz szolgáltatást is kap biztosítás formájában. A biztosítók az ügyfelnek általában több eszközalapot ajánlanak fel, amiben ő tetszőleges módon meg is oszthatja a pénzét. Ha a választott eszközalap kombináció hozama vagy kockázati szintje nem felel meg az ügyfél elvárásainak, akkor eszközalapok közötti viszonylag egyszerű, gyors és olcsó váltásra is lehetősége van. A biztosító előnye még az alapkezelőkkel szemben, hogy míg az utóbbi általában egyszeri, nagyobb összegű befektetések kezelésére szakosodott, addig az előbbi a rendszeres, kisebb összegű befizetéseket is jól tudja kezelni.

A biztosításhoz hasonlóan a kockázati szintet, tartamot és az alap típusát az alapkezelőnél is kiválaszthatja az ügyfél. A nagyobb feladatot az jelenti, hogy az ügyfél megtalálja a megfelelő alapkezelőt. Ezt a döntést segíti az, hogy az alapkezelőknek minden termékülközö megfelelő benchmarkot kell megjelölniük, így az ügyfélnek lehetőséget biztosítanak az alapkezelő teljesítményének ilyen szempontból való mérésére.

A banki lekötések előnye a unit-linked biztosításokkal szemben, hogy rövid távra is le tudja kötni az ügyfél a megtakarításait is, és ezt bizonyos ajánlataik esetében akár fix hozamra is megteheti. Így ha a szüksége lenne a megtakarításairól, azt könnyebben pénzzé teheti, mint egy unit-linked biztosítás esetében. Az utóbbi esetében a biztosítás törlésének vagy visszavásárlásának igen nagy költsége van, így az ügyfél a
biztosítás első néhány évében megszüntetéskor csak töredékét kapja vissza az addig általa befizetett díjaknak. A rövid távú lekötések végén, ha az ügyfél szeretne újra lekötni a pénzét, újra végig kell néznie a lekötési/befektetési lehetőségeket, és az adminisztrációs folyamaton is újra át kell esnie. Ez elég időigényes folyamat. Ha megis hosszabb távra szeretne az ügyfél lekötni vagy befektetni a pénzét, akkor ezt megteheti, de az ilyen típusú befektetésekre már jóval kisebb hozamot kínálnak a bankok. Költségek szempontjából viszont a banki befektetések jobbak, hisz a kezdeti költségek és az értékesítők jutaléka miatt a biztosítások költsége jóval magasabb. A banki befektetések általában rövid- vagy középtávú megtakarítási célokra alkalmazak, miközben a biztosítások általában hosszú távú megtakarításra szolgálnak.

A unit-linked termékek esetében létezik egy úgynevezett TKM érték, ami az ügyfél számára megkönnyítheti a termékek közötti választást. A TKM, azaz a Teljes Költség Mutató megmutatja, hogy közelítőleg mekkora éves átlagos hozamveszteség éri az ügyfelet az elméleti, költségmentes befektetés hozamához képest.

„A Teljes Költség Mutató (TKM mutató) egy, az Ön tájékoztatását szolgáló, egyszerű mutató, amely egy százalékos érték vagy értéktartomány segítségével fejezi ki a típuspéldádban bemutatott biztosítás költségeit, amelyek tartalmazzák – többek között – a termékbe beépített biztosítási kockázati fedezetek ellenértékét is.” (MABISZ honlapja, TKM tájékozató). Így összehasonlíthatóvá és átláthatóbbá válannak a befektetési egységhez kötött biztosítások költségszintjei. A csatlakozó biztosítóknak az adott termékre (a TKM szabályzatának megfelelően) kiszámított TKM mutatót meg kell jeleníteniük a MABISZ oldalán, és az ügyféltájékoztatókban is.

10. A modell bemutatása

A modelllemben egy unit-linked terméket vizsgáltam. Ehhez a unit-linked termékhez egy kockázati élet, egy kritikus betegség, egy baleseti halál és egy baleseti rokkantság kiegészítő biztosítást kapcsoltam. A biztosítás csak ily módon összeállítva, csomagként vehető meg, vagyis minden kiegészítő biztosítást meg kell kötni hozzá. A alapcsomag minden kiegészítő biztosításra kezdeti 1.000.000 Ft-os szolgáltatást nyújt. A csomagot legalább 1, legfeljebb 6-szoros csomagszorzóval lehet megkötni. Ez azt jelenti, hogy például 5-ös csomagszorzó választása esetén a szerződés tartalmazza mind a négy, egyenként 5-5 millió Ft-os kezdeti biztosítási összegű kiegészítő biztosítást.
A csomag méretét az ügyfél választhatja ki. Minden kiegészítő esetében az aktuáriusi számításokhoz szükséges kockázati díjat a halálozási és megbetegedési valószínűségek alapján számlatom, minden évre a biztosított aktuális korának megfelelően. Ezeket a kockázati díjakat minden fizetési alkalommal a biztosító elvonja az előirt és befizetett biztosítási díjból. Ha az ügyfélnel bekövetkezik valamelyik biztosítási esemény, vagyis ha az ügyfél meghal, megrokkant vagy megbetegszik valamelyik biztosított betegségben, akkor a biztosítás kifizetéssel megszűnik. Ezen esetekben a kifizetési összeg a biztosítási összegből és a pénzalap aktuális értékéből áll. Ha egyik biztosítási esemény sem következik be, akkor a tartam végén szűnik meg a biztosítás, és ekkor az ügyfél megkapja a pénzalap aktuális értékét.

A kockázati díjak nem egységesek, hanem minden évben a biztosított aktuális korának megfelelő valószínűségekkel kalkuláltam. A halálozási valószínűségeket a www.mortality.org honlapról töltöttem le (The Human Mortality Database), ezen belül a 2009-es évi totál (mindkét nemre vonatkozó uniszex) adatsort használtam. Az ez év decemberétől kötelezően alkalmazandó Gender direktíva (Biztosítási Szemle, 2011) miatt a modellemben már én sem szerettem volna nemenként megkülönböztetni az ügyfeleket.

A baleseti halál és a baleseti rokkantság díjkalkulációjához a WHO-tól (World Health Organization, Egészségügyi Világszervezet) származó valószínűségeket használtam. Szintén külön férfi és női adataim voltak, amelyekből átlagolással készítettem uniszex megbetegedési valószínűségeket. A valószínűségek kalkulálásánál feltételezték, hogy minimum 33%-os rokkantság esetén szolgáltat a biztosító. A szolgáltatás egyösszegű, a kifizetés a rokkantság mértékétől független.

A következő technikai paramétereket alkalmaztam a modellemben. A biztosítás induló havi díja a kiegészítők biztosítási összegétől, az ügyfél korától, a biztosítás tartamától függően állapítom meg, majd ezt minden év elején 4%-kal indexálom. A díjak mellett a biztosítási összeg is indexálódik. A kockázati díjak számításánál a
nettő díjon felül 25%-os loadingot alkalmazok. Az ügyfél belépési korát korlátoztam 18 és 65 év közöttre, hiszen a kritikus betegség és a kockázati kiegészítő biztosításnál az átvállalt kockázat szempontjából már nem éri meg a 65 év feletti árát biztosítani ebben a konstrukcióban. Radádáskor a 65 év feletti számára a kockázati díj miatt már túl drágává vált ez a biztosítás. A tartam 5 és 25 év között választható, de csak úgy, hogy az ügyfél maximális kilépési kora 70 év legyen. A unit-linked biztosításnál jellemző vételi és eladási ár különbözetére használt allokációs költséget 3%-nak választottam. A feltételezett éves hozamnak 5%-ot választottam. Mivel az eszközalapokat nem modellezem, így alapkezelési díjat sem alkalmazok. A kezdeti egységek elvonása évi 15%-os. A kezdeti egységeket 2 évig képzem meg és az első 10 évben csökkentem, majd a 10. év végén az értéket a 11. év eleji nyitó felhalmozási egységeknél jóváírom. A tényleges kezdeti egység elvonást 2 évig végzem. Ennek értékét célértékkeresővel számítottam ki, úgy, hogy az ügyfél felé kommunikált és a tényleges pénzalap értéke a 10. év végére összeérjen. Az adminisztrációs költség kezdetben havi 500 Ft, amit szintén 4%-kal indexálok minden évben. Az ügyfélnek lehetősége van a biztosítás visszavásárlására. Ekkor az ügyfél megkapja a kezdeti pénzalap aktuális értékének adott százalékát és a felhalmozási pénzalap értékét. Ez a százalékos érték a visszavásárlási arány, amit minden évre, minden szerződésre egységesen meghatároztam. Ha az ügyfél nem fizeti a biztosítási díját, akkor több mint 3 havi díjmelmaradás után a biztosító törli a szerződését. Ekkor az ügyfél megkapja a kezdeti pénzalap visszavásárlási arányval azonos részét - levonva abból az ügyfél díjartozását - valamint a felhalmozási pénzalap értékének 100%-át. A közvetítő jutalékát is meghatároztam a modellben: ez a biztosítás első éves díjának 150%-a. Ezt a közvetítő a szerződés létrejötte után megkapja, de a szerződés 2 éven belüli visszavásárlásának vagy törlésének esetén az ügynöknek a jutalék megfelelő részét vissza kell térítenie a biztosítónak. A jutalékvisszairási szorzó az első évben 60%, míg a második évétől 0%-ként határoztam meg.

11. A modell megvalósítása Excelben

Véletlenszám-generátorral szimuláltam egy 10.000 főből álló állományt, amit az Excel hatékonyabb működésének érdekében rögzítettem. Ezt az Excel „Állomány” elnevezésű lapján készítettem el.
Az Excel „Kalkuláció” elnevezésű lapján számoltam a kockázati almodulok tőkeszükségletét. Itt először összeállítottam egy számoló táblázatot egy szerződésre, amely a belépési kor, a biztosítási összeg és a tartam függvényében kiszámítja a biztosításhoz kapcsolódó dijakat, költségeket, a pénzalapok értékeit és a visszavásárlási illetve kifizetési értékeket. Ezek számítása után összeállítottam egy profit-tesztet. Itt ejtsünk pár szót a profit-teszt módszeréről!

11.1. A profit-teszt rövid bemutatása

A profit-teszt egy modern kalkulációs módszer. Az eljárásban egyszerre több paramétert használnak, és próbálgatással vagy például célértékkereséssel keresik meg az alakmazott költségparaméterek legmegfelelőbb értékeit. Vagyis a profit-teszt lényegében egy érzékenységvizsgálat Az elnevezés onnan származik, hogy a teszt folyamán a legfontosabb szempont a profit lesz. Vagyis azt vizsgálja, hogy a paraméterek változása esetén a termék milyen mértékben marad profitábilis. A profit-tesztben felírjuk a szerződéses cash flow-kat, vagyis a pénzeszközökben bekövetkezett változásokat. Ez egyszerűsítve a bevételek és a kiadások különbségét jelenti. A biztosító szempontjából bevételek közé tartozik például a díjbevétel és a befektetési eredmény, kiadások közé tartozik például a kárkifizetés, a visszavásárlási kifizetések, a költségek, a jutalékok.

A profit-tesztet nem csak a termék fejlesztésénél használják, hanem a termék érkekésítése folyamán is érdemes alkalmazni. Ezzel lehet ellenőrizni utólag is, hogy a termék paraméterei megfelelően kalkuláltak-e, kell-e utólag valamit korrigálni. Többek között a tőkeszükséglet számítására is alkalmas, mint ahogy ezt én is teszem a modellemben. Most térjünk vissza az Excelben végzett számítások áttekintéséhez!

A profit-teszt első lépéseként felírtam és kiszámítottam a cash flow elemeket. Majd megjelenítetem külön oszlopokban a kiegészítő biztosítások számításánál alkalmazott valószínűségeket, majd a standard formula szerint sokkolt valószínűségeket. A diszkontfaktorokhoz (későbbiekben df rövidítést használók) a kockázatmentes hozamgörbe értékeit használtam, amit az EIOPA honlapjáról töltött le (EIOPA, Stress-Test-Curves-Ultimo_2010-4). Az év elején élı szerződések várható számát a biztosítási események bekövetkezési valószínűségeivel számoltam ki. Az eddig megkapott értékek segítségével számítottam ki a NAV (Net assets Value) értékét, a következő képlet szerint:
Ha valamelyik valószínűséget sokkoljuk, akkor az év elején élő szerződéseket várható számában megjeleník ennek hatása, így közvetve a NAV értékében is. A sokkolt és nem sokkolt paraméterekkel számolt NAV értékeknek a különbségét jelöljük ΔNAV-val. Ezt a ΔNAV értékét minden szerződésre kiszámítva, majd ezeket összegezve megkapjuk a tőkeszükséglet értékét. Egyszerre mindig csak egy kockázat tőkeszükségletet számoljuk, ami azt jelenti, hogy egyszerre mindig csak azokat a valószínűséget sokoltam, amelyek az adott kockázathoz tartoznak, a többi valószínűséget hagyatom változatlanul. Csak az egészségügyi kockázati modul katasztrófa kockázatának tőkeszükségletét számolom külön, mert ez egy képlettel számolható tőkeszükséglet, nem kell sokkparamétert alkalmaznunk. Ennek számítását az „Egészség ági kat. kockázat” elnevezésű munkalapon tekinthetjük meg. Miután minden kockázati almodul tőkeszükségletét kiszámoltam, ezeket az eredményeket a megfelelő korrelációs együthatók segítségével összegeztem külön az élet modulra és külön az egészség modulra. Majd ezeket is a megfelelő korrelációs együthatókkal összegezve megkapottam az alapvető szavatolótőke-szükségletet. Az összegzési számításokat a „Korreláció” munkalapon végeztem el.

Számítás közben egy-két feltételezéssel éltem. Először is minden ügyfél éves díjfizetési gyakorisággal fizeti a biztosítást. Az Excel számoló algoritmusát tovább finomítva lehetne negyedéves, féléves, vagy havi díjfizetési gyakoriságok mellett is tőkeszükségletet számítani. Én erre most nem tértem ki, hiszen a számítások bemutatásánál egy ilyen finomítás nagyobb mértékben bonyolítaná az algoritmust, mint amennyi hasznos alakítaná a számlánkról. Mivel a termék (már csak a kalkulálási folyamat alapján is) több részre is felosztható a kiegészítő biztosítások mentén, így a szerződést a vállalt kockázatok alapján több kockázati modulba fogom besorolni. A baleseti halála szóló, a kritikus betegség- illetve a baleseti rokkantságra szóló kiegészítő biztosítások a szolvencia számítás szempontjából az egészségbiztosítások közé tartoznak (Irányelvek, 2009, 5.szakasz/206. cikk/1). Ezen belül is az utolsó kettőnek a morbiditási kockázatnál, míg az elsőnek a mortalitási kockázatnál lesz jelentősége. Mindkét kockázati modulban külön-külön számítunk katasztrófa kockázatra tőkeszükségletet. Az egészségügyi modulban az aréna, a koncentrációs és a

\[
NAV_k = \frac{\sum_{t=k}^{25} cash flow_t \cdot P(\text{év elején él a szerződés})_t \cdot df_t}{P(\text{év elején él a szerződés})_k \cdot df_k}
\]
járvány katasztrófából csak az első kettőre számítunk tőkeszükségletet. Mivel a kiegészítő biztosításaink által fedezett betegségek nem olyan természetűek, amelyeket járvány okozhat, így erre nem számítunk tőkeszükségletet. Az aréna és a koncentrációs katasztrófát is csak a baleseti rokkantságra és a baleseti halálra szóló biztosítások esetén számítjuk, mert a kritikus betegségek (lásd például a rák) eredete általában nem kötődik katasztrófa eseményekhez. A katasztrófához szükséges adatok egy részénél feltételezésekkel éltel. A CEIOPS javaslatában a biztosított lakosság aránya 50% volt, de szerintem ez az arány Magyarországon kisebb, így én 40%-os arányra kalkuláltam. Az aréna és a koncentrációs katasztrófát is csak a baleseti rokkantságra és a baleseti halálra szóló biztosítások esetén számítjuk, mert a kritikus betegségek (lásd például a rák) eredete általában nem kötődik katasztrófa eseményekhez. A katasztrófához szükséges adatok egy részénél feltételezésekkel éltel. A CEIOPS javaslatában a biztosított lakosság aránya 50% volt, de szerintem ez az arány Magyarországon kisebb, így én 40%-os aránnyal kalkuláltam. Az itt lévő adatokat a (New York State Workers’ Compensation Board, 2009) adatai alapján készítették. Az itteni adatokat még kiigazították, mert a katasztrófa idején az irodaépületek nagyon alacsony kihasználatsságúak voltak. A katasztrófakockázat számításánál a teljes kihasználatsságra érdemes kalkulálni, így én is a kiigazított adatokat használtam. Ezen kívül a szimulált biztosító piaci részesedése 1-1% mindkét terméknél.

Az egész biztosításra számolok törlési kockázatot, de csak az élet modulnak megfelelően. Ezt azért teszem, mert törlés szempontjából az egészségbiztosítási rész nem választható le a szerződésről. Vagyis, ha az ügyfél szerződését a biztosító törli, vagy az ügyfél visszavásárólja a szerződését, akkor az a teljes szerződésre vonatkozik, nem szűnhet meg csak az egyik kiegészítő biztosítás külön. A szerződés részvisszavásárlására nincs lehetőség. Mivel a díjelégtelenség miatti törlésnél a be nem fizetett díjat levonjuk a kifizetésből, ezért a kalkulálást már úgy végzem, mintha a törlés időpontjáig kifizette volna a díjakat az ügyfél.

A tőkeszükséglet számítást az élet modul mortalitási, törlési és katasztrófa kockázatára, az egészségbiztosítási modul mortalitási, morbidityi és katasztrófa kockázatára végeztem el. A számítások legvégén megkaptam az alapvető szavatoló tőke értékét. Ahhoz, hogy az SzTSz értékét megkapjuk, ezt még összesíteni kell a működési kockázat tőkeszükségletével, illetve a korrekciós tényező értékével. A modellenben ilyen irányú szimulációra és számításokra nem tértém ki, így az alapvető szavatolótőke-szükségletre kapott eredményt tekintettem a szavatolótőke-szükségletnek.

11.2. Az eredmények áttekintése

Ebben az alfejezetben szeretném röviden áttekinteni a kapott eredményeket. Az Excel „Korrelációk” munkalapján összesítem az almodulok, majd a modulok
tőkeszükségletét. Az összegzés után az alapvető tőkeszükségletre körülbelül 900 millió Ft-os értéket kaptam. Tekintetbe véve az előző részekben leírt paraméter feltételezéseket, ez életszerű eredménynek számít. Hasonlitsuk ezt össze a következő fejezetben bemutatott QIS5bis eredményeivel. Az eredmények összehasonlítása miatt a biztosítók szavatolótőke-szükségletének eloszlását ebben a fejezetben fogom bemutatni. A QIS5bis hatástanulmányok alapján készült 4. táblázatban 17 biztosító együttes eredményét láthatjuk. Mivel a biztosítók minden modul és minden almodul tőkeszügletére nyújtottak be eredményt, így az összegeket nem, de az arányokat összehasonlíthatjuk a mi eredményeinkkel.

<table>
<thead>
<tr>
<th></th>
<th>millió forint</th>
<th>nem diverzifikált SZTSZ arányában</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piaci kockázat</td>
<td>95 774</td>
<td>23,1%</td>
</tr>
<tr>
<td>Partnerkockázat</td>
<td>79 790</td>
<td>19,3%</td>
</tr>
<tr>
<td>Életbiztosítási kockázat</td>
<td>70 241</td>
<td>17,0%</td>
</tr>
<tr>
<td>Egészségbiztosítási kockázat</td>
<td>2 491</td>
<td>0,6%</td>
</tr>
<tr>
<td>Nem-életbiztosítási kockázat</td>
<td>135 873</td>
<td>32,8%</td>
</tr>
<tr>
<td>Immateriális javak kockázata</td>
<td>5 458</td>
<td>1,3%</td>
</tr>
<tr>
<td>Működési kockázat</td>
<td>24 457</td>
<td>5,9%</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem diverzifikált SZTSZ³</td>
<td>414 083</td>
<td>100,0%</td>
</tr>
<tr>
<td>Diverzifikáció</td>
<td>-89 733</td>
<td>-21,7%</td>
</tr>
<tr>
<td>Korrekció*</td>
<td>-61 108</td>
<td>-14,8%</td>
</tr>
<tr>
<td>SZTSZ</td>
<td>263 242</td>
<td>63,6%</td>
</tr>
</tbody>
</table>

* a jövőbeli nyereségrészzesedés és a halasztott adók veszteségelnyelő képessége miatt

4. táblázat: A QIS5bis-ben résztvevő biztosítók együttes szavatolótőke-szükséglete

A 17 biztosító összesített piaći részesedése közel 90%. A mi biztosítónk, 10 000 fős állományával kevesebb, mint 1%-os piaći részesedést tudhat magáának. Ugyan a piaći részesedést itt nem az állományszám alapján számoljuk, hanem a dijbevétel alapján, de sajnos a résztvevő 17 biztosítóról ilyen adat nem áll rendelkezésre. A szimulált vállalatunk szavatolótőke-szükséglete nagyságrendileg megfelel a QIS5bis-beli eredményeknek. Nézzük meg a modellbeli SZTSZ megoszlását.
5. táblázat: A modellen belüli BSCR megoszlása

Mint az 5. táblázatban láthatjuk, a modellben az egészségbiztosítási kockázat sokkal nagyobb részt tesz ki, mint az életbiztosítási kockázat. Ez az arány a QIS5-beli arányoknak megfelelő.

Az életbiztosítási SzTSz modulon belüli megoszlását az 6. táblázatban láthatjuk. A mortalitási és a katasztrófa kockázat megoszlása körülbelül ugyanakkora. A törlési kockázat adja a modul SzTSz-ének legnagyobb részét. Az eloszlás szintén megfelel a QIS5bis-ben kapott eredményeknek, amit az 7. táblázatban láthatunk.

6. táblázat: A modellen belüli életbiztosítási kockázat SzTSz megoszlása

7. táblázat: QIS5bis-ben az életbiztosítási kockázati modul SZTSZ megoszlása

Az egészségbiztosítási kockázat SzTSz megoszlását a 8. táblázatban láthatjuk. A legnagyobb részt a morbiditási kockázat teszi ki. Erre számítottunk, hiszen a kritikus
betegségbiztosítás és a baleseti rokkantság biztosítás adja az egészségbiztosítási modul nagyobb részét, és ezeknek a morbiditási kockázatra van hatása. A katasztrófa kockázat SzTSz-e azért lett a vártnál kisebb, mert a szimulált társaságunk termékeinek piaci részesedése kicsi (1%-os). A QIS5bis-beli egészségbiztosítási kockázati modul szavatolótőke-szükségletének eloszlására sajnos nincs adatom, így sajnos ezt nem tudom megoszlanását és a modellbeli eredményekkel összehasonlítani. Ennek ellenére az SzTSz modulon belüli megoszlás életszerűnek tűnik.

<table>
<thead>
<tr>
<th>Egészségbiztosítási kockázat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortalitás_egészség</td>
<td>24 324 145 Ft 12%</td>
</tr>
<tr>
<td>Morbiditás_egészség</td>
<td>180 979 854 Ft 91%</td>
</tr>
<tr>
<td>Katasztrófa_egészség</td>
<td>32 928 000 Ft 17%</td>
</tr>
<tr>
<td>Diverzifikáció</td>
<td>-38 896 103 Ft -20%</td>
</tr>
<tr>
<td>Egészségbizt.-i tőkeszükséglet</td>
<td>199 335 896 Ft 100%</td>
</tr>
</tbody>
</table>

8. táblázat: A modellen belüli egészségbiztosítási kockázat SzTSz megoszlása

Összefoglalva a modellen szavatolótőke-számításának eredményei arányaiban életszerűek, a vártnak megfelelőek.

12. QIS eredményének áttekintése

A Quantitativ Impact Studies, vagyis a mennyiségi hatástanulmányok célja, hogy a Szolvencia II bevezetésére felkészítsek a biztosítókat. Ezenkívül a szabályozás tesztelésére, finomítására, javítására is alkalmas módszer a hatástanulmányok készítése, majd azok eredményeinek analizálása. Napjainkig egy előkészítő tanulmány, öt hatástanulmány, két újrafuttatott hatástanulmány készült el. Nézzük meg a magyarországi részvételi arányokat és a tapasztalatokat részletesebben is!

Az előkészítő tanulmány (Preparatory Field Study, PFS) volt az első szint. Ennek célja volt az, hogy az új, piacon alapuló értékelés hatását vizsgálja, illetve bizonyos stressz tesztetek végeztek el világszerte a biztosítókkal, ahol megadott stresszparaméterekkel kellett szimulációt futtatniuk és ki kellett számítaniuk ezeknek az eszközökre és kötelezettségekre gyakorolt hatását. A tanulmány 2005 áprilisa és szeptembere között zajlott. 20 ország (közök Magyarország is) és összesen 84 biztosító vett részt a tanulmány elkészítésében. Ezután kezdődött meg a QIS1 folyamata, aminek célja a biztosítástechnikai tartalékok piaci értékelésének vizsgálata volt. A tanulmány 2005
októbere és 2006 március között zajlott. A QIS1 elkészítésében 18 ország összesen 272 biztosítója vett részt számszerű eredményeket adva, köztük Magyarországról is 5 biztosító. A tapasztalat az volt, hogy a tartalékok értékelése nehézséget okozott. Már látták, hogy a számítások új fejlesztési igényekkel fognak járni. A paraméterek és a feltételezések itt még nagyon különbözőek voltak. (Gaálné és Pados, 2006)

QIS2-ben az új szavatolótőke-szükséglet standard formulával és belső modellel történő számításait futtatták, az új minimális tőkeszükséglet számításait is elvégezték, illetve továbbra is cél volt az eszközök és kötelezettségek piaci értékelésének tesztelése. A tanulmányok elvégzése és elemzése 2006 májusa és december között zajlott. A számítások alapján a biztosítók pénzügyi megfelelőségi helyzetében is változások következtek be. A biztosítástechnikai tartalékok lecsökkentek, míg az alapvető szavatolótőke-szükséglet és a rendelkezésre álló tőke értéke megőrült. Az MTSz és az SzTSz tőkemegfelelési aránya majdnem minden biztosító esetében 100% feletti volt, de sok esetben ez a két szint túl közel volt egymáshoz. A tartalékok értéke függ a szavatolótőke-szükséglet számításának módszertanától és paramétereitől, ezért a QIS2 tanulmányok alapján ezek egységesítése, szabályozása javasolt. (Gaálné, Tájékoztató a második..., 2006)

A QIS3 elkészítésében már sokkal több biztosító vett részt világszerte, mint az előző tanulmányoknál. Magyarországról 13 biztosító végezte el a számításokat, amiből 4 élet-, 3 nem-élet- és 6 kompozit biztosító volt. A cél hasonló volt az előzőekben megfogalmazottakhoz. Ezúttal a kockázati ráhagyást már a tőkeköltség alapú megközelítéssel (Cost of Capital, CoC) kellett kiszámolni. A QIS2 során csak előzetes kalibráció volt a paraméterekre; ennek a kalibrációnak a tesztelése a QIS3 során történt. A 3. mennyiségi hatástanulmányok elkészítése, dokumentálása és elemzése 2007 áprilistól novemberig folyt. A QIS3 tapasztalata az, hogy habár nagyon kevés biztosító végzett belső modellrel számításokat, de ezből kiderült, hogy a belső modellrel és a standard formulával kalkulált eredmények között hatalmas eltérések voltak. (Gaálné, 2008)

A QIS4-ben már 15 biztosító, részletesen 8 kompozit, 4 élet- és 3 nem-életbiztosító biztosító vett részt Magyarországon. Az SzTSz tőkemegfelelési aránya már nem mindegyik biztosítónál érte el a 100%-ot, de az MTSz szerinti tőkemegfelelési arány igen. Még itt is kevesen mutattak be belső modellrel kalibrált eredményeket, de ezen esetekben még mindig nagy eltérés mutatkozott a standard formulával és a belső modellel kapott eredmények között. Az életbiztosítási kockázat standard formulával
való számításánál javaslatok születtek a rokkantsági kockázat egészségbiiztosítási modulba történő áthelyezésére, a halandósági és hosszú élet kockázat további felosztására, illetve a törlesi sokkparaméter (30%) csökkentésére. Az utóbbit a felügyelet nem javasolja. Az MTSz számítása során nem léptek fel problémák. Néhány résztvevő támogatta azt a javaslatot, hogy az MTSz-t az SzTSz bizonyos hányadaként kelljen kalkulálni. Ezzel a javaslattal a felügyelet nem értett egyet. A QIS4 magyarországi futtatása 2008 decemberéig sikeresen befejeződött.

Az SzTSz tőkemegfelelési arány 2 biztosítónál 100% alatt, 1 biztosító esetén pedig pont a határon volt. Az MTSz tőkekövetelmények minden biztosító megfelelt. Az eredményeket nem csak a válság befolyásolta, hanem a résztvevők körének változása, az állományban való változás, és a módszertani elemek is. A tanulmány eredményeit felhasználva a CEIOPS a válság tanulságait próbálta beleépíteni a szabályzatba. A standard formulán változtatásokat eszközöltek, többek között a korrelációs együttthatókat, a nem-élet ági faktorokat, a működési kockázatot, és a partnerkockázati modult érintették a változtatások. (Somlóiné és Szabó)

A QIS5 készítésében 30 biztosító vett részt, ebből 11 élet-, 10 nem-élet- és 9 kompozit biztosító volt. Ez az utolsó tervezett hatástanulmány a Szolvencia II bevezetése előtt. Ebben a tanulmányban tervezték a kalibráció véglegesítését. A belső modellre még mindig kevesen, csupán három biztosító nyújtotott be eredményeket (de ez az arány Európa-szerte sem volt nagyobb). Ezeknél a tapasztalat az volt, hogy a belső modelllel számolt SzTSz a standard formulával számolóthoz képest még mindig sokkal alacsonyabb (általagosan 46%), miközben az európai tanulmányok során a két módszerrel számolt eredmények nagyon közeli voltak egymáshoz. Mivel Magyarországon csak ilyen kevesen nyújtotottak be belső modelllel számolt eredményeket, így ebből nem vonhatunk le hosszú távú következtetéseket. A QIS5 magyarországi tapasztalata az volt, hogy a hazai körülményekhez képest a módszertani túl bonyolultnak bizonyult. Csak néhány szereplő próbálta elvégezni a teljes számítást, de az eredmények nem realisztikusak. Sok félreértés is adódott a módszertannal, ez néhány helyen a hibás
terminológia következménye volt. A QIS 5 2010 decemberéig sikeresen lefutott. (Tatai, 2011), (Gaálné, Somlóiné és Varga, 2011), (Szabó, 2011)

A felügyelet kezdeményezésére a magyarországi biztosítók elvégezték a QIS5 2010-es adatokon történő újrafuttatását. Az időközi hatástanulmányt egyszerűsítették a QIS5-höz képest, ezzel is arra sarkalva a biztosítókat, hogy minél többen vegyenek részt a QIS5bis elkészítésében. Végül 19 biztosító küldött be értékelhető eredményeket, ebből 7 élet-, 4 nem-élet- és 8 kompozit biztosító volt. A korábbi tanulmányokban és ebben sem volt jellemző a szavatolótőke-element változatos besorolása, majdnem teljes mértékben csak első szintre besorolt tőkeelemek szerepelnek. Úgy gondolom, hogy az S2 szabályait, irányelveit a QIS5bis-beli számítások követik a legjobban, legpontosabban, így itt szeretném bemutatni az S2 és az S1 eredményeinek összehasonlítását a szakdolgozat szempontjából érdekes részekben (a mindkettőben résztvevő 17 biztosító tanulmánya alapján).

Ahogy azt a 9. táblázatban láthatjuk, a S2 szerinti mérlegfőösszegek nem változtak szignifikáns mértékben az S1-belieket képest, de a pénzügyi átrendeződés jelentős volt. A biztosítástechnikai tartálok csökkentek, míg a tőkeszükséglet és a saját tőke többlete nagymértékben növekedett.

<table>
<thead>
<tr>
<th>Biztosítástechnikai tartálok (bruttó)</th>
<th>Szolvencia I</th>
<th>QIS5bis</th>
<th>QIS5bis/S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egyéb kötelezettségek</td>
<td>1 942 470</td>
<td>1 531 158</td>
<td>79%</td>
</tr>
<tr>
<td>Tőkeszükséglet</td>
<td>113 282</td>
<td>156 275</td>
<td>138%</td>
</tr>
<tr>
<td>Saját tőke többlete</td>
<td>102 547</td>
<td>263 584</td>
<td>257%</td>
</tr>
<tr>
<td>Mérlegfőösszege</td>
<td>113 080</td>
<td>242 925</td>
<td>215%</td>
</tr>
</tbody>
</table>

9. táblázat: Összesített pénzügyi helyzet a QIS5bis hatástanulmányban és a Szolvencia I-ben

A 4. ábra is az S1 és S2 szerinti pénzügyi helyzet összehasonlítását mutatja a QIS5bis-ben résztvevő biztosítókra lebontva. A diagramon a 18 biztosítót láthatjuk, ahol a bal oldali oszlop mindig a szolvencia1 szerinti, a jobb oldali oszlop a QIS5bis szerinti

9 Habár azt tudjuk, hogy a QIS5bis-ben mely biztosítók vettek részt, sajnos arról, hogy melyik eredmény melyik biztosítóhoz kapcsolódik, már nincs adatom. Így a biztosítók neve helyett az 1,2,3, stb. számozás alatt jelenek meg a biztosítók eredményei.
pénzügyi helyzetet mutatja, a Szolvencia I szerinti kötelezettségeket vették 100%-nak. Az előző összefüggéseket a legtöbb biztosító esetében is megfigyelhetjük, vagyis a kötelezettségek csökkenését, és a szavatoló tőke növekedését az S1-beli értékekhez képest.

4. ábra: A Szolvencia I szerinti és a QIS5bis-ben mért pénzügyi helyzet biztosítónként

A következő ábrákon összehasonlítjuk a biztosítók tőkemegfelelését. Az 5. ábrán a QIS5bis-ben részt vevő 18 biztosító MTSz szerinti tőkemegfelelését nézzük. Mint látjuk, mindegyik biztosítónál megfelelő az MTSz feltöltöttségi szint. A 6. ábrán ugyanezen biztosítók SzTSz szerinti tőkemegfelelést láthatjuk. Itt már 4 biztosító nem felel meg az SzTSz tőkekövetelménynek. Összehasonlításképpen 2010 év végén a Szolvencia I szerinti tőkekövetelmények valamennyi biztosító megfelelt.
5. ábra: A QIS5bis-ben mért minimális tőkeszükséglet feltöltöttségek biztosítónként

6. ábra: QIS5bis-ben mért szavatolótőke-szükséglet feltöltöttségek biztosítónként

A 7. ábrán a Szolvencia I szerinti és a QIS5bis szerinti szavatolótőke-szükséglet feltöltöttségét hasonlítjuk össze egy ábrában. Az x tengelyen a Szolvencia I szerinti, az y tengelyen az QIS5bis szerinti szavatoló tőke feltöltöttségi szintje szerepel.
Az ábra alapján tehetünk egy érdekes megállapítást: akinek a QIS5bis szerinti SzTSz tőkefeltöltöttsége kisebb, annak a Szolvencia I szerinti feltöltöttsége nagyobb lesz. Ez a megállapítás fordítva is igaz. A tartalékok csökkenését minden hatástanulmánynál tapasztalták. Ezt megnézhetjük élet, és nem-élet ágon is, illetve csak unit-linked biztosítási kötelezettségre. Én ez utóbbit bemutató ábrát (8. ábra) választottam, mert a modellem szempontjából ez lehet a leghasznosabb. (PSZÁF, 2011)
13. Összefoglalás

Először bemutattam a termékhez tartozó biztosítási fajtákat külön-külön, majd az általam megalkotott terméket is bemutattam. Végül a termék tőkeszükséglet-számításának megvalósításáról is írtam, az eredmények rövid bemutatásával együtt. A dolgozatom végén még röviden összefoglaltam a hatástanulmányok magyarországi eredményeit.

A célkitűzésem az volt, hogy a Szolvencia II. rendszert bemutassam az olvasónak, majd a standard formula szerinti szavatolótőke-szükséglet számítását is áttekinthetően összefoglaljam. Az előző leírásokat követve szerettem volna bemutatni a gyakorlati alkalmazást is. Úgy érzem, hogy célomat elértem. A modellemet ki lehetne bővíteni a többi kockázati modul tőkeszükséglet-számításával is. Illetve egy konkrét biztosítótársaság állományának modellezésére, tényleges paraméterek beületetésével, is átalakítható a modell. Bár ez sokkal több munkát, elméleti háttér alaposabb bemutatását és több valóságos adatot igényelne, mint amit ezen szakdolgozat keretei megengednek.

Remélhetőleg a Szolvencia II keretrendszer mind a hazai, mind a nemzetközi biztosítási piacon kielégítő módon képes lesz megteremteni a biztonságos működés kereteit.
Köszönetnyilvánítás

Irodalomjegyzék:

„AZ EURÓPAI PARLAMENT ÉS A TANÁCS 2009/138/EK IRÁNYELVE, a biztosítási és viszontbiztosítási üzleti tevékenység megkezdéséről és gyakorlásáról (Szolvencia II)”, 2009

Az Aegon Magyarország Zrt. honlapja, www.aegon.hu

www.ecopedia.hu.

Gaálné Kodila Diána: „A Szolvencia II harmadik mennyiségi hatástanulmányának (QIS3) eredményei”, 2008

Gaálné Kodila Diána és Patrik Pados: „Az előkészítő helyszíni tanulmány (PFS) és az első mennyiségi hatástanulmány (QIS1) tapasztalatai”, 2006
Gaálné Kodila Diána: „Tájékoztató a második mennyiségi hatástanulmány (QIS2) előkészületeiről”, 2006

Gaálné Kodila Diána, Somlőiné Tusnády Paula és Varga Gábor: „A QIS5 mennyiségi eredményei”.

Gonda László Péterné Rozinka Edina: „Unit-linked biztosítások elméleti és gyakorlati vonatkozásai”, Biztosítási szemle, 2005. október

IFRS hivatalos internetes felülete, www.ifrs.org

Lencsés Katalin: IIMG időközi jelentés a Lámfalussy-eljárásról, Biztosítási Szemle, 2006 április

MABISZ honlapja, www.mabisz.hu

Nemek harca: ki fizeti meg az árát?, Biztosítási Szemle, 2011. augusztus

PSZÁF a fogyasztókért honlap,
http://www.pszaf.hu/fogyasztoknak/biztositasok/eletbiztositasok2/eletbiztositasok.htm

PSZÁF: Felmérés a Szolvencia II követelményeire való felkészülés állásáról és várható feladatok ütemezéséről, 2009. szeptember

PSZÁF: QIS5 Country Report for Hungary

Szabó Péter: „SZOLVENCIA II –QIS5 Kiemelt módszertani kérdések”, 2011

Swedish FSA: Estimate of the volatility in disability incidence and recovery

Tatai Ágnes: „QIS5 konzultáció –bevezetés”, 2011

The Human Mortality Database, www.mortality.org

Vilensky, Joel A. :„Sleeping Princes and Princesses: The Encephalitis Lethargica Epidemic of the 1920s and a Contemporary Evaluation of the.” Ph.D. Indiana University School of Medicine Fort Wayne.

2003. évi LX. törvény biztosítókról és a biztosítási tevékenységről