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Chapter 1

Introduction

The Ebola virus causes an acute, serious illness, which is often fatal if untreated. Thus, it is

important to give an epidemic model that considers not only the spread of the disease, but also

feasible delivery system, the speed of manufacturing of the vaccine or drug for Ebola so that we

can optimize its eradication.

1.1 Biological background of Ebola

The Ebola disease is a zoonose epidemic which extends basically from animals to people. The

Ebola virus genera involves �ve species at present. The most dangerous for people from them is

the so called Zaire Ebola virus (ZEBOV). In this thesis we will discuss about ZEBOV and for the

shake of simplicity henceforth we will use simple Ebola instead. The �rst registered person with

Ebola virus was the 44 years old teacher, Mabalo Lokela. The a�ection was caused perhaps by a

reused unsterilized hollow needle [1]. This is a really usual source of infection in underpossessed

civilizations. A further potential source of infection could be the non-competent using of medical

equipments, nursing service having low quality, void precautions (for example rubber gloves) or

traditional burial rituals especially in developing countries of Africa. The most probably pu-

tative virus hosts are fruit-eating bats but some plants and arthropods became suspicious, as

well. Other research showed that infected bats did not get ill from the Ebola virus thus we could

conjecture the immunity of some animals for the virus. The occurrence of the virus in natural

environment and possible infections to people are not known yet. However, people are infected

de�nitely not directly by the virus hosting bats instead by infected mammals which more often

have direct contact with populations. On the other hand, it is also known that bats are usually

consumed by the residents, especially in West-Africa, that is why we can assume in further the

virus infection by animals. After getting the disease from animals, the virus will spread inside the

civilization, nevertheless, Ebola is not able to keep up permanently inside human populations. It
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is important to mention that diseased people can not spread the Ebola virus as they do not show

any symptoms and the Ebola virus does not spread among airborne. It follows that it can only

circulate among people by direct contact with infected blood or other body-
uids (semen, gob)

but infection during mouth and conjunctiva is also possible. Furthermore on accordance with

the above mentioned facts, the spread of the virus could be promoted by local traditions, such as

burial rituals. This is representative mostly in the African continent where this ritual go hand in

hand with wash down and kissing of the dead body.

Now we can examine the course of the disease. After infection, 4 � 10 days latent period is

expected. Later the illness begins suddenly with 
ue-like symptoms which is typical by viral infec-

tions. These symptoms are usually discomfort, fever, headache, bellyache, synanche, myalgia and

myasthenia. Later symptoms include problems with some organ system, such as the respiratory

system, digestive system, nervous system or vascular system. At the acme of the disease, after

5� 7 days from the �rst symptoms, haemorrhagic fever stigmas emerge and the morality rate in

this phase is approximately 70� 80%, but in Africa this rate is unfortunately a bit higher.

Survivors might become fully recovered from the disease, however, the healing process can

take a long time, even weeks or months and the virus may be present for a good while in the

body-
uids (for example in semen). However a good counter example was a recovered man who

had after 9 and a half months still Ebola virus in his semen [2]. Thereout we can not draw any

conclusion about the exact subsistence time of Ebola virus in human organ after healing.

That is however an acknowledged statement of facts that the risk of re-in
uence is quietly

low but even so during sexual contact is theoretically still possible. After all it is reassuring

that in the Sierra Leone area, where the most infected people were registered [3], not one o�cial

re-infected a�air happened. For additional soothing a study was published by an other research

documentation in 2014 [4] where it was shown that the organism of a totally cured person pro-

duces antibodies against Ebola virus, which protects the individual for at least 3� 5 years from

re-infection. In addition an other reassuring fact is that there is no vertical transmission from

mothers to newborns because of the fast disease progress of Ebola with frequent death rate. Fi-

nally it is worth mentioning that Ebola virus is an age specify infection, i.e. the disease progress

takes di�erent times by di�erent age groups [5], but in this work we will not discuss about this

factor.

The sickness hasn’t presently any permanent treatment. Individuals diagnosed by Ebola virus

are immediately isolated from the population (in normal case, according to prescriptions). With-

out e�ective disposals, the prevention of the contagion has a central role in people’s life. Diseased

and necrolatry by Ebola are miasmatic by contact with body-
uids. Therefore direct relations to

them should be neglected. The Ebola epidemic in West-Africa in 2014 created a national panic

and sped up the propagation of immunization against Ebola virus [3]. The e�ect of these was

the development of a vaccine which was tested in Guinea where researchers experimented almost

100% successfulness by testing 7651 individuals [6].
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1.2 Mathematical background of epidemic spread modelling

This section present a short introduction of epidemic modeling. The whole section based on

the book of Vincenzo Capasso [7].

The general idea of the epidemic spread models is separation of the whole population into more

sub-population have same properties in some wise. This kind of models are called compartmental

models. Generally these groups determine the aim structure of epidemic models which are called

usually SI, SIR, SIRS, SEIR, SEIRS or SEICRS model according as the spread direction

of disease. To understand the essence of this model, �rstly analyze of simpler models is recom-

mended.

As we have mentioned, in a compartmental model the total population is divided into a num-

ber of discrete categories, such as susceptibles (S), infective (I), infected but not yet infective

(E), recovered (R), immune/vaccinated (V ), carrier (C) etc. without distinguishing di�erent

degrees of intensity of infection. In contrast, for macroparasitic infections, such as helminthic

infections, it is relevant to know the parasite burden borne by an individual host, there can be

an important distinction between infection and disease. Consequently, mathematical models for

host-macroparasitic associations need to deal with the full distribution of parasites among the

host population [8].

A key problem in modelling the evolution dynamics of infectious diseases is the mathematical

representation of the mechanism of transmission of the contagion. The concepts of so called force

of infection and �eld of forces of infection which were introduced in [9], will be the guideline

of this subsection. Suppose at �rst that the population in each compartment does not exhibit

any structure (space location, age, etc.). The infection process is driven by a force of infection

(denoted in further by f due to the pathogen material produced by the infective population and

available at time t which acts upon each individual in the susceptible class. Thus a typical rate

of the infection process is given by the

(incidence rate)(t) = f(t)S(t) (1.1)

where f include linear or (in complex cases) nonlinear dependence of I, i.e.

f(t) = g(I(t)) (1.2)

The general model (1.2) for the force of infection may be extend to include a nonlinear depen-

dence upon both I and S. When dealing with populations which exhibit some structure either

discrete (e.g. social groups) or continuous (e.g. space location, age), the target of the infection

process is the speci�c subgroup x in the susceptible class, so that the force of infection has to be

evaluated with reference to that speci�c subgroup. This induces the introduction of a classical

concept in physics. The �eld of forces of infection f(x; t) such that the incidence rate at time t
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at the speci�c location x will be given by

(incidence rate)(x; t) = f(x; t)s(x; t) (1.3)

It is of interest to identify the possible structures of the �eld of forces of infection which depend

upon the speci�c mechanism of transmission of the disease among di�erent groups. When dealing

with populations with space structure the relevant quantities are spatial densities, such as s(x; t)

and i(x; t), the spatial densities of susceptibles and of infectives respectively, at a point x of the

habitat 
, and at time t � 0. The corresponding total populations are given by

S(t) =

Z


s(x; t)dx and I(t) =

Z


i(x; t)dx: (1.4)

In one population models we shall start considering the evolution of an epidemic in a closed

host population of total size N . One of the most elementary compartmental models is the so

called SIR model which was �rst due to Kermack-McKendrick [10]. The total population is

divided into three classes:

� S: Susceptibles, i.e. those individuals who are capable of contracting the disease and might

becoming themselves infectives later

� I: Infectives, i.e. those individuals who are capable of transmitting the disease to suscepti-

bles

� R: Removed, i.e. those individuals who have contracted the disease or, if recovered, are

permanently immune.

A model based on these three compartments is generally called SIR model. In order to write down

a mathematical formulation for the dynamics of the epidemic process we introduce di�erential

equations for the rates of transfer from one compartment to another:8>>>>>>>>>>>><>>>>>>>>>>>>:

dS

dt
= f1(S; I;R)

dI

dt
= f2(S; I;R)

dR

dt
= f3(S; I;R)

(1.5)

Typically a law of mass action (see in papers [11], [12]) has been assumed for the infection pro-

cess, i.e. the transfer process from S to I. On other hand the transfer from I to R is considered

usually to be a pure exponential decay.

If latency and carriers are allowed, additional classes (E) of latent and (C) of carrier individuals
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may be included and the abbreviated model name is SEICR. In case of the possibility of rein-

fection the model is called SEICRS. In this thesis the last model is developed and investigated

because as far as we know it was never analyzed and expanded before, probably by reason of its

drastic complexity. Similarly to the SIR model, we detail the structure of subgroups inside the

SEICRS model in Section 2.

1.3 Sequential splitting

Splitting methods are generally used to solve partial di�erential equations or equation systems,

such as in papers [13], [14], [15]. The main idea is to lead the complex problem to the sequence of

sub-problems with simpler structure. In the following the general method of sequential splitting

(see more detailed in [16]) is presented brie
y for the solution of PDEs. The mathematical model

can be described in the form of the following abstract Cauchy problem for t 2 [0; T ] and x 2 [0; L]8>>>>><>>>>>:

@w(x; t)

@t
=

nX
i =1

Aiw(x; t)

w(x; 0) = w0(x);
@w(0; t)

@x
= g1(t);

@w(L; t)

@x
= g2(t)

(1.6)

where w : R�R! � is the �-valued unknown function for every �xed t 2 [0; T ] and � denotes the

possible states space, which is usually assumed to be a Banach space. Furthermore w0(x) 2 �

and g1(t), g2(t) 2 � de�ne the initial and boundary conditions of the problem and operators

Ai : �! � de�ne the di�erent sub-processes [32].

Operator splitting techniques were developed to �nd the solution of problem (1.6), when Ai

consists of non-linear operator(s). Usually operators are splitted by the di�erent mathematical

structures (e.g. linear and non-linear part of the equation are grouped separately) or by the same

partial di�erential operators (grouping di�erent time and space derivatives together), but the

splitting is arbitrary. Then the obtained simpler systems are discretized on potentially di�erent

meshes.

One of the main advantage of operator splitting techniques is that di�erent numerical schemes

and discertizations with di�erent length and time scales can be applied, selecting the most ade-

quate one for a given sub-problem. The main drawback, however may be the loss of convergence

and/or accuracy.

For the numerical solution of problem (1.6) the following mesh is de�ned for the macroscopic

(approximation on a normal mesh) and microscopic problem (approximation on a �ner mesh),

respectively. First, an appropriate grid is generated for macroscopic problem.
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Let !mac
h;� be a mesh, which consists of (xi ; tk) mesh-points, where h and � denote the chosen

spatial and time resolution of the mesh, according to the following:

xi = ih; h =
L

NL
i = 0; 1; 2; : : : ; NL

tk = k�; � =
T

NT
k = 0; 1; 2; : : : ; NT (1.7)

where NL and NT mark the numbers of division parts in space and time. Then we introduce a

�ner mesh for the microscopic problem. Let this mesh denoted by !mic
h;� � which consists of the

(xi ; tn) mesh-points, where h and �� denote the chosen spatial and time resolution, respectively.

In this case:

xi = ih; h =
L

NL
i = 0; 1; 2; : : : ; NL

tn = n��; �� =
�

N�
n = 0; 1; 2; : : : ; NT �N� (1.8)

where N� marks the number of subdivision parts in time and space. Let’s perceive that NT �N� �
�� = NT � � = T which means that the time interval is the same as by mesh !mac

h;� only with �ner

time steps.

There are two things worth mentioning: First, !mic
h;� contains every point from mesh !mac

h;�

and additionally extra points. Alternatively the two mesh-points are not necessarily needed to

overlap, but this case is not investigated here. Second, spatial resolution of the mesh is not

changed, because our aim is to use in this work some �nite di�erent methods (FDMs) which

convergence criteria is linked with time through � �
h2 .

Hereinafter the introduction of a corresponding vector space �(!mic
h;� � ) is needed, where the

approximated mesh-functions are interpreted on !mic
h;� � (de�ned in (1.8)). The goal is to �nd

series of mesh-functions (yn
i )j := (yh;� � )j (xi ; tn) 2 �(!mic

h;� � ) which approximates well the j-th

components of vector function (~w)j (xi ; tn) at the mesh-point (xi ; tn) 2 !mic
h;� � .

First and last, the original problem (or the operator of the problem) is splitted into macroscopic

(Problem 1) and microscopic (Problem 2) sub-problems. The sequential splitting method solves

the sub-problem iteratively by applying the steps depicted on Figure 1.1.

The following algorithm describes the solution order sub-problems where t 2 [0; T ], x 2 [0; L]

and j = 1; 2; :::; n on the above de�ned meshes:
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Figure 1.1: Flow chart of sequential splitting algorithm on macroscopic (Problem 1) and mi-
croscopic (Problem 2) sub-problems [15].

Problem 1 - Normal mesh (macroscopic)8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

@
�
~w

(1)
1

�
j

@t
(x; t) =

kX
i =1

Ai

�
~w

(1)
1

�
j

(x; t)

�
~w

(1)
1

�
j

(x; 0) = (~w0)j (x)

@
�
~w

(1)
1

�
j

@x
(0; t) = (g1)j (t);

@
�
~w

(1)
1

�
j

@x
(L; t) = (g2)j (t)

(1.9)

Problem 2 - Finer mesh (microscopic)8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

@
�
~w

(1)
2

�
j

@t
(x; t) =

nX
i = k+1

Ai

�
~w

(1)
2

�
j

(x; t)

�
~w

(1)
2

�
j

(x; 0) =
�
~w

(1)
1

�
j

(x; �)

@
�
~w

(1)
2

�
j

@x
(0; t) = (g1)j (t);

@
�
~w

(1)
2

�
j

@x
(L; t) = (g2)j (t)

(1.10)

where the subscripts of ~w corresponds to the solution of each sub-problem and the superscript

is the splitting step. Furthermore Problem 2 is solved independently N� times to reach the

solution in point � , because N� ��� = � . In the second step of the algorithm we solve the PDE

applying the operator in Problem 1 iteratively but now on the [�; 2� ] time interval with initial

condition w
(1)
2 (x; �) and so forth in the following algorithm’s steps. By solving the previous n

steps iteratively, the constructed w
(n)
2 (x; n�) is the solution of sequential splitting on the given

�(!mic
h;� � ) mesh.





Chapter 2

Development of the time dependent

Ebola epidemic spread model

Based on the SIR model, in this chapter we construct the extended form of it. We introduce

latent and carrier subgroups �rstly and in the second and third sections we combine the model

with other subgroups, such as quarantined and vaccinated individuals. At last we build the vital

dynamic into the model, which means a natural birth and mortality rate inside the population.

2.1 The SEICRS model

In mathematical epidemic modeling there exist many compartmental models for disease spread-

ing. From these, in this work the SEIR-model is used as default model, e.g. [7], with extra

carriers, denoted by C. In favour of combining them, the SEICR-model was developed, where

initials S, I and R were introduced in Chapter 1 and the rest are de�ned as follows:

� E: Latent individuals, who undergo a latent period, before being themselves capable of

transmitting the disease

� C: Carriers, i.e. those individuals, who carry and spread the infection disease, but has no

clinical symptoms

This model can be extended to the SEICRS-model with the assumption of possible reinfec-

tion. From now our aim is to extend and combine the basic SEICRS epidemic model with more

in
uential factors, based on paper [30].

When dealing with populations with space structure (this is really important by migration mod-

els), the relevant quantities are spatial densities. Firstly we shall de�ne a bounded 2-dimensional

9
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domain in R2 marked by 
. Let’s use the following notations by di�erent groups:

G(x; t) = number of individuals in group G, at a location x 2 
 and at time t � 0

where G represents one of S, E, I, C or R. Only as an example this means actually the number of

susceptibles in a village or in a city inside the country at �rst of August. It is remarkable that x

is a 2-dimensional vector in space in domain 
 which coordinates actually represent geographical

degree of latitude and of longitude, in other words they allocate an abode on the Earth. By using

these notations the number of the whole population of the country, denoted by N! (t) where

! � 
 marks the o�cial registered coordinates of a country, can be speci�ed as follows. If we

denote the number of individuals inside the di�erent groups at an ! territory by

S! (t) =

Z
!
s(z; t)dz; E! (t) =

Z
!
e(z; t)dz; I! (t) =

Z
!
i(z; t)dz

C! (t) =

Z
!
c(z; t)dz; R! (t) =

Z
!
r(z; t)dz (2.1)

then

N! (t) = S! (t) + E! (t) + I! (t) + C! (t) +R! (t) (2.2)

In the further work we assume that habitat ! is a bounded and �xed parameter and we simplify

our notations by omitting it from the superscript.

Corresponding to the classical "law of mass action", which actually means the homogeneous

distribution of the epidemic spread between dissimilar groups, many epidemic models have a force

infection operator based on linear dependence of individuals from various classes. Ebola virus

epidemic is similar to AIDS, which has a non-linear force infection operator during modeling.

This means that the infection process from S to E is driven by a given non-linear operator due

to the pathogen material produced by the latent individual and susceptibles and available at

location x and at time t.

Analogously to the previous detailed, a further operator can be de�ned which includes the

quality and quantity of individuals transmitting from one class to the other one. The rudimentary

model described in the previous section will be transformed to adapted form as developed by

Legrand et al, which was previously used to describe the 2000 Uganda Ebola outbreaks [17]. The

used model takes into consideration the number of people infected due to direct contact with

an infected/carrier individual, the number of people infected due to direct contact with latent

individuals etc. Individuals in the latent stage will eventually show the symptoms of the disease

and enter into infectious stage. Using notations in (2.1)-(2.2), the time dependent di�erential

equation of the SEICR-model system can be formalized as follows with the appropriate initial

conditions:
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8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

dS

dt
(t) = �

�

I (t)

N(t)
I(t) +


C (t)

N(t)
C(t)

�
S(t) + �(t)R(t)

dE

dt
(t) =

�

I (t)

N(t)
I(t) +


C (t)

N(t)
C(t)

�
S(t)� �(t)E(t)

dI

dt
= �(t)E(t)� ["(t) + �(t)] I(t)

dC

dt
(t) = "(t)I(t)� �(t)C(t)

dR

dt
(t) = �(t)C(t)� �(t)R(t)

(2.3)

S(0) = S0; E(0) = E0; I(0) = I0; C(0) = C0; R(0) = R0: (2.4)

The 
ow chart in Figure 2.1 represents well the one directional connection between groups.

Figure 2.1: Flow chart about the possible transitions between groups

Here, we have 
I (t) = pI (t) � cI (t) and 
C (t) = pC (t) � cC (t) where pI (t) and pC (t) denote the

probabilities of successfully getting infected when coming into contact with an infected or carrier

individual, respectively. Additionally cI (x; t) and cC (x; t) are the force infection functions of

infected and carrier individuals, respectively. Furthermore �(t) denotes the per-capita infectious

rate between individuals in latent period and infected humans. In that case, 1=�(t) becomes the

average time for a latent individual to become infectious. "(t) marks the rate of individuals who

recovered from the virus and are on the mend, but are still infectious. On the other hand �(t)

denotes the death rate of the epidemic. Finally �(t) stands for the totally recovered humans rate
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while �(t) implements the proportion of people who are over the protection meaning 10 years

against the virus and get into again to the group of susceptibles.

2.2 Quarantine and vaccination

The developed model in (2.3)-(2.4) suggests that Ebola will eventually be out of control, as

time goes by. Until now there is no way to cure Ebola, but we do have an e�ective way to prevent

its spread, which is supposed to be the introduction of individuals in quarantines be denoted by

Q(t). This denotes the infectious population being hospitalized by the governments and other

medical organizations at time t. Let the rate of infectious individuals being hospitalized denoted

by �(t) where we assume that the hospitalized individuals share the same death probability with

the normal infectious ones but do not infect any exposed individual or susceptible one. Let �I (t)

and additionally �Q(t) mark the death rates of infections caused by the Ebola’s epidemic in group

I and Q, respectively. Furthermore, let ’(t) be chosen as the per-capita rate of individuals who

are on the mend and become carriers.

In addition, let us denote the seventh class of individuals by V (t), which represents the number

of individuals who have been vaccinated before the infection. Therefore individuals belonging this

class are not able to get infected and they are not the part of the disease’s circulation anymore.

Let us denote the vaccination rate by the function �(t). With all this in mind we can establish

connection between groups after introducing individuals in quarantines and possible vaccination

in a 
ow chart in Figure 2.2.

Figure 2.2: Flow chart of the possible transitions between groups expanded by quarantined and
vaccinated individuals.
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Vaccination program is used to prevent the epidemic and it could alter the courses of the

infection, as well. To estimate the best possible approximation of �(t) for t, we shall take into

consideration the di�erent connections between individuals. These connections are often described

in terms of the mixing patterns of the network. We consider two types of mixing patters here,

namely, assortative mixing and proportionate mixing. Assortative mixing describes situations in

which individuals are more likely to interact with other individuals who are similar to them in

some respects, while proportionate mixing (or random mixing) occurs when interactions have no

particular preference.

2.3 Vital dynamic

The invariance of the total population can be maintained by introducing the intrinsic vital dy-

namics of individuals by means of net mortality rate compensated by equal birth input �(t)N(t)

in the susceptible group, where �(t) is a known multivalued function. This assumption contains

obviously also that there is no vertical transmission of the disease, in other words everybody is

assumed to be born clear from infection. We suppose that the natural mortality rate is di�erent

in each group and let this rate be denoted in every case by �(t) with the appropriate initial

letters of various sub-groups in the subscript. We can assume that �(t)N(t) =
P7

i =1 �G i (t)Gi (t)

for all t � 0, where Gi denotes the initial identifying the i-th group to be modelled, i.e.

Gi 2 fS;E; I; C;R;Q; V g for i = 1; 2; 3; 4; 5; 6; 7. Similarly as before as before, we establish

the connection between the groups in Figure 2.3 after assuming the vital dynamics.

Figure 2.3: Flow chart of the possible transitions between groups expanded by assuming the
vital dynamic.
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With these three modi�cations (i.e. quarantine, vaccination, vital dynamics) we can rewrite

the extended form of the system (2.1) with appropriate initial conditions (2.2). Thus we get the

following system of ordinary di�erential equations for the spread of Ebola:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dS

dt
(t) = �

�

I (t)

N(t)
I(t) +


C (t)

N(t)
C(t) + �(t) + �S(t)

�
S(t) + �(t)R(t) + �(t)N(t)

dE

dt
(t) =

�

I (t)

N(t)
I(t) +


C (t)

N(t)
C(t)

�
S(t)� [�(t) + �E (t)]E(t)

dI

dt
(t) = �(t)E(t)� ["(t) + �(t) + �(t) + �I (t)] I(t)

dC

dt
(t) = "(t)I(t) + ’(t)Q(t)� [�(t) + �C (t)]C(t)

dR

dt
(t) = �(t)C(t)� [�(t) + �R(t)]R(t)

dQ

dt
(t) = �(t)I(t)� [�Q(t) + ’(t) + �Q(t)]Q(t)

dV

dt
(t) = �(t)S(t)� �V (t)V (t)

(2.5)

S(0) = S0; E(0) = E0; I(0) = I0; C(0) = C0; R(0) = R0; Q(0) = Q0; V (0) = V0: (2.6)

At this point we remark, that this system depends only on time, however take into consider-

ation migration, mobility, moving activity etc. the epidemic spread models suppose to be space

dependent, as well. In Chapter 3 our aim is to extend model (2.5)-(2.6) by population migration.



Chapter 3

Integration the space dependency

into the model

3.1 Population migration effect

In this section we make a systematic study to some population migration models. The whole

section based on the work [18]. These models have the form of di�erential integral equations.

They describe the evolution of the density of a system of population living in a spatial domain


 � Rn . Individuals in this population system can move from one location to the other with

a rate uniquely determined by their departure and arrival locations. We use the terminology

migration to address spatial movement of the population and call the rate mentioned above mi-

gration rate. The migration rate function determines to a great extent the dynamical behaviour

of the population system. We shall mainly consider a special class of population system in which

individuals can migrate from any one location to any other location through �nite steps of inter-

mediate migrations. We call such a population system as ergodic system.

Let 
 be a domain in Rn , in which the population lives. We introduce a migration rate function

v(x; y) in 
, or more precisely the migration rate from location y 2 
 to location x 2 
, de�ned

as follows.

De�nition 3.1 For an o�-diagonal point (x; y) 2 
 � 
, x 6= y, let Ox and Oy be two disjoint

sub-domains of
 containing x and y, respectively. Assume that within an unite time interval

the total amount of population migrated from Oy to Ox is M(Ox ; Oy) and the total amount of

population in Oy before migration is M(Oy). Then

v(x; y) = lim
diam (Ox )! 0
diam (Oy )! 0

M(Ox ; Oy)

jOx jM(Oy)
(3.1)

15
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where jOx j denotes then-dimensional Lebesgue-measure of the domainOx . For a diagonal point

of 
� 
 we de�ne the value ofv(x; y) to be its o�-diagonal limit. Let

vi (x) =

Z


v(x; y)dy; ve(x) =

Z


v(x; y)dx; (3.2)

they are called the immigration rate and emigration rate at the locationx and y, respectively.

Notice that these de�nition immediately yield the following relation:

Z


vi (x)dx =

Z


ve(y)dy: (3.3)

From the de�nition of the migration rate function we see that for a point x 2 
, if v(x,y)=0 for

all y 2 
, then there is no migration from other location to the location x. Consequently in this

case vi (x) = 0. For a point x 2 
, if v(y; x) = 0 for all y 2 
, then there is no migration from the

location x to other location, and in this case ve(x) = 0. If at a location x there holds vi (x) > ve(x)

then in a small neighborhood of x the amount of population immigrated in is larger than the

amount of population emigrated out, whereas if ve(x) > vi (x) then in a small neighborhood of x

the amount of population emigrated out is larger than the amount of population immigrated in.

In the case ve(x) = vi (x) we say that immigration and emigration at the location x is balanced.

In particular, if the relation ve(x) = vi (x) holds for all x 2 
, we call such a migration as balanced

migration. A particular case of the balanced migration is symmetric migration, which means that

v(x; y) = v(y; x) for all x; y 2 
. Finally we mention that from relation (3.3) we see that if there

is a subdomain 
1 � 
 in which ve(x) > vi (x) then there must be another subdomain 
2 � 
 in

which ve(x) < vi (x), and vice versa.

In this thesis we do not pursue a complete understanding to an arbitrary population system

with migration. Instead we mainly consider dynamical behaviour of a special class of such system

as de�ned below.

De�nition 3.2 We say that a population system is ergodic if its migration rate functionv satis�es

the following property: For any point (x0; y0) 2 
�
, x0 6= y0, there exist �nite number of points

(x1; y1), (x2; y2) : : : , (xm ; ym ) 2 
� 
 such that

y1 = y0; y2 = x1; y3 = x2; : : : ; ym = xm � 1; xm = x0

and for each 1 � j � m, v(x; y) > 0 for all (x; y) in a neighborhood of(xj ; yj ). In this case we

also say that the functionv is ergodic

From the above defnition we see that if a population system is ergodic then it is possible for

an individual in this system at any location to migrate to any other location through �nite steps
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of intermediate migrations. Clearly, for such a population system we have

vi (x) > 0 and ve(x) > 0 for all x 2 
:

It is also clear that if v(x; y) > 0 for all (x; y) 2 
� 
 then the population system is an ergodic

system. In this case we say that the population system is completely ergodic. One can see some

example for non completely ergodic case in [29].

Let us discuss now about the proliferation-stationary population migration models. We denote

by N(x; t) the population density at the location x 2 
 at time t. We assume that the population

at every location in 
 is in the proliferation-stationary state, i.e., the birth rate and the death

rate are equal at every point x 2 
, and only consider the e�ect of migration of population. For

an arbitrary sub-domain O � 
 and an arbitrary time interval [t1; t2], we haveZ
O
N(x; t2)�N(x; t1)dx| {z }
increment of population

=

Z t2

t1

Z
O

Z

 nO

v(x; y)N(y; t)dydxdt| {z }
population immigrated in

�
Z t2

t1

Z

 nO

Z
O
v(x; y)N(y; t)dydxdt| {z }

population emigrated out

Dividing both sides with (t2 � t1)jOj and next letting diam(O)�! and t2 � t1 �! 0, we obtain

the following di�erential-integral equation:

@N(x; t)

@t
=

Z


v(x; y)N(y; t)dy � ve(x)N(x; t); x 2 
; t > 0: (3.4)

We call it the proliferation-stationary population migration equation, or simply population mi-

gration equation later on. We impose the following initial value condition:

N(x; 0) = N0(x); x 2 
 (3.5)

where N0 is given non-negative function. For simplicity we only consider the case where 
 is a

bounded domain.

3.2 Properties and extensions

In this section we develop the complex form of epidemic spread model for the spread of Ebola

combined with population migration e�ect. For the shake of it, �rstly we detail some easy and

basic assertions, as follows:

(1) Since the equation (3.4) is a linear di�erential-integral equation, by using either the standard

Picard iteration method or the uniformly continuous semigroup theory, we can easily prove that

under suitable assumptions on the migration function v, the initial value problem (3.4)-(3.5) is
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globally wee-posed in the function spaces C(�
) and Lp(
) for 1 � p < 1. More precisely, if

v 2 C(�
 � �
) then for any N0 2 C(�
) the problem (3.4)-(3.5) has an unique solution N 2
C(�
� [0;1)) and the map N0 7! N from C(�
) to C(�
� [0; T ]) is linear and continuous for any

T (similarly, if v 2 L1 (
� 
)).

(2) If N0(x) � 0 for all x 2 
, then N(x; t) � 0 for all x 2 
 and t � 0.

(3) Total amount of the population is constant, i.e., letting M(t) =
R


 N(x; t)dx be the total

amount of the population at time t and M0 =
R


 N0(x)dx be the initial total amount of the

population, we have

M(t) = M0 for all t � 0: (3.6)

Indeed, since
R


 v(x; y)dx = ve(y), by integration both sides of the equation (3.5) with respect to

the variable x, we get

@M(t)

@t
=

Z


ve(y)N(y; t)dy �

Z


ve(x)N(x; t)dx = 0; t > 0;

so that M(t) = M0 for all t � 0.

(4) If ve(x0) = vi (x0) = 0 for some x0 2 
, then N(x0; t) = N0(x0) for all t � 0. Indeed, since

v(x; y) � 0 for all x; y 2 
, the condition vi (x0) =
R


 v(x0; y)dy = 0 implies that v(x0; y) = 0 for

all y 2 
. Hence, from the condition ve(x0) = vi (x0) = 0 we see that at the point x0 the equation

(3.5) takes the form
@N(x0; t)

@t
= 0 for t > 0;

so that N(x0; t) = N0(x0) for all t � 0. This means that if at a location the population does

neither migrate in or migrate out, then the population density keeps constant at that location.

If vi (x0) = 0 and ve(x0) > 0 for some x0 2 
, then limt !1 N0(x0; t) = 0. Indeed, at the point

x0 the equation (3.5) takes the form

@N(x0; t)

@t
= �ve(x0)N(x0; t) for t > 0;

so that N(x0; t) = N0(x0)e� tv e(x0 ) for all t � 0, which implies that limt !1 N0(x0; t) = 0. This

means that if the population does not migrate into a location but keeps migrating out of that

location, then the population at that location will �nally vanish.

(6) If ve(x0) = 0 and vi (x0) > 0 for some x0 2 
, then N(x0; t) is strictly monotone increasing

in t. Indeed, at the point x0 the equation (3.5) takes the form

@N(x0; t)

@t
=

Z


v(x0; y)N(y; t)dy > 0 for t > 0;



Integration the space dependency into the model 19

so that N(x0; t) is strictly monotone increasing. This means that if the population does not

migrate out of a location but keeps constantly migrating to that location, then the population at

that location keeps increasing.

We mention at this point that we can extend the result of the above detailed proliferation

stationary population migration model to the proliferation non-stationary case. Let r = r(x),

x 2 
, be the proliferation rate function, i.e., for every x 2 
, r(x) is the proliferation rate

(=birth rate minus death rate) of the population at location x. Assume that this function is not

identically vanishing in 
. Then the equation (3.5) should be replaced by the following equation:

@N(x; t)

@t
=

Z


v(x; y)N(y; t)dy � ve(x)N(x; t) + r(x)N(x; t); x 2 
; t > 0: (3.7)

Furthermore a short discussion to non-ergodic case. If we remove the ergodicity assumption

then the situation is very much complex. In this paper we only consider two special cases.

Moreover, we assume that the population system is in the proliferation-stationary case.

(1) First we consider the case that the habitat domain 
 is divided into several disjoint parts

and population in each part forms an independent population system. Hence we assume that


 =

m[
j =1


j ; where 
j

\

k = ; for j 6= k;

and v(x; y) = 0 if (x; y) 2 
j �
k , j 6= k, where j; k = 1; 2; : : : ;m. Moreover, for every 1 � j � m
we assume that vj
 j 
 j is continuous and ergodic in 
j �
j . Thus, the whole population system

is divided into several subsystem, with each subsystem being ergodic and di�erent subsystems

being mutually independent or having no interchange of population between di�erent subsystems.

(2) Next we consider the case that the habitat domain 
 is divided into two disjoint parts 
1

and 
2, i.e., 
1 \ 
2 = ; and 
 = 
1 [ 
2, such that v(x; y) > 0 for (x; y) 2 
1 � 
1, 
1 � 
1

and 
2 � 
2, whereas v(x; y) = 0 for (x; y) 2 
2 � 
1. We omit the details, one can see some of

them in these case in [18].

Finally in this section we consider a complex mathematical model describing spread of epi-

demics in migration population system assuming the proliferation non-stationary case with er-

godic migration. Using notations (2.5), we can transform our extended Ebola epidemic system

(2.5) into the form of partial-integro di�erential equations (PIDE), and we can combine it with

the proliferation-stationary model in (3.7) with initial conditions

S(0) = S0; E(0) = E0; I(0) = I0; C(0) = C0; R(0) = R0; Q(0) = Q0; V (0) = V0 (3.8)

as follows:
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

@S

@t
(x; t) = �

�

I (x; t)

N(x; t)
I(x; t) +


C (x; t)

N(x; t)
C(x; t) + �(x; t) + �S(x; t)

�
S(x; t)+

+�(x; t)R(x; t) + �(x; t)N(x; t) +

Z


v(x; y)S(y; t)dy � ve(x)S(x; t)

@E

@t
(x; t) =

�

I (x; t)

N(x; t)
I(x; t) +


C (x; t)

N(x; t)
C(x; t)

�
S(x; t)� [�(x; t) + �E (x; t)]E(x; t)+

+

Z


v(x; y)E(y; t)dy � ve(x)E(x; t)

@I

@t
(x; t) = �(x; t)E(x; t)� ["(x; t) + �I (x; t) + �(x; t) + �I (x; t)] I(x; t)+

+

Z


v(x; y)I(y; t)dy � ve(x)I(x; t)

@C

@t
(x; t) = "(x; t)I(x; t) + ’(x; t)Q(x; t)� [�(x; t) + �C (x; t)]C(x; t)+

+

Z


v(x; y)C(y; t)dy � ve(x)C(x; t)

@R

@t
(x; t) = �(x; t)C(x; t)� [�(x; t) + �R(x; t)]R(x; t)+

+

Z


v(x; y)R(y; t)dy � ve(x)R(x; t)

@Q

@t
(x; t) = �(x; t)I(x; t)� [�Q(x; t) + ’(x; t) + �Q(x; t)]Q(x; t)+

+

Z


v(x; y)Q(y; t)dy � ve(x)Q(x; t)

@V

@t
(x; t) = �(x; t)S(x; t)� �V (x; t)V (x; t) +

Z


v(x; y)V (y; t)dy � ve(x)V (x; t):

(3.9)

Since our aim is to approximate the solution of the system, we need to have the well poseness of

it. For it we need to estimate the boundary conditions by every sub-group.



Integration the space dependency into the model 21

3.3 Estimation of boundary conditions

Our aim is to apply the sequential splitting algorithm to approximate the solution of the

system of PIDE’s (3.8)-(3.9). For this purpose �rst we determine the appropriate boundary

conditions for points x 2 @
, where @
 denotes the boundary of habitat 
. To do that we use

the classical Neumann-boundary conditions which de�nes the 
ux (combination of immigration

and emigration rate) of individuals at @
. We suppose that this 
ux depends on time and on the

location uniformly. In mathematical formulation this means the following

@Gi

@x
(~x; t) = 	G i (~x; t); ~x 2 @
; t 2 [0; T ]: (3.10)

where 	G i supposed to be in space L2(
� [0; T ]).

Thus we need to do determine functions 	G i (~x; t) for every sub-group, namely, for all Gi 2
fS;E; I; C;R;Q; V g. We may assume that the emigration rates of susceptibles and latent indi-

viduals increases after the outbreak of Ebola and going to be decreased after dangerous state.

Vaccinated individuals have no reason to move, that is why their 
ux at the boundary is much

lower. The 
ux by quarantines is even more restricted because people are not able to move of their

own own free will or they are in safety in quarantines. Infected, carriers and removed individuals

neither have too much reason to migrate, they are already infected or belong to the small group

who survived the virus Ebola. Figure 3.1 represents the density of migration by susceptibles, at

�xed ~x point of boundary @
.

Figure 3.1: Normalized density of migration by susceptible individuals in case T = 10
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If we accept these assumptions, we can de�ne functions 	G i (~x; t) for all Gi as the modulator

of normal distribution where the expected value mi determines the expected hollow point of the

epidemic for all i = 1; 2; 3; 4; 5; 6; 7 and the variance is taken as constant, i.e.,

	G i (~x; t) :=
~ki (~x)p

2�
e� ( t � m i ) 2

2 ; ~x 2 @
; t 2 [0; T ] (3.11)

where ~ki (~x) denotes the 
ux constant for all locations at the boundary of the domain for the

di�erent sub-groups (S;E; I; C;R;Q; V ).

Before we would discuss about the numerical solution of the system (3.9) with initial (3.8)

and boundary (3.11) conditions, we are going to develop the generalized form of epidemic spread

systems, in order to show an e�ective way to approximate them. Then we can apply later in this

work the chosen numerical schemes on system developed in this chapter.



Chapter 4

Construction of general discretized

system

4.1 Formalization and assumptions

Hence the epidemic model for the spread of Ebola has some characteristic property, such as

nonlinear dependency of subgroups and population migration e�ect, our goal is to develop a

generalized model with the same features in extended form. To do that we need to introduce

some notations and provisions.

Let us denote the variables by �i (x; t) for i = 1; 2; : : : ; n which are supposed to be the classical

solution of the PIDE, hence they are taken from the space L1
�

�

�
\C1 (I)\C1 (@
) where x 2 �


and t 2 I. Thence we will denote this function space by M (
; I). Furthermore we de�ne two

function valued vectors as follows,

~� := [�1; �2; : : : ; �n ]T ; ~�� i := [�1; �2; : : : ; �i � 1; �i +1 ; : : : ; �n ]T ; (4.1)

After this we need to introduce some operators and source term functions to represent the

various unexpected factors of the model which in
uence the size of population or behaviour of

individuals. Let us de�ne Fi : M (
; I) ! M (
; I) as the operator of self-dependency, Gi :

Mn (
; I)! M (
; I) as the operator of else-dependency, and as Hi : Mn (
; I)! M (
; I) the

operator of nonlinear dependency which operate di�erently for all i and

Mn := M �M � � � � �M| {z }
n times

:
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Finally we denote the source terms by fi (x; t), the function of initial conditions by �i; 0(x) and of

the boundary conditions by Ki (x; t) for all i.

With all this in mind we can develop our generalized PIDE system, as follows

8>>>>>>>>><>>>>>>>>>:

@�i

@t
(x; t) = (Fi (�i )) (x; t) + (Gi ( ~�� i )) (x; t) + hHi (~�) ; ~�i(x; t) + fi (x; t)

�i (x; 0) = �i; 0(x); x 2 


@�i

@x
(x; t) = Ki (t) x 2 @
; t 2 I

(4.2)

where x 2 
 and t 2 I for i = 1; 2; : : : ; n. One can see that system (4.2) is very complicated to

analyze in this form, thus we simplify it in order to the easier analysis of numerical approximation

and their properties.

For the shake of it, we suppose that the number of the variables is two (n = 2), the habitat


 := [L1; L2], i.e. it is one dimensional and I = [0; T ]. In purpose of the better visibility we

do not use by the variables its space and time dependency. Now, using these simpli�cations, we

examine the following system

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

@�1

@t
= A1�1 +B1�2 + C1

Z L 2

L 1
�1dx+D1�1�2 + f1(x; t)

@�2

@t
= A2�2 +B2�1 + C2

Z L 2

L 1
�2dx+D2�1�2 + f2(x; t)

�1(x; 0) = �1;0(x); �2(x; 0) = �2;0(x); x 2 [L1; L2]

@�1

@x
= K1(t);

@�2

@x
= K2(t); x = L1 or L2; t 2 [0; T ]

(4.3)

where one can easily seen (for i = 1; 2) that

Fi (�i ) = Ai�i + Ci

Z L 2

L 1
�idx; G1(�2) = B1�2; G2(�1) = B2�1; hHi (~�) ; ~�i = Di�1�2:

where the coe�cients Ai , Bi , Ci , Di are de�ned constants.

In the next section we describe the numerical approximation scheme on system (4.3), namely

the one step �-method.
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4.2 Discretization by using � -method

As we know from basic numerical calculus, the general form of the �-method applied on ordinary

di�erential equations (ODEs) is the following:

yn = yn � 1 + �n [(1� �)fn � 1 + �fn ]

where yn is the approximation of the solution at point tn de�ned on the mesh !� n = ft0 =

0; tn = tn � 1 + �n ; n = 1; 2; : : : ; N + 1g, furthermore fn := f(tn ; yn). This method can be applied

similarly to PDE systems. In that case we need to �x the discretization of each variables, i.e., if

yn;i = y(tn ; xi ) then

yn;i = yn � 1;i + �n [(1� �)fn � 1;i + �fn;i ]

where �-method has been applied on time variable on mesh !� n ;h i
= f(tn ; xi ); t0 = 0; tn =

tn � 1 + �n ; xi = xi � 1 + hi ; n = 1; 2; : : : ; Nt + 1; i = 1; 2; : : : ; Nx + 1g.
The scheme of discretization by PIDE systems is similar, but the approximation of the integral

part has to be chosen from quadrature-formulas. In this thesis we use the simple trapezoidal rule,

thus the method is Z x i

x i � 1

yn;i �
hi

2
(yn;i + yn;i � 1):

In the following we assume that the mesh !� n ;h i
is equidistant, namely �n � � and hi � h for all

n and i. With all this in mind we can describe the �-method discretization applied on system

(4.3), as follows:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�n;i
1 � �

n � 1;i
1

�
= (1� �)

h
A1�

n � 1;i
1 +B1�

n � 1;i
2 +D1�

n � 1;i
1 �n � 1;i

2 + fn � 1;i
1

i
+

+�
h
A1�

n;i
1 +B1�

n;i
2 +D1�

n;i
1 �n;i

2 + fn;i
1

i
+

+(1� �)C1
h

2

�
�n � 1;i

1 + �n � 1;i � 1
1

�
+ �C1

h

2

�
�n;i

1 + �n;i � 1
1

�
�n;i

2 � �
n � 1;i
2

�
= (1� �)

h
A2�

n � 1;i
2 +B2�

n � 1;i
1 +D2�

n � 1;i
1 �n � 1;i

2 + fn � 1;i
2

i
+

+�
h
A2�

n;i
2 +B2�

n;i
1 +D2�

n;i
1 �n;i

2 + fn;i
2

i
+

+(1� �)C2
h

2

�
�n � 1;i

2 + �n � 1;i � 1
2

�
+ �C2

h

2

�
�n;i

2 + �n;i � 1
2

�

(4.4)

with the following initial and boundary conditions:



26 Construction of general discretized system

8>>>>>>>>>><>>>>>>>>>>:

�0;i
1 = �i

1;0; �
0;i
2 = �i

2;0; i = 0; 1; : : : ; Nx + 1

�n;1
1 � �n;0

1

h
= Kn;0

1 ;
�n;N x +1

1 � �n;N x
1

h
= Kn;N x +1

1 ; n = 1; 2; : : : Nt + 1

�n;1
2 � �n;0

2

h
= Kn;0

2 ;
�n;N x +1

2 � �n;N x
2

h
= Kn;N x +1

2 ; n = 1; 2; : : : Nt + 1

(4.5)

where � 2 [0; 1], Ai , Bi , Ci and Di are de�ned constants for i = 1; 2 and t0 = 0, tN t +1 = T ,

x0 = L1 and xN x +1 = L2.

After this we say something about the qualitative properties of the system and we give an

elementary estimation to the theoretical error of the numerical scheme. Let express variables

�n;i
1 and �n;i

2 by using rearrangement of the system (4.4). In this case we supposed to assume

that expression ��
h
A1 + C1

h
2 +D1�

n;i
2

i
and ��

h
A2 + C2

h
2 +D2�

n;i
1

i
are not equal to zero for all

i and n. This rearrangement yields a non-linear algebraic equation system for variables �n;i
1 and

�n;i
2 . At this point we remark that showing the non-negativity of the system is a very complex

procedure, that is why we just mention here the basic steps of the procedure based on induction.

Assuming that if �0;i
j > 0 then �1;i

j > 0 follows for all j = 1; 2. We would like to show that

assumptions �n � 1;i
j > 0 and �n;i � 1

j > 0 imply the inequality �n;i
j > 0 for all j, i, and n. The proof

of it could be a further research topic.

To show the theoretically expected error, we turn back to the system (4.4). For it we need to

take into consideration the source of possible upcoming error sources. in our case these are:

� Error of the continuous model setting,

� Error time discretization scheme,

� Approximation error of the quadrature formula.

From these three are only the last two considerable, because the �rst one can not be estimated

mathematically, either numerically. Based on the general numerical calculus, we know that �-

method is convergent in second order, if � = 1
2 , and it is convergent in �rst order in case � 6= 1

2 .

Similarly, the trapezoidal quadrature formula yields O(h3) order error term.

As a conclusion we can say, that the �-method combined with the trapezoidal rule applied on

system (4.3) is expected to be �2 + h2-th order in case � = 1
2 and � + h2 in case � 6= 1

2 . one can

see, that � = 1
2 guarantees the higher order of the numerical convergence, however causes much

more calculation and complexity by applying the approximation algorithm. The question is, how

could we reach �2 +h2-th order convergence next to a lower running time. In the next chapter we

will develop the alternant-�-method, which provide us the higher order convergence with more

less calculation (running time).



Chapter 5

Alternant-theta method

5.1 Motivation and basics

In this section we are going to give a short introduction into the alternant-� method applied

on classic ODE. We mention that the whole chapter based on the work [31].

Many scienti�c problems can be described by the initial value problem for �rst order ODEs of

the form

du

dt
(t) = f(t; u(t)); t 2 (0; T ) (5.1)

u(0) = u0: (5.2)

The solution of such problems plays considerable role in the mathematical modelling. As it is

known under the global Lipschitz condition, i.e.,

jf(t; s1)� f(t; s2)j � L js1 � s2j where (t; s1); (t; s2) 2 dom(f) (5.3)

with the Lipschitz constant L > 0, the problem (5.1)-(5.2) has unique solution on the domain

dom(f).

However, we cannot de�ne the solutions for the majority of di�erential equations in analytic

form, hence suitable numerical algorithms are needed for accurately approximations. The nu-

merical integration of the problem (5.1)-(5.2) under the condition (5.3) is one of the most typical

tasks in the numerical modelling of real-life problems.

One of our aim in this chapter is to de�ne some numerical solution at �xed points t? 2 (0; T ) to

the classical Cauchy problem (5.1)-(5.2). Let us consider the sequence of non-equidistant meshes

27
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with alternant mesh-sizes hn of the form

!hn = ft0 = 0; tn = tn � 1 + hn ; n = 1; 2; : : : ; Ng

and our goal is to de�ne at the mesh-point t? = tN a suitable approximation denoted by yN on

each �xed mesh. At this point we remark that a condition should be made for time steps hn ,

namely we suppose that there exists a real positive number C such that the inequality

hn � C � h; for all n = 1; 2; : : : ; N � 1 and for all N = 2; 3; : : : (5.4)

holds, where h := maxnfhng. Condition (5.4) means that we demand an uniformly stepwise

re�nement for every time partition of the interval (0; T ).

The most popular and simplest methods for de�ning the mesh-function yh : !h ! R are

the so-called one-step schemes, particularly, the theta-method which is notated frequently as �-

method. To proof its convergence there are many works, such as [21]. To de�ne the more general

alternant form of theta-method, we change the parameter � at each step. These varying values

are denoted by �n . Hence, the alternant-�-method (in the following called ATM) can be de�ned

as follows.

De�nition 5.1 Let us consider the sequence of parameters�n 2 [0; 1], (n = 1; 2; : : : ; N ) and

the Cauchy problem de�ned in (5.1)-(5.2). The discrete formalization of (5.1)-(5.2) by the ATM

has the following form

yn = yn � 1 + hn(1� �n)f(tn � 1; yn � 1) + hn�nf(tn ; yn); n = 1; 2; : : : ; N; (5.5)

y0 = u0: (5.6)

Hence, �n 2 [0; 1] are �xed parameters for all n = 1; 2; : : : ; N � 1 and it de�nes for �n = 0 (for all

n) explicit, otherwise implicit method. This methods are usually used for sti� systems the cases

�n = 0:5 for all n trapezoidal rule and �n = 1 for all n backward Euler are of practical interest,

for non-sti� problems we can also consider �n = 0 for all n explicit Euler.

The main idea of this approach is the approximation of the solution of the discretized Cauchy

problems (5.5)-(5.6) by using di�erent numerical schemes (implicit, explicit, IMEX, one-step,

multi-step etc.) with varying step-sizes. It has bene�ts e.g. for the numerical solution of problems

with non-smooth solutions.

Let us de�ne the local truncation error for the ATM. We suppose that function f is su�ciently

smooth. The local truncation error  
( � )
n for the ATM can be de�ned as
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 ( � )
n = (1� �n) (0)

n + �n 
(1)
n (5.7)

where

 (1)
n = �u(tn)� u(tn � 1)

hn
+ f(tn ; u(tn));  (0)

n = �u(tn)� u(tn � 1)

hn
+ f(tn � 1; u(tn � 1))

and u(t) stands for the solution of the problem (5.1)-(5.2).

By expanding u(tn) and u(tn � 1) into the Taylor series around the point t = tn � 1 and t = tn ,

respectively, we get for error the following

 ( � )
n =

hn

2

�
�nu

00(tn)� (1� �n)u00(tn � 1)
�

+
h2

n

6

h
(1� �n)u000(�(1)

n )� �nu
000(�(0)

n )
i

(5.8)

where �
(1)
n and �

(0)
n are some constants de�ned from the Taylor series. By expanding again u00(tn)

into the Taylor series around the point t = tn � 1, for the local approximation error we get the

following

 ( � )
n = C(1)

n hn + C(2)
n h2

n (5.9)

where

C(1)
n =

2�n � 1

2
u00(tn � 1); C(2)

n =
1

6
(1� �n)u000(�(1)

n )� 1

6
�nu

000(�(0)
n ) +

1

2
u000(�(2)

n ):

To de�ne the order of the numerical method we estimate moreover the truncation error using

(5.4) as follows

��� ( � )
n

��� � ���C(1)
n

���hn +
���C(2)

n

���h2
n �

2�n � 1

2
M2Ch+

2

3
M3Ch

2 (5.10)

where

M2 = maxn

��u00(tn)
�� ; M3 = maxn

��u000(tn)
�� :

The order of a numerical method is de�ned by the local truncation error. When  
( � )
n (h) =

O(hp+1 ) for all n then the method is called consistent of order p. This means that for both Euler

methods the order of consistency is equal to one, while for the "pure" trapezoidal rule the order

of consistency is equal to two.

However the consistency in itself does not guarantee the convergence of a numerical method,

the stability is also required. Our aim is to give an easy and elementary prove for the convergence
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of the general ATM. Moreover we give the expression for the stability constant of the method, as

well.

5.2 Convergence and applications

In this section we use a sequence of meshes !h and we de�ne the numerical solution at some

�xed point t? 2 (0; T ) to the Cauchy problem (5.1)-(5.2) for the general ATM de�ned in (5.5)-(5.6)

with

h1 + h2 + � � �+ hN = t?:

The usual way of proving the convergence of the single step �-method is to show the zero-stability,

by using its �rst characteristic polynomial. The proof of it can be found in [19], [20]. However,

the proof is complex and needs several auxiliary statements.

In the sequel, we give an elementary proof of the convergence by using the following lemma.

Lemma 5.2 Let an > 0, bn � 0 for all n = 1; 2; : : : , and sn be such numbers that the inequalities

jsn j � an jsn � 1j+ bn ; n = 1; 2; : : : (5.11)

hold. Then the estimate

jsn j �

 
nY

l=1

al

!24js0j+
nX

j =1

bj

 
jY

k=1

1

ak

!35 ; n = 1; 2; : : : (5.12)

is valid.

Proof. By using induction, we can readily verify the statement. Indeed, for n = 1 in (5.12) is

clearly valid. Now, under the that (5.12) holds for n� 1, from (5.11) we have

jsn j �

 
nY

l=1

al

!24js0j+
n � 1X
j =1

bj

 
jY

k=1

1

ak

!35+ bn

=

 
nY

l=1

al

!24js0j+

0@ nX
j =1

bj

jY
k=1

1

ak

1A� bn

nY
k=1

1

ak

!35+ bn

=

 
nY

l=1

al

!24js0j+
nX

j =1

bj

 
jY

k=1

1

ak

!35� bn + bn

which yields the statement. �

With our notations the form of inequality (5.12) can be rewritten into the following simpler form:
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sn � js0j

 
nY

l=1

al

!
+

nX
j =1

bj

0@ nY
l= j +1

al

1A for all n: (5.13)

Remark 5.3 If an � a and bn � b for all n = 1; 2; : : : , then, according to (5.12), we have

jsn j � an js0j+ b
an � 1

a� 1
; n = 1; 2; : : : (5.14)

inequality (c.f. [21]).

Conclusion 5.4 If ak � 1, then
jY

k=1

1

ak
� 1

aj

holds which implies the inequality

jsn j �

 
nY

l=1

al

!24js0j+
nX

j =1

bj
1

aj

35 ; n = 1; 2; : : : (5.15)

Remark 5.5 If an � a � 1 and bn � b for all n = 1; 2; : : : , then (5.14) implies the inequality

(c.f.[21])

jsn j � an js0j+ nan � 1b; n = 0; 1; : : :

In the following, we consider the global error en = u(tn)� yn at the mesh-point t = tn . We get

the recursion in the form

en = en � 1 + hn 
( � )
n + hngn ; (5.16)

where  
( � )
n is de�ned in (5.7) and

gn = �n [f(tn ; u(tn))� f(tn ; yn)] + (1� �n) [f(tn � 1; u(tn � 1))� f(tn � 1; yn � 1)] : (5.17)

Hence, using the Lipschitz property (5.3) and the estimations (5.10) and (5.16), we get

jen j � jen � 1j+ h2
n jC(1)

n j+ h3
n jC(2)

n j+ hn�nLjen j+ hn(1� �n)Ljen � 1j (5.18)

for any n = 1; 2; : : : ; N . After re-arrangement of (5.18), we obtain
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jen j � 1 +
hnL

1� hn�nL
jen � 1j+

h2
n

1� hn�nL

�
jC(1)

n j+ hn jC(2)
n j
�
: (5.19)

Let us denote

an = 1 + �nhn where �n =
L

1� hn�nL
(5.20)

and

bn = �nh
2
n where �n =

jC(1)
n j+ hn jC(2)

n j
1� hn�nL

: (5.21)

Then, by choosing an and bn according to (5.20)-(5.21), and using the inequality 1 + x � exp(x)

for x � 0, Conclusion 5.4 implies the estimate

jen j �

 
nY

l=1

e� l h l

!
�

24je0j+
nX

j =1


j h
2
j

35 � e� max
∑n

l =1 h l

24je0j+ 
max

nX
j =1

h2
j

35 ; (5.22)

where


j =
�j

1 + �j hj
; �max = maxj �j ; 
max = maxj 
j : (5.23)

Let t? 2 (0; T ) �xed point, h := t?

n . Assuming (5.4) for all n = 1; 2; : : : we get

nX
j =1

hj � Ct?h: (5.24)

The next step is the estimation of �max and 
max . We have


max �
�max

1 + �min
� �max �

1
2maxn(2�n � 1)M2 + Ch2

3M3

1� Ch �maxn(�n)L
;

�max =
L

1� Ch �maxn�nL
: (5.25)

Hence, by the notation �max := maxn(�n), (5.23),(5.24) and (5.25) implies the relation

jen j � exp
�

L

1� Ch�max
t?
�

(je0j+ Cht?�max ) ; n = 1; 2; : : : : (5.26)
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Because e0 = 0, the relation (5.26) results in the estimate

jen j � exp
�

L

1� Ch�max
t?
�
Cht?�max : (5.27)

Theorem 5.6 When n tends to in�nity and (5.4) holds, then the numerical method (5.5)-(5.6)

is convergent at any �xed point t? 2 (0; T ) in �rst order, assuming that e0 = 0 or e0(h) = O(h)

is valid.

Proof. As a consequence of assumption h! 0, hence for the right side of (5.27) we have

lim
h! 0

exp

�
L

1� Ch�max
t?
�

= exp(Lt?)

and

lim
h! 0

�max =
#max

2
M2; where #max := maxn j2�n � 1j

therefore

jen j � exp(Lt?)
#max

2
M2 = Const � h (5.28)

which yields the �rst order convergence. �

Remark 5.7 Using the statement of Theorem 5.6 for the special case, i.e., to the pure explicit

and implicit Euler schemes when for anyn = 1; 2; : : : �n � 0 or �n � 1, respectively, andhn � h,

we re-obtain the classical result.

Consequence 5.8 In case of �n � 0:5 for hn � h for any n = 1; 2; : : : (trapezoidal formula)

the convergence order is equal to two, and the stability constant is equal to(2=3)CM3, since in

estimation (5.28) the value of#max is equal to zero.

As a conclusion we can say, that ATM can be used e�ectively on ODE-s. In the following

chapters we will apply ATM on PIDE systems similarly to the classical �-method described in

Section 4.2.





Chapter 6

Improvement of the discretization

algorithm

6.1 Combination of sequential splitting and alternant-� -method

After we have introduced the population-migration epidemic spread model in Chapter 3 and

the ATM in Chapter 5, our aim is to improve the �-method described in Chapter 4 by using the

combination of sequential splitting and ATM (called in the further SS-ATM).

Let us de�ne ( l )�n;i
j := �j (tn ; xi ) for j = 1; 2, where l denotes the solution of l-th sub-problem

in the sequential splitting algorithm and the time and spatial step sizes are denoted by � and h,

respectively. We will use the notations de�ned in (4.1) and (4.4).

Problem 1 (linear part)

Main equation

(1)�n;i
j � (1)�n � 1;i

j

�
= �n

�
(1)�n � 1;i

j Aj + Cj
h

2

�
(1)�n � 1;i

j +(1) �n � 1;i � 1
j

�
+(1) �n � 1;i

� j Bj + fn � 1;i
j

�
+

+ (1� �n)

�
(1)�n;i

j Aj + Cj �
h

2

�
(1)�n;i

j +(1) �n;i � 1
j

�
+(1) �n;i

� j Bj + fn;i
j

�
(6.1)

(i = 1; 2; : : : ; Nx ; n = 1; 2; : : : ; Nt + 1; �n 2 [0; 1])

Initial conditions
(1)�0;i

j = (1)�i
j; 0 (i = 1; 2; : : : ; Nx ) (6.2)

Boundary conditions

(1)�n;1
j � (1)�n;0

j

h
= Kn

j; 1;
(1)�n;N x

j � (1)�n;N x � 1
j

h
= Kn

j; 2 (n = 1; 2; : : : ; Nt + 1) (6.3)

35
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Problem 2 (nonlinear part)

Main equation

(2)�n;i
j

(2)�n � 1;i
j

�
=
h
�n

�
(2)�n � 1;i

j �(2) �n � 1;i
� j Dj

�
+ (1� �n)

�
(2)�n;i

j �
(2) �n;i

� j Dj

�i
(6.4)

(i = 1; 2; : : : ; Nx ; n = 1; 2; : : : ; Nt + 1; �n 2 [0; 1])

Initial conditions
(2)�0;i

j = (1)�1;i
j (i = 1; 2; : : : ; Nx ) (6.5)

Next we develop a test system to measure the accuracy of the SS-ATM de�ned above in (6.1)-

(6.5). Let us choose as exact solutions the following functions

�1(x; t) = et � sin(x); �2(x; t) = ex � cos(t) (6.6)

on the [0; �] space and [0; 1] time intervals, which yield the following form of system (4.3)

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

@�1

@t
= 0:01�1 � 0:01�2 + 0:002

Z �

0
�1dx+ 0:04�1�2 + f1(x; t)

@�2

@t
= �0:02�2 + 0:01�1 + 0:002

Z �

0
�2dx� 0:04�1�2 + f2(x; t)

�1(x; 0) = sin(x); �2(x; 0) = ex ; x 2 [0; �]

@�1

@x
= et ;

@�2

@x
= ex � cos(t); x = 0 or �; t 2 [0; 1]

(6.7)

next to the parameter setting

A1 = 0:01; B1 = �0:01; C1 = 0:002; D1 = 0:04

A2 = �0:02; B2 = 0:01; C2 = 0:0001; D2 = �0:04:

Substituting the exact solutions de�ned in (6.6) into the system (6.7), after some calculations we

can determine functions f1 and f2, as well, which provide us the following results

f1(x; t) = cos(t)ex (1� 4et � sin(x))

f2(x; t) = ex (2cos(t)� sin(t))� et � sin(x)(1� 4ex � cos(t))� 2cos(t)(e(2�)� 1):

(6.8)
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Figure 6.1: Exact and approximated solu-
tion of system (6.7) for �1 by using SS-ATM

at t = 0:5.

Figure 6.2: Exact and approximated solu-
tion of system (6.7) for �2 by using SS-ATM

at t = 0:5.

Using the SS-ATM algorithm de�ned in (6.1)-(6.5), we can implement the exact and the ap-

proximated results (see in Figure 6.1 and 6.2) and they absolute errors measured in the discrete

l2 norm (see in Figure 6.3).

Figure 6.3: Absolute error of system (6.7) for �1 and �2 by using SS-ATM at t = 0:5.

According to the �gures, we can conclude, that SS-ATM can apply e�ectively on the test system.

The question is only the di�erence between di�erent numerical schemes in sense of accuracy and

running time. In the next section we are going to answer this question by comparing the classical

explicit-; implicit-Euler method, ATM and SS-ATM.
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6.2 Comparison of numerical schemes

To establish the accuracy and running time of the approximation scheme de�ned in (6.1)-(6.5)

we test some other numerical model on the test system in (4.5). By these kind of models we

need to discretize according to the time and space variables, similarly to the ATM. As spatial dis-

cretization by the integral we will use the trapezoidal quadrature rule and by time discretization

algorithms, the following schemes have been used: Explicit-Euler method (EEM), Implicit-Euler

method (IEM), Alternant- � n method (ATM) and Sequential splitting with ATM (SS-ATM).

Table 6.1 summarizes the running times and average errors of the di�erent approximation

methods in space and time, where the error was measured in the discretel1 norm. The spatial

step size has been chosen in every case as 0:001 and the sequential splitting has only 1 micro-

scopical step, because the results already re
ect the e�ectiveness of operator splitting.

Time step size EEM IEM ATM SS-ATM
Running time (sec)

0.1 0.001471 0.002592 0.004605 0.002323
0.01 0.015628 0.025739 0.027065 0.024813
0.001 0.133629 0.255513 0.232288 0.241891
0.0001 1.433470 2.525491 2.248102 2.354832

Absolute average error
0.1 0.0926 0.0863 0.0903 0.0718
0.01 0.0103 0.0097 0.0101 0.0082
0.001 0.0021 0.0020 0.0021 0.0019
0.0001 0.00187967 0.00187961 0.00188135 0.00186959

Table 6.1: Comparison the running time between numerical schemes.

According to Table 6.1 one can see that EEM is the fastest approximation however it has the

largest average error (as it was expected). IEM resulted more accurate solution, but its running

time was almost double of the running time of EEM. On the other hand, the ATM can taken

as some kind of average of EEM and IEM because its error is between of them and also (by

very small time step sizes) its running time, i.e. the speed-up property of ATM can be applied

e�ectively. The main and most useful result is that the SS-ATM has the lowest average error in

absolute value, thus one can see that the operator splitting algorithms can be used e�ectively by

PIDEs, as well.

From this point we hypothesise that these results re
ect the e�ectiveness of SS-ATM applied on

the original population migration system de�ned in (3.8)-(3.11). Accept this assumption, in the

last chapter we are going to implement the approximated result of the continuous model de�ned

in (3.8)-(3.11), and we further assume, that the results are synchronised with the reality.



Chapter 7

Numerical test on the complex Ebola

model

7.1 Numerical approximation

In this chapter we focus on the results of the numerical approximation applied on the Ebola

epidemic spread model de�ned in (3.8)-(3.11). Firstly we describe the algorithm of the SS-ATM,

de�ned in (6.1)-(6.5), on the generalized epidemic model in (4.3) by using notations in (4.1), as

follows:

Problem 1 (linear part)

Main equation

(1) � n;i
j � (1) � n� 1;i

j

�
= � n

� �
Fj

�
(1) � j

�� n� 1;i
+

�
Gj

�
(1) ~� � j

�� n� 1;i
+ f n� 1;i

j

�
+

+ (1 � � n )
� �

Fj

�
(1) � j

�� n;i
+

�
Gj

�
(1) ~� � j

�� n;i
+ f n;i

j

�
(7.1)

(i = 1 ; 2; : : : ; Nx � 1; n = 1 ; 2; : : : ; N t ; � n 2 [0; 1])

Initial conditions
(1) � 0;i

j = (1) � i
j; 0 (i = 1 ; 2; : : : ; Nx � 1) (7.2)

Boundary conditions

(1) � n;1
j � (1) � n;0

j

h
= K n

j; 1;
(1) � n;N x

j � (1) � n;N x � 1
j

h
= K n

j; 2 (n = 1 ; 2; : : : ; N t ) (7.3)
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Problem 2 (nonlinear part)

Main equation

(2) � n;i
j � (2) � n� 1;i

j

�
= � nhH j

�
(2) ~�

�
;(2) ~� i n� 1;j + (1 � � n )hH j

�
(2) ~�

�
;(2) ~� i n;j (7.4)

(i = 1 ; 2; : : : ; Nx � 1; n = 1 ; 2; : : : ; N t ; � n 2 [0; 1])

Initial conditions
(2) � 0;i

j = (1) � 1;i
j (i = 1 ; 2; : : : ; Nx � 1) (7.5)

Let us apply now the following substitutions. The subscript by the operators denotes the sub-

groups, the functions � j are taken for set f S; E; I; C; R; Q; V g for j = 1 ; 2; : : : ; 7 respectively.

Furthermore ~� � j will be denoted by �S; �E; �I; �C; �R; �Q and �V for all j . With all this in mind we can

de�ne the operators of self dependency:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(FS(S)) ( x; t ) = ( � � (x; t ) � � S(x; t ) � ve(x) + � (x; t )) S(x; t ) +
Z



v(x; y)S(y; t)dy

(FE (E )) ( x; t ) = ( � � (x; t ) � � E (x; t ) � ve(x)) E (x; t ) +
Z



v(x; y)E (y; t)dy

(FI (I )) ( x; t ) = ( � " (x; t ) � � I (x; t ) � � (x; t ) � � I (x; t ) � ve(x)) I (x; t )+

+
Z



v(x; y)I (y; t)dy

(FC (C)) ( x; t ) = ( � � (x; t ) � � C (x; t ) � ve(x)) C(x; t ) +
Z



v(x; y)C(y; t)dy

(FR (R)) ( x; t ) = ( � � (x; t ) � � R (x; t ) � ve(x)) R(x; t ) +
Z



v(x; y)R(y; t)dy

(FQ(Q)) ( x; t ) = ( � ' (x; t ) � � Q(x; t ) � � Q(x; t ) � ve(x)) Q(x; t ) +
Z



v(x; y)Q(y; t)dy

(FR (R)) ( x; t ) = ( � � V (x; t ) � ve(x)) V (x; t ) +
Z



v(x; y)V (y; t)dy

(7.6)
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operators of dependency of other groups:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�
GS( �S)

�
(x; t ) = � (x; t )R(x; t ) + � (x; t ) (E (x; t ) + I (x; t ) + C(x; t )) +

+ � (R(x; t ) + Q(x; t ) + V (x; t ))

�
GE ( �E )

�
(x; t ) = 0

�
GI ( �I )

�
(x; t ) = � (x; t )E (x; t )

�
GC ( �C)

�
(x; t ) = " (x; t )I (x; t ) + ' (x; t )Q(x; t )

�
GR ( �R)

�
(x; t ) = � (x; t )C(x; t )

�
GQ( �Q)

�
(x; t ) = � (x; t )I (x; t )

�
GV ( �V )

�
(x; t ) = � (x; t )S(x; t )

(7.7)

and �nally the operators of nonlinear dependency:

8
>>>><

>>>>:

hHS(~� ); ~� i (x; t ) = �
�


 I (x; t )
N (x; t )

I (x; t ) +

 C (x; t )
N (x; t )

C(x; t )
�

S(x; t )

hHE (~� ); ~� i (x; t ) =
�


 I (x; t )
N (x; t )

I (x; t ) +

 C (x; t )
N (x; t )

C(x; t )
�

S(x; t )

(7.8)

and for the others the nonlinear operator is equal to 0.We mention at this point that our model

does not include any source function, thusf j are taken as zero for allj .

Using declarations in (7.6)-(7.8) and algorithm in (7.1)-(7.5) we can begin the numerical ap-

proximation of the model. However we still need to estimate the unknown parameters.

7.2 Parameter estimation and analysis of results

Our aim is to give a short introduction into the parameter estimations by PIDEs of epidemic

spread models. We would like to avoid the fully description of parameter estimation because that

would be out of the range of this thesis. Thus we mention the basic data, their references and

sources.

The West African Ebola virus epidemic (2013� 2016) was the most widespread outbreak of

Ebola virus disease (EVD) in historycausing major loss of life and socioeconomic disruption in
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the region, mainly in the countries of Guinea, Liberia, and Sierra Leone. The �rst cases were

recorded in Guinea in December 2013; later, the disease spread to neighboring Liberia and Sierra

Leone [22] with minor outbreaks occurring elsewhere. It has caused signi�cant mortality, with

the case fatality rate reported at slightly above 70%, while the rate among hospitalized patients

was 57� 59% [23].

The number of cases peaked in October 2014 and then began to decline gradually, following

the commitment of substantial international resources. As of 8 May 2016, the World Health

Organization (WHO) and respective governments reported a total of 28; 616 suspected cases

and 11; 310 deaths 39:5% [24], though the WHO believes that this substantially understates the

magnitude of the outbreak [25].

On 29 March 2016, the WHO terminated the Public Health Emergency of International Concern

status of the outbreak [26]. Subsequent 
are-ups occurred; the last was declared over on 9 June

2016, 42 days after the last case tested negative on 28 April 2016 in Monrovia [27].

The outbreak left about 17; 000 survivors of the disease, many of whom report post-recovery

symptoms termed post-Ebola syndrome, often severe enough to require medical care for months

or even years. Figure 7.1 shows well the distribution of infected individuals.

Figure 7.1: Distribution of infected individuals.

On Figure 7.2 are implemented the total cases agregated to timeline. In this thesis we focus on

the outbreak of Ebola in Guinea. Thus, on Figure 7.3 we can see this data speci�ed to Guinea

with the number of total deaths.
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Figure 7.2: Total infected cases agregated to timeline.

Figure 7.3: Total infected and total death cases in Guinea.

We assume now that all per-capita rates and initial conditions are constants in time and space.

The total initial population size of Guinea, i.e. N0 is supposed to be 10:628:972 according to [28].

According to Figure7.3, the initial number of infected individuals with clinical symptoms, i.e. I 0

is equal to 37:500. For the shake of better visibility we will normalize the parameters in further

according to the whole population size (N ). Other parameters are also estimated similarly, ac-

cording to the above mentioned which are contained by Tables in Appendix A.

Now we are able to approximate the system (3.9) with initial (3.8) and boundary conditions

(3.10)-(3.11) next to the parameter settings declared in Table A, based on the numerical approx-

imation scheme de�ned in (7.1)-(7.5) by using operators in (7.6)-(7.8).

For simplicity in this work we analyze the 1 dimensional system on the [0; L ] space and [0; T]

time intervals. Furthermore all of time and space dependent parameter functions supposed to be

used as constant functions. The used parameters are summarized in Tables in Appendix A.

We apply the ATM numerical scheme on the system and we implement the splitted solution

solved by sequential splitting. The examined time and space intervals are chosen as [0; 1] and

[0; 1]. Let's consider a mesh with micro time step size �� , macro time step size� and spatial step
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sizeh chosen as 0:01, 0:1 and 0:01, respectively. With all this in mind we implement the results

on Figure 7.4 where the di�erent colors represent di�erent locations (green, blue, red).

Figure 7.4: Solution functions of various groups and total population, where the di�erent colors
represent di�erent locations (green, blue, red)

The right-bottom part of Figure 7.4 shows that the number of the whole population decreases at

the beginning of analyzed time interval because of the epidemic and the emigration rate. Later

this number behaves invertible because the birth and immigration rate overtake the death rate.

We can obtain the same behaviour by susceptibles on the �rst subplot with faster manner. It

can be concluded that the population will not extinct by the used parameter settings. On the

one part this is because the initial population size was relatively high, on the other hand we

have been assumed respectable small number of infected individuals. Top-middle part of Figure

7.4 implements the numerical behaviour of sub-populations after infection. Function of infected

individuals shows a strongly decreasing behaviour because of the very small reinfection-rate (� )

and the really big mortality rate ( � ). The compartments of individuals immediately before (E),

after (C) infection and in quarantines (Q) are not surprising. At the very beginning of the disease

they are increasing however after the critical period the number of individuals inside these two

groups converges to zero such as the number of infected people. Size of group of recovered

and vaccinated individuals from epidemic shows a strongly increasing behaviour in contrast with

infected or susceptible people since the getting out rate, such as it was explained before, is small

and every individuals survived the virus. Obviously the increasing speed is high only at the

beginning of the epidemic.



Chapter 8

Conclusion and outlook

In this work we gave a short introduction for the mathematical modeling of Ebola epidemic

spread and we produced some new results with respect to the numerical approximations. The

main aim of this work was to develop an extended epidemic model of Ebola in form of partial-

integral-di�erential equations (PIDEs) by using time and space dependency, furthermore we have

developed the general PIDEs in continuous and in discretized form, as well.

Additionally, we determined that the sequential splitting algorithm based on the alternant- � n

scheme is e�ective to approximate the solution numerically, since it has the best running time

and lowest average error measured in discretel2 norm. The main conclusion is that the operator

splitting technique can be applied easily to extend the existing model by other in
uential factors

and sub-groups such as quarantines, vaccination or the population migration factor.

As further work we can extend the model by time-delayed infection rates or we can classify the

individuals by ages or sexual attitudes, which strongly a�ect the spread of the virus. As further

numerical analysis, the convergence of the numerical model, investigation of the properties and

solutions of di�erent operator splitting techniques or numerical schemes can be interesting and

could provide further informations, as well.

Finally, we can conclude that the accurate modelling of disease spread of Ebola and other

viruses are possible by using our generalized model, which can be used to give some preventative

suggestions to predict the virus and perhaps rescue thousands of people.
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Appendix A

Parameters

Parameters Meaning Normalized estimation
N0 Initial number of individuals 0 :4676
S0 Initial suspectibles 0:3676
E0 Initial latents 0 :1000
M 0 Other initial numbers 0
� Birth rate 0 :0548
� Natural death rates 0:0157

 I Infection rate by I 0:7000

 C Infection rate by C 0:5000
� Vaccination rate 0:00002
� Loss of immunity rate 0:0002
� Loss of latent period rate 0:95
" Loss of dangerous infection rate 0:75
� I Death rate of I caused by Ebola 0:75
� Q Death rate of Q caused by Ebola 0:8
� Quarantine rate 0:24
' Recovery rate from quarantine 0:45
� Recovery rate from C 0:9
v Migration rate 0 :25
ve Emigration rate 0:04
m Hollow point of epidemic 2:5
~s Flux constant of S 10
~e Flux constant of E 1
~i Flux constant of I 2
~c Flux constant of C 3
~r Flux constant of R 4
~q Flux constant of Q 5
~v Flux constant of V 1

Table A.1: Estimated parameters for numerical calculations
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