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The complexity of the Clar number problem and an
FPT algorithm

Erika R. Bérczi-Kovács? and Attila Bernáth??

Abstract

The Clar number of a (hydro)carbon molecule, introduced by Clar [E. Clar,
The aromatic sextet, (1972).], is the maximum number of mutually disjoint reso-
nant hexagons in the molecule. Calculating the Clar number can be formulated
as an optimization problem on 2-connected planar graphs. Namely, it is the
maximum number of mutually disjoint even faces a perfect matching can simul-
taneously alternate on. It was proved by Abeledo and Atkinson [H. G. Abeledo
and G. W. Atkinson, Unimodularity of the clar number problem, Linear algebra
and its applications 420 (2007), no. 2, 441–448] that the Clar number can be
computed in polynomial time if the plane graph has even faces only. We prove
that calculating the Clar number in general 2-connected plane graphs is NP-
hard. We also prove NP-hardness of the maximum independent set problem
for 2-connected plane graphs with odd faces only, which may be of independent
interest. Finally, we give an FPT algorithm that determines the Clar number of
a given 2-connected plane graph. The parameter of the algorithm is the length
of the shortest odd join in the planar dual graph. For fullerenes this is not yet
a polynomial algorithm, but for certain carbon nanotubes it gives an efficient
algorithm.

Keywords: Clar number, fullerene, complexity, planar graph, graph algorithm

1 Introduction

1.1 Previous work

Our research is motivated by problems in chemical graph theory. Some molecules, for
example polycyclic aromatic hydrocarbon (PAH) molecules, benzenoid hydrocarbon
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1.2 Problem Definition 2

molecules, or fullerene molecules can be represented as a 2-connected plane graph.
In this representation only carbon atoms are depicted, while hydrogen atoms are
omitted. Several of the chemical properties of these molecules (e.g. chemical stability)
are closely related to some parameters of the underlying graph. In this note we will be
concerned with a parameter called the Clar number, which we will define in Subsection
1.2. The Clar number was introduced by Clar in [3] as an indicator of stability of a
(hydro)carbon molecule. Since its definition, it was investigated for several molecule
classes.

A subclass of PAHs, the benzenoid PAHs have the special property that every
bounded face in their representing plane graph is a hexagon, in particular, every face
has an even number of nodes. One can see that such a 2-connected plane graph is also
bipartite. Hansen and Zheng formulated the Clar number for this graph class with
integer programming [6], later, applying this formulation Shalem and Abeledo proved
that this problem can be computed in polynomial time [11]. Abeledo and Atkinson
gave a combinatorial minmax characterization for the problem [2]. A combinatorial
algorithm was also given by Erdős, Frank and Kun [4].

Fullerenes are carbon molecules with a hollow cage-like structure. The first fullerene
molecule to be discovered, and the family’s namesake, buckminsterfullerene (C60), was
prepared in 1985 by Richard Smalley, Robert Curl, James Heath, Sean O’Brien, and
Harold Kroto at Rice University [7]. The graph representing a fullerene molecule con-
tains exactly 12 pentagon faces, and the rest of the faces are hexagons (the number of
hexagons can be arbitrarily large). Zhang Ye and Yunrui [14] proposed a method ap-
plying the Clar number, along with other parameters, for ordering fullerene molecules
according to their stability. For the Clar number of fullerenes Ye and Zhang gave
an upper bound of bn−12

6
c [13]. Later they characterized the fullerenes achieving this

bound [12]. M.Ghorbani, E.Naserpour presented exact solutions for certain nanotube
classes [5].

Our motivation was to determine the Clar number of fullerene molecules in poly-
nomial time. Note that former results for benzenoid molecules cannot be applied,
because the underlying graph of a fullerene is not bipartite. One of our main contri-
butions is to show that determining the Clar number of a general 2-connected plane
graph is NP-hard (see Section 2). Our second contribution is an algorithm that de-
termines the Clar number of a 2-connected plane graph, and has good running time,
provided that the odd faces are “not too far from each other”(see Section 3). More
precisely, our algorithm is fixed parameter tractable (FPT) where the parameter is
the length of the shortest odd join in the planar dual graph. In Section 3 we also ex-
plain that for a subclass of fullerenes called carbon nanotubes our algorithm efficiently
computes the Clar number.

1.2 Problem Definition

By a plane graph we mean a planar graph with a fixed planar embedding. Let
G = (V,E) denote a 2-connected plane graph which has a perfect matching. For a
perfect matching M of G let FM denote the set of those faces which alternate with
respect to M . Note that faces in FM are even. A pairwise vertex disjoint subset of
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FM is a Clar set with respect to M . A subset C of the faces is a Clar set if
there exists a perfect matching M for which C is a Clar set with respect to M . Note
that a set of pairwise vertex disjoint even faces is a Clar set if and only if deleting
all (the nodes of) these even faces the remaining graph still has a perfect matching.
The Clar number of G, denoted by Cl(G) is the maximum size of a Clar set. For
sake of simplicity we allow the unbounded face in a Clar set as well, but there are no
difficulties if we want to exclude it.

2 Hardness of the Clar number problem

Our first result is the following theorem.

Theorem 2.1. It is NP-hard to calculate the Clar number of a 2-connected planar
graph (given with a fixed planar embedding).

In this section we prove Theorem 2.1. Our reduction will be based on a special case
of the Independent Set Problem. Let us start with defining this problem.

Definition 2.2. Given a graph G = (V,E), a subset U ⊆ V is said to be indepen-
dent if there is no edge of G between two nodes of U . Let α(G) denote the maximum
size of an independent set in G.

Problem 1. Given a 2-connected planar cubic graph G and a positive integer K, does
G contain an independent set of size K?

Theorem 2.3 (Mohar, Theorem 4.1 in [8]). Problem 1 is NP-complete.

Problem 2. Given a 2-connected plane graph G with odd faces only, and a positive
integer K, does G contain an independent set of size K?

Lemma 2.4. Problem 2 is NP-hard.

Proof. According to Theorem 2.3, the independent set problem is also NP-complete
for 2-connected planar graphs. Let G = (V,E) denote an instance of this problem,
and let us fix a planar embedding of G. If G has an even face F , let GF denote the
planar graph obtained from G by the following operation. We add three vertices a, b, c
inside F and edges ab, bc, ca, au, bu, bv where u and v form an edge of F (see Figure
1).

Claim 2.5. α(GF ) = 1 + α(G).

Proof. First, for an independent set I of G, clearly I ∪ {c} is independent in GF and
hence α(GF ) ≥ 1 + α(G). Second, an independent set IF in GF can contain at most
one vertex from the set {a, b, c}. Since IF \ {a, b, c} is independent in G we get that
α(G) ≥ α(GF )− 1.
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Figure 1: Eliminating even faces.

Note that the number of even faces of GF is one less than that of G, and GF is also
2-connected. Let F denote the set of even faces of G. By consecutively applying the
above operation on every member of F we get another graph GF for which α(GF) =
α(G) + |F| and which has odd faces only. Hence we reduced Problem 1 to Problem 2,
which proves Lemma 2.4.

We are now ready to prove the hardness of the Clar number problem.

Proof of Theorem 2.1. We prove the theorem by reducing Problem 2 to the Clar num-
ber problem. Let G = (V,E) denote an instance of this problem. We construct graph
G′ the following way: for every edge of G we add two vertices to G′. Let uv ∈ E be an
edge of G and let F1 and F2 denote the faces that uv is incident to. We add vertices
xuv,F1 and xuv,F2 to G′ along with the edge xuv,F1xuv,F2 . For every pair of edges uv and
vw that have a common face F we add edge xuv,Fxvw,F to G′. It is easy to see that G′

is planar (see Figure 2). Informally, G′ is obtained from the planar dual graph G∗ of
G by “blowing a circuit” into each vertex of G∗. Every face of G′ either corresponds
to a face of G, or to a vertex of G, and since G has odd faces only, all the even faces
of G′ are the ones corresponding to vertices of G. Note that G′ trivially has a perfect
matching M consisting of the edges of the form xuv,F1xuv,F2 , for every uv ∈ E. Since
M is alternating on every even face of G′, corresponding to a vertex of G, for this
graph the Clar number equals the maximum size of a Clar set with respect to M .
The Clar sets of G′ and the independent sets of G have a one to one correspondence,
proving the theorem.

Corollary 2.6. It is also NP-hard to find a maximum cardinality Clar set with respect
to a fixed perfect matching.
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Figure 2: Reduction of the Independent Set Problem to the Clar number problem

3 An FPT algorithm for determining the Clar num-

ber

In this section we present an algorithm that determines the Clar number of a 2-
connected plane graph, and has a good running time, unless the odd faces are “far
from each other” in the planar representation. The idea is the following. Consider a
2-connected plane graph that has only 2 odd faces in its (fixed) planar representation,
and take a shortest path (in the planar dual graph) between these odd faces. An
optimal Clar set might use some of the even faces that lie on this shortest path. Our
algorithm takes an arbitrary subset of even faces along this shortest path and tries to
extend this subset into a Clar set. This is repeated for every possible subset of even
faces along the shortest path. We will generalize this for plane graphs having more
than 2 odd faces below. First we need a definition and a theorem.

Definition 3.1. Given a graph G = (V,E) and a subset T ⊆ V of even size, a T -join
is a subset of edges J ⊆ E so that the number of edges of J incident to a node v ∈ V
is odd if and only if v ∈ T . An odd-join of G is a T -join where T is the set of nodes
having odd degree in G.

Theorem 3.2 (See e.g. [10], Chapter 29 ). Given a graph G = (V,E), a subset
T ⊆ V of even size, and edge-lengths c : E → R+, a shortest T -join can be found in
polynomial time.

Given a 2-connected plane graph G = (V,E), let G∗ = (V ∗, E∗) denote its planar
dual. Let J∗ ⊆ E∗ be a shortest odd-join in G∗, where each edge of G∗ has length 1.
We give an algorithm determining the Clar number of G that runs in O(3|J

∗|p(|V |))
for some polynomial p.

Let J ⊆ E be the set of edges corresponding to J∗. Let Feven be the set of even
faces of G and let FJ ⊆ Feven be the set of even faces that have some edge of J in
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their boundary. Let G′ = (V + U,E − J + J ′) be the 2-connected bipartite plane
graph that is obtained from G by subdividing each edge of J with a new node, where
the set of these subdivision nodes is U and the set of subdivided edges is J ′. Observe
that |U | = |J | and |J ′| = 2|J |. Note that G′ is indeed bipartite, since every face is
even in its planar embedding.

Let K ′ be the node-edge incidence matrix of G′, and R′ be the node-face incidence
matrix of G′. Let R∗ be obtained from R′ by deleting the columns corresponding to
odd faces of G, and let K∗ be obtained from K ′ by deleting the columns corresponding
to J ′.

Our algorithm determines integer optimums of some LP formulations related to
matrices R∗, K∗. In order to show that an integer optimum exist we use the notion
unimodularity.

Definition 3.3. An m× n matrix A of full row rank is unimodular, if it is integer
and every submatrix of size m×m has determinant 0, 1 or −1.

Theorem 3.4 (See e.g. [9], Theorem 19.2). Let A be an integral matrix of full row
rank. Then the polyhedron {x|x ≥ 0;Ax = b} is integral for each integral vector b if
and only if A is unimodular.

Lemma 3.5. The matrix [R∗, K∗] is unimodular.

Proof. We apply a result from [1] on the unimodularity of a special matrix of bipartite
2-connected plane graphs.

Lemma 3.6 (Abeledo, Atkinson, Theorem 3.5 of [1]). Let (V,E, F ) denote a bipartite
2-connected plane graph with node, edge and face sets V , E and F , respectively. Let
K be the node-edge incidence matrix of (V,E) and let R be the node-face incidence
matrix of (V,E, F ). Then the matrix [KR] is unimodular.

Applying that the matrix [R′, K ′] is unimodular by Lemma 3.6, and deleting some
columns of a unimodular matrix also gives a unimodular matrix, we get Lemma
3.5.

After these preliminaries we present the pseudocode of our algorithm that calculates
the Clar number of a 2-connected plane graph. The basic idea of the algorithm is the
following. Determining the Clar number of G means that we want to choose pairwise
node disjoint even faces and edges, so that every node is contained in exactly one of
the chosen objects, and we want to maximize the number of faces chosen. Given a
feasible solution consisting of a set F1 of even faces of G and a set E1 of edges of G, let
F ′1 be the set of even faces of G′ corresponding to faces in F1, and similarly let E ′1 be
set of edges of G′ corresponding to edges in E1 (if an edge e ∈ J is in E1 then we add
both edges obtained from the subdivision of e into E ′1). Every subdivision node (that
is, node in U) is then incident to either 0, 1 or 2 objects in F ′1 ∪ E ′1. If someone tells
us these 0, 1, 2 values for every u ∈ U then we can reconstruct E1 and F1 using these
numbers, see Lemma 3.7 below. Therefore what we do is that we try every possible
vector in {0, 1, 2}U to find the one giving the best solution.

Algorithm Clar Number
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begin
INPUT: a 2-connected plane graph G = (V,E)
OUTPUT: the Clar number of G

1.1. Find a shortest odd-join in G∗, where each edge of G∗ has length 1 (G∗ is the
planar dual of G, and we will use more notations that were introduced above in this
section).

1.2. For every vector bU ∈ {0, 1, 2}U

1.3. Let b =

(
1V

bU

)
∈ {0, 1, 2}V+U .

1.4. For every e ∈ J ′
1.5. Let ze = 1 if e is incident with a node u ∈ U with bU(u) = 2, and let ze = 0

otherwise.
1.6. Take the integer optimum of the LP Problem (1)-(2) (see Lemma 3.7).

max{1y : y ∈ RFeven
+ , x ∈ RE−J+J ′

+ , (1)

R∗y +K ′x = b, xe = ze for every e ∈ J ′.} (2)

1.7. Output the best of the candidates obtained in Step 1.6.
end

Lemma 3.7. The LP problem (1)-(2) has an integer optimum.

Proof. After eliminating the variables xe for e ∈ J ′ we obtain an LP Problem of the
form max{1y : y ∈ RFeven

+ , x ∈ RE−J
+ , R∗y+K∗x = b}. The polyhedron in this problem

is integral by Lemma 3.5 and Theorem 3.4.

Lemma 3.8. There is a one to one correspondence between the Clar sets of G and
the integer solutions of LP problems formulated during the algorithm.

Proof. Let C ⊂ F be a Clar set of G with respect to perfect matching M , and let N
denote the edges of M not incident to faces in C. For a node v ∈ U define bU(v) = 1 if
v is on a face in C and let bU(v) = 2 if the edge in E subdivided by v is in N . Finally,
let bU(v) = 0 otherwise. Let χC ∈ RFeven

+ denote the characteristic vector of C and

let χN ∈ RE−J
+ denote the characteristic vector of N on E − J . Let x ∈ RE−J+J ′

+ be
the vector which is χN on E − J and z on J ′. Then vectors χC and x give an integer
solution of the LP problem defined by vector bU , moreover, the objective value of the
LP is |C|. This shows that every Clar set corresponds to an integer solution. For the
other direction of the theorem, given an integer solution for an LP problem of the
algorithm, one can construct Clar set and perfect matching M analogously.

Note that the LP problem (1)-(2) will not necessarily be feasible for every choice
of bU . We could be more careful in choosing only those vectors in Step 1.2 of the
algorithm that make the LP feasible. However the algorithm is easier described this
way. The running time is clearly O(3|J

∗|p(|V |)) for some polynomial p.
For certain fullerenes the method above gives an efficient algorithm. Carbon nan-

otubes are fullerenes with a cylindrical nanostructure, with two ’half-fullerene’ caps
on both ends. Six pentagonal faces are in both caps, forming three short pairs in
the odd-join. So for this class of fullerenes the parameter of our FPT algorithm is
relatively small, giving an efficient method to determine the Clar number.
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4 Open questions

We have proved the NP-hardness of the Clar number problem for a general 2-connected
plane graph G. The problem is motivated by the problem of determining the Clar
number of fullerene graphs, when G has exactly twelve pentagonal faces and every
other face is a hexagon. This problem is however left open, since our NP-hardness
reduction involves creating a lot of odd faces. An FPT algorithm with the number of
odd faces as parameter would yield a polynomial time algorithm for all fullerenes.

Another line of research would be to show that determining the Clar number is NP-
hard even for some restricted class of 2-connected plane graphs, too. If we were able
to specialize the Independent Set problem further to 3-regular plane graphs with odd
faces, then our techniques would yield that the Clar number is NP-hard for graphs
with only hexagonal even faces.
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