We characterize the class of infinite graphs $G$ for which there exists a $T$-join for any choice of an infinite $T \subseteq V(G)$. We also show that the following well-known fact remains true in the infinite case. If $G$ is connected and does not contain a $T$-join, then it will if we either remove an arbitrary vertex from $T$ or add any new vertex to $T$.
Bibtex entry:
@techreport{egres-16-07,
AUTHOR | = | {Jo{\'o}, Attila}, |
TITLE | = | {T-joins in infinite graphs}, |
NOTE | = | {{\tt www.cs.elte.hu/egres}}, |
INSTITUTION | = | {Egerv{\'a}ry Research Group, Budapest}, |
YEAR | = | {2016}, |
NUMBER | = | {TR-2016-07} |