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Tamás Szőnyi, doctor of the Hungarian Academy of Sciences

Department of Computer Science, Eötvös Loránd University
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Chapter 1

Introduction

In the center of this thesis graph polynomials and graph transformations stand, their role in

algebraic and extremal graph theory. In the first half of this thesis we give a survey about

the use of two special graph transformations on algebraically defined graph parameters and its

consequences in extremal algebraic graph theoretic problems. In the second half of this thesis we

study a purely extremal graph theoretic problem which turned out to be connected to algebraic

graph theory in many ways, even its by-product provided an elegant solution to a longstanding

open problem in algebraic graph theory.

The use of graph transformations in extremal graph theory has a long history. The appli-

cation of Zykov’s symmetrisation provided a very simple proof not only to Turán’s theorem,

but to several other problems. The situation is a bit different if one considers algebraic graph

theoretic problems. The use of graph transformations is not as widespread due to the fact that

it is not always easy to handle the change of the algebraic parameter at graph transformations.

In this thesis I survey two graph transformations which turned out to be extremely powerful in

several extremal algebraic graph theoretic problem.

The first transformation was defined by Alexander Kelmans and we will call it Kelmans

transformation. Kelmans used it in his research on network reliability. Only very recently it

turned out that this transformation can be applied to a wide range of problems. The Kel-

mans transformation increases the spectral radius of the adjacency matrix and this was a key

observation to attain a breakthrough in Eva Nosal’s problem of estimating

µ(G) + µ(G),

where µ(G) and µ(G) denote the spectral radius of a graph G and its complement. The success

of the Kelmans transformation in this problem was the motivation to study systematically this

transformation.

The second transformation is the generalized tree shift. Strongly motivated by the Kelmans

transformation I defined it to attack a problem of Vladimir Nikiforov on the number of closed

walks of trees. Nikiforov conjectured that for any fixed ℓ the star has the maximum number,
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the path has the minimum number, of closed walks of length ℓ among the trees on fixed number

of vertices. While the Kelmans transformation was applicable to prove the extremality of the

star, it failed to attack the extremality of the path. The generalized tree shift was defined so

as to overcome the weakness of the Kelmans transformation. The generalized tree shift did it

so successfully that it became much more powerful than I expected originally. The generalized

tree shift increases not only the number of closed walks of length ℓ, but the spectral radius of

the adjacency matrix and the Laplacian matrix, the coefficients of several graph polynomials

including the characteristic polynomial of the adjacency matrix and Laplacian matrix and the

independence polynomial.

In the second half of the thesis we study an extremal graph theoretic problem, the so-called

“density Turán problem”. The problem asks for the critical edge density which ensures that a

graph appears as a subgraph in its blown-up graph. At first sight the problem has no connection

with algebraic graph theory. Only when one starts to study the case of trees, it turns out that

the critical edge density can be expressed in terms of the spectral radius of the adjacency matrix

of the tree. For a general graph G, this connection is more involved, the critical edge density

is related to the spectral radius of the so-called monotone-path tree of the graph G. This

relationship lead to the construction of integral trees, trees whose spectrum of the adjacency

matrix entirely consists of integers. More precisely, it turned out that among the monotone-path

trees of complete bipartite graphs one can easily find integral trees of arbitrarily large diameters.

The existence of such trees was a longstanding open problem in algebraic graph theory.

Notation and basic definitions

We will follow the usual notation: G is a simple graph, V (G) is the set of its vertices, E(G) is

the set of its edges. In general, |V (G)| = n and |E(G)| = e(G) = m. We will use the notation

N(x) for the set of the neighbors of the vertex x, |N(vi)| = deg(vi) = di denote the degree of

the vertex vi. We will also use the notation N [v] for the closed neighborhood N(v) ∪ {v}. The

complement of the graph G will be denoted by G.

Special graphs. Kn will denote the complete graph on n vertices, meanwhile Kn,m denotes

the complete bipartite graph with color classes of size n and m. Let Pn and Sn denote the

path and the star on n vertices, respectively. We also use the notation xPy for the path with

endvertices x and y. Cn denotes the cycle on n vertices.

Special sets. I denotes the set of independent sets. M denotes the set of matchings

(independent edges), Mr denotes the set of matchings of size r. Let P(S) denote the set of

partitions of the set S, Pk(S) denotes the set of partitions of the set S into exactly k sets. If

the set S is clear from the context then we simply write Pk.

Special graph transformations. For S ⊂ V (G) the graph G − S denotes the subgraph
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of G induced by the vertex set V (G)\S. If S = {v} then we will use the notation G − v and

G − {v} as well. If e ∈ E(G) then G − e denotes the graph with vertex set V (G) and edge

set E(G)\{e}. We also use the notation G/e for the graph obtained from G by contracting the

edge e; clearly, the resulting graph is a multigraph.

Let M1 and M2 be two graphs with distinguished vertices u1, u2 of M1 and M2, respectively.

Let M1 : M2 be the graph obtained from M1,M2 by identifying the vertices of u1 and u2. So

|V (M1 : M2)| = |V (M1)| + |V (M2)| − 1 and E(M1 : M2) = E(M1) ∪ E(M2). Note that this

operation depends on the vertices u1, u2, but in general, we do not indicate it in the notation.

Sometimes to avoid confusion we use the notation (M1|u1) : (M2|u2).

Matrices and polynomials of graphs. The matrix A(G) will denote the adjacency matrix

of the graph G, i.e., A(G)ij is the number of edges going between the vertices vi and vj. Since

A(G) is symmetric, its eigenvalues are real and we will denote them by µ1 ≥ µ2 ≥ · · · ≥ µn. We

will also use the notation µ(G) for the largest eigenvalue and we will call it the spectral radius

of the graph G. The characteristic polynomial of the adjacency matrix will be denoted by

φ(G, x) = det(xI − A(G)) =
n∏

i=1

(x − µi).

We will simply call it the adjacency polynomial.

The Laplacian matrix of G is L(G) = D(G) − A(G) where D(G) is the diagonal matrix

for which D(G)ii = di, the degree of the vertex vi. The matrix L(G) is symmetric, positive

semidefinite, so its eigenvalues are real and non-negative, the smallest one is 0; we will denote

them by λ1 ≥ λ2 ≥ . . . λn−1 ≥ λn = 0. We will also use the notation λn−1(G) = a(G) for

the so-called algebraic connectivity of the graph G. We introduce the notation θ(G) for the

Laplacian spectral radius λ1(G). The characteristic polynomial of the Laplacian matrix will be

denoted by

L(G, x) = det(xI − L(G)) =
n∏

i=1

(x − λi).

We will simply call it the Laplacian polynomial.

We mention here that τ(G) will denote the number of spanning trees of the graph G.

Let mr(G) denote the number of set of independent edges of size r (i.e., the r-matchings) in

the graph G. We define the matching polynomial of G as

M(G, x) =
∑

r=0

(−1)rmr(G)xn−2r.

The roots of this polynomial are real, and we will denote the largest root by t(G).

Let ik(G) denotes the number of independent sets of size k. The independence polynomial

of the graph G is defined as

I(G, x) =
n∑

k=0

(−1)kik(G)xk.
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Let β(G) denote the smallest real root of I(G, x); it exists and it is positive because of the

alternating sign of the coefficients of the polynomial.

Let ch(G, λ) be the chromatic polynomial of G; so for a positive integer λ the value ch(G, λ)

is the number of ways that G can be well-colored with λ colors. It is indeed a polynomial in λ

and it can be written in the form

ch(G, x) =
n∑

k=1

(−1)n−kck(G)xk,

where ck(G) ≥ 0.

If the polynomial P (G, x) has the form

P (G, x) =
n∑

k=0

(−1)n−ksk(G)xk,

where sk(G) ≥ 0, then P̂ (G, x) denote the polynomial

P̂ (G, x) = (−1)nP (G,−x) =
n∑

k=0

sk(G)xk.

For polynomials P1 and P2 we will write P1(x) ≫ P2(x) if they have the same degree and

the absolute value of the coefficient of xk in P1(x) is at least as large as the absolute value of

the coefficient of xk in P2(x) for all 0 ≤ k ≤ n.

How to read this thesis?

In this section I would like to call attention to the Appendix which can be found at the end

of this thesis. It contains the required background. I propose to take a look at the statements

of the Appendix without reading the proofs before one starts to read this thesis. Whenever

I invoke a result from the Appendix, I copy the required statement into the text (sometimes

with a slight modification in order to make it more clear how we wish to use it in the present

situation). I hope this way one can read this thesis more easily.
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Chapter 2

Applications of the Kelmans

transformation

In [43] Kelmans studied the following problem. Let Rk
q (G) be the probability that if we remove

the edges of the graph G with probability q, independently of each other, then the obtained

random graph has at most k components. He obtained many results on extremal values of

the parameter Rk
q (.) and on comparing graphs according to this parameter. One of his results

was that a certain transformation increases this probability for every q. The study of this

transformation (or more precisely its inverse), which we will call Kelmans transformation, will

be the main topic of this chapter.

Definition 2.0.1. Let u, v be two vertices of the graph G, we obtain the Kelmans transformation

of G as follows: we erase all edges between v and N(v)\(N(u)∪{u}) and add all edges between

u and N(v)\(N(u) ∪ {u}). Let us call u and v the beneficiary and the co-beneficiary of the

transformation, respectively. The obtained graph has the same number of edges as G; in general

we will denote it by G′ without referring to the vertices u and v.

u v u v

G G’

Figure 2.1: The Kelmans transformation.

The original application of the Kelmans transformation was the following (see Theorem 3.2

of [43]). We note that we use our notation.
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Theorem 2.0.2. [43] Let G be a graph and G′ be a graph obtained from G by a Kelmans

transformation. Then Rk
q (G) ≥ Rk

q (G
′) for every q ∈ (0, 1).

Satyanarayana, Schoppmann and Suffel [59] rediscovered Theorem 2.0.2, they called the

inverse of the Kelmans transformation “swing surgery”. They also proved the following theorem

which we will also use and prove.

Theorem 2.7.3. [59] Let G be a graph and G′ be a graph obtained from G by a Kelmans

transformation. Let τ(G) and τ(G′) be the number of spanning trees of the graph G and G′,

respectively. Then τ(G′) ≤ τ(G).

Brown, Colbourn and Devitt [10] studied the Kelmans transformation further in the context

of network reliability. They also extended it to multigraphs. We will primarily concern with

simple graphs, but we show that the Kelmans transformation can be applied efficiently in a

much wider range of problems.

⋆ ⋆ ⋆

We end this introductory part by some simple observations which are crucial in many ap-

plications.

Remark 2.0.3. The {u, v}-independence and the Nordhaus-Gaddum property of the Kelmans

transformation. The key observation is that up to isomorphism G′ is independent of u or v being

the beneficiary or the co-beneficiary if we apply the transformation to u and v. Indeed, in G′ one

of u or v will be adjacent to NG(u) ∪ NG(v), the other will be adjacent to NG(u) ∩ NG(v) (and

if the two vertices are adjacent in G then they will remain adjacent, too). This observation also

implies that the Kelmans transformation is also a Kelmans transformation to the complement

of the graph G with the change of the role of u and v.

This means that whenever we prove that the Kelmans transformation increases some pa-

rameter p(G), i.e., p(G′) ≥ p(G) then we immediately obtain that p(G′) ≥ p(G) as well. This

observation will be particularly fruitful in those problems where one considers a graph and its

complement together like in Nosal’s problem.

2.1 Threshold graphs of the Kelmans transformation

Now we determine the threshold graphs of this transformation. Let us say that u dominates v

if N(v)\{u} ⊆ N(u)\{v}. Clearly, if we apply the Kelmans transformation to a graph G and

u and v such that u is the beneficiary then u will dominate v in G′. If neither u dominates

v, nor v dominates u we say that u and v are incomparable; in this case we call the Kelmans

transformation applied to u and v proper.
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Theorem 2.1.1. (a) By the application of a sequence of Kelmans transformation one can

always transform an arbitrary graph G to a graph Gtr in which the vertices can be ordered so

that whenever i < j then vi dominates vj.

(b) Furthermore, one can assume that Gtr has exactly the same number of components as

G. (Note that all but one component of a threshold graph Gtr are isolated vertices.)

Proof. (a) Let d1(G) ≥ d2(G) ≥ · · · ≥ dn(G) be the degree sequence of the graph G. One can

define a lexicographic ordering: let us say that G1 ≻ G2 if for some k we have dk(G1) > dk(G2)

and di(G1) = di(G2) for 1 ≤ i ≤ k − 1. Those graphs which have the same degree sequence

cannot be distinguished by this ordering, but this will not be a problem for us.

Now let us choose the graph G∗ which can be obtained by some application of Kelmans

transformation from G and in the lexicographic ordering is one of the best among these graphs.

We show that this graph has the desired property. Indeed, if degG∗(vi) ≥ degG∗(vj), but vi does

not dominate vj then one can apply a Kelmans transformation to G∗ and vi and vj, where vi is

the beneficiary; then in the obtained graph the degree of vi is strictly greater than deg(vi), thus

the obtained graph is better in the lexicographic ordering than G∗ contradicting the choice of

G∗.

(b) Let H1, H2, . . . , Hk be the connected components of G and let us choose vertices ui ∈
V (Hi). Now let us apply a Kelmans transformation to u1 and ui (2 ≤ i ≤ k) such that u1 is the

beneficiary in each case. Then the resulting graph has one giant component and k − 1 isolated

vertices, namely u2, . . . uk. Thus it is enough to prove the statement if G is connected. We will

slightly modify the proof of part (a).

First of all, let us observe that if we obtained G′ by a Kelmans transformation applied to

the connected graph G and vertices u and v such that u was the beneficiary, then G′ − {v}
is necessarily connected; indeed, if there was a walk between x1, x2 ∈ V (G) − {v} in G then

replacing v by u everywhere in the walk (or simply erasing v if u was one of its neighbors in the

walk) then we would get a proper walk of G′ between x1 and x2 in G′ − {v}. Hence the only

possible way that G′ is not connected is that v is an isolated vertex of G′. This situation occurs

if and only if u and v were not adjacent and their neighborhoods were disjoint in G.

Let us choose two incomparable elements of G closest to each other among incomparable

pairs of vertices. We claim that the distance between these two vertices is at most two. Indeed,

if u and v are two vertices of G and u0u1 . . . uk (u = u0, v = uk) is the shortest path between

them and k ≥ 3, then u1 and u2 are incomparable: u2 cannot be adjacent to u0 and u1 cannot

be adjacent to u3 because otherwise we obtain a shorter path between u and v. So the distance

of the closest pair of incomparable vertices is at most two, i.e., they are adjacent or they have

a common neighbor. Applying the Kelmans transformation to these elements will result in a

connected graph.

Now we can proceed as in the proof of part (a). We apply Kelmans transformations always
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to the closest pairs of incomparable vertices and let G∗ be the maximal graph with respect to

the lexicographic ordering among the graphs which can be obtained this way. Then G∗ must

have the desired structure.

Figure 2.2: A threshold graph of the Kelmans transformation.

Theorem 2.1.2. A graph G is the threshold graph of the Kelmans transformation if and only

if it can be obtained from the empty graph by the following steps: adding some isolated vertices

to the graph or complementing the graph.

Proof. We prove the statement by induction on the number of vertices. Let G be a threshold

graph of G on n vertices. If n = 1 or 2 the claim is trivial. If vn is an isolated vertex then by

induction we can build up the graph G − vn since it is a threshold graph; then we take vn to

obtain G. If vn is not an isolated vertex then v1 must be adjacent to each vertex of G. Let

us consider G, this is also a threshold graph of the Kelmans transformation with the reversed

order of the vertices and in G the vertex v1 is an isolated vertex. Hence by induction we can

build up G and so the graph G.

The other direction of the statement is even more trivial. If we take an isolated vertex to

the graph we put it to the end of the order of the vertices. If we take the complement of the

graph we reverse the order of the vertices.

Remark 2.1.3. Note that the graphs described in the previous theorem are called “threshold

graphs” in the literature. Hence the threshold graphs of the Kelmans transformation are exactly

the threshold graphs. (It seems to me that this statement is nontrivial in the sense that the

threshold graphs are called threshold graphs not because of the Kelmans transformation.) From

now on we simply refer to these graphs as threshold graphs.

Remark 2.1.4. These graphs, or more precisely their adjacency matrices also appear in the

article of Brualdi and Hoffman [11]. Rowlinson called these matrices stepwise matrices [58].
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2.2 Spectral radius

Theorem 2.2.1. Let G be a graph and let G′ be a graph obtained from G by some Kelmans

transformation. Then

µ(G′) ≥ µ(G).

Proof. Let x be the non-negative eigenvector of unit length belonging to µ(G) and let AG and

AG′ be the corresponding adjacency matrices. Assume that xu ≥ xv and choose u to be the

beneficiary of the Kelmans transformation. Since the exact role of u and v is not important in

the Kelmans transformation, this choice does not affect the resulting graph G′.

Then

µ(AG′) = max
||y||=1

yT AG′y ≥ xT AG′x =

= xT AGx + 2(xu − xv)
∑

w∈N(u)\(N(v)∪{v})

xw ≥ µ(AG)

Hence µ(G′) ≥ µ(G).

2.3 The matching polynomial

In this section we study the matching polynomials of graphs. For fundamental results on

matching polynomials see [30, 31, 41].

Recall that we define the matching polynomial as follows. Let mr(G) denote the number of

r independent edges (i.e., r-matchings) in the graph G. Then the matching polynomial of G is

M(G, x) =
∑

r=0

(−1)rmr(G)xn−2r.

The main theorem of this section is the following.

Theorem 2.3.1. Assume that G′ is a graph obtained from G by some Kelmans transformation,

then

M(G, x) ≫ M(G′, x).

In other words, this means that mr(G) ≥ mr(G
′) for 1 ≤ r ≤ n/2. In particular, the Kelmans

transformation decreases the maximum number of independent edges.

Remark 2.3.2. I invite the reader to prove this theorem on their own; although I give this

proof of the theorem here, it takes much longer to read it than to prove it by himself or herself.

Proof. We need to prove that for every r the Kelmans transformation decreases the number of

r-matchings. Assume that we applied the Kelmans transformation to G such that u was the

beneficiary and v was the co-beneficiary. Furthermore, let Mr(G) and Mr(G
′) denote the set of

r-matchings in G and G′, respectively. We will give an injective map from Mr(G
′) to Mr(G).
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In those cases where all edges of the r-matching of G′ are also edges in G we simply take

the identity map.

Next consider those cases where v is not covered by the matching, but for some w ∈
NG(v)\NG(u) we have uw in the r-matching. Map this r-matching to the r-matching obtained

by exchanging uw to vw in the r-matching, but otherwise we do not change the other edges of

the matching. Clearly, the image will be an r-matching of G and since vw /∈ E(G′) this is not

in the image of the previous case.

Finally, consider those cases where both u and v are covered in the r-matching of G′ and

the r-matching does not belong to the first case. In this case there exist a w1 ∈ NG(v)\NG(u)

and a w2 ∈ NG(v) ∩ NG(u) such that uw1 and vw2 are in the r-matching of G′. Let the image

of this r-matching be defined as follows. We exchange uw1 and vw2 to uw2 and vw1 in G, but

otherwise we leave the other r − 2 edges of the r-matching. Clearly we get an r-matching of G

and the image of this r-matching is not in the image of the previous cases, because both u and

v are covered (not as in the second case) and vw1 ∈ E(G) is in the r-matching (not as in the

first case).

Hence we have given an injective map from Mr(G
′) to Mr(G) proving that mr(G

′) ≤
mr(G).

We mentioned that the Kelmans transformation is also a Kelmans transformation of the

complement of the graph. As an example one can prove the following (very easy) result on

maximal matchings. We leave the details to the Reader.

Corollary 2.3.3. Let G be a graph on n vertices. Then G or G contains
⌊

n
3

⌋
independent edges.

Remark 2.3.4. The statement is best possible as it is shown by the clique of size 2n
3

and

additional n
3

isolated vertices. Corollary 2.3.3 is well-known, in fact, it is a motivating result of

several colored matching problem, see e.g. [22].

2.3.1 The largest root of the matching polynomial

It is a well-known theorem of Heilmann and Lieb [41] that all the roots of the matching poly-

nomial are real; so it is meaningful to speak about its largest root. In this section we will show

that the Kelmans transformation increases the largest root of the matching polynomial (see

Theorem 2.3.5). To do this we need some preparation; this is done in the Appendix, here we

quote the relevant definition and results for the convenience.

Definition A.1.16. Let t(G) be the largest root of the matching polynomial M(G, x). Fur-

thermore, let G1 ≻ G2 if for all x ≥ t(G1) we have M(G2, x) ≥ M(G1, x).

Statement A.1.17. The relation ≻ is transitive and if G1 ≻ G2 then t(G1) ≥ t(G2).
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We will use the following two facts about the matching polynomial. The first one is the

well-known recursion formula for the matching polynomials. The second fact is a result of D.

Fisher and J. Ryan [28], it was a corollary of their theorem on the dependence polynomials; a

simple proof can be found in the Appendix.

Fact 1. (Statement A.1.18, [30, 31, 41]) Let e = uv ∈ E(G). Then we have the following

recursion formula for matching polynomials

M(G, x) = M(G − e, x) − M(G\{u, v}, x).

Fact 2. (Statement A.1.15, [28]) If G2 is a subgraph of G1 then t(G1) ≥ t(G2).

We note that we will use the following slight extension of Fact 2 when the subgraph G2 has

the same vertex set as the graph G1.

Statement A.1.19. If G2 is a spanning subgraph of G1 then G1 ≻ G2.

Theorem 2.3.5. Assume that G′ is a graph obtained from G by some Kelmans transformation,

then G′ ≻ G. In particular, t(G′) ≥ t(G).

Proof. Let u, v be the two vertices of the graph G for which we apply the Kelmans transformation

such that u is the beneficiary. We will prove that G′ ≻ G; according to Statement A.1.17 this

implies that t(G′) ≥ t(G). We will prove this claim by induction on the number of edges of G.

Let us choose a vertex w different from v such that uw ∈ E(G). If such a w does not exist

then G′ is isomorphic to G and the claim is trivial. Thus we can assume that such a w exists.

Let h = (u,w). Now we can write up the identities of Fact 1:

M(G, x) = M(G − h, x) − M(G − {u,w}, x)

and

M(G′, x) = M(G′ − h, x) − M(G′ − {u,w}, x).

Here G′ − h can be obtained from G − h by some Kelmans transformation and these graphs

have fewer edges than G; so by induction we have G′ − h ≻ G − h, i.e.,

M(G − h, x) ≥ M(G′ − h, x)

for all x ≥ t(G′ − h). On the other hand, G′ − {u,w} is a spanning subgraph of G − {u,w},
thus we have G − {u,w} ≻ G′ − {u,w} by Statement A.1.19. In other words,

M(G′ − {u,w}, x) ≥ M(G − {u,w}, x)
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for all x ≥ t(G − {u,w}). Altogether we get that

M(G, x) = M(G − h, x) − M(G − {u,w}, x) ≥ M(G′ − h, x) − M(G′ − {u,w}, x) = M(G′, x)

for all x ≥ max(t(G′ − h), t(G − {u,w})). Note that t(G′) ≥ max(t(G′ − h), t(G − {u,w})) as

both graphs are subgraphs of G (so we can use Fact 2). In the latter case we embed the graph

G − {u,w} into G′ such that v goes to u in the embedding. Thus

M(G, x) ≥ M(G′, x)

for all x ≥ t(G′).

Hence G′ ≻ G and we have proved the theorem.

2.4 The independence polynomial

In this section we prove that the Kelmans transformation decreases the smallest root of the

independence polynomial. D. Fisher and J. Ryan [28] proved that the (in)dependence polyno-

mial always has a real root having the smallest absolute value among the roots. It will be more

convenient to work with the independence polynomial of the graph G, i.e., with the dependence

polynomial of G.

Recall that we define the independence polynomial as

I(G, x) =
n∑

k=0

(−1)kik(G)xk,

where ik(G) denotes the number of independent sets of size k. Let β(G) denote the smallest

real root of I(G, x); it is positive by the alternating sign of the coefficients of the polynomial.

Remark 2.4.1. Some authors call the polynomial I(G,−x) the independence polynomial; since

the transformation between the two forms is trivial it will not cause any confusion to work with

this definition.

The graph parameter β(G) is examined in various papers. The fundamental result on β(G),

due to D. Fisher and J. Ryan [28], is the following: if G1 is a subgraph of G2 then β(G1) ≥ β(G2).

For details, see the Appendix.

We will use the following recursion formulas of the independence polynomials subsequently.

Fact 1. (Statement A.1.4 and Remark A.1.5, [44]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − v, x) − xI(G − N [v], x),
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where v is an arbitrary vertex of the graph G.

Fact 2. (Statement A.1.4 and Remark A.1.5, [44]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − e, x) − x2I(G − N [v] − N [u], x),

where e = (u, v) is an arbitrary edge of the graph G.

We are going to prove our result in an analogous way that we have seen at the matching

polynomials.

Definition A.1.6. Let G1 ≻ G2 if I(G2, x) ≥ I(G1, x) on the interval [0, β(G1)].

This definition seems to be unnatural, because of the “reversed” inequality, but one can

prove that if G2 is a subgraph of G1 then G1 ≻ G2 (see Statement A.1.10). Thus in the light

of the following statement this claim implies Fisher and Ryan’s result (see Remark 2.4.1). For

details, see the Appendix.

Statement A.1.7. The relation ≻ is transitive on the set of graphs and if G1 ≻ G2 then

β(G1) ≤ β(G2).

Statement A.1.10. If G2 is a subgraph of G1 then G1 ≻ G2.

The main result of this section is the following

Theorem 2.4.2. The Kelmans transformation decreases the smallest root of the independence

polynomial. More precisely, assume that G′ is a graph obtained from G by some Kelmans

transformation, then G′ ≻ G and so β(G′) ≤ β(G).

Proof. We prove the statement by induction on the number of vertices. The claim is true for

small graphs. Let u be the beneficiary at the Kelmans transformation, v be the co-beneficiary.

We can assume that NG(u)\NG(v) is not empty, otherwise G′ and G are isomorphic, so let

w ∈ NG(u)\NG(v). Now let us use the recursion formula of Fact 1.

I(G, x) = I(G − w, x) − xI(G − NG[w], x)

and

I(G′, x) = I(G′ − w, x) − xI(G′ − NG′ [w], x).

Observe that G′ − w can be obtained from G − w by some Kelmans transformation and so by

the induction we have

I(G − w, x) ≥ I(G′ − w, x)
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on the interval [0, β(G′−w)]. On the other hand, G′−NG′ [w] is a subgraph of G−NG[w], thus

by Statement A.1.10 we have

I(G′ − NG′ [w], x) ≥ I(G − NG[w], x)

on the interval [0, β(G − NG[w])]. Putting together these two inequalities we get that

I(G, x) ≥ I(G′, x)

on the interval [0, min(β(G′ − w), β(G − NG[w])]. Note that G′ − w and G − NG[w] are both

subgraphs of G′; in the latter case v goes to u at the injective homomorphism from V (G−NG[w])

to V (G′). Thus we have β(G′) ≤ min(β(G′ −w), β(G−NG[w])). This proves that G′ ≻ G.

Remark 2.4.3. Theorem 2.4.2 does not imply Theorem 2.3.5 since the Kelmans transformation

on a graph G does not induce a Kelmans transformation on the line graph.

2.4.1 The number of independent sets

Theorem 2.4.4. The Kelmans transformation increases the number of independent sets of size

r and the number of cliques of size r, i.e., assume that G′ is a graph obtained from G by some

Kelmans transformation, then ir(G) ≤ ir(G
′) and ir(G) ≤ ir(G′) for all r.

Disclaimer: it is easier to prove this theorem on their own than to read the following proof.

Proof. Since the Kelmans transformation of the graph G is also a Kelmans transformation of

its complement, it is enough to prove the statement concerning the number of cliques of size k.

Let Clk(G) and Clk(G
′) be the set of cliques of size k in G and G′, respectively. We will give an

injective map ϕ from Clk(G) to Clk(G
′). This way we prove that |Clk(G)| ≤ |Clk(G

′)|.
Let S ∈ Clk(G). If S ∈ Clk(G

′) then we simply define ϕ to be the identity map. If

S /∈ Clk(G
′) then v ∈ V (S) and there exists some w ∈ NG(v)\NG(u) for which w ∈ V (S) as

well. This implies that u /∈ V (S). In this case let ϕ(S) be the clique of G′ induced on the set

(S − v) ∪ {u}. This is indeed a clique of G′ and it cannot be the clique of G so it is not the

image of any other clique of G. Hence ϕ is injective.

2.5 The chromatic polynomial

In this section we prove a coefficient majorization result for the chromatic polynomial, see

Theorem 2.5.3 below.

Recall that we define the chromatic polynomial ch(G, λ) of the graph G as follows [4, 56]:

for a positive integer λ the value ch(G, λ) is the number of ways that G can be well-colored with
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λ colors. It is indeed a polynomial in λ:

ch(G, λ) =
n∑

k=1

(−1)n−kck(G)λk.

The coefficients of the chromatic polynomial have the following nice interpretation [4].

Theorem 2.5.1. Let G be a graph on n vertices and edge set E(G) = {e1, e2, . . . , em}. Call a

subset of E(G) a broken cycle if it is obtained from the edge set of a cycle by deleting the edge

of highest index. Then the chromatic polynomial of G is

ch(G, λ) = λn − cn−1λ
n−1 + cn−2λ

n−2 − · · · + (−1)n−1c1λ,

where ci is the number of n − i-subsets of E(G) containing no broken cycles.

Remark 2.5.2. In fact, we will only need that the coefficients of the chromatic polynomial have

alternating sign. This can easily be deduced from the recursion formula of Statement 2.5.4, too.

Theorem 2.5.3. The Kelmans transformation decreases the coefficients of the chromatic poly-

nomial in absolute value, i.e., assume that G′ is a graph obtained from G by some Kelmans

transformation, then

ch(G, λ) ≫ ch(G′, λ).

In other words, ck(G) ≥ ck(G
′) for k = 1, . . . , n − 1.

To prove this theorem we need some preparation.

Statement 2.5.4. [4, 56] Let e ∈ E(G) then

ch(G, λ) = ch(G − e, λ) − ch(G/e, λ).

Lemma 2.5.5. If G1 is a spanning subgraph of G then

ch(G, λ) ≫ ch(G1, λ).

Proof. It is enough to prove the claim for G1 = G − e for which the statement is trivial by

Statement 2.5.4 and Theorem 2.5.1.

Now we are ready to prove Theorem 2.5.3.

Proof. Let us introduce the notation

ĉh(G, λ) = (−1)|V (G)|ch(G,−λ).

Then ĉh(G, λ) =
∑n

k=1 ck(G)λk has only non-negative coefficients. Clearly, one can rewrite

Statement 2.5.4 as

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ).
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We need to prove that ĉh(G, λ) ≫ ĉh(G′, λ).

We prove this statement by induction on the sum of the number of edges and vertices of G.

Assume that G′ is obtained from G by some Kelmans transformation applied to the vertices u

and v, where u is the beneficiary and v is co-beneficiary. Let w ∈ N(v)\N(u), we can assume

the existence of such a vertex, otherwise G′ = G. Let us denote the edge (v, w) ∈ E(G) by

e = (v, w) and the edge (u,w) ∈ E(G′) by f = (u,w). Then we have

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ)

and

ĉh(G′, λ) = ĉh(G′ − f, λ) + ĉh(G′/f, λ).

Note that G′ − f can be obtained from G − e by a Kelmans transformation, thus by induction

we have

ĉh(G − e, λ) ≫ ĉh(G′ − f, λ).

Observe that G/e and G′/f are multigraphs, indeed if for some t ∈ NG(v) the vertex t were

adjacent to w than tw became multiple edges in G/e. Now we erase all except one copy of

all multiple edges to make G/e and G′/f simple graphs. (See the remark at the end of the

proof.) Let (G/e)∗ and (G′/f)∗ be the obtained simple graphs. This way we did not change

the chromatic polynomial since the value of ch(., λ) became unchanged for all positive integers,

thus the polynomial itself must be unchanged. Another observation is that whenever we erased

a multiple edge in G/e we erased a multiple edge in G′/f too. On the other hand, for if some

t ∈ NG(u)\NG(v) the vertex t were adjacent to w then it became a multiple edge in G′/f while

it is a simple edge in G/e. Let us erase all edges of the form {(t, w) | t ∈ NG(u)\NG(w)} from

the graph (G/e)∗; let (G/e)∗∗ be the obtained graph. According to Lemma 2.5.5 we have

ĉh((G/e)∗, λ) ≫ ĉh((G/e)∗∗, λ).

Now our last observation is that (G′/f)∗ can be obtained from (G/e)∗∗ by some Kelmans

transformation where w is the beneficiary and u is the co-beneficiary (in (G′/f)∗ the vertex

u ∈ V ((G/e)∗∗) became v ∈ V ((G/f)∗)). Hence by the induction hypothesis we have

ĉh((G/e)∗∗, λ) ≫ ĉh((G′/f)∗, λ).

Altogether we have

ĉh(G, λ) = ĉh(G − e, λ) + ĉh(G/e, λ) = ĉh(G − e, λ) + ĉh((G/e)∗, λ) ≫

≫ ĉh(G − e, λ) + ĉh((G/e)∗∗, λ) ≫ ĉh(G′ − f, λ) + ĉh((G′/f)∗, λ) =

= ĉh(G′ − f, λ) + ĉh(G′/f, λ) = ĉh(G′, λ).

By comparing the two ends of the chain of inequalities we obtained the desired result.
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Remark 2.5.6. We avoided the use of multigraphs because we have not defined the Kelmans

transformation for multigraphs, although this can be done, see e.g. [10]. In some cases it would

have been more convenient to use multigraphs, but in some other cases it would have led to

more discussion. Since we were primarily interested in simple graphs we chose the way described

in the proof.

2.6 Exponential-type graph polynomials

We call a graph polynomial f(G, x) exponential-type if it satisfies the following identity:
∑

S1∪S2=V (G)
S1∩S2=∅

f(S1, x)f(S2, y) = f(G, x + y),

where f(S, x) = f(G|S, x).

This is a very special class of graph polynomials, till it has some notable elements: chromatic

polynomial, Laplacian polynomial and the following modified matching polynomial: M(G, x) =
∑n

k=0 mk(G)xn−k.

The main structure result for exponential-type graph polynomials is the following (again we

refer to the Appendix). For any exponential-type graph polynomial there exists a function b

from the isomorphism classes of graphs to the complex numbers such that if

f(G, x) =
n∑

k=1

ak(G)xk

then

ak(G) =
∑

{S1,S2,...,Sk}∈Pk

b(S1)b(S2) . . . b(Sk),

where the summation goes over the set Pk of the partitions of the vertex set into exactly k

sets. We denote this connection by f(G, x) = fb(G, x) (see Appendix). We can obtain an easy

consequence of this result.

Lemma 2.6.1. Assume that b(G) ≥ 0 for all graphs G and

fb(G, x) =
n∑

k=1

ak(G)xk.

Let H1 and H2 be two graphs on the same vertex set V and let u, v ∈ V . Assume that the

following two conditions hold:

• if u, v ∈ S or u, v /∈ S at the same time we have b(H1|S) ≥ b(H2|S),

• (cut condition) for all S for which u, v ∈ S we have
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

b(H1|S1)b(H1|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

b(H2|S1)b(H2|S2).

18



Then we have ak(H1) ≥ ak(H2) for all 1 ≤ k ≤ n.

Proof. Clearly, the first condition implies that

∑

{S1,S2,...,Sk}∈P
u,v∈S1

b(H1|S1)b(H1|S2) . . . b(H1|Sk
) ≥

∑

{S1,S2,...,Sk}∈P
u,v∈S1

b(H2|S1)b(H2|S2) . . . b(H2|Sk
).

Similarly, the first and the second condition together imply

∑

{S1,S2,...,Sk}∈P
u∈S1,v∈S2

b(H1|S1)b(H1|S2) . . . b(H1|Sk
) =

=
∑

{S3,...Sk}

b(H1|S3) . . . b(H1|Sk
)

∑

S1∪S2=S

u∈S1,v∈S2

b(H1|S1)b(H1|S2) ≥

≥
∑

{S3,...Sk}

b(H2|S3) . . . b(H2|Sk
)

∑

S1∪S2=S

u∈S1,v∈S2

b(H2|S1)b(H2|S2) =

∑

{S1,S2,...,Sk}∈P
u∈S1,v∈S2

b(H2|S1)b(H2|S2) . . . b(H2|Sk
).

By adding up the two equations we obtain

ak(H1) =
∑

{S1,S2,...,Sk}∈P

b(H1|S1)b(H1|S2) . . . b(H1|Sk
) ≥

∑

{S1,S2,...,Sk}∈P

b(H2|S1)b(H2|S2) . . . b(H2|Sk
) = ak(H2).

Remark 2.6.2. Naturally, we will use Lemma 2.6.1 for a graph G and G′ obtained by Kelmans

transformation and u, v beneficiary and co-beneficiary vertices. The first condition is equivalent

with the fact that the Kelmans transformation increase (or decrease) the parameter b(.); indeed,

if u, v ∈ S then G′|S can be obtained from G|S by the Kelmans transformation applied to u and

v. If u, v /∈ S then simply G′|S = G|S.

One expects that it is easy (or at least not hard) to check the first condition and considerably

much harder to check the cut condition. Surprisingly, there are some cases when it is easier to

check the cut condition. For instance, let b(G) = τ(G) be the number of spanning trees. Then

r(G, u, v) =
∑

S1∩S2=∅, S1∪S2=V (G)
u∈S1,v∈S2

b(G|S1)b(G|S2)

can be interpreted as follows. Let us put an edge e between u and v then r(G, u, v) is exactly

the number of spanning trees containing the edge e. But this is τ(G/e). Since G/e and G′/e

are isomorphic multigraphs we have r(G, u, v) = r(G′, u, v).

19



We also could have proved the corresponding statement for the coefficients of the (modified)

matching polynomial. Since b(G) = 0 there, except for G = K1, K2 we have b(K1) = b(K2) = 1

we have to check the first and the second conditions for graphs on at most 2 and 4(!) vertices,

respectively.

2.7 Laplacian polynomial of a graph

Recall that the Laplacian matrix L(G) of the graph G is D − A, where D is the diagonal

matrix consisting of the vertex degrees and A is the adjacency matrix. We call the polynomial

L(G, x) = det(xI −L(G)) the Laplacian polynomial of the graph G, i.e., it is the characteristic

polynomial of the Laplacian matrix of G. We will write L(G, x) in the form

L(G, x) =
n∑

k=1

(−1)n−kak(G)xk,

where ak(G) ≥ 0.

The main result of this section is the following.

Theorem 2.7.1. The Kelmans transformation decreases the coefficients of the Laplacian poly-

nomial in absolute value, i.e., assume that G′ is a graph obtained from G by some Kelmans

transformation, then

L(G, x) ≫ L(G′, x).

In other words, ak(G) ≥ ak(G
′) for k = 1, . . . , n − 1.

To prove this theorem we use the fact from the Appendix that the Laplacian polynomial is

exponential-type.

Theorem A.3.13. The Laplacian polynomial L(., x) is exponential-type with

b(G) = (−1)|V (G)|−1τ(G) = (−1)|V (G)|−1|V (G)|τ(G).

Remark 2.7.2. Hence (−1)nL(G,−x) = fτ (G, x), where τ(G) = |V (G)|τ(G). So we can use

Lemma 2.6.1 to fτ (G, x). We have to check the two conditions, the first one is the result of

Satyanarayana, Schoppmann and Suffel quoted in the introduction of this chapter.

Theorem 2.7.3. [59] The Kelmans transformation decreases the number of spanning trees, i.e.,

assume that G′ is a graph obtained from G by some Kelmans transformation, then

τ(G) ≥ τ(G′).
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Proof. Let u and v be the beneficiary and the co-beneficiary of the Kelmans transformation,

respectively.

Let R be a subset of the edge set {(u,w) ∈ E(G) | w ∈ NG(u) ∩ NG(v)}. Let

TR(G) = {T | T is a spanning tree, R ⊂ E(T )}.

Let τR(G) = |TR(G)|. We will show that for any R ⊆ {(u,w) ∈ E(G) | w ∈ N(u) ∩ N(v)}, we

have τR(G) ≥ τR(G′). For R = ∅ we immediately obtain the statement of the theorem.

We prove this statement by induction on the lexicographic order of

(e(G), |NG(u) ∩ NG(v)| − |R|).

For the empty graph on n vertices the statement is trivial. Thus we assume that we already

know that the Kelmans transformation decreases τR(G1) if e(G1) < e(G) or e(G1) = e(G), but

|NG(u1) ∩ NG(v1)| − |R1| < |NG(u) ∩ NG(v)| − |R|.
Now assume that |NG(u) ∩ NG(v)| − |R| = 0, in other words R = {(u,w) ∈ E(G) | w ∈

N(u) ∩ N(v)}. Observe that NG′(v) = NG(u) ∩ NG(v), but since R ⊂ E(T ′) the vertex v must

be a leaf in T ′ for any spanning tree T ′ ∈ TR(G′).

Now let us consider the following map. Take a spanning tree T ′ which contains the elements

of the set R. Let us erase the edges between u and (NG(v)\NG(u)) ∩ NT ′(u) (maybe there is

no such edge in the tree) and add the edges between v and (NG(v)\NG(u))∩NT ′(u). The tree,

obtained this way, is an element of TR(G). This map is obviously injective; if we get an image

T ∈ TR(G) we simply erase the edges between v and (NG(v)\NG(u))∩NT (v) and add the edges

between u and (NG(v)\NG(u)) ∩ NT (v). Hence τR(G′) ≤ τR(G).

Now assume that |R| < |NG(u) ∩ NG(v)|. Let h = (u,w) be an edge not in R for which

w ∈ NG(u) ∩ NG(v). Then we can decompose τR(G) according to h ∈ E(T ) or not. Hence

τR(G) = τR∪{h}(G) + τR(G − h).

Similarly,

τR(G′) = τR∪{h}(G
′) + τR(G′ − h).

Note that G′ − h can be obtained from G − h by a Kelmans transformation applied to the

vertices u and v. Since it has fewer edges than G we have

τR(G − h) ≥ τR(G′ − h).

Similarly, |NG(u) ∩ NG(v)| − |R ∪ {h}| < |NG(u) ∩ NG(v)| − |R|, so we have by induction that

τR∪{h}(G) ≥ τR∪{h}(G
′).

Hence

τR(G) ≥ τR(G′).
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In particular,

τ(G) = τ∅(G) ≥ τ∅(G
′) = τ(G′).

Now we prove that the function τ satisfies the second condition of Lemma 2.6.1. The proof

of it will be very similar to the previous one.

Theorem 2.7.4. Let τ(G) = |V (G)|τ(G), where τ(G) denotes the number of spanning trees

of the graph G. Let G be a graph and let G′ be the graph obtained from G by a Kelmans

transformation applied to the vertices u and v. Then for all S for which u, v ∈ S we have

∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G′|S1)τ(G′|S2).

Proof. We can assume that S = V (G). Let R be a subset of the edge set {(u,w) ∈ E(G) | w ∈
N(u) ∩ N(v)}. Let

S(G)R = {(T1, T2) | T1, T2 trees, u ∈ V (T1), v ∈ V (T2),

V (T1) ∩ V (T2) = ∅, V (T1) ∪ V (T2) = V (G), R ⊆ E(T1)}.

Note that

s(G, u, v) :=
∑

S1∩S2=∅,S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) =
∑

(T1,T2)∈S(G)∅

|V (T1)||V (T2)|.

In general, we introduce the expression

s(G,R, u, v) =
∑

(T1,T2)∈S(G)R

|V (T1)||V (T2)|.

We will show that for any R ⊆ {(u,w) ∈ E(G) | w ∈ N(u) ∩ N(v)} we have

s(G,R, u, v) ≥ s(G′, R, u, v).

We prove this statement by induction on the lexicographic order of

(|E(G)|, |N(u) ∩ N(v)| − |R|).

For the empty graph on n vertices the statement is trivial. Thus we assume that we already know

that the Kelmans transformation decreases s(G1, R1, u1, v1) if e(G1) < e(G) or e(G1) = e(G),

but |N(u1) ∩ N(v1)| − |R1| < |N(u) ∩ N(v)| − |R|.
Now assume that |N(u) ∩ N(v)| − |R| = 0, in other words, R = {(u,w) ∈ E(G) | w ∈

N(u)∩N(v)}. We prove that s(G,R, u, v) ≥ s(G′, R, u, v). Observe that NG′(v) = N(u)∩N(v),

but since R ⊆ T1 the set NG′(v) ⊆ V (T1). Hence V (T2) = {v}. So

s(G′, R, u, v) = (n − 1)τR(G′ − v),
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where τR(G′−v) denotes the number of spanning trees of G′−v which contains the elements of the

set R. Now let us consider the following map. Take a spanning tree T ′ of G′− v which contains

the elements of the set R, let us erase the edges between u and (NG(v)\NG(u))∩NT ′(u) (maybe

there is no such edge in the tree) and add the edges between v and (NG(v) \ NG(u)) ∩ NT ′(u).

The pair of trees, obtained this way, is an element of S(G)R. This map is obviously injective;

if we get an image (T1, T2) ∈ S(G)R we simply erase the edges between v and NT2(v) and add

the edges between u and NT2(v). Since n − 1 ≤ k(n − k) for any 1 ≤ k ≤ n − 1 we have

s(G′, R, u, v) =
∑

(T1,T2)∈S(G′)R

1 · (n − 1) ≤
∑

(T1,T2)∈S(G)R

|V (T1)||V (T2)| = s(G,R, u, v).

Now assume that |R| < |NG(u) ∩ NG(v)|. Let h = (u,w) be an edge not in R for which

w ∈ NG(u)∩NG(v). Then we can decompose s(G,R, u, v) according to h ∈ T1 where (T1, T2) ∈
S(G)R or not. Hence

s(G,R, u, v) = s(G,R ∪ {h}, u, v) + s(G − h,R, u, v).

Similarly,

s(G′, R, u, v) = s(G′, R ∪ {h}, u, v) + s(G′ − h,R, u, v).

Note that G′ − h can be obtained from G − h by a Kelmans transformation applied to the

vertices u and v. Since it has fewer edges than G we have

s(G − h,R, u, v) ≥ s(G′ − h,R, u, v).

Similarly, |NG(u) ∩ NG(v)| − |R ∪ {h}| < |NG(u) ∩ NG(v)| − |R|, so we have by induction that

s(G,R ∪ {h}, u, v) ≥ s(G′, R ∪ {h}, u, v).

Hence

s(G,R, u, v) ≥ s(G′, R, u, v).

In particular,

∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) = s(G, ∅, u, v) ≥ s(G′, ∅, u, v) =
∑

S1∩S2=∅, S1∪S2=S

u∈S1, v∈S2

τ(G′|S1)τ(G′|S2).

Proof of Theorem 2.7.1. Since the Laplace graph is of exponential-type it is enough to check

the conditions of Lemma 2.6.1 for the polynomial (−1)nL(G,−x). This satisfies that bL(G) =

τ(G) = |V (G)|τ(G) ≥ 0.

If u, v ∈ S, then according Theorem 2.7.3, τ(G′|S) ≤ τ(G|S) and so τ(G′|S) ≤ τ(G|S). If

u, v /∈ S then G′|S = G|S and simply τ(G′|S) = τ(G|S).
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On the other hand, by Theorem 2.7.4 we have

∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G|S1)τ(G|S2) ≥
∑

S1∩S2=∅, S1∪S2=S

u∈S1,v∈S2

τ(G′|S1)τ(G′|S2).

Hence every condition of Lemma 2.6.1 are satisfied. Thus ak(G
′) ≤ ak(G) for any 1 ≤ k ≤ n.

2.8 Number of closed walks

Definition 2.8.1. The NA-Kelmans transformation is the Kelmans transformation applied to

non-adjacent vertices.

Theorem 2.8.2. The NA-Kelmans transformation increases the number of closed walks of

length k for every k ≥ 1. In other words, Wk(G
′) ≥ Wk(G) for k ≥ 1.

Proof. Let G be an arbitrary graph. Let G′ be the graph obtained from G by a Kelmans

transformation applied to u and v, where u is the beneficiary. Let D(x, y, k) denote the number

of walks from x to y of length k in G. Similarly R(x, y, k) denotes the number of walks from

x to y of length k in G′. If x, y 6= v then for all k we have R(x, y, k) ≥ D(x, y, k). Indeed, if

we have a walk from x to y of length k we can exchange those v’s to u’s in the walk whose

any of the neighbor in the walk is a vertex belonging to NG(v)\NG(u). (It is one of the steps

where we use that u and v are not adjacent.) This will give an injective mapping from the walks

of G to the set of walks of G′. (It is not surjective since . . . v1uv2 . . . never appears in these

“image” walks if v1 ∈ NG(v)\NG(u) and v2 ∈ NG(u)\NG(v).) In particular, if x 6= u, v then

R(x, x, k) ≥ D(x, x, k). On the other hand,

D(u, u, k) + D(v, v, k) =
∑

u,v∈NG(u)

D(x, y, k − 2) +
∑

x′,y′∈NG(v)

D(x′, y′, k − 2) ≤

≤
∑

x,y∈NG(u)

R(x, y, k − 2) +
∑

x′,y′∈NG(v)

R(x′, y′, k − 2) ≤

≤
∑

x,y∈NG′ (u)

R(x, y, k − 2) +
∑

x′,y′∈NG′ (v)

R(x′, y′, k − 2) = R(u, u, k) + R(v, v, k).

Hence

Wk(G) =
∑

x∈V (G)

D(x, x, k) ≤
∑

x∈V (G)

R(x, x, k) = Wk(G
′).

Remark 2.8.3. The statement is not true for any Kelmans transformation. Let G be the 4-

cycle, u, v are two adjacent vertices of G. Let us apply the Kelmans transformation to u and v.

Then G has 32 closed walks of length 4 while G′ has only 28 closed walks of length 4.
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2.9 Upper bound to the spectral radius of threshold graphs

In this section we prove a simple upper bound on the spectral radius of graphs belonging to a

certain class of graphs. This class contains the threshold graphs.

As an application we give a good upper bound to

µ(G) + µ(G).

This problem was posed by Eva Nosal. She proved that

µ(G) + µ(G) ≤
√

2n.

For a long time this was the best upper bound in terms of the number of vertices. (There were

other bounds in terms of the number of vertices, the chromatic number of the graph and its

complement [42], or in terms of the clique sizes of the graphs [52]. However, these bounds could

not be applied to improve on the constant
√

2.) Only very recently, V. Nikiforov [54] managed

to prove that
√

2 is not the best possible constant. He proved that

µ(G) + µ(G) ≤ (
√

2 − ε)n,

where ε = 8 · 10−7.

Compared to this results Theorem 2.9.4 was a real a breakthrough. The success of the

Kelmans transformation in this problem motivated the author to take a closer look at this

transformation.

We mention that V. Nikiforov [54] conjectured that

µ(G) + µ(G) ≤ 4

3
n.

This conjecture was proved by Tamás Terpai [61].

Theorem 2.9.1. Let us assume that in the graph G the set X = {v1, v2, . . . , vk} forms a clique

while V \X = {vk+1, . . . , vn} forms an independent set. Furthermore, let e(X,V \X) denote the

number of edges going between X and V \X. Then

µ(G) ≤ k − 1 +
√

(k − 1)2 + 4e(X,V \X)

2
.

Proof. We can assume that G is not the empty graph, for which the statement is trivial. Let x

be the non-negative eigenvector belonging to µ = µ(G). For 1 ≤ j ≤ k we have

µxj = x1 + · · · + xj−1 + xj+1 + · · · + xk +
∑

vm∈N(vj)∩(V \X)

xm.

By adding up these equations we get

µ

(
k∑

j=1

xj

)
= (k − 1)

(
k∑

j=1

xj

)
+ dk+1xk+1 + · · · + dnxn.
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For k + 1 ≤ j ≤ n we have

µxj =
∑

vm∈N(vj)

xm.

Since V \X forms an independent set we have µxj ≤
∑k

i=1 xi for k + 1 ≤ j ≤ n and so

µ

(
k∑

j=1

xj

)
= (k − 1)

(
k∑

j=1

xj

)
+ dk+1xk+1 + · · · + dnxn ≤

≤ (k − 1)

(
k∑

j=1

xj

)
+

dk+1

µ

(
k∑

j=1

xj

)
+ · · · + dn

µ

(
k∑

j=1

xj

)
.

Since
∑n

j=k+1 dj = e(X,V \X) we have

µ ≤ k − 1 +
e(X,V \X)

µ
.

Hence

µ(G) ≤ k − 1 +
√

(k − 1)2 + 4e(X,V \X)

2
.

Remark 2.9.2. Let G be a threshold graph for which vi dominates vj whenever i < j. Let k

be the least integer for which vk and vk+1 are not adjacent. In this case X = {v1, . . . , vk} forms

a clique while V \X = {vk+1, . . . , vn} forms an independent set. One can prove a bit stronger

inequalities for threshold graphs, namely

1

µ

(
n∑

j=k+1

d2
j

)
≤ kµ − k(k − 1),

and

µ2 + µ ≤ k(k − 1) +
1

µ

(
n∑

j=k+1

d2
j

)
+ e(X,V \X).

By combining these inequalities we immediately get the statement of the theorem.

Remark 2.9.3. For our purpose the inequality

µ(G) ≤ k +
√

k2 + 4e(X,V \X)

2

will suffice.

Theorem 2.9.4.

µ(G) + µ(G) ≤ 1 +
√

3

2
n.
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Proof. By Theorem 2.2.1 and Remark 2.0.3 we only need to check the statement for threshold

graphs. Let G be a threshold graph for which vi dominates vj whenever i < j. Let k be the

least integer for which vk and vk+1 are not adjacent. In this case X = {v1, . . . , vk} forms a clique

while V \X = {vk+1, . . . , vn} forms an independent set. Let us apply Theorem 2.9.1 with G and

X and with G and V \X. Then we have

µ(G) ≤ k +
√

k2 + 4eG(X,V \X)

2

and

µ(G) ≤ n − k +
√

(n − k)2 + 4eG(V \X,X)

2
.

Thus we have

2(µ(G) + µ(G)) − n ≤
√

k2 + 4eG(X,V \X) +
√

(n − k)2 + 4eG(V \X,X).

By the arithmetic-quadratic mean inequality we have
√

k2 + 4eG(X,V \X) +
√

(n − k)2 + 4eG(V \X,X) ≤

≤
√

2(k2 + 4eG(X,V \X) + (n − k)2 + 4eG(V \X,X)) =

=
√

2(k2 + (n − k)2 + 4k(n − k)) ≤
√

3n.

Altogether we get

2(µ(G) + µ(G)) − n ≤
√

3n.

Hence

µ(G) + µ(G) ≤ 1 +
√

3

2
n.

2.10 Polynomials of the threshold graphs

In this section we give some special graph polynomials of the threshold graphs. We start with

the Laplacian polynomial (which can be found implicitly in the paper [47] as well, although we

give the proof here).

Theorem 2.10.1. Let G be a threshold graph of Kelmans transformation with degree sequence

d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which dt = t − 1, i.e., for which v1, . . . , vt

induces a clique, but vt and vt+1 are not connected. Then the spectra of the Laplacian matrix of

G is the multiset

{d1 + 1, d2 + 1, . . . , dt−1 + 1, dt+1, . . . , dn, 0}.
In other words, the Laplacian polynomial is

L(G, x) = x
t−1∏

i=1

(x − di − 1)
n∏

i=t+1

(x − di).
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Proof. We will use the following well-known facts.

Fact 1. (Statement A.2.12) If we add k isolated vertices to the graph G then the Laplacian

spectra of the obtained graph consists of the Laplacian spectra of the graph G and k zeros.

Fact 2. (Statement A.2.13, [32]) If the Laplacian spectra of the graph G is λ1 ≥ λ2 ≥ · · · ≥
λn = 0 then the Laplacian spectra of G is n − λ1, n − λ2, . . . , n − λn−1, 0.

We prove the theorem by induction on the number of vertices of the graph. The claim is

trivial for threshold graphs having 1 or 2 vertices. If v1 is not adjacent to vn then vn is an

isolated vertex and the claim follows from the induction hypothesis and Fact 1. If v1 and vn are

adjacent then we observe that G has the same structure and v1 is isolated vertex in G. Note

that in G the vertices vn, vn−1, . . . , vt+1, vt induce a clique, but vt and vt−1 are not adjacent.

So we can apply the induction hypothesis to G\{v1} obtaining that its Laplacian spectra is

{n − 1 − dn + 1, n − 1 − dn−1 + 1, . . . , n − 1 − dt+1 + 1, n − 1 − dt−1, . . . , n − 1 − d2, 0}. Thus

using Fact 2 and d1 = n − 1 we get that the Laplacian spectra of the graph G is {d1 + 1, d2 +

1, . . . , dt−1 + 1, dt+1, . . . , dn, 0}.

The threshold graphs are also chordal graphs so the roots of their chromatic polynomials

are integers. The more precise (and trivial) result is the following.

Theorem 2.10.2. Let G be a threshold graph of Kelmans transformation with degree sequence

d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which dt = t − 1, i.e., for which v1, . . . , vt

induce a clique, but vt and vt+1 are not connected. Then the chromatic polynomial of the graph

G is the following

ch(G, λ) =
t∏

i=1

(λ − i + 1)
n∏

i=t+1

(λ − di).

Proof. We can color the clique of size t in
∏t

i=1(λ− i + 1) ways. For i ≥ t + 1, the vertex vi has

di neighbors in the clique induced by v1, . . . , vt, so we can color it in λ − di ways.

It is also easy to determine the independence polynomial of a threshold graph.

Theorem 2.10.3. Let G be a threshold graph of Kelmans transformation with degree sequence

d1 ≥ d2 ≥ · · · ≥ dn. Let t be the unique integer for which dt = t − 1, i.e. , for which v1, . . . , vt

induces a clique, but vt and vt+1 are not connected. Then the independence polynomial of G is

I(G, x) = (1 − x)n−t − x

t∑

i=1

(1 − x)n−1−di .

Proof. Since every independent set can contain at most one vertex from the clique induced

by the vertices of v1, . . . , vt we can decompose the terms of the independence polynomials as

follows. Those independent sets which does not contain any of the vertex v1, . . . , vt contribute
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(1−x)n−t to the sum. Those independent sets which contain the vertex vi (1 ≤ i ≤ t) contribute

−x(1 − x)n−1−di to the sum.

Remark 2.10.4. One can consider the previous theorem as an inclusion-exclusion formula. A

more general formula can be found in [25].

It remains to consider the matching polynomials of the threshold graphs. In this case the

answer is a bit more complicated. Some notation is in order. First of all, let M(Kn, x) = Hn(x)

for brevity. Furthermore, let G be a threshold graph with degree sequence d1 ≥ d2 ≥ · · · ≥ dn.

Let t be the unique integer for which dt = t− 1, i.e., for which v1, . . . , vt induce a clique, but vt

and vt+1 are not adjacent and set

M(G, x) = P (n, t, dt+1, . . . , dn; x).

Then we have

Theorem 2.10.5.

P (n, t, dt+1, . . . , dn; x) = xP (n − 1, t, dt+1, . . . , dn−1; x)

−dnP (n − 1, t − 1, dt+1 − 1, . . . , dn−1 − 1; x)

Furthermore,

P (n, t, dt+1, . . . , dn; x) =
n−t∑

k=0

σ̃k(dt+1, . . . , dn)(−1)kxn−t−kHt−k(x),

where

σ̃k(r1, . . . , rm) =
∑

1≤i1<i2<···<ik≤m

(ri1 − k + 1)(ri2 − k + 2) . . . (rik−1
− 1)rik .

Proof. The recursion follows from the recursion formula for the matching polynomial applied

to the edges incident to vn: if e = (vi, vn) ∈ E(G) then G − {vi, vn} is a threshold graph with

the matching polynomial P (n − 1, t − 1, dt+1 − 1, . . . , dn−1 − 1; x). If dn = 0 then the second

term vanishes and so it does not cause any problem that P (n−1, t−1, dt+1 −1, . . . , dn−1 −1; x)

is not the matching polynomial of G − vn and maybe meaningless. The other formula for the

matching polynomial easily follows from the recursion formula.

2.11 Concluding remarks

In this last section we wish to make some remarks on the use of the Kelmans transformation.

As one can see the threshold graphs of these transformations are very special, so the use of

this transformation is restricted to those problems where the extremal graph is conjectured to
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belong to this class of graphs. But if it is the case then the Kelmans transformation is probably

the right tool to attack the problem. One of its main strengths is that it is very simple to work

with. The other strength of this transformation is that it is very compatible with the deletion-

contraction algorithms; in most of the proofs we used only some special recursion formula for

the corresponding polynomial.

Although the Kelmans transformation could handle various problems, the reason why it

worked maybe totally different. We try to explain it through two examples. If we are looking

for the graph maximizing the spectral radius among graphs with prescribed number of edges

then we know from Rowlinson’s result [58] that the extremal graph is as “clique-like” as it

is possible. The Kelmans transformation works properly because it makes the graphs more

“clique-like”. Now if we consider the problem of finding the graph maximizing the largest root

of the matching polynomial among graphs with prescribed number of edges, the situation is

completely different. We believe that the Kelmans transformation works because it generates

some large-degree vertices. We conjecture that in this case the extremal graph will be as “star-

like” as it is possible: it has as many vertices of degree n − 1 as it is possible and one more

vertex of the clique part of the threshold graph has some additional edges.

2.12 Afterlife

Tamás Terpai [61] managed to prove Nikiforov’s original conjecture, namely he proved that

µ(G) + µ(G) ≤ 4

3
n − 1.

He used analytic tools to prove the statement.
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Chapter 3

On a poset of trees: applications of the

generalized tree shift

In this chapter we survey the applications of the so-called generalized tree shift. This graph

transformation was developed by the author so as to attack an extremal graph theoretic problem

of V. Nikiforov on the minimum number of closed walks. Nikiforov conjectured that the minimal

number of the closed walks of length ℓ attained at the path among trees on a fixed number of

vertices; Nikiforov’s conjecture was motivated by the corresponding conjecture of J. A. de la

Peña, I. Gutnam and J. Rada concerning the so-called Estrada index. This graph transformation

can be applied to trees and the image of the tree at this transformation is also a tree. If we say

that the image is “greater” than the original tree, then this way we obtain a partially ordered set

on the set of trees on a fixed number of vertices: the induced poset of the generalized tree shift.

It will turn out that the the minimal element of this induced poset is the path on n vertices

while its maximal element is the star on n vertices. The main strength of this transformation

lies in the fact that surprisingly many graph parameters behave the same way along this induced

poset.

Definition 3.0.1. Let T be a tree and let x and y be vertices such that all the interior points

of the path xPy (if they exist) have degree 2 in T . The generalized tree shift (GTS) of T is the

tree T ′ obtained from T as follows: let z be the neighbor of y lying on the path xPy, let us

erase all the edges between y and NT (y)\{z} and add the edges between x and NT (y)\{z}. See

Figure 3.1.

In what follows we call x the beneficiary and y the candidate (for being a leaf) of the gen-

eralized tree shift. Observe that we can exchange the role of the beneficiary and the candidate,

the resulting trees will be isomorphic. Hence the resulting tree T ′ only depends on the tree T

and the path xPy.

Note that if x or y is a leaf in T then T ′ ∼= T , otherwise the number of leaves in T ′ is the

number of leaves in T plus one. In this latter case we call the generalized tree shift proper.
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Remark 3.0.2. Note that x and y need not have degree 2.

1

1 k2 k−1. . .
2

k−1

k

B A BA

x z

y

x

y

Figure 3.1: The generalized tree shift.

Notation: Throughout this chapter we will assume that the path xPy has exactly k vertices.

In the following we call the vertices of the path xPy 1, 2, . . . , k if the path consists of k vertices

in such a way that x will be 1 and y will be k. The set A ⊂ V (T ) consists of the vertices which

can be reached with a path from k only through 1, and similarly the set B ⊂ V (T ) consists

of those vertices which can be reached with a path from 1 only through k. For the sake of

simplicity, let A and B denote the corresponding sets in T ′. The set of neighbors of 1 in A is

called A0, and similarly B0 is the set of neighbors of 1 in B ⊂ V (T ′) and the set of neighbors

of k in B ⊂ V (T ). Let H1 be the tree induced by the vertices of A ∪ {1} in T , similarly let H2

denote the tree induced by the vertices of B∪{k} in T . Note that H1 and H2 are both subtrees

of T ′ as well.

Definition 3.0.3. Let us say that T ′ > T if T ′ can be obtained from T by some proper

generalized tree shift. The relation > induces a poset on the trees on n vertices, since the

number of leaves of T ′ is greater than the number of leaves of T , more precisely the two numbers

differ by one. Hence the relation > is indeed extendable.

One can always apply a proper generalized tree shift to any tree which has at least two

vertices that are not leaves. This shows that the only maximal element of the induced poset is

the star. The following theorem shows that the only minimal element of the induced poset, i.e.,

the smallest element is the path.

Theorem 3.0.4. Every tree different from the path is the image of some proper generalized tree

shift.

Proof. Let T be a tree different from the path, i.e., it has at least one vertex having degree

greater or equal to 3. Let v be a vertex having degree one. Furthermore, let w be the closest

vertex to v which has degree at least 3. Then the interior vertices (if they exist) of the path
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Figure 3.2: The poset of trees on 6 vertices.

induced by v and w have degree 2. The vertex w has at least two neighbors different from the

one which lies on the path induced by v and w, so we can decompose these neighbors into two

non-empty sets, A0 and B0. Let T ∗ be the tree given by erasing the edges between w and B0

and adding the edges between v and B0. Then T can be obtained from T ∗ by the GTS, where

w is the beneficiary and v is the candidate. Since A0 and B0 are non-empty, this is a proper

generalized tree shift.

Corollary 3.0.5. The star is the greatest, the path is the smallest element of the induced poset

of the generalized tree shift.

Remark 3.0.6. One can define a poset on trees induced by the original Kelmans transformation

in the same way we defined the poset induced by GTS. Then it is true that the star is the greatest

element of the poset induced by the original Kelmans transformation, but it is not true that

the path is the only minimal element of this poset. The graph in Figure 3.3 is not the image of

any Kelmans transformation. This explains why we needed to generalize this concept.

Figure 3.3: A tree which is not the image of Kelmans transformation.
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3.1 Some elementary properties of GTS

Let d(x, y) denote the distance of the vertices x and y. The Wiener-index of a graph is
∑

x,y d(x, y).

Theorem 3.1.1. The proper generalized tree shift decreases the Wiener-index.

Proof. Let T be a tree and T ′ its image by a GTS. Let dT and dT ′ be the distance in the

corresponding graphs.

Clearly,

dT ′(i, a) + dT ′(k + 1 − i, a) = dT (i, a) + dT (k + 1 − i, a)

for all a ∈ A and

dT ′(i, b) + dT ′(k + 1 − i, b) = dT (i, b) + dT (k + 1 − i, b)

for all b ∈ B, where the vertex i ∈ {1, 2, . . . , k} lies on the path xPy in the trees T and T ′.

Trivially, dT ′(a, a′) = dT (a, a′) for a, a′ ∈ A, dT ′(b, b′) = dT (b, b′) for b, b′ ∈ B and dT (a, b) =

dT ′(a, b) + (k − 1) for a ∈ A and b ∈ B.

Altogether we have

∑

x,y

dT (x, y) =
∑

x,y

dT ′(x, y) + (k − 1)|A||B|.

Hence the generalized tree shift decreases
∑

x,y d(x, y).

Corollary 3.1.2. The path maximizes, the star minimizes the Wiener-index among the trees

on n vertices.

Proof. It follows from the previous theorem and the fact that the path is the only minimal, the

star is the only maximal element of the induced poset of the generalized tree shift.

Remark 3.1.3. Corollary 3.1.2 was known [45].

A bit more advanced property of the generalized tree shift is the following.

Theorem 3.1.4. The generalized tree shift increases the spectral radius of the tree.

Proof. Let u and v be the beneficiary and the candidate of the generalized tree shift, respectively.

First of all, recall that if we change the role of the beneficiary and the candidate then the resulting

tree will not change up to isomorphism.

Let x be the non-negative eigenvector of unit length corresponding to the largest eigenvalue

of the tree T . By the previous paragraph we can assume that xu ≥ xv.

Furthermore, let A(T ) and A(T ′) be the adjacency matrices of the tree T and T ′. Then

µ(T ) = xT A(T )x = xT A(T ′)x − 2(xu − xv)
∑

w∈B0

xw ≤ xT A(T ′)x ≤
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≤ max
||y||=1

yT A(T ′)y = µ(T ′).

Hence µ(T ) ≤ µ(T ′).

Corollary 3.1.5. The path minimizes, the star maximizes the spectral radius of the adjacency

matrix among the trees on n vertices.

Remark 3.1.6. Corollary 3.1.5 was known, it was proved by L. Lovász and J. Pelikán [46]. In

fact, they proved their theorem by the aid of some graph transformation which is a special case

of the generalized tree shift.

We mention that Nikiforov’s inequality [52]

µ(G) ≤
√

2e(G)

(
1 − 1

ω(G)

)

also implies that the star has maximal spectral radius among trees since we have e(G) = n − 1

and ω(G) = 2 and the greatest eigenvalue of the star is exactly
√

n − 1. (It was Nosal who

proved that for triangle-free graphs µ(G) ≤
√

e(G) holds, later Nikiforov [53] proved that in

Nosal’s inequality equality holds if and only if the graph is complete bipartite with some isolated

vertices.)

Theorem 3.1.7. The generalized tree shift increases the spectral radius of the complement of a

tree.

Proof. Let u and v be the beneficiary and the candidate of the generalized tree shift, respectively.

Let x be the non-negative eigenvector of unit length corresponding to the largest eigenvalue of

the graph T . As before, we can assume that xv ≥ xu.

Furthermore, let A(T ) and A(T ′) be the adjacency matrix of the T and T ′. Then

µ(T ) = xT A(T ′)x − 2(xv − xu)
∑

w∈B0

xw ≤ xT A(T ′)x ≤

≤ max
||y||=1

yT A(T ′)y = µ(T ′).

Hence µ(T ) ≤ µ(T ′).

Corollary 3.1.8. If T is a tree on n vertices, Pn and Sn are the path and the star on n vertices

and µ(G) is the spectral radius of a graph then

µ(Pn) ≤ µ(T ) ≤ µ(Sn).
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3.2 Graph polynomials and the generalized tree shift

In this section we give a general overview how to use the generalized tree shift in the situations

when we would like to prove that certain graph polynomial has the largest coefficients for the

star and smallest coefficients for the path among the trees on n vertices, or we would like to

prove that the largest real root of the polynomial is maximal for the star and minimal for the

path.

Assume that given a graph polynomial f(G, x). We will see that in many cases we have an

identity of the following kind:

f(T ′, x) − f(T, x) = c1h(Pk, x)h(H1, x)h(H2, x),

where h(G, x) = c2f(G, x)+ c3g(G|v, x) and c1, c2, c3 are rational functions of x and g(G|v, x) is

some graph polynomial depending on G and some special vertex v. (Recall that H1 and H2 are

the subtrees of T and T ′ induced by the vertex set A∪{1} and B∪{k}, respectively.) Generally,

the graph polynomial g(G|v, x) is very strongly related to f(G, x), in many cases it will be

f(H, x) for some subgraph H of G. This means that the difference f(T ′, x)− f(T, x) factorizes

to polynomials of trees which are subtrees of both T and T ′. Then we use some monotonicity

property of the studied parameter to deduce that the generalized tree shift increases (decreases)

this parameter. Clearly, it yields the desired result for the extremality of the star and the

path. We have to emphasize that the monotonicity of the parameter is indeed crucial in many

applications. Sometimes it will be more tedious to settle the suitable monotonicity property

than to prove the proper identity for f(T ′, x)−f(T, x). (Although we settle many monotonicity

property in the Appendix.)

How will we obtain the above identity for f(T ′, x)−f(T, x)? There is a very straightforward

way of doing that. We only need to compute a recursion formula for M1 : M2 (this graph was

defined in the notation).

Observe that T = (H1 : Pk) : H2, where we identify 1 ∈ V (H1) and 1 ∈ V (Pk) and then

we identify k ∈ V (Pk) and k ∈ V (H2). While for the image of T at the generalized tree shift

applied to the tree T and Pk, we have T ′ = (H1 : H2) : Pk, where we identify 1 ∈ V (H1) and

1 ∈ V (H2) and then we identify 1 ∈ V (H1 : H2) and 1 ∈ V (Pk). So if we have some recursion

formula for M1 : M2 then we can express

f(T, x) = h1(f(Pk, x), g(Pk|1, x), f(H1, x), g(H1|1, x), f(H2, x), g(H2|k, x))

and

f(T ′, x) = h2(f(Pk, x), g(Pk|1, x), f(H1, x), g(H1|1, x), f(H2, x), g(H2|k, x)).

Although this strategy would be very straightforward, the amount of computation we need to

perform heavily depends on the polynomial f(G, x) and sometimes it is indeed a huge work. To

avoid this, we will prove a theorem which directly computes f(T, x)−f(T ′, x) from the recursion

formula of f(M1 : M2).
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3.3 General lemma

Theorem 3.3.1. (General lemma.) Assume that the graph polynomials f and g satisfy the

following recursion formula:

f(M1 : M2, x) = c1f(M1, x)f(M2, x) + c2f(M1, x)g(M2|u2, x)+

+c2g(M1|u1, x)f(M2, x) + c3g(M1|u1, x)g(M2|u2, x),

where c1, c2, c3 are rational functions of x. Assume that c2f(K2) + c3g(K2|1) 6= 0. Then

f(T ) − f(T ′) = c4(c2f(Pk) + c3g(Pk|1))(c2f(H1) + c3g(H1|1))(c2f(H2) + c3g(H2|k)),

where

c4 =
g(P3|1) − g(P3|2)

(c2f(K2) + c3g(K2|1))2
.

Proof. Since T = ((H1|1) : (Pk|1)|k) : (H2|k) we have

f(T ) = c1f(H1 : Pk)f(H2) + c2f(H1 : Pk)g(H2|k) =

+c2g(H1 : Pk|k)f(H2) + c3g(H1 : Pk|k)g(H2|k).

Similarly, T ′ = ((H1|1) : (Pk|1)|1) : (H2|1) so

f(T ′) = c1f(H1 : Pk)f(H2) + c2f(H1 : Pk)g(H2|1)+

+c2g(H1 : Pk|1)f(H2) + c3g(H1 : Pk|1)g(H2|1).

Note that g(H2|1) = g(H2|k), since 1 and k denote the same vertex, only their names are

different in the different trees. Hence

f(T ) − f(T ′) = (c2f(H2) + c3g(H2|k))(g(H1 : Pk|k) − g(H1 : Pk|1)).

Now let us consider

f(T ) − f(T ′)

(c2f(H1) + c3g(H1|1))(c2f(H2) + c3g(H2|k))
=

g(H1 : Pk|k) − g(H1 : Pk|1)

c2f(H1) + c3g(H1|1)
.

The left hand side is symmetric in H1 and H2 so if we switch them we obtain that

g(H1 : Pk|k) − g(H1 : Pk|1)

c2f(H1) + c3g(H1|1)
=

g(H2 : Pk|k) − g(H2 : Pk|1)

c2f(H2) + c3g(H2|1)
.

Hence this expression is the same for every graph H1. In particular, we can apply it to K2:

g(H1 : Pk|k) − g(H1 : Pk|1)

c2f(H1) + c3g(H1|1)
=

g(K2 : Pk|k) − g(K2 : Pk|1)

c2f(K2) + c3g(K2|1)
.
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In fact, applying the above computation for H1 = H2 = K2 we obtain that

f(Pk+2) − f(Qk+2)

(c2f(K2) + c3g(K2|1))2
=

g(K2 : Pk|k) − g(K2 : Pk|1)

c2f(K2) + c3g(K2|1)
,

where Qk+2 is the tree obtained from Pk+1 by attaching a pendant edge to the second vertex.

This will be the GTS-transform of Pk+2 if we apply it to H1 = H2 = K2 and the path Pk. Note

that Qk+2 = P3 : Pk, where we identified the middle vertex of P3 and the endvertex of Pk. On

the other hand, Pk+2 = P3 : Pk, where we identified the endvertices of P3 and Pk. Hence

f(Qk+2) = c1f(P3)f(Pk) + c2g(P3|2)f(Pk) + c2f(P3)g(Pk|1) + c3g(P3|2)g(Pk|1).

Similarly,

f(Pk+2) = c1f(P3)f(Pk) + c2g(P3|1)f(Pk) + c2f(P3)g(Pk|1) + c3g(P3|1)g(Pk|1).

Hence

f(Pk+2) − f(Qk+2) = (g(P3|1) − g(P3|2))(c2f(Pk) + c3f(Pk|1)).

Putting all together we obtain that

f(T ) − f(T ′) = c4(c2f(Pk) + c3g(Pk|1))(c2f(H1) + c3g(H1|1))(c2f(H2) + c3g(H2|k)),

where

c4 =
g(P3|1) − g(P3|2)

(c2f(K2) + c3g(K2|1))2
.

Remark 3.3.2. Throughout this chapter we will refer to Theorem 3.3.1 as General Lemma.

3.4 The adjacency polynomial

In this section we concern with the characteristic polynomial of the adjacency matrix. We have

already seen that the GTS increases the spectral radius of the adjacency matrix. The main

result of this section that it decreases the coefficients in absolute value.

Theorem 3.4.1. The generalized tree shift decreases the coefficients of the characteristic poly-

nomial in absolute value, i.e., if the tree T ′ is obtained from the tree T by some generalized tree

shift then

φ(T, x) ≫ φ(T ′, x).

(Recall that φ(T, x) ≫ φ(T ′, x) means that all the coefficients of φ(T, x) in absolute value is at

least as large as the corresponding coefficient of φ(T ′, x) in absolute value.)
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Theorem A.1.20. [46] For an arbitrary forest T we have

φ(T, x) =
n∑

k=0

(−1)kmk(T )xn−2k,

where mk(T ) denotes the number of ways one can choose k independent edges of the forest T .

Consequently,

φ(T, x) = φ(T − e, x) − φ(T − {u, v}, x)

holds for an arbitrary edge e = (u, v).

Remark 3.4.2. We need to prove that mk(T ) ≥ mk(T
′) for every 1 ≤ k ≤ n. One can do it

by purely combinatorial tools, but in order to show our strategy in work we chose an algebraic

way.

Lemma 3.4.3. With the notation introduced in the introduction, for the trees T and T ′ we have

φ(T, x) − φ(T ′, x) = φ(Pk−2, x)(φ(H1, x) − xφ(H1 − {1}, x))(φ(H2, x) − xφ(H2 − {1}, x)).

To prove this lemma we need the following formula for the characteristic polynomial of

M1 : M2.

Lemma 3.4.4. For the graphs M1 : M2 we have

φ(M1 : M2, x) = φ(M1, x)φ(M2 − u2, x) + φ(M1 − u1, x)φ(M2, x)− xφ(M1 − u1, x)φ(M2 −u2, x).

Proof. This is Corollary 3.3 in Chapter 4 of [30]. Another proof can be given by copying the

argument of Lemma 3.5.5.

Proof of Lemma 3.4.3. By the previous lemma we can apply the General Lemma for f(G, x) =

φ(G, x), g(G|v, x) = φ(G − v, x) and c1 = 0, c2 = 1, c3 = −x.

We have φ(K2, x) − xφ(K1, x) = (x2 − 1) − x2 = −1 and

φ(P3 − {1}, x) − φ(P3 − {2}, x) = (x2 − 1) − x2 = −1.

Finally,

xφ(Pk−1, x) − φ(Pk, x) = φ(Pk−2, x).

Hence

φ(T, x) − φ(T ′, x) = φ(Pk−2, x)(φ(H1, x) − xφ(H1 − {1}, x))(φ(H2, x) − xφ(H2 − {1}, x)).

From this one can easily deduce Theorem 3.4.1 as follows.
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Proof of Theorem 3.4.1. Note that from Theorem A.1.20 we have

(−i)nφ(ix) =

⌊n/2⌋∑

r=0

mr(G)xn−2r,

where i is the square root of −1. Hence

n∑

r=0

(mr(T ) − mr(T
′))xn−2r = (−i)n(φ(T, ix) − φ(T ′, ix)) =

= (−i)k−2φ(Pk−2, ix)((−i)a+1φ(H1, ix) − (−i)a+1(ix)φ(H1 − {1}, ix))·

·((−i)b+1φ(H2, ix) − (−i)b+1(ix)φ(H2 − {1}, ix)),

where |V (H1)| = a + 1, |V (H2)| = b + 1 and |V (T )| = |V (T ′)| = n = a + b + k. Note that

xφ(Hj − {1}, x) is the characteristic polynomial of the forest H∗
j which can be obtained from

Hj by deleting the edges incident to the vertex 1 (but we do not delete the vertex). Hence

n∑

r=0

(mr(T ) − mr(T
′))xn−2r =

=

(
n∑

r=0

mr(Pk−2)x
n−2r

) (
n∑

r=0

(mr(H1) − mr(H
∗
1 ))xn−2r

) (
n∑

r=0

(mr(H2) − mr(H
∗
2 ))xn−2r

)
.

Since mr(Hj) ≥ mr(H
∗
j ), all the coefficients of the right hand side are non-negative. Hence

mr(T ) ≥ mr(T
′).

Remark 3.4.5. Theorem 3.1.4 can be deduced from Lemma 3.4.3 as well.

3.5 The Laplacian characteristic polynomial

Let L(G) be the Laplacian matrix of G (so L(G)ii = di and −L(G)ij is the number of edges

between i and j if i 6= j); recall that the Laplacian polynomial of the graph G is the polynomial

L(G, x) = det(xI −L(G)), i.e., it is the characteristic polynomial of the Laplacian matrix of G.

Let L(G|u) be the matrix obtained from L(G) by deleting the row and the column corre-

sponding to the vertex u (warning: this is not L(G − u) because of the diagonal elements).

Furthermore, let L(G|u, x) denote the characteristic polynomial of L(G|u).

We will subsequently use the following two classical facts, for details see [32] or the Appendix.

Statement A.2.2. The eigenvalues of L(G) are non-negative real numbers, at least one of

them is 0. Hence we can order them as λ1 ≥ λ2 ≥ · · · ≥ λn = 0.
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Corollary A.2.3. The Laplacian polynomial can be written as

L(G, x) = xn − an−1x
n−1 + an−2x

n−2 − · · · + (−1)n−1a1x,

where a1, a2, . . . , an−1 are positive integers.

Recall that we also use the notation λn−1(G) = a(G) for the so-called algebraic connectivity

of the graph G. We have also introduced the notation θ(G) for the Laplacian spectral radius

λ1(G).

The main result of this section is the following.

Theorem 3.5.1. The generalized tree shift decreases the coefficients of the Laplacian polynomial

in absolute value, i.e., if T ′ is obtained from T by a generalized tree shift then

L(T, x) ≫ L(T ′, x)

or in other words ak(T ) ≥ ak(T
′) for k = 1, . . . , n − 1. Furthermore, θ(T ′) ≥ θ(T ) and

a(T ′) ≥ a(T ).

Corollary 3.5.2. Let L(G, x) =
∑n

k=1(−1)n−kak(G)xk. Then

ak(Pn) ≥ ak(T ) ≥ ak(Sn).

for any tree T on n vertices and k = 1, . . . , n − 1. Furthermore,

θ(Pn) ≤ θ(T ) ≤ θ(Sn),

and

a(Pn) ≤ a(T ) ≤ a(Sn).

Remark 3.5.3. All parts of Corollary 3.5.2 are known. The first statement concerning the

coefficients of the Laplacian polynomial was conjectured in [36] and was proved by B. Zhou and

I. Gutnam [68] by the aid of a surprising connection between the Laplacian polynomial and

the adjacency polynomial of trees. A different proof was given by B. Mohar [49] using graph

transformations.

The maximality of the star concerning the Laplacian spectral radius is trivial since θ(Sn) = n,

because Sn is not connected and this is the maximal value for a graph on n vertices. The

minimality of the path is proved in [37].

The first statement concerning the algebraic connectivity (the minimality of the path) was

proved by Grone and Merris [34], the second statement was proved by Merris [48]. Guo [35]

gave new proofs for both parts by using graph transformations.

Again we will prove a product formula for L(T, x) − L(T ′, x).
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Lemma 3.5.4. With our usual notation we have

L(T, x) − L(T ′, x) =
1

x
L(Pk−1, x)(L(H1, x) − xL(H1|1, x))(L(H2, x) − xL(H2|k, x)).

Lemma 3.5.5. As usual, let M1 : M2 denote the graph obtained from M1,M2 by identifying the

vertices u1 and u2. Then

L(M1 : M2, x) = L(M1, x)L(M2|u2, x) + L(M2, x)L(M1|u1, x)−

−xL(M1|u1, x)L(M2|u2, x).

Proof. Let |V (M1)| = n1 and |V (M2)| = n2. Furthermore, let d1 and d2 be the degree of u1 and

u2 in M1 and M2, respectively.

Let the rows and columns of A = L(M1 : M2) ordered in such a way that the first n1 rows

and columns correspond to the vertices of M1, while the last n2 rows and columns correspond

to the vertices of M2. Hence, the n1-th row and column correspond to the vertex u1 = u2.

The key observation is that if we consider the expansion of det(xI−A), none of the non-zero

terms contain ai,n1 , an1,j together, where i < n1 < j. Indeed, a non-zero product should contain

n1 − 1 non-zero elements from the first n1 − 1 columns and together with ai,n1 , an1,j, this would

be n1 + 1 elements from the first n1 rows.

Similarly, none of the non-zero terms contain ai,n1 , an1,j together, where i > n1 > j.

So we can divide the non-zero terms of det(xI−A) into three classes. The first class contains

those terms in which x − an1,n1 = x − d1 − d2 appears. Their sum is clearly

(x − d1 − d2)L(M1|u1, x)L(M2|u2, x).

The second class contains those non-zero terms which contain an element −ai,n1 where i < n1.

These terms should contain −an1,j for some j < n1. These terms contribute det(B1)L(M2|u2, x)

to the determinant, where B1 is the matrix obtained from xI − L(M1) by replacing x − an1,n1

with 0. Then

det(B1) = L(M1, x) − (x − d1)L(M1|u1, x).

Finally, the third class contain those non-zero terms which contain an element −ai,n1 , where

i > n1. These terms should contain −an1,j for some j > n1. These terms contribute the sum

det(B2)L(M1|u1, x) where B2 is the matrix obtained from xI − L(M2) by replacing x − an1,n1

with 0. Then

det(B2) = L(M2, x) − (x − d2)L(M2|u2, x).

Putting all these together we get

L(M1 : M2, x) = (x − d1 − d2)L(M1|u1, x)L(M2|u2, x)+

+(L(M1, x) − (x − d1)L(M1|u1, x))L(M2|u2, x) + (L(M2, x) − (x − d2)L(M2|u2, x))L(M1|u1, x)

= L(M1, x)L(M2|u2, x) + L(M2, x)L(M1|u1, x) − xL(M1|u1, x)L(M2|u2, x).
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Proof of Lemma 3.5.4. By the previous Lemma we can apply the General Lemma with f(G, x) =

L(G, x), g(G|v, x) = L(G|v, x) and c2 = 1, c3 = −x.

In this case, L(K2, x)−xL(K2|1, x) = x(x−2)−x(x−1) = −x and L(P3|1, x)−L(P3|2, x) =

((x− 2)(x− 1)− 1)− (x− 1)2 = −x. Furthermore, expanding the matrix of L(Pk, x) according

to the first row, we have

L(Pk, x) = (x − 1)L(Pk−1|1, x) − L(Pk−2|1, x).

Hence

L(Pk, x) − xL(Pk−1, x) = −L(Pk−1|1, x) − L(Pk−2, x) = −L(Pk−1, x).

Putting all together we get that

L(T, x) − L(T ′, x) =
1

x
L(Pk−1, x)(L(H1, x) − xL(H1|1, x))(L(H2, x) − xL(H2|k, x)).

Now we are ready to prove Theorem 3.5.1. For the sake of convenience we repeat the

corresponding part of the theorem which we prove.

Theorem 3.5.1 (First part.)

L(T, x) ≫ L(T ′, x).

Proof. Let |V (A)| = a, |V (B)| = b, then |V (T )| = |V (T ′)| = a+b+k. Because of the alternating

sign of the coefficients we have to prove that all the coefficients of

(−1)a+b+k(L(T,−x) − L(T ′,−x))

are non-negative. Let L̂(G, x) = (−1)|V (G)|L(G,−x) and L̂(G|v, x) = (−1)|V (G)|−1L(G,−x),

then L̂(G, x) and L̂(G|v, x) have only non-negative coefficients.

By Lemma 3.5.4 we have

L̂(T, x) − L̂(T ′, x) = (−1)a+b+k(L(T,−x) − L(T ′,−x)) =

= (−1)a+b+k L(Pk−1,−x)

−x
(L(H1,−x) + xL(H1|1,−x))(L(H2,−x) + xL(H2|1,−x)) =

=
(−1)k−1L(Pk−1,−x)

x
((−1)a+1L(H1,−x) − x(−1)aL(H1|1,−x))·

·((−1)b+1L(H2,−x) − x(−1)bL(H2|1,−x)) =

=
1

x
L̂(Pk−1, x)(L̂(H1, x) − xL̂(H1|1, x))(L̂(H2, x) − xL̂(H2|1, x)).

We know that all coefficients of L̂(Pk−1, x) are non-negative. We show that the coefficients of the

polynomials L̂(H1, x) − xL̂(H1|1, x) and L̂(H2, x) − xL̂(H2|1, x) are also non-negative. Clearly,

it is enough to show it for the former one.
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For any matrix B we have

f(B, x) = det(xI − B) =
n∑

r=0

(−1)n−r(
∑

|S|=r

det(BS))xr,

where the matrix BS is obtained from by deleting the rows and columns corresponding to the

elements of the set S. In other words,

f̂(B, x) = (−1)n det(−xI − B) = det(xI + B) =
n∑

r=0

(
∑

|S|=r

det(BS))xr.

Hence

L̂(H1, x) − xL̂(H1|1, x)) =
n∑

r=0




n∑

|S|=r,”1”/∈S

det(L(H1)S)


xr.

Since L(H1) is a positive semidefinite matrix, all subdeterminants of it are non-negative. This

proves that the coefficients are indeed non-negative.

Remark 3.5.6. We have already shown that the generalized tree shift decreases the Wiener-

index of a tree (see Theorem 3.1.1). One can consider Theorem 3.5.1 as a generalization of this

fact since the signless coefficient of x2 in the Laplacian polynomial is just the Wiener-index ([66]

or Corollary A.2.10 in the Appendix).

Theorem 3.5.1 (Second part.)

a(T ′) ≥ a(T ).

For the proof some preparation is needed. We will use the following fundamental lemmas.

These are proved in the Appendix under the name Lemma A.2.14 and Corollary A.2.16.

Lemma A.2.14. (Interlacing lemma) Let G be a graph and e an edge of it. Let λ1 ≥ λ2 ≥
. . . λn−1 ≥ λn = 0 be the roots of L(G, x) and let τ1 ≥ τ2 ≥ . . . τn−1 ≥ τn = 0 be the roots of

L(G − e, x). Then

λ1 ≥ τ1 ≥ λ2 ≥ τ2 ≥ · · · ≥ λn−1 ≥ τn−1.

Corollary A.2.16. Let T1 be a tree and T2 be its subtree. Then a(T1) ≤ a(T2).

For the sake of simplicity, we introduce the polynomials

h(G, x) = (−1)n−1 1

x
L(G, x) and r(G, x) = (−1)n−1L(G|u, x),

where G is a graph on n vertices. It will be convenient to use the notation a(p(x)) for the

smallest positive root of the polynomial p(x).
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The slight advantage of these polynomials is that they are non-negative at 0, more precisely

r(G, 0) is the number of spanning trees while h(G, 0) is n times the number of spanning trees.

So for a tree T we have h(T, 0) = n and r(T, 0) = 1.

Now we are ready to prove the second part of Theorem 3.5.1.

Proof. Let us rewrite the formula of Lemma 3.5.4 in terms of the polynomials h and r. For

the sake of brevity, let h(Hi, x) = hi(x) and r(Hi, x) = ri(x). Since V (H1) = a + 1, V (H2) =

b + 1, V (Pk) = k we have

(−1)a+b+kx(h(T, x) − h(T ′, x)) =

(−1)k−1h(Pk−1, x)((−1)axh1(x) − x(−1)ar1(x))((−1)bxh2(x) − x(−1)br2(x)).

Hence

h(T ′, x) = h(T, x) + xh(Pk−1, x)(h1(x) − r1(x))(h2(x) − r2(x)).

Since all of these polynomials are positive in 0 we have

a(T ′) ≥ min(a(T ), a(Pk−1), a(h1 − r1), a(h2 − r2)).

We only need to show that

min(a(T ), a(Pk−1), a(h1 − r1), a(h2 − r2)) = a(T ).

Clearly, a(Pk−1) ≥ a(T ) because Pk−1 is a subtree of T , so we can apply Corollary A.2.16. Next

we show that a(h1 − r1) ≥ a(T ). In fact, it will turn out that a(h1 − r1) ≥ a(h1); but then we

are done since H1 is a subtree of T so a(h1) ≥ a(T ).

Now we prove that a(h1 − r1) ≥ a(h1). The roots of the polynomial h1 are the roots of

L(H1, x) without 0: λ1 ≥ · · · ≥ λa > 0. The roots of the polynomial r1 are the roots of

L(H1|1, x): λ′
1 ≥ · · · ≥ λ′

a > 0. By the interlacing theorem for symmetric matrices, we have

λ1 ≥ λ′
1 ≥ λ2 ≥ λ′

2 ≥ · · · ≥ λa ≥ λ′
a > 0.

Assume for a moment that these roots are all different. Since h1 − r1 is positive in 0, namely

h1(0) − r1(0) = (a + 1) − 1 = a we get that h1 − r1 is positive in the interval [λ′
j, λj] if a − j is

odd and negative if a − j is even, because the sign of h1 and r1 are different at these intervals.

So there must be a root of h1 − r1 in the interval (λj, λ
′
j−1) for j = 1, . . . , a − 1. But h1 − r1

is a polynomial of degree a − 1, so we have found all of its roots. Hence there cannot be any

root in the interval [0, λa]. Clearly, this argument with a slight modification still holds if some

roots coincide: one can consider the intervals of length 0 as infinitely small intervals. Hence

a(h1 − r1) ≥ a(h1) and similarly a(h2 − r2) ≥ a(h2). Hence a(T ′) ≥ a(T ).
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Theorem 3.5.1 (Third part.)

θ(T ′) ≥ θ(T ).

Disclaimer: the proof of this part is very similar to the proof of the previous part.

Here we need the other corollary of Lemma A.2.14.

Corollary A.2.15. Let G2 be a subgraph of G1 then θ(G2) ≤ θ(G1).

Proof. We will show that

L(T, x) − L(T ′, x) =
1

x
L(Pk−1, x)(L(H1, x) − xL(H1|1, x))(L(H2, x) − xL(H2|k, x)) ≥ 0

for x ≥ θ(T ′) implying that θ(T ′) ≥ θ(T ).

It is enough to show that L(H1, x) − xL(H1|1, x) ≤ 0 for x ≥ θ(H1). Then by sym-

metry, we have L(H2, x) − xL(H2|k, x) ≤ 0 for x ≥ θ(H2). Thus L(T, x) − L(T ′, x) ≥ 0

for x ≥ max(θ(Pk), θ(H1), θ(H2)). Since Pk, H1, H2 are all subgraphs of T ′ we have θ(T ′) ≥
max(θ(Pk), θ(H1), θ(H2)) by Corollary A.2.15. Hence L(T, x) − L(T ′, x) ≥ 0 for x ≥ θ(T ′).

Now let us prove that L(H1, x) − xL(H1|1, x) ≤ 0 for x ≥ θ(H1). First of all, let us

observe that L(H1, x)−xL(H1|1, x) is a polynomial of degree a with main coefficient −d1, where

|V (H1)| = a + 1 and d1 is the degree of the vertex 1. Let the roots of the polynomial L(H1, x)

be λ1 ≥ · · · ≥ λa = λa+1 = 0. The roots of the polynomial L(H1|1, x) are λ′
1 ≥ · · · ≥ λ′

a ≥ 0.

By the interlacing theorem for symmetric matrices, we have

λ1 ≥ λ′
1 ≥ λ2 ≥ λ′

2 ≥ · · · ≥ λa ≥ λ′
a ≥ 0.

Assume for a moment that these roots are all different. Then L(H1, x)−xL(H1|1, x) is positive

in the interval [λ′
j, λj] if j is odd and negative if j is even since both terms have the same sign.

Hence there must be a root in the interval (λj+1, λ
′
j) for j = 1, . . . , a − 1 and 0 is also a root

of the polynomial L(H1, x) − xL(H1|1, x). This way we find all roots of this polynomial, thus

L(H1, x)− xL(H1|1, x) ≤ 0 if x > λ′
1, in particular if x > λ1. Clearly, this argument also works

if some λi, λ
′
i coincide since the interlacing property still holds.

3.6 The independence polynomial

Recall that we define the independence polynomial as

I(G, x) =
n∑

k=0

(−1)kik(G)xk,

46



where ik(G) denotes the number of independent sets of size k and β(G) denotes the smallest

real root of I(G, x).

The main result of this section is the following.

Theorem 3.6.1. Let T be a tree and T ′ is a tree obtained from T by a generalized tree shift. Then

I(T ′, x) ≫ I(T, x) or in other words, ik(T
′) ≥ ik(T ) for all k ≥ 1. Furthermore, β(T ′) ≤ β(T ).

The first statement of the theorem is quite straightforward. The second statement needs

some preparation, more precisely the preparation of the suitable monotonicity property. This

is done in the Appendix; we will quote the statements from the Appendix which we will use.

Fact 1. (Statement A.1.4 and Remark A.1.5, [44]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − v, x) − xI(G − N [v], x),

where v is an arbitrary vertex of the graph G.

Fact 2. (Statement A.1.4 and Remark A.1.5, [44]) The polynomial I(G, x) satisfies the recursion

I(G, x) = I(G − e, x) − x2I(G − N [u] − N [v], x),

where e = uv is an arbitrary edge of the graph G.

The following definition –together with the statements following it– will be the main tool to

prove the second statement of Theorem 3.6.1. These statements are proved in the Appendix in

a bit more general framework.

Definition A.1.6. Let G1 ≻ G2 if I(G2, x) ≥ I(G1, x) on the interval [0, β(G1)].

Statement A.1.7. The relation ≻ is transitive on the set of graphs and if G1 ≻ G2 then

β(G1) ≤ β(G2).

Statement A.1.10. If G2 is a subgraph of G1 then G1 ≻ G2.

Lemma 3.6.2. We have

I(M1 : M2, x) = I(M1 − u1, x)I(M2 − u2, x) − xI(M1 − N [u1], x)I(M2 − N [u2]).

Equivalently,

I(M1 : M2) = I(M1)I(M2) + xI(M1)I(M2 − N [u2]) + xI(M1 − N [u1])I(M2)+

+(x2 − x)I(M1 − N [u1])I(M2 − N [u2]).
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Proof. In the first formula we simply separated those terms which contain the vertex u1 = u2

(second term) from the ones not containing u1 = u2 (first term).

The second formula simply follows from the first one by using the identity

I(Mj − uj, x) = I(Mj, x) + xI(Mj − N [uj], x)

for j = 1, 2.

Lemma 3.6.3. Let T be a tree and T ′ be obtained from T by a generalized tree shift. Then with

the usual notation we have

I(T, x) − I(T ′, x) = xI(Pk−3)(I(A, x) − I(A − A0, x))(I(B, x) − I(B − B0, x)),

where we define I(P0, x) = I(P−1, x) = 1.

Proof. By the previous lemma we can use the General Lemma applied to f(G, x) = I(G, x) and

g(G|v, x) = I(G − N [v], x) and c2 = x, c3 = x2 − x.

Then I(P3 −N [1], x)− I(P3 −N [2], x) = (1− x)− 1 = −x and xI(K2, x) + (x2 − x)I(K2 −
N [1], x) = x(1 − 2x) + (x2 − x)1 = −x2. Furthermore,

xI(Pk) + (x2 − x)I(Pk−2, x) = x(I(Pk−1, x) − xI(Pk−2, x)) + (x2 − x)I(Pk−2, x) =

= x(I(Pk−1, x) − I(Pk−2, x)) = −x2I(Pk−3, x).

Finally,

x(I(H1 − 1, x) + xI(H1 − N [1], x)) + (x2 − x)I(H1 − N [1], x) =

= x(I(H1 − 1, x) − I(H1 − N [1], x) = x(I(A, x) − I(A − A0, x)).

Similar statement holds for xI(H2, x) + (x2 − x)I(H2 − N [1], x). Putting all together we get

that

I(T, x) − I(T ′, x) = xI(Pk−3, x)(I(A, x) − I(A − A0, x))(I(B, x) − I(B − B0, x)).

Now we are ready to prove Theorem 3.6.1.

Theorem 3.6.1. Let T be a tree and T ′ be a tree obtained from T by a generalized tree shift.

Then I(T ′, x) ≫ I(T, x) or in other words ik(T
′) ≥ ik(T ) for all k ≥ 1. Furthermore, T ′ ≻ T

and so β(T ′) ≤ β(T ).

Proof. By Lemma 3.6.3 we have

I(T ′,−x) − I(T,−x) = xI(Pk−3,−x)(I(A,−x) − I(A − A0,−x))(I(B,−x) − I(B − B0,−x)).
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Since on the left hand side we multiply polynomials of positive coefficients, we have I(T ′, x) ≫
I(T, x).

Now we prove the second statement. Since A − A0 is a subgraph of A we have

I(A, x) − I(A − A0, x) ≤ 0

on the interval [0, β(A)]. Similarly,

I(B, x) − I(B − B0, x) ≤ 0

on the interval [0, β(B)]. Finally I(Pk−3, x) ≥ 0 on the interval [0, β(T ′)] since T ′ ≻ Pk−3

because Pk−3 is a subgraph of T ′. It is also true that β(A), β(B) ≥ β(T ′) because of the same

reason. Hence

I(T, x) − I(T ′, x) = xI(Pk−3)(I(A, x) − I(A − A0, x))(I(B, x) − I(B − B0, x)) ≥ 0

on the interval [0, β(T ′)], i.e., we have T ′ ≻ T (and so β(T ′) ≤ β(T )).

3.7 Edge cover polynomial

The concept of the edge cover polynomial was introduced by Saieed Akbari and Mohammad

Reza Oboudi [1]. The edge cover polynomial is defined as follows.

Definition 3.7.1. Let G be a graph on n vertices and m edges. Let ek(G) denote the number

of ways one can choose k edges that cover all vertices of the graph G. We call the polynomial

E(G, x) =
m∑

k=1

ek(G)xk

the edge cover polynomial of the graph G. Clearly, if the graph G has an isolated vertex then

the edge cover polynomial is 0.

Let ξ(G) denote the smallest real root of the edge cover polynomial.

Unfortunately, the parameter ξ(G) is not a monotone parameter of graphs, not even for

trees. Surprisingly, in spite of this fact, one can use the generalized tree shift to prove that the

path and the star are the extremal cases. (Although, the star is not the only tree for which

ξ(T ) = 0.)

Theorem 3.7.2. Let T be a tree on n vertices. Then

ξ(Pn) ≤ ξ(T ) ≤ ξ(Sn).

Furthermore, for any 1 ≤ k ≤ n − 1 we have

ek(Sn) ≤ ek(T ) ≤ ek(Pn).
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As usual, we prove a lemma connecting E(T, x) and E(T ′, x).

Lemma 3.7.3. Let T be a tree and T ′ be the tree obtained from the tree T by a generalized tree

shift. Then

E(T, x) − E(T ′, x) =
1

x
E(Pk, x)E(H1, x)E(H2, x).

Lemma 3.7.4.

E(M1 : M2) = E(M1)E(M2) + E(M1)E(M2 − u2) + E(M1 − u1)E(M2).

Proof. The terms of E(M1 : M2) are separated according to the vertex u1 = u2 is covered in

the graph M1, M2 or both.

Proof of Lemma 3.7.3. According to the previous lemma we can apply the General Lemma to

f(G, x) = E(G, x) and g(G|v, x) = E(G − v, x) and c2 = 1, c3 = 0.

Then E(P3 − 1, x) −E(P3 − 2, x) = x− 0 = x and c2E(K2, x) + c3E(K2 − 1, x) = x. Hence

E(T, x) − E(T ′, x) =
1

x
E(Pk, x)E(H1, x)E(H2, x).

Proof of Theorem 3.7.2. Since all the coefficients of the edge cover polynomial are non-negative

we have ξ(T ) ≤ 0 = ξ(Sn). (Note that E(Sn, x) = xn−1.)

To prove the extremality of the path, we make the observation that

E(Pn, x) =
n∑

k=0

(
n − 2 − k

k

)
xn−1−k.

Indeed, E(Pn, x) = x(E(Pn−1, x) + E(Pn−2, x)) and E(P1, x) = 0, E(P2, x) = x. Thus E(Pn, x)

is a simple transform of the Chebysev polynomial of the second kind. This implies that

ξ(Pn) = −4 cos2 π

n − 1

if n ≥ 3. In particular, −ξ(Pn) > −ξ(Pn−1) > · · · > −ξ(P2).

Let λ ≥ −ξ(Pn) and set c(T ) = (−1)n−1E(T,−λ). Clearly, c(Pn) > 0. We show that for

all tree on n vertices we have c(T ) ≥ c(Pn) > 0. We prove it by induction on the number of

vertices. By Lemma 3.7.3 we have

c(T ′) − c(T ) =
1

λ
c(Pk)c(H1)c(H2).

By the induction hypothesis all terms on the right hand side are positive; indeed, c(H1) >

c(Pa+1) > 0 because λ > −ξ(Pn) > −ξ(Pa+1). Thus c(T ′) > c(T ). Since the smallest element

of the poset induced by the generalized tree shift is the path on n vertices, this implies that

c(T ) > c(Pn) indeed holds. Hence E(T, x) has no root in the interval (−∞, ξ(Pn)).

The second claim is trivial from Lemma 3.7.3 and from the fact that the star is the largest,

the path is the smallest element of the induced poset of the generalized tree shift.
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Remark 3.7.5. Although, we have no monotonicity for ξ(T ) in general, the weak monotonicity

for the paths was enough to prove the statement.

In [21] one can find a strengthening of Theorem 3.7.2.

3.8 Walks in trees

In this section we prove Theorem 3.8.6 on the number Wℓ(G) of closed walks of length ℓ which

was already mentioned in the introduction. The importance of the parameter Wk(G) lies in the

fact that

Wk(G) = TrAk =
n∑

i=1

µk
i ,

where the µi’s (i = 1, . . . , n) are the eigenvalues of the adjacency matrix A.

To prove our result, we need some preparation.

Definition 3.8.1. Let Ĝ1 be the tree consisting of a path on k vertices and two vertices adjacent

to one of the endpoints of the path. Let Ĝ2 be the tree consisting of a path on k vertices and

two vertices which are adjacent to different endpoints of the path; this is simply a path on k +2

vertices. We will refer to these graphs as the reduced graphs of the generalized tree shift. (See

Figure 3.4.)

Notation: The vertices of the path in each reduced graph will be denoted by 1, 2, . . . , k. The

other two vertices are a and b. In Ĝ1 vertex 1 will be adjacent to a and b, in Ĝ2 vertex 1 will

be adjacent to vertex a and vertex k will be adjacent to vertex b.

1 2 kk−1. . .

b

a

1 2 kk−1. . .a b

Figure 3.4: Reduced graphs of the generalized tree shift.

Definition 3.8.2. Let R(ℓ, i, j,m, n) be the set of those walks of length ℓ in Ĝ1 which start

at vertex i, finish at vertex j and visit vertex a exactly m times, vertex b exactly n times.

Similarly let D(ℓ, i, j,m, n) be the set of those walks of length ℓ in Ĝ2 which start at vertex i,

finish at vertex j and visit vertex a exactly m times, vertex b exactly n times. The cardinality of

R(ℓ, i, j,m, n) and D(ℓ, i, j,m, n) are denoted by R(ℓ, i, j,m, n) and D(ℓ, i, j,m, n), respectively.

Symmetry properties of the function R and D. Since we can ”reflect” any walk of Ĝ1 in

the ”horizontal axis” of Ĝ1, i.e., we can exchange the a’s and b’s in any walk we have

R(ℓ, i, j,m, n) = R(ℓ, i, j, n,m)
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for all ℓ, i, j,m, n.

Similarly, we can ”reflect” any walk of Ĝ2 in the ”vertical symmetry axis” of Ĝ2 and so we

have

D(ℓ, i, j,m, n) = D(ℓ, k + 1 − i, k + 1 − j, n,m)

for all ℓ, i, j,m, n.

Lemma 3.8.3. R(ℓ, 1, j,m, n) ≥ D(ℓ, 1, j,m, n), where 1 ≤ j ≤ k.

Proof. First we prove the statement in the case m = 0, j = k. Let w1w2 . . . wℓ+1 be a walk from

1 to k in Ĝ2 in which b occurs n times. Let us define vi = f(wi) as follows:

f(wi) =

{
k + 1 − s if wℓ+2−i = s,

b if wℓ+2−i = b.

Then v1v2 . . . vl+1 is a walk of length ℓ from 1 to k in Ĝ1 which contains b exactly n times. Hence

we have proved that

R(ℓ, 1, k, 0, n) = D(ℓ, 1, k, 0, n)

since this algorithm gives a bijection between R(ℓ, 1, k, 0, n) and D(ℓ, 1, k, 0, n).

Now let j be arbitrary, but still m = 0, i. e., the walks do not visit a. If n = 0 then

R(ℓ, 1, j, 0, 0) = D(ℓ, 1, j, 0, 0)

trivially, because of the identical map between the vertices of 1, 2 . . . , k of Ĝ1 and Ĝ2. If n ≥ 1

then a walk w1w2 . . . wℓ+1 in Ĝ2 surely visit the vertex k, let the time of the last visit of the

vertex k be t. Then let us encode w1w2 . . . wt by the function f and let v1v2 . . . vtwt+1 . . . wℓ+1

be the corresponding walk to w1 . . . wl+1 in Ĝ1. This way we managed to give an injection from

D(ℓ, 1, j, 0, n) to R(ℓ, 1, j, 0, n) . (Note: this mapping is no more bijective: those walks in Ĝ1

which do not visit k are not in the image of the mapping.)

Now let us consider the general case. Let us do the following: repeat those sequences of

the walk w1 . . . wℓ+1 of D(ℓ, 1, j, n,m), where the walk has the form 1a1a . . . a1 and between

two parts of this form we encode the same way as in the previous case. Then it is trivially an

injective mapping from D(ℓ, 1, j,m, n) to R(ℓ, 1, j,m, n).

Hence R(ℓ, 1, j,m, n) ≥ D(ℓ, 1, j,m, n).

Lemma 3.8.4. For all 1 ≤ i, j ≤ k and for all non-negative integers ℓ,m, n the following

inequality holds

R(ℓ, i, j,m, n) + R(ℓ, k + 1 − i, k + 1 − j,m, n) ≥

≥ D(ℓ, i, j,m, n) + D(ℓ, k + 1 − i, k + 1 − j,m, n).
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Proof. We prove it by induction on ℓ. The claim is trivial for ℓ = 0, 1.

We can assume that i ≤ k + 1 − i. We distinguish two cases.

Case 1. Assume i ≥ 2. Let w1w2 . . . wℓ+1 be a walk of R(ℓ, i, j,m, n), i.e., w1 = i, wℓ+1 = j.

Then w2 = i + 1 or w2 = i − 1, thus we can decompose the set R(ℓ, i, j,m, n) into the sets

R(ℓ− 1, i− 1, j,m, n) and R(ℓ− 1, i + 1, j,m, n) respected to w2 . . . wℓ+1 starting from i− 1 or

i + 1. Similarly, we can decompose the other sets with respect to their first step.

R(ℓ, i, j,m, n) + R(ℓ, k + 1 − i, k + 1 − j,m, n) =

R(ℓ − 1, i − 1, j,m, n) + R(ℓ − 1, i + 1, j,m, n)+

+R(ℓ − 1, k − i, k + 1 − j,m, n) + R(ℓ − 1, k + 2 − i, k + 1 − j,m, n)

and similarly,

D(ℓ, i, j,m, n) + D(ℓ, k + 1 − i, k + 1 − j,m, n) =

D(ℓ − 1, i − 1, j,m, n) + D(ℓ − 1, i + 1, j,m, n)

+D(ℓ − 1, k − i, k + 1 − j,m, n) + D(ℓ − 1, k + 2 − i, k + 1 − j,m, n).

By induction we have

R(ℓ − 1, i − 1, j,m, n) + R(ℓ − 1, k + 2 − i, k + 1 − j,m, n) ≥

≥ D(ℓ − 1, i − 1, j,m, n) + D(ℓ − 1, k + 2 − i, k + 1 − j,m, n)

and

R(ℓ − 1, i + 1, j,m, n) + R(ℓ − 1, k − i, k + 1 − j,m, n) ≥

≥ D(ℓ − 1, i + 1, j,m, n) + D(ℓ − 1, k − i, k + 1 − j,m, n).

By adding up the two inequalities we get the desired inequality

R(ℓ, i, j,m, n) + R(ℓ, k + 1 − i, k + 1 − j,m, n) ≥

≥ D(ℓ, i, j,m, n) + D(ℓ, k + 1 − i, k + 1 − j,m, n).

Case 2. Assume i = 1. Then we see that

R(ℓ, 1, j,m, n) + R(ℓ, k, k + 1 − j,m, n) =

= R(ℓ − 1, a, j,m, n) + R(ℓ − 1, b, j,m, n)+

+R(ℓ − 1, 2, j,m, n) + R(ℓ, k − 1, k + 1 − j,m, n)

while

D(ℓ, 1, j,m, n) + D(ℓ, k, k + 1 − j,m, n) =
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= D(ℓ − 1, a, j,m, n) + D(ℓ − 1, 2, j,m, n)

+D(ℓ − 1, b, k + 1 − j,m, n) + D(ℓ − 1, k − 1, k + 1 − j,m, n).

By induction we have

R(ℓ − 1, 2, j,m, n) + R(ℓ − 1, k − 1, k + 1 − j,m, n) ≥

≥ D(ℓ − 1, 2, j,m, n) + D(ℓ − 1, k − 1, k + 1 − j,m, n).

Furthermore, by Lemma 3.8.3 we have

R(ℓ − 1, a, j,m, n) = R(ℓ − 2, 1, j,m − 1, n) ≥

≥ D(ℓ − 2, 1, j,m − 1, n) = D(ℓ − 1, a, j,m, n)

and by the symmetry properties and Lemma 3.8.3,

R(ℓ − 1, b, j,m, n) = R(ℓ − 2, 1, j,m, n − 1) = R(ℓ − 2, 1, j, n − 1,m) ≥

D(ℓ − 2, 1, j, n − 1,m) = D(ℓ − 2, k, k + 1 − j,m, n − 1) = D(ℓ − 1, b, k + 1 − j,m, n).

By adding up the three inequalities we obtain the required inequality

R(ℓ, 1, j,m, n) + R(ℓ, k, k + 1 − j,m, n) ≥

≥ D(ℓ, 1, j,m, n) + D(ℓ, k, k + 1 − j,m, n).

Hence we completed the proof of the inequality.

Corollary 3.8.5. The following inequalities hold

R(ℓ, a, a,m, n) ≥ D(ℓ, a, a,m, n)

and

R(ℓ, b, b,m, n) ≥ D(ℓ, b, b,m, n)

and
k∑

i=1

R(ℓ, i, i,m, n) ≥
k∑

i=1

D(ℓ, i, i,m, n).

Proof. To obtain the first inequality we use Lemma 3.8.3.

R(ℓ, a, a,m, n) = R(ℓ − 2, 1, 1,m − 2, n) ≥

≥ D(ℓ − 2, 1, 1,m − 2, n) = D(ℓ, a, a,m, n).

Similarly, by Lemma 3.8.3 and the symmetry properties we have

R(ℓ, b, b,m, n) = R(ℓ − 2, 1, 1,m, n − 2) = R(ℓ − 2, 1, 1, n − 2,m) ≥
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≥ D(ℓ − 2, 1, 1, n − 2,m) = D(ℓ − 2, k, k,m, n − 2) = D(ℓ, b, b,m, n).

To obtain the third inequality we put i = j into the previous lemma

R(ℓ, i, i,m, n) + R(ℓ, k + 1 − i, k + 1 − i,m, n) ≥

≥ D(ℓ, i, i,m, n) + D(ℓ, k + 1 − i, k + 1 − i,m, n).

Summing these inequalities for i = 1, . . . , k, and dividing by two we get

k∑

i=1

R(ℓ, i, i,m, n) ≥
k∑

i=1

D(ℓ, i, i,m, n).

Theorem 3.8.6. The proper generalized tree shift increases the number of closed walks of length

t.

Proof. Let G2 be a tree and G1 a tree obtained from G2 by a generalized tree shift. We give

an injective mapping from the closed walks of length t of G2 to the closed walks of length t of

G1. We can decompose a closed walk of G2 into parts which are entirely in A, entirely in B or

entirely in the path {1, 2, . . . , k} of G2. By substituting a or b instead of the parts walking in

A, respectively in B we get a walk of Ĝ2. By the previous corollary we know that there is an

injective mapping from the closed walks of length ℓ with given number of a’s and b’s of Ĝ2 to

the closed walks of length ℓ with given number of a’s and b’s of Ĝ1. Moreover, we can ensure

that those walks which start with a or b have the image starting with a or b, respectively. Now

by substituting back the a’s and b’s by the parts of walks going in A or B, respectively, we get

an injective mapping from the closed walks of length t of G2 to the closed walks of length t of

G1.

Vladimir Nikiforov observed (private communication) that Theorem 3.8.6 already implies

known and new results in a simple manner. We can give a new proof of the theorem that the

generalized tree shift increases the spectral radius.

Corollary 3.8.7. The proper generalized tree shift increases the spectral radius.

Proof. Let T be a tree and T ′ a tree obtained from T by a generalized tree shift. Then

µ(T ′) = lim
k→∞

W2k(T
′)1/(2k) ≥ lim

k→∞
W2k(T )1/(2k) = µ(T )

by the identity W2k =
∑n

i=1 µ2k
i and Theorem 3.8.6.

Definition 3.8.8. [26, 27] The Estrada index of the graph G is defined as the sum

EE(G) =
n∑

i=1

eµi .
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Corollary 3.8.9. The proper generalized tree shift increases the Estrada index.

Proof. We have
n∑

i=1

eµi =
n∑

i=1

∞∑

t=0

µt
i

t!
=

∞∑

t=0

1

t!

k∑

i=1

µt
i =

∞∑

t=0

Wt

t!
,

proving the statement.

Corollary 3.8.10. The path minimizes, the star maximizes the Estrada index among all trees

on n vertices.

Remark 3.8.11. The statement in Corollary 3.8.10 concerning the Estrada index was conjec-

tured in the paper [23].

Remark 3.8.12. The author recently learned that H. Deng [24] also proved the conjecture

concerning the Estrada index. His proof goes in a very similar fashion. He uses two different

transformations for proving the minimality of the path and the maximality of the star; both

transformations are special cases of the generalized tree shift.

3.9 The generalized tree shift and related transforma-

tions of trees

Originally, the author developed the generalized tree shift to overcome a certain weakness of

the Kelmans transformation. However, it turned out that the generalized tree shift is indeed

the generalization of many transformations for trees found in the literature. In this section we

survey some of them.

In [46] L. Lovász and J. Pelikán proved that the star has the largest, the path has the

smallest spectral radius among trees on n vertices. Their proof for settling the minimality of

the path used a certain transformation of trees. This transformation is nothing else than the

generalized tree shift applied in the case when the degree of the candidate vertex is 2, so it

moves one edge. We also mention that they used the same ordering for the polynomials that we

used for the independence polynomial and for the matching polynomial in the previous chapter.

In [49] Bojan Mohar defined the operation σ and π. Both transformations are special cases

of the generalized tree shift; more precisely, the inverse of π is the special case of the generalized

tree shift. In the language of the generalized tree shift, the inverse of π-transformation is no-

thing else than the generalized tree shift when H2 himself is a path. The σ-transformation is the

generalized tree shift when H2 is a star and k = 2 (so the path has no interior vertices). Surpris-

ingly, Hanyuan Deng [24] used exactly the same transformations for proving the extremality of

the star and the path at the Estrada index. In fact, he also solved the problem for the number

of closed walks as well. They needed two transformations, one for settling the extremality of

the star and one for settling the extremality of the path.
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In [35] Guo studied the algebraic connectivity of graphs, the transformation “separating an

edge” is the generalized tree shift applied to adjacent vertices x, y. (In fact, he defined it for

every graph, but Theorem 2.1 of [35] shows that it was useful only when the separated edge

was a cut edge.) In this paper Guo used another transformation also called “grafting an edge”.

This transformation is not the special case of the generalized tree shift, but surprisingly they

have a nontrivial common special transformation. In the language of the generalized tree shift

this special case is when the graph H2 is a path. Then the generalized tree shift acts as if the

graph H1 had been shifted from the end of a long path to the middle of this path. Guo showed

that this can be refined such a way that the graph H1 is closer and closer to the center of the

path the algebraic connectivity becomes greater and greater. This suggests that maybe one can

refine the poset induced by the generalized tree shift.

We mention that a more and more refined poset of trees could have a serious application. In

biology one often measures molecules by some parameter. In this case it is invaluable that the

star maximizes, the path minimizes this parameter since these are not the graph of molecules

in general. Still a graph transformation could be useful to compare molecules in a fast way or

to give a hint where to find the proper molecule.

3.10 Concluding remarks

In this section we collected the parameters of trees into a table which increase or decrease by

applying the generalized tree shift. The common property of this parameters is that they are

all monotone parameters of trees. In fact, most of them are monotone properties of all graphs.

We hope that the many examples could convince everybody that this transformation is much

more natural than it seems to be for the first sight. The simple form of the General Lemma is

also a clue of this naturality.

Parameter Change Maximum

1 largest eigenvalue of the adjacency matrix increasing star

2 coefficients of the adjacency characteristic polynomial decreasing path

3 number of closed walks of length ℓ (ℓ fix) increasing star

4 number of walks of length ℓ (ℓ fix) [5] increasing star

5 algebraic connectivity increasing star

6 largest real root of the Laplacian polynomial increasing star

7 coefficients of the Laplacian characteristic polynomials decreasing path

8 smallest real root of the independence polynomial decreasing path

9 coefficients of the independence polynomial increasing star

10 coefficients of the edge cover polynomial decreasing path
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3.11 Afterlife

The generalized tree shift gained some attention by Béla Bollobás and Mykhaylo Tyomkyin [5].

In their paper they gave a simpler proof of the result that the GTS increases the number of

closed walks of length ℓ. They also proved that the GTS increases the number of (arbitrary)

walks of length ℓ. (Although they used the name KC-transformation for the generalized tree

shift.) They also considered other extremal graph theoretic problems concerning trees.
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Chapter 4

Density Turán problem

This part is based on a joint work with Zoltán L. Nagy. The following problem was studied in

Zoltán L. Nagy’s master thesis [50]. A very closely related variant of this problem was mentioned

in the book Extremal Graph Theory [3] on page 324.

Given a simple, connected graph H, define the blown-up graph G[H] of H as follows. Replace

all vertices vi ∈ V (H) by a cluster Ai and connect vertices between the clusters Ai and Aj (not

necessarily all) if vi and vj were adjacent in H. As usual, we define the density between Ai and

Aj as

d(Ai, Aj) =
e(Ai, Aj)

|Ai||Aj|
,

where e(Ai, Aj) denotes the number of edges between the clusters Ai and Aj. We say that the

graph H is a transversal of G[H] if H is the subgraph of G[H] such that we have a homomorphism

ϕ : V (H) → V (G[H]) for which we have ϕ(vi) ∈ Ai for all vi ∈ V (H). We will also use the

terminology that H is the factor of G[H].

The density Turán problem asks to determine the critical edge density dcrit which ensures

the existence of the subgraph H of G[H] as a transversal. What does it mean? Assume that

for all e = (i, j) ∈ E(H) we have d(Ai, Aj) > dcrit then no matter how the graph G[H] looks

like, it induces the graph H such that vi ∈ Ai. On the other hand, for any d < dcrit there exists

a blown-up graph G[H] such that d(Ai, Aj) > d for all (i, j) ∈ E(H) and it does not contain

H as a transversal. Clearly, the critical edge density of the graph H is the largest one of the

critical edge densities of its components. Thus we can and will assume that H is a connected

graph throughout this chapter.

It will turn out that it is useful to consider the following more general problem. Assume

that a density γe is given for every edge e ∈ E(H). Now the problem is to decide whether the

densities {γe} ensure the existence of the subgraph H as a transversal or one can construct a

blown-up graph G[H] such that d(Ai, Aj) ≥ γij, yet the graph H does not appear in G[H] as a

transversal. This more general approach allows us to use inductive proofs.
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In the next section we give a survey of Zoltán L. Nagy’s results. Then we solve the above

mentioned more general problem for trees. As a corollary it will turn out that the critical edge

density is related to the largest eigenvalue of the adjacency matrix of the tree. Later for every

graph H we give an upper bound to the critical edge density in terms of the largest real root

of the matching polynomial. We will also construct blown-up graphs in terms of the largest

eigenvalues of the adjacency matrices of the so-called monotone-path trees.

4.1 Diamonds and Zoltán Nagy’s results

In this section we motivate some key definitions through an example (diamond) and we grasp

the opportunity to survey Zoltán Lóránt Nagy’s theorems.

The diamond is the unique simple graph on 4 vertices and 5 edges, generally denoted by

K−
4 .

Figure 4.1: Blown-up graphs of diamonds.

In the above figure, the first blown-up graph of the diamond contains the diamond as a

transversal. The second blown-up graph does not contain the diamond as a transversal although

the edge density is 3/4 between any two clusters. So as to see it, we gave the complement of

the blown-up graph with respect to the complete blown-up graph; in what follows we will simply

call this graph the complement graph and we will denote it by G[H]|H. In the “complement

language” the claim is the following: if one chooses one vertex from each cluster then we cannot

avoid choosing both ends of a red edge. This is true indeed: whichever vertex we choose from the

“right” and “left” clusters we cannot choose the rightmost and leftmost vertices of the upmost

and downmost clusters; so we have to choose a vertex from the middle of these clusters, but

they are all connected by red edges.

We also see that this construction was a bit redundant in the sense that each vertex from

the right and left clusters had the same role. This motivates the following definition.
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1/41/4

1/4 1/41/2

1/2

Figure 4.2: Weighted blown-up graph.

Definition 4.1.1. A weighted blown-up graph is a blown-up graph where a non-negative weight

w(u) is assigned to each vertex u such that the total weight of each cluster is 1. The density

between two clusters is

dij =
∑

(u,v)∈E
u∈Ai,v∈Aj

w(u)w(v).

This definition also has the advantage that now we can allow irrational weights as well. (But

this does not change the problem since we can approximate any irrational weight by rational

weights and then we blow up the construction with the common denominator of the weights.)

The following result of Zoltán L. Nagy also shows that the problem in this framework is much

more convenient.

Theorem 4.1.2 (Zoltán L. Nagy, [50, 51]). If there is a construction of a blown-up graph G[H]

not containing H then there is a construction of a weighted blown-up graph G′[H] not containing

H, where

• each edge density is at least as large as in G[H],

• the cluster Vi contains at most as many vertices as the degree of the vertex vi in the graph

H.

The importance of this theorem lies in the fact that if we are looking for the critical edge

density we only have to check those constructions where each cluster contains a bounded number

of vertices. So in fact, we have to check a finite number of configurations and we only have

to decide that which configuration has a weighting providing the greatest density. In general,

the number of possible configurations is very large, till it has some notable consequence. For

instance, there is a “best” construction in the sense that if we have construction for γe − ε for
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every ε then we have a construction with edge densities γe. Indeed, we have a compact space

(finite number of configurations) and the edge densities are continuous functions of the weights.

With a small extra idea one can prove the following important corollary of this theorem.

Theorem 4.1.3 (Zoltán L. Nagy, [50, 51]). There is a weighted blown-up graph G[H] not

containing H where each edge density is exactly the critical edge density.

From this theorem one can deduce the following one.

Theorem 4.1.4 (Zoltán L. Nagy, [50, 51]). If H1 is a subgraph of H2 then for the critical edge

densities we have

dcrit(H1) ≤ dcrit(H2).

If H2 is connected and H1 is a proper subgraph of H2 then the inequality is strict.

4.2 Trees

In this section we study the case when the graph H is a tree.

Theorem 4.2.1. Let T be a tree, vn is an endnode of T . Assume that for each edge of T a

density γe = 1 − re is given. Let T ′ be a tree obtained from T by deleting the endvertex vn

(together with the edge en−1,n = vn−1vn). Let the densities γ′
e’s be defined as follows:

γ′
e =

{
γe = 1 − re if e is not incident to vn−1,

1 − re

1−ren−1,n

if e is incident to vn−1.

Then the set of densities γe ensure the existence of the factor T if and only if all γ′
e’s are between

0 and 1 and the set of densities γ′
e ensure the existence of the factor T ′.

Remark 4.2.2. Clearly, this theorem provides us with an efficient algorithm to decide whether

a given set of densities ensures the existence of a factor (see Algorithm 4.2.3).

Proof. First we prove that if all the γ′
e’s are indeed densities and they ensure the existence of

the factor T ′ then the original γe’s ensure the existence of a factor T .

Assume that G[T ] is a blown-up of T such that the density between Ai and Aj is at least

γij, where Ai is the blown-up of the vertex vi of T . We need to show that it contains a factor

T .

Let us define

R = {v ∈ An−1 | v is incident to some edge going between An−1 and An} .

First of all we show that the cardinality of R is large:

|R||An| ≥ e(R,An) = γn−1,n|An−1||An|.
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Thus |R| ≥ γn−1,n|An−1|.
Next we show that many edges are incident to R. Let vk be adjacent to vn−1. Then we can

bound the number of edges between R and Ak as follows:

e(R,Ak) ≥ e(An−1, Ak) − (|An−1| − |R|)|Ak| = |R||Ak| + (γk,n−1 − 1)|Ak||An−1| ≥

|R||Ak| + (γk,n−1 − 1)
1

γn−1,n

||R||Ak| =

= (1 − rk−1,n

1 − rn−1,n

)|R||Ak| = γ′
k,n−1|R||Ak|.

Now delete the vertex set An and An−1\R from G[T ]. Then the obtained graph is a blown-up

of T ′ with edge densities ensuring the factor T ′. But this factor can be extended to a factor T

because of the definition of R.

Now we prove that if some γ′
k,n−1 < 0, then there exists a construction for a blown-up of T

having no factor of T . In fact γ′
k,n−1 < 0 means that γk,n +γn−1,n < 1 and so we can easily reach

that some construction does not induce the path ukun−1un where ui ∈ Ai (i ∈ {k, n − 1, n}).
Now assume that all γ′

e’s are proper densities, but there is a construction G′[T ′] with edge-

densities at least γ′
e’s, but which does not induce a factor T ′. In this case we can easily construct

a blown-up G[T ] of the tree not inducing T by setting An−1 = R∗ ∪ A′
n−1 with an appropriate

weight of R∗ = {v∗
n−1} and taking an An = {vn} which we connect to all elements of A′

n−1, but

we do not connect to v∗
n−1.

Algorithm 4.2.3. Step 0. Given a tree a T0 and edge densities γ0
e . Set T := T0 and re = 1−γ0

e .

Step 1. Consider (T, re).

• If |V (T )| = 2 and 0 ≤ re < 1 then STOP: the densities γ0
e ensure the existence of the

transversal T0.

• If |V (T )| ≥ 2 and there exists an edge for which re ≥ 1 then STOP: the densities γ0
e do

not ensure the existence of the transversal T0.

Step 2. If |V (T )| ≥ 3 and 0 ≤ re < 1 for all edge e ∈ E(T ) then do pick a vertex v of degree

1, let u be its unique neighbor. Let T ′ := T − v and

r′e =

{
re if e is not incident to u,

re

1−r(u,v)
if e is incident to u.

Jump to Step 1. with (T, re) := (T ′, r′e).

In what follows we analyse the above mentioned algorithm. The following concept will be

the key tool.
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Definition 4.2.4. Let xe’s be variables assigned to each edge of a graph. The multivariate

matching polynomial F is defined as follows:

F (xe, t) =
∑

M∈M

(
∏

e∈M

xe)(−t)|M |,

where the summation goes over the matchings of the graph including the empty matching.

Remark 4.2.5. Clearly, if LG denotes the line graph of the graph G we have

F (xe, t) = I((LG, xe); t)

or in other words,

tnF (xe,
1

t2
) = M((G, xe); t).

The following lemma is a straightforward generalization of the well-known fact that for trees

the matching polynomial and the characteristic polynomial of the adjacency matrix coincide.

We quote it from the Appendix.

Theorem A.1.20. Let T be a tree on n vertices. Let us define the following matrix of size n×n.

The entry ai,j = 0 if the vertices vi and vj are not adjacent and ai,j =
√

xe if e = vivj ∈ E(T ).

Let φ(xe, t) be the characteristic polynomial of this matrix. Then

φ(xe, t) = tnF (xe,
1

t2
)

where F (xe, t) is the multivariate matching polynomial.

Statement A.1.15. Let tw(G) denote the largest real root of the polynomial M((G,w); t). Let

G1 be a subgraph of G then we have

tw(G1) ≤ tw(G).

Corollary 4.2.6. Let T be a tree and assume that for each edge e ∈ E(T ) a weight we > 0

is assigned. Furthermore, let T ′ be a subtree of T with the induced edge weights. Then the

polynomial FT (we, t) has a smaller positive root than the polynomial FT ′(we, t).

Lemma 4.2.7. Let T be a weighted tree with γe = 1 − tre weights. Assume that after running

the Algorithm 4.2.3 we get the two node tree with edge weight 0. Then t is the root of the

multivariate matching polynomial F (re, s) of the tree T .
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Proof. We prove the statement by induction on the number of vertices of the tree. If the tree

consists of two vertices then 0 = 1 − tre means exactly that t is the root of the multivariate

matching polynomial of the tree.

Now assume that the statement is true for trees on at most n − 1 vertices. Let T be a tree

on n vertices and assume that we execute the algorithm for the pendant edge en−1,n = (vn−1, vn)

in the first step, where the degree of the vertex vn is 1. Let T ′ = T − vn. Now we continue

executing the algorithm obtaining the two node tree with edge weight 0. By induction we get

that FT ′(r′e, t) = 0.

We can expand FT ′ according to whether a monomial contains xk,n−1 (ek,n−1 ∈ E(T ′)) or

not. Each monomial can contain at most one of the variables xk,n−1 (vk ∈ N(vn−1)). Thus

FT ′(xe, s) = Q0(xe, s) −
∑

vk∈N(vn−1)

sxk,n−1Qk(xe, s),

where Q0 consists of those terms which contain no xk,n−1 and −sxk,n−1Qk consists of those

terms which contain xk,n−1, i.e., these terms correspond to the matchings containing the edge

(vk, vn−1). Observe that

FT (xe, s) = (1 − sxn−1,n)Q0(xe, s) −
∑

vk∈N(vn−1)

sxk,n−1Qk(xe, s)

by the same argument.

Since

0 = FT ′(r′e, t) = Q0(re, t) −
∑

vk∈N(vn−1)

rk,n−1

1 − trn−1,n

Qk(re, t)

we have

0 = (1 − trn−1,n)FT ′(r′e, t) = (1 − trn−1,n)Q0(re, t) −
∑

vk∈N(vn−1)

rk,n−1Qk(re, t) = FT (re, t).

Hence t is the root of FT (re, s).

Theorem 4.2.8. Let T be a tree and let γe = 1 − re be edge densities. Then the edge densities

ensure the existence of the tree T as a transversal if and only if for the multivariate matching

polynomial we have

F (re, t) > 0

for all t ∈ [0, 1].

Remark 4.2.9. We mention that the really hard part of this theorem is that if

F (re, t) > 0

for all t ∈ [0, 1] then the edge densities γe = 1 − re ensure the existence of the tree T as a

transversal. Later we will prove that this is true for every graph H, see Theorem 4.3.3.
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Proof. We prove the theorem by induction on the number of vertices. We will use Theorem 4.2.1.

First we show that if the edge densities ensure the existence of the factor T then

F (re, t) > 0

for all t ∈ [0, 1].

Clearly,

F (re, t) = F (ret, 1).

It is also trivial that the densities γe = 1−re ensure the existence of a factor T then the densities

γe = 1 − tre (t ∈ [0, 1]) ensure the existence of factor T . Hence we only need to prove that if

the densities γe = 1 − re ensure the existence of factor T then F (re, 1) > 0.

By induction and Theorem 4.2.1 we have FT ′(r′e, 1) > 0. Now we repeat the argument of

Lemma 4.2.7.

As before, we can expand FT ′ according to whether a monomial contains xk,n−1 (ek,n−1 ∈
E(T ′)) or not. Each monomial can contain at most one of the variables xk,n−1 (vk ∈ N(vn−1)).

Thus

FT ′(xe, t) = Q0(xe, t) −
∑

vk∈N(vn−1)

txk,n−1Qk(xe, t),

where Q0 consists of those terms which contain no xk,n−1 and −txk,n−1Qk consists of those

terms which contain xk,n−1, i.e., these terms correspond to the matchings containing the edge

(vk, vn−1). We have

FT (xe, t) = (1 − txn−1,n)Q0(xe, t) −
∑

vk∈N(vn−1)

xk,n−1Qk(xe, t)

by the same argument.

Hence

0 < FT ′(r′e, 1) = Q0(re, 1) −
∑

vk∈N(vn−1)

rk,n−1

1 − rn−1,n

Qk(re, 1).

So we get that

0 < (1 − rn−1,n)FT ′(r′e, 1) = (1 − rn−1,n)Q0(re, 1) −
∑

vk∈N(vn−1)

rk,n−1Qk(re, 1) = FT (re, 1).

This completes one direction of the statement.

Now we assume that F (re, t) > 0 for all t ∈ [0, 1]. We prove by contrary that the edge

densities γe’s ensure the existence of factor T . Assume that the Algorithm 4.2.3 stops with

some rviolating edge ≥ 1. In the next step we show that for some t ∈ [0, 1] we can ensure

that the algorithm stops with rviolating edge(t) = 1 when we start with the edge densities

γe = 1 − tre.

66



First of all, let us examine what happens if we decrease the re’s. If 0 < re ≤ r∗e and

0 < rf ≤ r∗f then
re

1 − rf

≤ r∗e
1 − r∗f

.

Hence all ri’s decrease under the algorithm if we decrease t.

If we set t = 0 then for the edge densities γe = 1− tre the algorithm gives 1 for all densities

which show up. Since changing t continuously all densities will change continuously we can

choose an appropriate t ∈ [0, 1] for which running our algorithm with tre’s instead of re’s we

can assume that the algorithm stops with rviolating edge(t) = 1.

Now consider those vertices and edges together with the violating edge which were deleted

under executing the algorithm. These edges form a forest. Consider the components of this

forest which contains the violating edge. Let us call this subtree T1. According to Lemma 4.2.7

our chosen t is the root of the matching polynomial of T1 (clearly, only the deleted edges modified

the weight of the violating edge). On the other hand, we know from Corollary 4.2.6 that the

matching polynomial of T has a smaller root than the matching polynomial of T1. This means

that the matching polynomial of T has a root in the interval [0, 1] contradicting the condition

of the theorem.

Corollary 4.2.10. Let T be a tree and assume that all edge densities γe satisfy γe > 1 − 1
µ(T )2

where µ(T ) is the largest eigenvalue of the adjacency matrix of T . Then γ’s ensure the existence

of factor T . If all γ = 1 − 1
µ(T )2

then there exist a weighted blown-up of T not containing T as

a transversal. In other words,

dcrit(T ) = 1 − 1

µ(T )2
.

Proof. We can assume that all edge densities are equal to 1−d > 1− 1
µ2 . In this case dt < 1

µ(T )2

for all t ∈ [0, 1] and so

0 < φT (
1√
dt

) = (dt)−n/2FT (dt, 1) = (dt)−n/2FT (d, t)

by Theorem A.1.20. By Theorem 4.2.8 this implies that the set of edge densities {γe} ensure

the existence of factor T . Theorem 4.2.8 also implies that there exist a weighted blown-up with

weights γ = 1 − 1
µ(T )2

of T not containing T as a transversal.

⋆ ⋆ ⋆

In this section we give an elegant structure theorem concerning the critical edge density of

trees.

Statement 4.2.11. [50, 51] Let T be a tree. Let us consider the following blown-up graph

G[T ] of T . Let the cluster Ai consist of the vertices vij where j ∈ N(i). If (i, j) ∈ E(T ) then
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i

j

w

wij

ji

Figure 4.3: A special blown-up graph of a tree.

we connect all vertices of Ai and Aj except vij and vji. Then G[T ] does not contain T as a

transversal.

Proof. We have to prove that one cannot avoid choosing both endvertex of a complementary

edge (vij, vji) if one chooses one vertex from each cluster. This is indeed true since the set of all

vertices of G[T ] can be decomposed to (n − 1) such pairs. Since we have to choose n vertices

we have to choose both vertex from such a pair.

We show that we can give weights to the vertices of the above constructed G[T ] such that

the density will be 1 − 1
µ2 where µ = µ(T ). The following weighting was the idea of András

Gács.

Recall that there exists a non-negative eigenvector x belonging to the largest eigenvalue µ

of T . So if vi’s are the vertices of T we have

µxi =
∑

j∈N(i)

xj

for all i. Now let us define the weight wij of the vertex vij of G[T ] as follows: wij =
xj

µxi
≥ 0.

Then we have

w(Ai) =
∑

j∈N(i)

wij =
∑

j∈N(i)

=
xj

µxi

= 1.

Furthermore,

d(Ai, Aj) = 1 − wijwji = 1 − xj

µxi

xi

µxj

= 1 − 1

µ2
.

Remark 4.2.12. A theorem of Zoltán Nagy already showed that there exist a unique weighting

of the above constructed G[T ] where each density is the same and this must be the critical edge

density. Hence András Gács’s weighting already proved that the critical edge density of the tree

is 1 − 1
µ2 .
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Remark 4.2.13 (Historical remark.). Zoltán Nagy already proved in his master thesis that the

critical edge density of a tree satisfies the inequality

1 − 1

∆
≤ dcrit(T ) < 1 − 1

4(∆ − 1)
,

where ∆ is the largest degree.

This inequality reminded me to the following inequality concerning the spectral radius of a

tree: √
∆ ≤ µ(T ) < 2

√
∆ − 1.

I asked to check Zoltán whether it is coincidence or not and after we found that for small trees

d(T ) = 1− 1
µ(T )2

, we conjectured that it was always true. This was confirmed by András by his

weighting the same afternoon while we took a walk in St. Andrews. This result prompted me

to join the research.

4.3 Application of the Lovász local lemma and its exten-

sion

Theorem 4.3.1. (Lovász local lemma, symmetric case.) Let A1, A2, . . . , An be events in an

arbitrary probability space. Suppose that each event Ai is mutually independent of all other

events, but at most ∆ ≥ 2 of them. Furthermore, assume that for each i,

Pr(Ai) ≤
1

e(∆ + 1)
,

where e is the base of the natural logarithm. Then

Pr(∩n
i=1Ai) > 0.

Theorem 4.3.2. Let ∆ be the largest degree of the graph H and let d be the critical edge density.

Then

dcrit(H) ≤ 1 − 1

e(2∆ − 1)
,

where e is the base of the natural logarithm.

Proof. We prove by contradiction. Assume that there exists a blown-up graph G[H] of the

graph H with edge densities greater than 1 − 1
e(2∆−1)

which does not induce H.

We can assume that all classes of the blown-up graph G[H] contains exactly N vertices.

Indeed, we can approximate each weight by a rational number so that every edge densities are

still larger than 1− 1
e(2∆−1)

. Then we “blow up” the construction by the common denominator

of all weights.
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Let us choose a vertex from each class with equal probability 1/N independently of each

other. Let f be an edge of the complement of the graph G[H] with respect to H. Let Af be

the event that we have chosen both endnodes of the edge f (clearly, a bad event we would like

to avoid). Then Pr(Af ) = 1/N2 and Af is independent from all events Af ′ where the edge f ′

has endvertices in different classes. Thus Af is independent from all, but at most (2∆− 1)rN2

bad events where d = 1 − r. Since r < 1
e(2∆−1)

the condition of Lovász local lemma is satisfied

and gives that

Pr(∩f∈E(G[H]|H)Af ) > 0.

which means that that G[H] induces the graph H (with positive probability) contradicting the

assumption.

Now we use a generalisation of the Lovász local lemma to improve on the bound of Theorem

4.3.2.

Theorem A.1.11. (Scott-Sokal [60]) Assume that given a graph G and there is an event Ai

assigned to each node i. Assume that Ai is totally independent of the events {Ak | (i, k) ∈ E(G)}.
Set Pr(Ai) = pi.

(a) Assume that I((G, p), t) > 0 for all t ∈ [0, 1]. Then we have

Pr(∩i∈V (G)Ai) ≥ I((G, p), 1) > 0.

(b) Assume that I((G, p), t) = 0 for some t ∈ [0, 1]. Then there exists a probability space and a

family of events Bi with Pr(Bi) ≥ pi and with dependency graph G such that

Pr(∩i∈V (G)Bi) = 0.

Theorem 4.3.3. Assume that for the graph H we have FH(re, t) > 0 for all t ∈ [0, 1] and some

weights re ∈ [0, 1] assigned to each edge. Then the densities γe = 1 − re ensure the existence of

H as a transversal.

Proof. As before, we choose a vertex from each cluster independently of each other. We choose

the vertex u from the cluster Vi of the graph G[H] with probability w(u). We would like to show

that we do not choose both endvertices of an edge of the complement G[H]|H with positive

probability. Let f = (u1, u2) be an edge of the complement of the graph G[H] respected to H.

Let Af be the event that we have chosen both endnodes of the edge f (clearly, a bad event

we would like to avoid). Then Pr(Af ) = w(u1)w(u2) and Af is independent from all events

Af ′ where the edge f ′ has endvertices in different classes. Now let us consider the weighted
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independence polynomial of the graph determined by the vertices Af in which we connect Af

and Af ′ if there exists a cluster containing one endvertices of both f and f ′. In this graph, the

events Af where f goes between the fixed clusters Vi, Vj not only form a clique but it is also true

that they are connected to the same set of events. Hence we can replace them by one vertex of

weight ∑

(u1,u2)∈E(G[H](Vi∪Vj))

w(u1)w(u2) = rij

without changing the weighted independence polynomial. But then the obtained weighted

independence polynomial is

I((LH , re), t) = FH(re, t) > 0

for t ∈ [0, 1]. Then by the Scott-Sokal theorem we have

Pr(∩f∈E(G[H]|H)Af ) ≥ F ((H, re), 1) > 0.

Corollary 4.3.4. Let ∆ be the largest degree of the graph H and t(H) be the largest root of the

matching polynomial. Then for the critical edge density dcrit we have

dcrit(H) ≤ 1 − 1

t(H)2
.

In particular,

dcrit(H) < 1 − 1

4(∆ − 1)
.

Proof. Let γe = 1 − r for every edge e ∈ E(H), where r < 1
t(H)2

then

FH(r, t) =
n∑

k=0

(−1)kmk(H)rktk = (rt)n/2M(H,
1√
rt

) > (rt)n/2M(H, t(H)) = 0

for t ∈ [0, 1]. Hence the set of densities {γe} ensures the existence of the graph H. Thus

dcrit(H) ≤ 1 − r for every r < 1
t(H)2

. Hence

dcrit(H) ≤ 1 − 1

t(H)2
.

The second claim follows from the fact that t(H) < 2
√

∆ − 1. (This is Corollary A.1.27, see

also [41].)

Remark 4.3.5. We invite the reader to compare it with the trivial bound

dcrit(H) ≥ 1 − 1

∆
.
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4.4 Construction: star decomposition of the complement

In this section we examine a large class of blown-up graphs which do not induce a given graph as

a transversal. Assume that H = H1 ∪{vn} and we have a blown-up graph of H1 which does not

induce H1 as a transversal. We can construct a blown-up graph of H not inducing H as follows.

Let An = {wn} be the blown-up of vn. Furthermore, assume that NH(vn) = {v1, v2, . . . , vk}
with the corresponding clusters A′

1, . . . , A
′
k in the blown-up of H1. Then let Ai = A′

i ∪ {wi} if

1 ≤ i ≤ k and we leave unchanged all other clusters. Let us connect wn to each elements of A′
i

(1 ≤ k ≤ n) and connect wi with every possible neighbor except wn. All other pairs of vertices

remain adjacent or non-adjacent as in the blown-up of H1.

Now it is clear why we call this construction star decomposition, see Figure 4.4.

1

2
1

2

3

3

4

4

5

5

Figure 4.4: Star decomposition of the complement of the wheel.

This new blown-up graph will not induce H as a transversal since if we try to choose the

elements of the transversal we have to choose wn, but then we cannot choose any of the vertices

wi (1 ≤ k ≤ n). Hence we have to choose all other vertices of the transversal from the blown-up

of H1, but according to the assumption this blown-up graph does not induce the graph H1 as a

transversal, thus the new blown-up graph does not induce H as a transversal.

Although we gave a construction of a blown-up of the graph H not inducing H, this is only

the half of a real construction since we can vary the weights of the vertices of the blown-up graph.

Of course, we would like to choose the weights optimally. But what does it mean? Assume that

we are given densities for all edges of H and we wish to make a construction iteratively as we

described in the previous paragraph and now we would like to choose the weights so that the

edge-densities are at least as large as the required edge-densities. To quantify this argument we

need some definitions.

Definition 4.4.1. A proper labeling of the vertices of the graph H is a bijective function f from

{1, 2, . . . , n} to the set of vertices such that the vertex set {f(1), . . . , f(k)} induces a connected

subgraph of H for all 1 ≤ k ≤ n.
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Definition 4.4.2. Given a weighted graph H with a proper labeling f , where the weights on

the edges are between 0 and 1. The weighted monotone-path tree of H is defined as follows. The

vertices of this graph are the paths of the form f(i1)f(i2) . . . f(ik) where 1 = i1 < i2 < · · · < ik

and two such paths are connected if one is the extension of the other with exactly one new

vertex. The weight of the edge connecting f(i1)f(i2) . . . f(ik−1) and f(i1)f(i2) . . . f(ik) is the

weight of the edge f(ik−1)f(ik) in the graph H.

The monotone-path tree is the same without weights.

1

2

3

4

5

12345

1

12 13 14 15

123 125 134 145

13451234

Figure 4.5: A monotone-path tree of the wheel on 5 vertices.

Theorem 4.4.3. Let H be a properly labeled graph with edge densities γe and let Tf (H) be

its weighted monotone-path tree with weights γe. Assume that these densities do not ensure

the existence of the factor Tf (H). Then there is a construction of a blown-up graph of H not

inducing H as a transversal and all densities between the clusters are at least as large as the

given densities.

Remark 4.4.4. So this theorem provides a necessary condition for the densities ensuring the

existence of factor H. In fact, this gives as many necessary conditions as many proper labelings

the graph H has. The advantage of this theorem is that we already know the case of trees

substantially.

Proof. We prove the statement by induction on the number of vertices of H. For n = 1, 2 the

claim is trivial since H = Tf (H). Now assume that we already know the statement till n − 1

and we need to prove it for |V (H)| = n.

We know from Theorem 4.2.1 that γe ensure the existence of factor T = Tf (H) if the

corresponding γ′
e ensure the existence of factor T ′. Let us apply this theorem as follows. We

delete all vertices (monotone-paths) of Tf (H) which contains the vertex f(n). The remaining

tree will be a weighted path tree of H1 = H − {f(n)} where the new labeling is simply the
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restriction of f to the set {1, 2, . . . , n − 1}. (We will denote this restriction by f as well.) By

induction there exists a blown-up graph of H1 not inducing H1 as a transversal and all densities

between the clusters are at least γe(Tf (H1)) where we can also assume that the total weight of

each cluster is 1.

Now we can do the the construction described in the beginning of this section. Let f(n) = u

and NH(u) = {u1, . . . , uk}. Let the weight of the new vertex wi ∈ Ai be (1−γuui
) and the weights

of the other vertices of the cluster be γuui
times the original one. Clearly, between the clusters

An and Ai (1 ≤ i ≤ k), the weight is just γuui
as required. What about the other densities? First

of all let us examine γ′
e’s. Let us consider the adjacent vertices f(1) . . . f(i) and f(1) . . . f(i)f(j)

of Tf (H1). If both f(i), f(j) ∈ NH(u) then we deleted the vertices f(1) . . . f(i)f(n) and

f(1) . . . f(i)f(j)f(n) from Tf (H) changing γe = 1 − re to 1 − re

γf(n)f(i)γf(n)f(j)
. If only one of

the vertices f(i) or f(j) was connected to f(n) then we can still easily follow the change:

γ′
e = 1 − re

γf(n)f(i)
if f(i) was connected to f(n). If none of them was connected to f(n) then

there is no change. But in all cases we do exactly the inverse of this operation at the blown-up

graphs ensuring that the new densities are at least γe.

Remark 4.4.5. When we consider the more general problem then it is true that, in fact, we

consider only one graph, the complete graph. Indeed, if there is no edge between the vertices

u and v in H then we can consider it as if we require γu,v = 1 in the complete graph. This

raises the question why we only considered the proper labelings since this has no meaning for

complete graphs. The answer is simple: we can consider the weighted monotone-path tree of

the complete graph for arbitrary labelings, but there will be a better (or at least as good as the

original) labeling which is proper for the graph H.

Indeed, assume that for some ordering f , f(k) is not connected to the graph induced by

vertices f(1), . . . , f(k − 1). Then we can factorize

F ((Tf (Kn), r); t) = F ((Tf (S1), r); t)F ((Tf (S2), r); t)
m,

where S1 = Kn − f(k) and S2 is the complete graph induced by the vertices f(k), f(k +

1), . . . , f(n) and m = 2k−2. Indeed, if there is a weighted tree T with an edge e ∈ E(T ) of

weight 0 and deleting e the tree T falls into the parts T1, T2, then

F ((T, r); t) = F ((T1, r); t)F ((T2, r); t).

Since r(f(i), f(k)) = 0 for all i < k we have that the weight is 0 on each edge

(f(1)f(i2) . . . f(ir), f(1)f(i2) . . . f(ir)f(k)) for 1 < i2 < · · · < ir < k. Thus there are 2k−2 such

pairs of monotone-paths we obtain that m = 2k−2.

This means that the smallest root of F ((Tf (Kn), r); t) is the smallest root of F ((Tf (S1), r); t)

or F ((Tf (S1), r); t). In both cases we would be able to give a “better” labeling: in the first case
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we put the vertex f(k) to the end of the labeling, in the second case we put the vertices

f(k + 1), . . . , f(n) to the beginning of the labeling and let us extend it with a vertex adjacent

to one of these vertices. If H was connected then it is a strictly better labeling, although it is

not surely proper labeling. But if it is not proper we can iterate this step. If H was connected

(which we assume in this chapter) then the final labeling is proper and better than the original

one.

Now the following conjecture is a natural one after the case of trees. (However, we will see

that it is false.)

Conjecture 4.4.6 (General Star Decomposition Conjecture). Let H be a graph with edge

densities γe. Assume that for each proper labeling f the weights as densities of the weighted

monotone-path tree ensure the existence of the graph Tf (H). Then the given densities ensure

the existence of the graph H.

Corollary 4.4.7. Let S(H) be the set of proper labelings of the graph H. The critical density

of the graph H is at least

max
f∈S(H)

{
1 − 1

µ(Tf (H))2

}
.

Remark 4.4.8. If each edge density is equal to 1 − 1
µ(Tf (H))2

then there is a straightforward

connection between the weights of the constructed blown-up graph and the eigenvector of the

tree Tf (H) belonging to the eigenvalue µ(Tf (H)). This connection is very similar to the one

given by András Gács.

Conjecture 4.4.9 (Uniform Star Decomposition Conjecture). Let S(H) be the set of proper

labelings of the graph H. The critical density of the graph H satisfies

dcrit = max
f∈S(H)

{
1 − 1

µ(Tf (H))2

}
.

Remark 4.4.10. So the General Star Decomposition Conjecture asserts that for every graph

and every weighting (or edge densities) the best we can do is to choose a good order of the

vertices and construct the “stars”. The Uniform Star Decomposition Conjecture is clearly a

special case of this conjecture when all edge densities are the same for every edge.

The General Star Decomposition Conjecture is true for the triangle in the sense that for

every weighting the star decomposition of a suitable labeling gives the best construction or

shows that there is no suitable blown-up graph; this is a theorem of Adrian Bondy, Jian Shen,

Stéphan Thomassé and Carsten Thomassen [6]. As we have seen this conjecture is also true

for trees. Zoltán L. Nagy can prove that it is also true for cycles. Although, in the next

section we will show that the General Star Decomposition Conjecture is in general false. I think

it makes very unlikely that the Uniform Star Decomposition Conjecture is true. Till it is a

meaningful question whether for which graphs one or both conjectures hold. For instance, the
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author believes that the Uniform Star Decomposition Conjecture is true for complete graphs

and complete bipartite graphs.

4.5 Counterexample to the General Star Decomposition

Conjecture

Our counterexample is a weighted bow-tie given by the following figure. Although it seems that

it is a star decomposition, it is not a star decomposition in the sense we constructed it. For

instance, there is no cluster which contains exactly one vertex (and there is no “redundancy”.)

This is indeed a good construction: whatever we choose from the middle cluster we cannot

choose its neighbors (since it is the complement), but then we have to choose the other vertices

from the corresponding clusters, but they are connected in the complement.

0,850,85

0,85 0,85

0,510,51
0,3

0,3

0,7

0,7

0,3

0,7

0,3

0,7

0,50,5

Figure 4.6: Weighted bow-tie and its weighted blown-up graph of the complement.

We will show that the given construction of the blown-up graph is the best possible in the

following sense. If for some blown-up graph the edge densities are at least as large as the required

densities and one of them is strictly greater, then it induces the bow-tie as a transversal. We

will also show that no star decomposition can attain the same densities. Before we prove this

we need some preparation. The first lemma appeared in [6] and asserts that the General Star

Decomposition Conjecture is true for the triangle.

Lemma 4.5.1. [6] Let α, β, γ be the edge densities between the clusters of a blown-up graph of

the triangle. If

αβ + γ > 1, βγ + α > 1, γα + β > 1

then the blown-up graph contains a triangle as a transversal.

Remark 4.5.2. If we write α = 1 − r1, β = 1 − r2 and γ = 1 − r3, then the conditions of the

lemma can be rewritten as 1− r1 − r2 − r3 + rirj > 0 (1 ≤ i, j ≤ 3). One can easily prove that it

is equivalent to the statement that the multivariate matching polynomials of the monotone-path
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trees have no root in the interval [0, 1]. (There are three different monotone-path trees, each of

them is a path on 4 vertices, on the edges the weights are α, β, γ; the difference between them

is that which weight is on the middle edge.)

Next we prove a lemma which can be considered as a generalization of Theorem 4.2.1.

Lemma 4.5.3. Let H1, H2 be two graphs and let u1 ∈ V (H1) and u2 ∈ V (H2). As usual

we denote by H1 : H2 the graph obtained by identifying the vertices u1, u2 in H1 ∪ H2. Let

0 < m1,m2 < 1 such that m1 + m2 ≤ 1. Furthermore, assume that an edge density γe = 1 − re

is assigned to every edge. If the edge densities

γ′
e =

{
γe = 1 − re if e ∈ E(H1) is not incident to u1,

1 − re

m1
if e ∈ E(H1) is incident to u1,

ensure the existence of a transversal H1 and the edge densities

γ′
e =

{
γe = 1 − re if e ∈ E(H2) is not incident to u2,

1 − re

m2
if e ∈ E(H2) is incident to u2.

ensure the existence of a transversal H2, then the edge densities {γe} ensure the existence of a

transversal H1 : H2.

Proof. Let G[H1 : H2] be a weighted blown-up graph of H1 : H2 with edge density {γe}. Let

R1 = {v ∈ Au1=u2 | v can be extended to a transversal H1 ⊂ G[H1]}

and

R2 = {v ∈ Au1=u2 | v can be extended to a transversal H2 ⊂ G[H2]} .

We show that ∑

v∈R1

w(v) > 1 − m1 and
∑

v∈R2

w(v) > 1 − m2.

But then since m1 + m2 < 1 there would be some v ∈ R1 ∩ R2 which we could extend to a

transversal of H1 and H2 as well and thus we could find a transversal H1 : H2. Naturally,

it is enough to prove that
∑

v∈R1
w(v) > 1 − m1, because of the symmetry. We prove it by

contradiction. Assume that
∑

v∈R1
w(v) = 1 − t ≤ 1 − m1. Let us erase all vertices belonging

to R1 from Au1=u2 and let us give the weight w(u)
t

to the remaining vertices u ∈ Au1=u2 − R1.

Then we obtained a weighted blown-up graph G′[H1] in which every edge density is at least γ′
e

(e ∈ E(H1)). But then the assumption of the lemma ensures the existence of a transversal H1

which contradicts the construction of G′[H1].

Now we are ready to prove that the above given construction is best possible.
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Statement 4.5.4. Let V (H) = {v1, v2, v3, v4, v5} and E(H) = {v1v2, v1v3, v1v4, v1v5, v2v3, v4v5}.
Furthermore, assume that for the edge densities of the blown-up graph G[H] satisfy the following

inequalities: γ12, γ13, γ14, γ15 ≥ 0, 85, γ23, γ45 ≥ 0, 51 and at least one of the inequalities is strict.

Then G[H] contains H as a transversal.

Proof. We can assume that at least one of the strict inequality γ12 > 0, 85 or γ23 > 0, 51 holds.

Let us apply the Lemma 4.5.3 with H1 = H(v1, v2, v3) and H2 = H(v1, v4, v5), u1 = u2 = v1,

densities γij and m1 = 1/2 − ε, m2 = 1/2 + ε where ε is a very small positive number chosen

later. Then

γ′
ijγ

′
jk + γik − 1 = 1 − r′12 − r′13 − r′23 + r′ijr

′
jk > 0

for any permutation i, j, k of {1, 2, 3}. Indeed, since 0, 3 = 0,15
0,5

we have

1 − 0, 3 − 0, 3 − 0, 49 + 0, 3 · 0, 49 > 1 − 0, 3 − 0, 3 − 0, 49 + 0, 3 · 0, 3 = 0

and one of the rij’s is strictly smaller than 0, 3 or 0, 49 and so for small enough ε, the expression

1−r′12−r′13−r′23 +r′ijr
′
jk is positive. Hence by Lemma 4.5.1 it ensures the existence of a triangle

transversal. For the other triangle, r′14 = r14

1/2+ε
< 0, 3 and similarly, r′15 < 0, 3 and r45 ≤ 0, 49.

Again by Lemma 4.5.1 it ensures the existence of a triangle transversal. By Lemma 4.5.3 we

obtain that there exists a transversal H in G[H].

Statement 4.5.5. There is no weighted blown-up graph of the bow-tie arising from star decom-

position which is at least as good as the weighted blown-up graph in the Figure 4.6.

Proof. Because of the symmetry and since we only need to consider the star decompositions

where the labeling is proper, we only have to consider two star decompositions (see Remark 4.4.5).

Because of Statement 4.5.4, all edge densities must be exactly the required one. This makes the

whole computation a routine work.

1

2

3

4

5
1

0,49

0,51

0,15

0,350,35

0,49

0,51

0,15

0,49

0,51

0,15

1 1

0,7 

0,7 

0,3

0,3

0,5
0,35

Figure 4.7: Star decompositions of bow-ties.

In both cases one can determine the weights so as that finally 0, 51 · 0, 35 6= 0, 15 gives the

contradiction.
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4.6 Complete bipartite graphs

Let dcrit(Kn,m) = d(n,m) be the critical edge density of the complete bipartite graph Kn,m.

Let dc(n,m) be the best edge density coming from the star decomposition (“c abbreviates

constructed” in dc).

If one starts to do the star decomposition to Kn,m then the following recursion holds:

dc(n,m) =
1

2 − dc(n,m − 1)
or

1

2 − dc(n − 1,m)

according to which class contains the vertex f(n + m). Although we have two possibilities the

recursion has only one solution, namely

dc(n,m) = 1 − 1

n + m − 1

since d(1, 1) = dc(1, 1) = 0. From this we already gain an interesting fact.

Theorem 4.6.1. For any proper labeling f of the graph Kn,m the tree Tf (Kn,m) has spectral

radius
√

n + m − 1.

Remark 4.6.2. In this case a proper labeling simply means that f(1) and f(2) are elements of

different classes in the bipartite graph.

For different proper labelings these trees can look very differently, but as the theorem shows

their spectral radiuses are the same.

Conjecture 4.6.3. dcrit(Kn,m) = dc(n,m) = 1 − 1
n+m−1

.

Remark 4.6.4. Of course, Conjecture 4.4.9 implies Conjecture 4.6.3, but the author has the

feeling that Conjecture 4.6.3 is true while Conjecture 4.4.9 may not hold.
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Chapter 5

Integral trees

An integral tree is a tree for which the eigenvalues of its adjacency matrix are all integers [40].

Many different classes of integral trees have been constructed in the past decades [8, 9, 12,

13, 63, 64, 67]. Most of these classes contain infinitely many integral trees, but till now only

examples of trees of bounded diameters were known. The largest diameter of known integral

trees was 10. In this chapter we construct integral trees of arbitrarily large diameters. In fact,

we prove the following much stronger theorem.

Theorem 5.0.5. For every finite set S of positive integers there exists a tree whose positive

eigenvalues are exactly the elements of S. If the set S is different from {1} then the constructed

tree will have diameter 2|S|.

Clearly, there is only one tree with set S of positive eigenvalues for S = {1}, the tree on two

vertices with spectrum {−1, 1} (and its diameter is 1).

The structure of this chapter is the following. In the next section we will define a class of

trees recursively. All trees belonging to this class will turn out to be almost-integral, i.e., all of

their eigenvalues are square roots of integers. We will find integral trees in this class of trees by

special choice of parameters introduced later.

5.1 Construction of trees

Definition 5.1.1. For given positive integers r1, . . . , rk we construct the trees

T1(r1), T2(r1, r2), . . . , Tk = Tk(r1, . . . , rk)

recursively as follows. We will consider the tree Ti as a bipartite graph with color classes Ai−1, Ai.

The tree T1(r1) = (A0, A1) consists of the classes of size |A0| = 1, |A1| = r1 (so it is a star on r1+1

vertices). If the tree Ti(r1, . . . , ri) = (Ai−1, Ai) is defined then let Ti+1(r1, . . . , ri+1) = (Ai, Ai+1)

be defined as follows. We connect each vertex of Ai with ri+1 new vertices of degree 1. Then
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for the resulting tree the color class Ai+1 will have size |Ai+1| = ri+1|Ai|+ |Ai−1|, the color class

Ai does not change.

One should not confuse these trees with the balanced trees. These trees are very far from

being balanced.

A

A

B . . .

. . . . . .

. . . . . .
i−1

i

i

Figure 5.1: Let Ai+1 = Ai−1 ∪Bi, where each element of Ai has exactly ri+1 neighbors of degree

1 in Bi.

5.2 Monotone-path trees

In this section we would like to reveal the fact that the trees defined in Definition 5.1.1 are

nothing else than the monotone-path trees of complete bipartite graphs.

Assume that the ordering of Km,n = (X1, X2, E) is the following: 1 is in X1, 2, 3, . . . , r1 + 1

is in X2, r1 + 2, r1 + 3, . . . , r1 + r2 + 1 is in X1, etc. (Probably, it would have been better to

start with vertex 0, but we decided to follow the notation of the previous chapter.)

One can imagine this as follows: we toss a coin, if we threw head for the i-th flipping then

we put i in the first class, if we threw tail then we put it in the second class. Now r1, r2, . . . are

the length of the runs.

The tree Ti is nothing else than the monotone-path tree of the complete bipartite graph

induced by the first 1 + r1 + · · · + ri vertices. Then we construct Ti+1 from Ti as follows. Let

us consider those monotone-paths p which end in the class Xj, where j ≡ i + 1 (mod 2). We

can extend such a monotone-path p in ri+1 ways by putting one of the vertex of (1 + r1 + · · ·+
ri) + 1, (1 + r1 + · · · + ri) + 2, . . . , (1 + r1 + · · · + ri) + ri+1. On the other hand, we cannot

extend the monotone-paths that end in the class containing these vertices. This shows that the

constructed trees are indeed the monotone-path trees.

Remark 5.2.1. To be honest, the monotone-path tree was the original construction. It was

András Gács who convinced me not to introduce the concept of monotone-path trees in the

paper [16].
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We have already seen in the previous chapter that the largest eigenvalue of these trees is√
m + n − 1 independently of the ordering. The other eigenvalues will depend on the order, but

as it will turn out, they are also square roots of integers.

1

2 3

4

5

6

1 1312124 1341245 134512456 13456

15

156

126 136

Figure 5.2: A monotone-path tree of K3,3.

Now we see that the tree in the figure is T (2, 1, 1, 1) as the runs are {2, 3}, {4}, {5}, {6}. Its

spectrum is

{
√

5,
√

3,
√

2, 12, 03,−12,−
√

2,−
√

3,−
√

5}.

The exponents are the multiplicities of the eigenvalues.

5.3 Analysis of the constructed trees

To analyze the trees Tk(r1, . . . , rk) introduced in Definition 5.1.1 we will need the following

concept.

Definition 5.3.1. Let us define the following sequence of expressions.

Q0(.) = 1

Q1(x1) = x1

and

Qj(x1, . . . , xj) = xjQj−1(x1, . . . , xj−1) + Qj−2(x1, . . . , xj−2)

for all 3 ≤ j ≤ k. We will also use the convention Q−1 = 0. We will call these expressions

continuants. Sometimes if the x = (x1, . . . , xk) is clear from the context then we will simply

write Qj instead of Qj(x1, . . . , xj).

Remark 5.3.2. The first few continuants are

Q2(x1, x2) = 1 + x1x2, Q3(x1, x2, x3) = x1 + x3 + x1x2x3

Q4(x1, x2, x3, x4) = 1 + x1x2 + x1x4 + x3x4 + x1x2x3x4.
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The expressions Qj(x1, . . . , xj) often show up in the study of some Euclidean type algorithms.

For instance,

xk +
1

xk−1 +
1

xk−2 +
1

. . . +
1

x1

=
Qk(x1, . . . , xk)

Qk−1(x1, . . . , xk−1)
.

For more details on continuants see [33].

Lemma 5.3.3. Let Tk(r1, . . . , rk) be the constructed tree with color classes (Ak−1, Ak). Then

|Ak−1| = Qk−1(r1, . . . , rk−1) and |Ak| = Qk(r1, . . . , rk).

Proof. This is a trivial induction.

Lemma 5.3.4. If r1 ≥ 2 then the diameter of Tk(r1, . . . , rk) is 2k.

Proof. Note that each vertex is at distance at most k from the only element v0 of the set A0.

Thus the diameter is at most 2k. On the other hand, if we go from v0 to two different leaves

through two different elements of A1 which are at distance k from v0 (so these are the elements

of Ak\Ak−2) then these two leaves must be at distance 2k apart.

Remark 5.3.5. Note that Tj(1, r2, r3, . . . , rj) = Tj−1(r2 + 1, r3, . . . , rj). Hence all constructed

trees different from the tree on two vertices have a representation Tk(r1, . . . , rk) in which r1 ≥ 2.

The next lemma will be the main tool to determine the spectrum of the tree Tk(r1, . . . , rk).

Before we state it we introduce the following notation.

Definition 5.3.6. Let Sp(G) denote the spectrum of the graph G. Let N+
G denote the number

of positive eigenvalues of G and NG(t) denotes the multiplicity of the eigenvalue t.

Lemma 5.3.7. Let G = (A,B,E) be a bipartite graph with eigenvalue λ 6= 0 of multiplicity

m. Let G′ be obtained from G by joining each element of B with r new vertices of degree 1,

so that the obtained graph has |A| + (r + 1)|B| vertices. Then ±
√

λ2 + r are eigenvalues of

G′ of multiplicity m. Furthermore, the rest of the eigenvalues of the new graph are ±√
r with

multiplicity |B| −N+
G and 0 with multiplicity |A| + (r − 1)|B| and there is no other eigenvalue.

Proof. Since G and G′ are both bipartite graphs we only need to deal with the non-negative

eigenvalues. Let 0 < µ 6= √
r be an eigenvalue of the graph G′ of multiplicity m. We prove that√

µ2 − r is an eigenvalue of G of multiplicity m. (Note that it means that 0 < µ <
√

r cannot

occur since the eigenvalues of a graph are real numbers.)

Let x be an eigenvector belonging to µ. We will construct an eigenvector x′ to
√

µ2 − r in

the graph G. Let vi ∈ B and its new neighbors wi1, . . . , wir. Then

x(vi) = µx(wi1) = µx(wi2) = · · · = µx(wir).
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Since µ 6= 0 we have x(wi1) = · · · = x(wir). Moreover, for each vi ∈ B and uj ∈ A we have

µx(vi) =
∑

vi∼uk

x(uk) + rx(wi1)

and

µx(uj) =
∑

uj∼vl

x(vl).

Since x(vi) = µx(wi1) we can rewrite these equations as

(µ2 − r)x(wi1) =
∑

vi∼uk

x(uk)

and

µx(uj) =
∑

uj∼vl

µx(wl1).

In the second equation we can divide by µ since it is not 0. Hence it follows that

√
µ2 − r · (

√
µ2 − r · x(wi1)) =

∑

vi∼uk

x(uk)

and √
µ2 − r · x(uj) =

∑

uj∼vl

(
√

µ2 − r · x(wl1)).

Thus the vector x′ which is equal to
√

µ2 − r · x(wi1) on the vertices of B and x(uj) on the

elements of A is an eigenvector of the graph G with eigenvalue
√

µ2 − r. Clearly, this vector

is not 0, otherwise x should have been 0. It also implies that if the vectors x1, . . . , xh are

independent eigenvectors belonging to µ then the constructed eigenvectors x′
1, . . . , x

′
h are also

independent. Note that this construction can be reversed if
√

µ2 − r 6= 0 implying that for

µ 6= √
r the multiplicity of µ in G′ is the same as the multiplicity of

√
µ2 − r in G.

We can easily determine the multiplicity of the eigenvalues 0 and
√

r as follows:

e(G) + r|B| = e(G′) =
∑

µ>0,µ∈Sp(G′)

µ2 =
∑

λ>0,λ∈Sp(G)

(λ2 + r) + NG′(
√

r)r =

= e(G) + N+
G r + NG′(

√
r)r.

Hence NG′(
√

r) = |B| − N+
G . Finally, the multiplicity of 0 as an eigenvalue of G′ can be

determined as follows:

NG′(0) = |A| + (r + 1)|B| − 2N+
G′ =

= |A| + (r + 1)|B| − 2N+
G − 2NG′(

√
r) = |A| + (r + 1)|B| − 2|B|.
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Theorem 5.3.8. Let r1 ≥ 2, ri ≥ 1 integers. The set of different eigenvalues of the tree

Tk(r1, r2, . . . , rk) is the set

{±√
rk,±

√
rk + rk−1,±

√
rk + rk−1 + rk−2, . . . ,±

√
rk + · · · + r1, 0}.

Furthermore, the multiplicity of 0 is

Qk(r1, . . . , rk) − Qk−1(r1, . . . , rk−1)

and the multiplicity of the eigenvalues ±√
rk + rk−1 + · · · + rj are

Qj−1(r1, . . . , rj−1) − Qj−2(r1, . . . , rj−2),

where Qi’s are the continuants.

Proof. We will use the short notation Qj for Qj(r1, . . . , rj). We prove the theorem by induction

on k. The statement is true for k = 1. Assume that it is true for n = k − 1. We need to prove

it for n = k. By the induction hypothesis the tree Tk−1(r1, . . . , rk−1) has spectrum

{±√
rk−1,±

√
rk−1 + rk−2, . . . ,±

√
rk−1 + · · · + r1, 0}.

Furthermore, the multiplicity of the eigenvalues ±√
rk−1 + · · · + rj are Qj−1 − Qj−2. Now let

us apply Lemma 5.3.7 with G = Tk−1(r1, . . . , rk−1) and r = rk. Then G′ = Tk(r1, . . . , rk) has

spectrum

{±√
rk,±

√
rk + rk−1,±

√
rk + rk−1 + rk−2, . . . ,±

√
rk + · · · + r1, 0}.

Furthermore, the multiplicity of the eigenvalues ±√
rk + rk−1 + · · · + rj are Qj−1 − Qj−2 for

j ≤ k − 1. The multiplicity of
√

rk is

Qk−1 − ((Qk−2 − Qk−3) + (Qk−3 − Qk−4) + · · · + (Q0 − Q−1)) = Qk−1 − Qk−2.

Finally, the multiplicity of 0 is

(rk − 1)Qk−1 + Qk−2 = Qk − Qk−1.

Remark 5.3.9. Note that if r1 ≥ 2 then the tree Tk(r1, . . . , rk) has 2k + 1 different eigenvalues

and diameter 2k. Since the number of different eigenvalues is at least the diameter plus one for

any graph [32] these trees have the largest possible diameter among graphs having restricted

number of different eigenvalues.

Theorem 5.0.5 For every set S of positive integers there exists a tree whose positive eigenvalues

are exactly the elements of S. If the set S is different from {1} then the constructed tree will

have diameter 2|S|.
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Proof. Let S = {n1, n2, . . . , n|S|}, where n1 < n2 < · · · < n|S|. Then apply the previous theorem

with

r|S| = n2
1, r|S|−1 = n2

2 − n2
1, . . . , r1 = n2

|S| − n2
|S|−1.

If the set is different from {1} then r1 ≥ 2 and in this case the diameter of the tree is 2|S| by

Lemma 5.3.4.

Example 1. Let S = {1, 2, 4, 5} then r4 = 1, r3 = 3, r2 = 12, r1 = 9. The resulting tree has 781

vertices and the spectrum is

{−5,−48,−2100,−1227, 0109, 1227, 2100, 48, 5}.

Here the exponents are the multiplicities of the eigenvalues.

Example 2. Let S = {1, 2, 3, 4, 5, 6} then r6 = 1, r5 = 3, r4 = 5, r3 = 7, r2 = 9, r1 = 11. The

resulting tree has 27007 vertices and the spectrum is

{±6,±510,±489,±3611,±22944,±18021, 03655}

The diameter of this tree is 12.

Remark 5.3.10. Recently Andries E. Brouwer (private communication) found a very elegant

(and very short!) proof that T (n2
k − n2

k−1, n
2
k−1 − n2

k−2, . . . , n
2
2 − n2

1, n
2
1) are integral trees. It is

really worth reading this proof. This proof is outlined on Brouwer’s homepage [7] or a bit more

detailed version of this proof can be found at [17].

5.4 Afterlife

Recently, E. Ghorbani, A. Mohammadian and B. Tayfeh-Rezaie [29] managed to construct

integral trees of odd diameters. In their work they built on the trees constructed in this chapter.
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Chapter 6

Appendix

The aim of this appendix is to provide a concise background to the materials included in my

thesis. Many things appearing here are well-known or an easy modification of it are well-known.

Still I hope that the Reader will find this appendix useful.

A.1 Independence polynomial and matching polynomial

In this section we define the notion of the weighted independence polynomial and weighted

matching polynomial and study its fundamental properties. This two polynomials have an

intimate relationship, that is why we treat them together.

A.1.1 Weighted independence polynomial

Definition A.1.1. Let G be a graph and assume that a positive weight function w : V (G) → R
+

is given. Then let

I((G,w); t) =
∑

S∈I

(
∏

u∈S

wu

)
(−t)|S|,

where the summation goes over the set I of all independent set S of the graph G including the

empty set. When w = 1 we simply write I(G, t) instead of I((G, 1); t) and we call I(G, t) the

independence polynomial of G.

Remark A.1.2. Clearly,

I(G, t) =
n∑

k=1

ik(G)(−1)ktk,

where ik(G) denotes the number of independent sets of size k in the graph G. We have to

mention that in the literature the polynomial I(G,−t) is called the independence polynomial.

Since the relationship between these two forms is very simple, it will not cause any confusion.

Note that I((G,w); 0) = 1 and I((G, tw), 1) = I((G,w), t). The following simple facts follow

from separating the terms including vertex u or vertices u and v, respectively.
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Statement A.1.3. Let u ∈ V (G) be an arbitrary vertex. Then

I((G,w); t) = I((G − u,w); t) − wutI((G − N [u], w); t),

where we denoted the functions w restricted to V (G − u) and V (G − N [u]) by w as well.

Statement A.1.4. The polynomial I((G,w), x) satisfies the recursion

I((G,w); t) = I((G − e, w); t) − wuwvt
2I((G − N [v] − N [u], w); t),

where e = (u, v) is an arbitrary edge of the graph G.

Remark A.1.5. Clearly Statement A.1.3 and A.1.4 simplify to

I(G, t) = I(G − u, t) − tI(G − N [u]; t)

and

I(G, t) = I(G − e, t) − t2I(G − N [v] − N [u], t)

in the case of the unweighted independence polynomial.

In what follows we show that I((G,w); t) has a real root. Let βw(G) denote the smallest real

root of I((G,w); t); this is positive by the alternating sign of the coefficients of the polynomial

I((G,w); t). We will also show that if H is a subgraph of G then βw(G) ≤ βw(H). This is

a slight extension of the theorem of D. Fisher and J. Ryan [28]. They deduce their result

from a counting problem where the reciprocal of the dependence polynomial was the generating

function. We follow another way, our treatment resembles to that of H. Hajiabolhassan and M.

L. Mehrabadi [38].

The key step of the proof of these statements is the following definition.

Definition A.1.6. Let β(p) denote the smallest positive root of the polynomial p; if it does

not exist set β(p) = ∞. Let p ≻ q if q(x) ≥ p(x) on the interval [0, β(p)]. Furthermore, we say

that (G1, w1) ≻ (G2, w2) if I((G1, w1); t) ≻ I((G2, w2); t). If (G1, w1) ≻ (G2, w2) and w1 = w2

or one is the extension of the other we simply write G1 ≻ G2.

We need the following observation about the relation ≻.

Statement A.1.7. Let p(0) = q(0) = r(0) = 1 and assume that p ≻ q ≻ r. Then β(p) ≤ β(q)

and p ≻ r.

Proof. Since p(0) = 1 we have p(t) > 0 on the interval [0, β(p)). Thus q(t) ≥ p(t) > 0 on

the interval [0, β(p)) giving that β(q) ≥ β(p). If p ≻ q ≻ r then β(r) ≥ β(q) ≥ β(p) and

r(t) ≥ q(t) ≥ p(t) on the interval [0, min(β(p), β(q))) = [0, β(p)) thus p ≻ r.
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1

p(x) q(x) r(x)

(p) (q)

Figure 6.1: The functions p(x), q(x) and r(x).

Remark A.1.8. Note that if q(t) ≥ p(t) on the interval [0, β(q)] where β(q) < ∞ then we have

β(p) ≤ β(q) and so p ≻ q.

Clearly, we can apply this lemma to the polynomials I((G,w); t) since their values are 1 at

0. Now we are ready to prove the statements mentioned above.

Statement A.1.9. For every weighted graph (G,w) we have βw(G) < ∞ and if G2 is an induced

subgraph of G1 then G1 ≻ G2.

Proof. We prove the two statements together. We prove them by induction on the number of

vertices of G1. For the graph consisting of only one node we have βw(G) = 1
wu

< ∞. For

the sake of simplicity let us use the notation G1 = G. By the transitivity of the relation ≻
(Statement A.1.7) it is enough to prove that G ≻ G − v. The statement is true if |V (G)| = 2.

Since G − N [v] is an induced subgraph of G − v, by the induction hypothesis we have

I((G − v, w); t) ≻ I((G − N [v], w); t)

and βw(G − v) ≤ βw(G − N [v]) < ∞. This means that

I((G − N [v], w); t) ≥ I((G − v, w); t)

on the interval [0, βw(G−v)]. Thus I((G−N [v], w); t) ≥ 0 on the interval [0, βw(G−v)]. Hence

by Statement A.1.3 we have I((G,w); t) ≤ I((G − v, w); t) on the interval [0, βw(G − v)]. This

implies that βw(G) ≤ βw(G − v). Indeed, since I((G,w); 0) = 1 and I((G,w), βw(G − v)) ≤ 0

so I((G,w); t) has a root in the interval [0, βw(G− v)]. Hence I((G,w); t) ≤ I((G− v, w); t) on

the interval [0, βw(G)], i.e., G ≻ G − v.

Statement A.1.10. If G2 is a subgraph of G1 then G1 ≻ G2.

Proof. Clearly, it is enough to prove the statement when G1 = G and G2 = G − e for some

e = (u, v) ∈ E(G). We need to prove that G ≻ G − e. Let us use the recursion formula of

Statement A.1.4 to G:

I((G,w); t) = I((G − e, w); t) − wuwvt
2I((G − N [u] − N [v], w); t).
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By Statement A.1.9 we have G ≻ G − N [u] − N [v] and so I((G − N [u] − N [v], w); t) ≥
I((G,w); t) ≥ 0 on the interval [0, βw(G)]. Hence I((G − e, w); t) ≥ I((G,w); t) on this in-

terval, i.e. , G ≻ G − e.

⋆ ⋆ ⋆

Our next goal is to prove Alex Scott and Alan Sokal’s extension of the Lovász local lemma.

In fact, we modify the statement a bit in order to get a version that is easier to use, but which

is clearly just a special case of the original Scott-Sokal theorem.

Theorem A.1.11. (Scott-Sokal [60]) Assume that given a graph G and there is an event Ai

assigned to each node i. Assume that Ai is totally independent of the events {Ak | (i, k) ∈ E(G)}.
Set Pr(Ai) = pi.

(a) Assume that I((G, p), t) > 0 for t ∈ [0, 1], i.e., βp(G) > 1. Then we have

Pr(∩i∈V (G)Ai) ≥ I((G, p), 1) > 0.

(b) Assume that I((G, p), t) = 0 for some t ∈ [0, 1]. Then there exist a probability space and a

family of events Bi with Pr(Bi) ≥ pi and with dependency graph G such that

Pr(∩i∈V (G)Bi) = 0.

Remark A.1.12. Hence the smallest root of I(G, t), β(G) has the following meaning. If the

events Ai have the dependency graph G and Pr(Ai) < β(G) for all i then Pr(∩i∈V (G)Ai) > 0.

Proof. Let us define the events Bi on a new probability space as follows

Pr(∩i∈SBi) =

{∏
i∈S pi if S is independent in G,

0 otherwise.

Consider the expression

Pr((∩i∈SBi) ∩ (∩i/∈SBi)).

This is clearly 0 if S is not an independent set. So assume that S is an independent set. Then

we have

Pr((∩i∈SBi) ∩ (∩i/∈SBi)) =

=
∑

S⊆I

(−1)|I|−|S|
Pr(∩i∈IBi) =

=
∑

S⊆I
I∈I

(−1)|I|−|S|
∏

i∈I

pi = (
∏

i∈S

pi) · I((G − N [S], p), 1),

where I is the set of independent sets and N [S] denote the set S together with all their neighbors.

Note that βp(G) > 1, so by Statement A.1.9 we have βp(G − N [S]) > 1; this means that the
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last expression is non-negative for all S. Hence we have defined a probability measure on the

generated σ-algebra σ(Bi | i ∈ V (G)).

As a next step we show that (Bi)i∈V (G) minimizes the expression Pr(∩i∈V (G)Bi) among the

families of events with dependency graph G. For S ⊂ V (G), set

PS = Pr(∩i∈SAi)

and

QS = Pr(∩i∈SBi).

Now we prove by induction on |S| that PS/QS is monotone increasing in S. First of all,

QS =
∑

I⊆S

(−1)|I|Pr(∩i∈IBi) =

=
∑

I⊆S
I∈I

(−1)|I|
∏

i∈I

pi = I((S, p); 1) > 0.

Furthermore, for j /∈ S we have

QS∪{j} = I((S ∪ {j}, p); 1) =

= I((S, p); 1) − pjI((S − N [j], p); 1) = QS − pjQS−N [j].

On the other hand,

PS∪{j} = PS − Pr(Aj ∩ (∩i∈SAi)) ≥

≥ PS − Pr(Aj ∩ (∩i∈S−N [j]Ai)) ≥

≥ PS − pjPS−N [j].

Now we show that PS∪{j}/QS∪{j} ≥ PS/QS, or equivalently that PS∪{j}QS −QS∪{j}PS ≥ 0. We

have

PS∪{j}QS−QS∪{j}PS ≥ (PS−pjPS−N [j])QS−(QS−pjQS−N [j])PS = pj(PSQS−N [j]−QSPS−N [j]) ≥ 0

since
PS

QS

≥ PS−N [j]

QS−N [j]

by the induction hypothesis.

Since PS/QS is monotone increasing in S we have PV (G)/QV (G) ≥ P∅/Q∅ = 1. Hence we

have proved part (a) of the theorem.

To prove part (b) it is enough to use the construction of the events Bi with probability

βp(G)pi. Then this will define a probability measure again the same way. Now we have

Pr(∩i∈V (G)Bi) = I((G, βp(G)p); 1) = I((G, p); βp(G)) = 0.

91



A.1.2 Weighted matching polynomial

Definition A.1.13. Let G be a graph and assume that a positive weight function w : E(G) →
R

+ is given. Then let

M((G,w); t) =
∑

S∈M

(
∏

e∈S

we

)
(−1)|S|tn−2|S|,

where the summation goes over the set M of all independent edge set S of the graph G including

the empty set. In the case when w = 1 we call the polynomial

M(G, t) = M((G, 1); t)

the matching polynomial of G.

Remark A.1.14. First of all, it is clear that the weighted matching polynomial is just a simple

transformation of the weighted independence polynomial of the line graph of G. Indeed, let LG

be the line graph of G then we have

M((G,w); t) = tnI((LG, w);
1

t2
).

Thus we can apply the theorems concerning the weighted independence polynomials. As a

particular case we get the following statement.

Statement A.1.15. Let tw(G) denote the largest real root of the polynomial M((G,w); t). Let

G1 be a subgraph of G then we have

tw(G1) ≤ tw(G).

For the sake of convenience, we repeat some of the arguments when the weights are 1.

Definition A.1.16. Let t(G) be the largest root of the matching polynomial M(G, x). Fur-

thermore, let G1 ≻ G2 if for all x ≥ t(G1) we have M(G2, x) ≥ M(G1, x).

Statement A.1.17. The relation ≻ is transitive and if G1 ≻ G2 then t(G1) ≥ t(G2).

Proof. Let G1 ≻ G2. Since M(G1, x) has positive leading coefficient and t(G1) is the largest

root we have M(G1, x) > 0 for x > t(G1). Since M(G2, x) ≥ M(G1, x) > 0 on the interval

(t(G1),∞) we have t(G2) ≤ t(G1). If G1 ≻ G2 ≻ G3 then M(G3, x) ≥ M(G2, x) ≥ M(G1, x)

on the interval [max(t(G2), t(G1)),∞) = [t(G1),∞), i.e., G1 ≻ G3.

The weighted matching polynomial also satisfies certain recursion formulas:
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Statement A.1.18. For the weighted matching polynomial we have

M((G,w); t) = M((G − e, w); t) − weM((G − {u, v}, w); t),

where e = (u, v) ∈ E(G). In particular, for the unweighted matching polynomial we have

M(G; t) = M(G − e, t) − M(G − {u, v}, t).

For a graph G and vertex u we have

M((G,w); t) = tM(G − u,w); t) −
∑

v∈N(u)

wuvM((G − {u, v}, w); t).

Statement A.1.19. If G2 is a spanning subgraph of G1 then G1 ≻ G2.

Proof. By the transitivity of the relation ≻ it is enough to prove the statement when G2 = G1−e

for some edge e = uv. By Statement A.1.18 we have

M(G, x) = M(G − e, x) − M(G − {u, v}, x).

Since G−{u, v} is a subgraph of G we have t(G−{u, v}) ≤ t(G) by Statement A.1.17. Since the

main coefficient of M(G−{u, v}) is 1, this implies that for x ≥ t(G) we have M(G−{u, v}, x) ≥
0. By the above identity we get G ≻ G − e.

⋆ ⋆ ⋆

Our next goal is to prove that all roots of the weighted matching polynomial are real. This

is a straightforward extension of the classical result of Heilmann and Lieb [41] and this was

proved by Bodo Lass [2]. Here we give another proof which goes on the line of the classical

proof, namely it uses the path tree of the graph. The reason why we give this proof is that we

need this connection between the graph and its weighted path tree.

Before we prove the general statement, we need to prove the statement for trees.

Theorem A.1.20. (a) Let T be a forest with non-negative weights w on its edges. Let us define

the following matrix of size n × n. The entry ai,j = 0 if vertices vi and vj are not adjacent and

ai,j =
√

we if e = vivj ∈ E(T ). Let φ((T,we); t) be the characteristic polynomial of this matrix.

Then

φ((T,we); t) = M((T,we); t).

In particular, if we = 1 for all edge e we have

φ(T, x) = M(T, x).

(b) All the roots of the polynomial M((G,w); t) are real.
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Proof. (a) Indeed when we expand the det(tI − A) we only get non-zero terms when the cy-

cle decomposition of the permutation consist of cycles of length at most 2; but these terms

correspond to the terms of the matching polynomial.

(b) Since the above defined matrix is a real symmetric matrix, all of its eigenvalues are real.

Definition A.1.21. Let (G,w) be a weighted graph with vertex u as a root. Let the tree

Tw,u(G) be defined as follows: its vertex set is the paths of G with starting node u. The path p

and p′ is connected if one is the extension of the other with one new vertex. Let p = uv1 . . . vk

and p′ = uv1 . . . vkvk+1 be two paths then we define the weight of the edge (p, p′) to be the

weight of the edge vkvk+1. We call the tree Tw,u(G) the weighted path tree of the weighted graph

(G,w).

Remark A.1.22. We mention that if we allow the weights being not only positive, but equal

to 0, then we have to deal with only one weighted graph, namely with the complete graph Kn.

Indeed, if we assign 0 weights to the edges not in G then with this extension we have

M((Kn, w); t) = M((G,w); t).

On the other hand, the weighted path tree of G and Kn are different. Hence, in order to avoid

confusion we will not use this extra observation.

1
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Figure 6.2: A path-tree of the diamond.

Now we prove that the weighted matching polynomial divides the weighted matching poly-

nomial of its weighted path tree. For the sake of brevity we simplify our notation.

Let S ⊆ V (G). Then set

M(S) = M((G|S, w); t)

the weighted matching polynomial of the induced subgraph. We also put

J(S, u) = M((Tw,u(S), w); t)
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for u ∈ S.

The next lemma is the main tool.

Lemma A.1.23. For u ∈ S we have

J(S, u) =
M(S)

M(S − u)

∏

v∈N(u)

J(S − u, v).

Proof. We prove the statement by induction on |S|. Let wu,v be the weight of the edge (u, v) ∈
E(S), equivalently this is the weight of the edge (u, uv) in the path tree Tw,u(G). Let us

decompose J(S, u) according to the cases we do not select any edge (u, uv) or we select one of

them (in this case we can select only one of them since they are adjacent edges)

J(S, u) = t
∏

v∈N(u)

J(S − u, v) −
∑

v∈N(u)

wu,v ·
∏

x∈N(u) J(S − u, x)

J(S − u, v)
·

∏

y∈N(v)−{u}

J(S − u − v, y) =

Now let us use the induction hypothesis for the last product.

=
∏

v∈N(u)

J(S − u, v) ·


t −

∑

v∈N(u)

wu,v

J(S − u, v)
· J(S − u, v) · M(S − u − v)

M(S − u)


 =

=
∏

v∈N(u)

J(S − u, v) ·


t −

∑

v∈N(u)

wu,v
M(S − u − v)

M(S − u)


 =

=
∏

v∈N(u)

J(S − u, v) ·
tM(S − u) − ∑

v∈N(u) wu,vM(S − u − v)

M(S − u)
.

Note that tM(S − u) − ∑
v∈N(u) wu,vM(S − u − v) = M(S) since we can decompose M(S)

according to the cases we do not select any edge (u, v) or we select one of them. Hence

J(S, u) =
M(S)

M(S − u)

∏

v∈N(u)

J(S − u, v).

An easy corollary of this result is the following theorem.

Theorem A.1.24. There exist non-negative integers α(S) for all S ⊆ V (G) such that

M((Tw,u(G), w), t) =
∏

S⊆V (G)

M((S,w), t)α(S)

and α(V (G)) = 1.
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Proof. We can prove the statement by induction on |V (G)|. The statement is trivial for |V (G)| =

1, 2. Hence we can assume that |V (G)| ≥ 3. Let us use that

J(S, u) =
M(S)

M(S − u)

∏

v∈N(u)

J(S − u, v).

Let us choose some v ∈ N(u). Then J(S−u,v)
M(S−u)

is the product of some M(K)α′(K) for K ⊆ S − u.

It is also true for other J(S − u, v′). Hence J(S, u) is also the product of weighted matching

polynomials of the induced subgraphs of G. Clearly, α(V (G)) = 1. We are done.

Corollary A.1.25. All roots of the weighted matching polynomial are real.

Proof. This is clear since the weighted matching polynomial divides the weighted matching

polynomial of its path tree and according to Theorem A.1.20 the roots of this polynomial are

real.

Corollary A.1.26.

tw(G) = tw(Tw,u(G))

Proof. Since for S ⊆ V (G) we have tw(S) ≤ tw(G) by Statement A.1.15, the claim follows from

Theorem A.1.24.

Corollary A.1.27. [41] Assume that the largest degree in G is ∆. Then

t(G) ≤ 2
√

∆ − 1.

Proof. Since the largest degree in G is ∆ so is in the path tree. For the path tree we have

t(Tu(G)) = µ(Tu(G)).

But for trees (and forests) it is well-known that µ(T ) ≤ 2
√

∆T − 1. (This last statement is

again the result of Heilmann and Lieb [41], but it can be found in [30] and in [45] as well.)

A.2 Laplacian characteristic polynomial

Definition A.2.1. Let L(G) be the Laplacian matrix of G (so L(G)ii = di and −L(G)ij is the

number of edges between i and j if i 6= j). We call the polynomial L(G, x) = det(xI−L(G)) the

Laplacian polynomial of the graph G, i.e., it is the characteristic polynomial of the Laplacian

matrix of G.

Statement A.2.2. The eigenvalues of L(G) are non-negative real numbers, at least one of them

is 0. Thus we can order them as λ1 ≥ λ2 ≥ · · · ≥ λn = 0.
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Proof. The Laplacian matrix is symmetric, thus its eigenvalues are real.

It is also positive semidefinite since

xT L(G)x =
∑

(i,j)∈E(G)

(xi − xj)
2 ≥ 0.

Hence its eigenvalues are non-negative.

Finally, the vector 1 is an eigenvector of L(G) belonging to the eigenvalue 0.

Corollary A.2.3. The Laplacian polynomial can be written as

L(G, x) = xn − an−1x
n−1 + an−2x

n−2 − · · · + (−1)n−1a1x,

where a1, a2, . . . , an−1 are positive integers.

In what follows let τ(G) denote the number of spanning trees of the graph G. The following

statement is the fundamental matrix-tree theorem.

Theorem A.2.4. Let L(G)i be the matrix obtained from L(G) by deleting the i-th row and

column. Then det L(G)i = τ(G).

Proof. We will prove the statement for an arbitrary multigraph G.

We begin with a simple observation, namely that for any edge e we have

τ(G) = τ(G − e) + τ(G/e).

Indeed, we can decompose the set of spanning tree according to that a spanning tree contains

the edge e or not. If it does not contain the edge e then it is also a spanning tree of G − e and

vice versa. If it contains the edge e then we can contract it, this way we obtain a spanning tree

of G/e; this construction again works in the reversed way.

Now we can prove the statement by induction on the number of edges. For the empty graph

the statement is clearly true. We can assume that we erased the row and column corresponding

to the vertex vn. We distinguish two cases according to that vn was an isolated vertex of G or

not.

Case 1. Assume that vn is an isolated vertex of G. Then τ(G) = 0. On the other hand,

det(L(G)n) = 0, because the vector 1 is an eigenvector of L(G)n belonging to 0. Hence, in this

case, we are done.

Case 2. Assume that vn is not an isolated vertex, we can assume that e = (vn−1, vn) ∈ E(G)

(maybe there are more than one such edges since this is a multigraph). Let ln−1 be the (n−1).th

row vector of L(G)n and let s = (0, 0, . . . , 0, 1) consisting of (n − 2) 0’s and a 1 entry. Now we

consider the matrices An−1 and Bn−1 where we exchange the last row of L(G)n to the vector

ln−1 − s and s, respectively. Then

det L(G)n = det An−1 + det Bn−1.
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Observe that An−1 = L(G − e)n; since G − e has less number of edges then G, we have by

induction that det An−1 = det L(G − e)n = τ(G − e).

On the other hand, detBn−1 = det An−2, where An−2 = L(G){n−1,n}. Observe that An−2 is

nothing else than L(G/e)n−1=n. Since G/e has less number of edges than G, we have det An−2 =

det L(G/e)n−1=n = τ(G − e). Hence

det L(G)n = τ(G − e) + τ(G/e) = τ(G).

Corollary A.2.5. The coefficient of x1 in L(G, x) is nτ(G). Furthermore,

τ(G) =
1

n

n−1∏

j=1

λi.

Proof. Let L(G, x) = xn−an−1x
n−1 +an−2x

n−2−· · ·+(−1)n−1a1x. Then by the Viéte’s formula

we have

a1 = λ2λ3 . . . λn + λ1λ3 . . . λn + · · · + λ1λ2 . . . λn−1.

Since λn = 0 we have a1 = λ1λ2 . . . λn−1. On the other hand, by expanding det(xI − L(G)) we

see that the coefficient of x is

a1 =
n∑

i=1

det(L(G)i) = nτ(G),

by Theorem A.2.4. Hence τ(G) = 1
n
a1 =

∏n−1
i=1 λi.

Part (a) and (b) of Lemma A.2.9 is a well-known generalization of Corollary A.2.5. To state

this lemma we need the following notation.

Definition A.2.6. For I ⊂ V (G), let G/I denote the graph obtained from G by contracting all

vertices of I, but erasing the loops at the vertex corresponding to I. (Hence G/I is a multigraph

without loops.)

Definition A.2.7. Let Fk(G) denote the set of spanning forests of the graph G which have

exactly k components. For F = T1 ∪ · · · ∪ Tk ∈ Fk let γ(F ) =
∏k

i=1 |Ti|, where Ti’s are the

connected components of the forest F .

Definition A.2.8. For S ⊆ V (G) let τ(S) = |S|τ(S) where τ(S) is the number of spanning

trees of the induced subgraph of G on the vertex set S.

Lemma A.2.9. Let L(G, x) =
∑n

k=1 ak(−1)n−kxk. Then

(a)

ak =
∑

I⊆V (G)
|I|=k

τ(G/I).
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(b)

ak =
∑

F∈Fk

γ(F ).

(c)

ak =
∑

{S1,S2,...,Sk}

τ(S1)τ(S2) . . . τ(Sk),

where the summation goes over all partition of V (G) into exactly k non-empty sets.

Proof. (a) Let L(G)I be the matrix obtained from L(G) by erasing all rows and columns cor-

responding to I. Note that detL(G)I = τ(G/I), since if we erase the row and column corre-

sponding to I from L(G/I) we get exactly L(G)I and so the observation follows from Theorem

A.2.4. On the other hand,

ak =
∑

|I|=k

det L(G)I

follows simply from expanding det(xI−L(G)). By combining this with our previous observation

we are done.

(b) For F ∈ Fk we can choose a set I with k elements exactly γ(F ) ways such that after

the contraction of the set I, the contraction of F becomes the spanning tree of G/I. Indeed we

have to choose an element of I from each component of F , but then no matter how we chose

these elements, the contraction of these elements makes F become the spanning tree of G/I.

(c) We can decompose the sum in part (b) such that we consider those forest of Fk whose

components span the sets S1, . . . , Sk. For such a forest γ(F ) = |S1||S2| . . . |Sk|. The number of

such forests is clearly τ(S1)τ(S2) . . . τ(Sk). Altogether we have

ak =
∑

F∈Fk

γ(F ) =
∑

{S1,S2,...,Sk}

τ(S1)τ(S2) . . . τ(Sk).

Recall that the Wiener-index of the graph G is
∑

u,v d(u, v), where d(u, v) denotes the dis-

tance of the vertices u and v.

Corollary A.2.10. [66] Let T be a tree and L(T, x) =
∑n

k=1(−1)n−kak(T )xk. Then a2(T ) is

the Wiener-index of the tree T .

Proof. Observe that in a tree T we have τ(T/{u, v}) = d(u, v). Indeed, if u, v are adjacent

then T/{u, v} is again a tree. If u and v have distance greater than 1 then T/{u, v} has n − 1

vertices and edges and it contains a cycle of length d(u, v) (possibly this cycle has only two

edges). Hence every spanning tree of T/{u, v} miss exactly one of the edge of the cycle. Thus

τ(T/{u, v}) = d(u, v). Now the statement follows from part (a) of Lemma A.2.9.
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Remark A.2.11. We will see that the identity in part (c) reveals an interesting property of

the Laplacian polynomial, namely it satisfies that

∑

S1∪S2=V (G)
S1∩S2=∅

L(S1, x)L(S2, y) = L(G, x + y).

⋆ ⋆ ⋆

In this part we collect some results on the eigenvalues of the Laplacian matrix.

Statement A.2.12. If we add k isolated vertices to the graph G then the Laplacian spectra of

the obtained graph consists of the Laplacian spectra of the graph G and k zeros.

Statement A.2.13. [32] If the Laplacian spectra of the graph G is λ1 ≥ λ2 ≥ · · · ≥ λn = 0

then the Laplacian spectra of G is n − λ1, n − λ2, . . . , n − λn−1, 0.

Proof. Note that L(G) + L(G) = nI − J . We know that 1 is both an eigenvector of L(G)

and L(G) belonging to the eigenvalue 0. Since L(G) is symmetric we can choose orthonormal

eigenvectors v1, . . . , vn spanning R
n (|V (G)| = n) from which vn = 1 and L(G)vi = λivi. Then

for i 6= n we have

L(G)vi = (nI − J − L(G))vi = nvi − 0 − λivi = (n − λi)vi.

Hence the Laplacian spectra of G is n − λ1, n − λ2, . . . , n − λn−1, 0.

Lemma A.2.14. (Interlacing lemma, [32]) Let G be a graph and e an edge of it. Let λ1 ≥ λ2 ≥
. . . λn−1 ≥ λn = 0 be the roots of L(G, x) and let τ1 ≥ τ2 ≥ . . . τn−1 ≥ τn = 0 be the roots of

L(G − e, x). Then

λ1 ≥ τ1 ≥ λ2 ≥ τ2 ≥ · · · ≥ λn−1 ≥ τn−1

Proof. Let us direct the edges of the graph G arbitrarily. Let D be the incidence matrix of this

directed graph. So D has size |V (G) × |E(G)| and

Dv,e =





1 if v is the head of the edge e

−1 if v is the tail of the edge e

0 otherwise

It is easy to see that DDT = L(G). The spectrum of DT D is the union of the spectrum of

DDT and |E(G)| − |V (G)| 0’s. (If |V (G)| > |E(G)| then the spectrum of DDT is the union

of the spectrum of DT D and |V (G)| − |E(G)| 0’s.) Let D′ be the incidence matrix of G − e

then D′D′T = L(G − e) and D′T D′ is a minor of DT D; we simply delete the row and column

corresponding the edge e. Hence the eigenvalues of D′D′T interlace the eigenvalues of DDT .

After removing (adding) some 0’s we obtain the statement.

Corollary A.2.15. Let G2 be a subgraph of G1 then θ(G2) ≤ θ(G1).
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Proof. First we delete all edges belonging to E(G1) \E(G2). This way we obtain that θ(G1) ≥
θ(G′

2) where G′
2 = (V (G1), E(G2)). Then we delete the isolated vertices consisting of V (G1) \

V (G2), this way we deleted some 0’s from the Laplacian spectrum of G′
2. Clearly, this does not

affect θ(G′
2) = θ(G2). Hence θ(G1) ≥ θ(G2).

Corollary A.2.16. Let T1 be a tree and T2 be its subtree. Then a(T1) ≤ a(T2).

Proof. It is enough to prove the statement for T1 − v = T2, where the degree of the vertex v is

one. Let e be the pendant edge whose one of the endvertex is v. Then we can get T2 by deleting

the edge e and then the isolated vertex v. First we get that λn−2(T2 ∪ {v}) ≥ λn−1(T1) ≥
λn−1(T2 ∪ {v}) by the interlacing lemma. After deleting the isolated vertex v we exactly delete

the λn−1(T2 ∪ {v}) = 0 from the Laplacian spectra and we get that

a(T2) = λn−2(T2) = λn−2(T2 ∪ {v}) ≥ λn−1(T1) = a(T1).

A.3 Exponential-type graph polynomials

Definition A.3.1. Let us say that the sequence of polynomials p0(x), p1(x), p2(x), . . . satisfy

the binomial theorem if for any n
n∑

k=0

(
n

k

)
pk(x)pn−k(y) = pn(x + y)

and deg pk(x) = k.

Remark A.3.2. Clearly, the polynomial sequence pn(x) = xn motivates this definition. It

is also well-known that the polynomials pn(x) = xn = x(x − 1) . . . (x − n + 1) and xn =

x(x + 1) . . . (x + n − 1) also satisfy the binomial theorem. Abel’s identity implies that the

polynomial sequence pn(x) = x(x + n)n−1 also satisfies the binomial theorem, i. e.,

n∑

k=0

(
n

k

)
x(x + k)k−1y(y + n − k)n−k−1 = (x + y)(x + y + n)n−1.

In this last identity we can write −x and −y instead of x and y and then by multiplying both

side with (−1)n we obtain that the polynomials pn(x) = x(x − n)n−1 also satisfy the binomial

theorem. On the other hand, we can recognize x(x − n)n−1 as the Laplacian characteristic

polynomial of the complete graph Kn. Thus the previous identity can be rewritten as
∑

S1∪S2=V (G)
S1∩S2=∅

L(S1, x)L(S2, y) = L(Kn, x + y),

where L(Si, x) is the Laplacian characteristic polynomial of the graph induced by the set Si.

We will see soon that we could have written arbitrary an graph G instead of Kn. This motivates

the following definition.

101



Definition A.3.3. We say that the graph polynomial f is exponential-type if for every graph

G = (V (G), E(G)) we have deg f(G, x) = |V (G)|, f(∅, x) = 1 and f(G, x) satisfies that

∑

S1∪S2=V (G)
S1∩S2=∅

f(S1, x)f(S2, y) = f(G, x + y),

where f(S1, x) = f(G|S1 , x), f(S2, y) = f(G|S2 , y) are the polynomials of the subgraphs of G

induced by the sets S1 and S2, respectively.

Remark A.3.4. Gus Wiseman [65] calls the exponential-type graph polynomials “binomial-

type”. This section is partly motivated by his paper, although our treatment will be a bit

different.

We will show that the Laplacian characteristic polynomial, the chromatic polynomial and a

modified version of the matching polynomial belong to the class of the exponential-type graph

polynomials.

A.3.1 Set-generating function

It is easy to give a characterisation of polynomial sequences satisfying the binomial theorem.

Theorem A.3.5. (Theorem 4.3.3. in [57]) The polynomial sequence p0(x), p1(x), p2(x), . . .

satisfies the binomial theorem if and only if there exist a generating function f(z) =
∑∞

k=1 bk
zk

k!

such that

exf(z) =
∞∑

k=1

pn(x)
zn

n!
.

Then the binomial identity simply follows from the identity exf(z)eyf(z) = e(x+y)f(z). Note

that we have written the function f(z) as an exponential generating function; clearly, we could

have written it as an ordinary generating function, but this form will be more convenient for

us. Note that p0(x) must be the function 1 and for k ≥ 1 the polynomial pk(x) has no constant

term. Once we have a polynomial sequence (pn(x)) satisfying the binomial theorem we can

easily determine f(z): the coefficient of x1 in pn(x) is exactly bn.

Now we will give the corresponding generalisation of this ideas to graph polynomials. First

we introduce the set-generating function.

Let V be a set of n elements and let us consider the ring with elements

D =

{
∑

S⊆V

aSνS | aS ∈ R

}
,

where νS1νS2 = 0 if S1 ∩ S2 6= ∅ and νS1νS2 = νS1∪S2 if S1 ∩ S2 = ∅. Note that the ring D is

isomorphic with the ring

R[a1, . . . , an]/〈a2
i = 0 (i = 1, . . . , n)〉
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by
∏

i∈S ai corresponding to νS. If F =
∑

S⊆V fSνS and G =
∑

S⊆V gSνS are two elements of

D then

F · G =
∑

S⊆V

(
∑

S1∪S2=S

S1∩S2=∅

fS1gS2)ν
S.

Now we are ready to give a description of exponential-type graph polynomials. Let b be a

function from the isomorphism classes of graphs to R or C such that b(∅) = 0. Let us fix a

graph G = (V,E) and let us consider the set-generating function

exp(x
∑

S⊆V

b(S)νS) =
∑

S⊆V

fb(S, x)νS,

where b(S) = b(G|S). The polynomial fb(V, x) = fb(G, x) depends only on the isomorphism

class of G and is exponential-type. Indeed, with the notation B(ν) =
∑

S⊆V b(S)νS we have

exp(xB(ν)) exp(yB(ν)) = exp((x + y)B(ν))

and it exactly means that

∑

S1∪S2=V (G)
S1∩S2=∅

fb(S1, x)fb(S2, y) = fb(G, x + y).

Note that since (νS)k = 0 if k ≥ 2 we have

exp(x
∑

S⊆V

b(S)νS) =
∏

S⊆V

exp(xb(S)νS) =
∏

S⊆V

(1 + xb(S)νS).

From this we can immediately see the following important corollary.

Theorem A.3.6. Let

exp(x
∑

S⊆V

b(S)νS) =
∑

S⊆V

fb(S, x)νS.

Furthermore, let fb(S, x) =
∑n

k=1 ak(S)xk. Then

ak(S) =
∑

{S1,S2,...,Sk}∈Pk

b(S1)b(S2) . . . b(Sk),

where the summation goes over the set Pk of all partitions of S into exactly k sets.

Now we prove that every exponential-type graph polynomial arise this way.

Theorem A.3.7. Let f be a graph polynomial satisfying that for every graph G we have

∑

S1∪S2=V (G)
S1∩S2=∅

f(S1, x)f(S2, y) = f(G, x + y).

Then there exist a graph function b such that f(G, x) = fb(G, x). More precisely, if b(G) is the

coefficient of x1 in f(G, x) then f = fb.
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Proof. Let

f(G, x) =

|V (G)|∑

k=0

ak(G)xk.

First of all, we prove that the coefficient of x0 in f(G, x) is 0 unless G = ∅. We prove it by

induction on |V (G)|. If |V (G)| = 1 then let f(K1, x) = ax + c. Then

a(x + y) + c = f(K1, x + y) = f(K1, x)f(∅, y) + f(∅, x)f(K1, y) =

= (ax + c) · 1 + (ay + c) · 1 = a(x + y) + 2c.

Hence c = 0. Now assume that |V (G)| ≥ 2 and we know the statement for every graph H with

|V (H)| < |V (G)|, H 6= ∅. Now comparing the coefficient of x0y0 in

∑

S1∪S2=V (G)
S1∩S2=∅

f(S1, x)f(S2, y) = f(G, x + y)

we obtain that

a0(G) = a0(G) · 1 + 1 · a0(G) +
∑

S1∪S2=V (G), S1∩S2=∅
S1,S2 6=∅

a0(S1)a0(S2) = 2a0(G)

by the induction hypothesis. From this we obtain that a0(G) = 0 as well.

Now let b(G) be the coefficient of x1 in the polynomial f(G, x). We will show that

ak(G) =
∑

{S1,S2,...,Sk}∈Pk

b(S1)b(S2) . . . b(Sk).

We prove it by induction on k + |V (G)|. For k = 1 this is exactly the definition so we can

assume that k ≥ 2. Since f(., x) is exponential-type we have

∑

S1∪S2=V (G)
S1∩S2=∅




|S1|∑

r=1

ar(S1)x
r







|S2|∑

t=1

at(S2)y
t


 =

|V (G)|∑

k=1

ak(G)(x + y)k.

By comparing the coefficient of xryk−r we obtain that

ak(G)

(
k

r

)
=

∑

S1∪S2=V (G), S1∩S2=∅
|S1|=r, |S2|=k−r

ar(S1)ak−r(S2).

Now we can apply the induction hypothesis to all terms of the sum unless S1 = V (G), r = k or

S2 = V (G), r = 0. To avoid this we simply choose r = k − 1 to get that

ak(G)k =
∑

S1∪S2=V (G), S1∩S2=∅
|S1|=k−1, |S2|=1

ak−1(S1)a1(S2) =
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=
∑

S2

b(S2)
∑

{T1,...,Tk−1}∈Pk−1(S1)

b(T1) . . . b(Tk−1) =

= k
∑

{T1,...,Tk−1,Tk}∈Pk(V (G))

b(T1) . . . b(Tk−1)b(Tk).

Hence

ak(G) =
∑

{S1,S2,...,Sk}∈Pk

b(S1)b(S2) . . . b(Sk).

Hence f(G, x) = fb(G, x).

Remark A.3.8. In the “nice cases” we have f(K1, x) = x or in other words, b(K1) = 1 implies

that f(G, x) is a monic polynomial for every graph G, but it is not necessarily true in general.

We can prove some simple consequences of the previous two theorems. Many graph polyno-

mials have the following multiplicativity property.

Definition A.3.9. We say that a graph polynomial is multiplicative if

f(G1 ∪ G2, x) = f(G1, x)f(G2, x),

where G1 ∪ G2 denotes the disjoint union of the graphs G1 and G2 and f(∅) = 1.

Theorem A.3.10. Let fb(G, x) be an exponential-type graph polynomial. Then fb is multiplica-

tive if and only if b(H) = 0 for all disconnected graphs.

Proof. Since the constant term of an exponential type polynomial is 0 for every non-empty

graph the condition is necessary: if H = H1 ∪ H2 then fb(H) = fb(H1)fb(H2) implies that

b(H) = 0.

On the other hand, if b(H) = 0 for all disconnected graphs then from Theorem A.3.6 we see

that

ak(H1 ∪ H2) =
k∑

j=1

aj(H1)ak−j(H2)

which means that f(H1 ∪ H2, x) = f(H1, x)f(H2, x).

The following identity connects the classical theory with the theory of the exponential-type

graph polynomials.

Theorem A.3.11.
∞∑

k=0

fb(Kn, x)
zn

n!
= exp(x

∞∑

n=1

b(Kn)
zn

n!
)
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A.3.2 Examples of exponential-type polynomials

In this section we prove that some well-known graph polynomials are exponential-type. For the

chromatic polynomial this is almost trivial and was already observed by Tutte [62].

Theorem A.3.12. The chromatic polynomial ch(., x) is exponential-type.

Proof. Let G = (V,E) be a graph. We need to prove that

∑

S1∪S2=V (G)
S1∩S2=∅

ch(S1, x)ch(S2, y) = ch(G, x + y).

Since there are polynomials on both sides it is enough to prove that there is equality for all

positive integers x, y. But this is trivial: if we color G with x + y colors then we can decompose

V (G) to S1 ∪S2 according we used a color from the first x colors or from the last y colors; such

a decomposition provides a term ch(S1, x)ch(S2, y).

Theorem A.3.13. The Laplacian polynomial L(., x) is exponential-type with

b(G) = (−1)|V (G)|−1τ(G) = (−1)|V (G)|−1|V (G)|τ(G).

Proof. Indeed, by part (c) of the Lemma A.2.9 we have L(G, x) = fb(G, x), where

b(G) = (−1)|V (G)|−1τ(G) = (−1)|V (G)|−1|V (G)|τ(G).

Theorem A.3.14. Let M(G, x) =
∑n

k=0 mk(G)xn−k be the modified matching polynomial. Then

M(G, x) is exponential-type.

Proof. Let b(K1) = b(K2) = 1 and b(H) = 0 otherwise. Then M(G, x) = fb(G, x); indeed, this

time we can easily check that

∑

S⊆V

M(G, x)νS =
n∏

i=1

(1 + xν{vi})
∏

e=(vi,vj)∈E(G)

(1 + xν{vi,vj}).
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Abstract

The thesis consists of two parts. In the first part we study two graph transformations,

namely the Kelmans transformation and the generalized tree shift. In the second part of this

thesis we study an extremal graph theoretic problem and its relationship with algebraic graph

theory. The main results of this thesis are the following.

• We show that the Kelmans transformation is a very effective tool in many extremal alge-

braic graph theoretic problems. Among many other things, we attain a breakthrough in

a problem of Eva Nosal by the aid of this transformation.

• We define the generalized tree shift which turns out to be a powerful tool in many extremal

graph theoretic problems concerning trees. With the aid of this transformation we prove

a conjecture of V. Nikiforov. We give a strong method for attacking extremal graph

theoretic problems involving graph polynomials and trees. By this method we give new

proofs for several known results and we attain some new results.

• We completely solve the so-called density Turán problem for trees and we give sharp

bounds for the critical edge density in terms of the largest degree for every graphs. We

establish connection between the problem and algebraic graph theory. By the aid of this

connection we construct integral trees of arbitrarily large diameters. This was an open

problem for more than 30 years.



Összefoglalás

Az értekezés két részből áll. Az első felében két gráftranszformáció, az ún. Kelmans-

transzformáció valamint az általánośıtott fa transzformációval foglalkozunk. A tézis másik

felében egy extremális gráfelméleti problémával foglalkozunk, valamint ezen problémának az

algebrai gráfelmélettel való kapcsolatával. Az értekezés fő eredményei a következők.

• Megmutatjuk, hogy a Kelmans-transzformáció hatékony eszköz számos extremális algebrai

gráfelméleti problémában. Többek között seǵıtségével áttörést érünk el Eva Nosal egy régi

problémájában.

• Definiáljuk az általánośıtott fa transzformációt, amely hatékony eszköznek bizonyul fákra

vonatkozó extremális gráfelméleti problémákban. Seǵıtségével bebizonýıtjuk V. Nikiforov

egy sejtését. Megadunk egy erős módszert gráfpolinomokkal kapcsolatos, fákon értelmezett

extremális algebrai gráfelméleti problémák megtámadására. Seǵıtségével új bizonýıtást

adunk számos ismert tételre és néhány új eredményt is elérünk.

• Az ún. sűrűségi Turán problémát teljesen megoldjuk fákra valamint minden gráfra éles

becslést adunk a kritikus élsűrűségre a legnagyobb fokszám függvényében. Kapcsolatot

teremtünk a probléma és az algebrai gráfelmélet között. Ezen kapcsolat seǵıtségével kon-

struálunk tetszőlegesen nagy átmérőjű fákat melyek minden sajátértéke egész szám. Ez

utóbbi probléma több, mint 30 évig megoldatlan volt.


