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Notation

Z(ua,v)

1-dimensional Lebesgue measure.
n-dimensional Lebesgue measure.
Diameter of a set.

Closed ball with center z and radius 7.
The sphere with center x and radius r.
s-dimensional Hausdorff measure of A.
= inf {Z diam(A4;)* : A C UA,-; diam(4;) < 5} :
= inf {Z diam(A;)* : A C UA’} .
Hausdorff dimension.

Upper Minkowski dimension.

Lower Minkowski dimension.

The greatest integer not more than x.
The smallest integer not less than .

The angle enclosed by the vectors u and v.
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Chapter 1
Introduction

The task of guaranteeing given patterns in a sufficiently large set has been a central
problem in various areas of mathematics for a long time. Perhaps the most famous example
is the celebrated theorem of Szemerédi claiming that any sequence of positive integers with
positive upper density contains arbitrarily long arithmetic progressions. Such problems
are often studied in the field of geometric measure theory, as well. The following problem
was proposed by Tamas Keleti. We say that a set A C R"” contains the angle « if there
exist distinct points P, Q, R € A such that ZPQR = «. How large (in terms of Hausdorff
dimension) can a compact set A C R™ be if it does not contain some given angle a? Or
equivalently, how large dimension guarantees that our set must contain a? These questions
will be investigated in Chapter 2.

We also study an approximate version of this problem, where we only want our set to
contain angles close to « rather than contain the exact angle a. This version turns out to
be completely different from the original one, which is best illustrated by the case o = /2.
If the dimension of our set is greater than 1, then it must contain angles arbitrarily close
to /2. However, if we want to make sure that it contains the exact angle 7/2, then we
need to assume that its dimension is greater than n/2.

Another interesting phenomenon is that different angles show different behaviour. In
the approximate version the angles 7/3, m/2 and 27/3 play special roles, while in the
original version 7/2 seems to behave differently than other angles.

One of our goals will be to construct large dimensional sets not containing some angle
a. Our strategy will be that we first construct large discrete sets, which then can be blown
up to large dimensional self-similar sets. Such a discrete set that stands behind one of
our constructions will be the following. Erdos and Fiiredi used the probabilistic method
to prove that for any 6 > 0 there is a constant ¢; > 1 such that there exist ¢§ points in

R™ with the property that the angle determined by any three points is less than 7/3 + 4.



This result is related to the next topic studied by this thesis, as well.

We say that a finite set of points is an acute set if any angle determined by three
points of the set is acute. In Chapter 3 we examine the maximal cardinality «(n) of
an n-dimensional acute set. The above result of Erdds and Fiiredi tells us that a(n) is
exponentially large. (Before their random construction it was conjectured by Danzer and
Griinbaum that a(n) < Cn for some constant C.) The exact value of a(n) is known only
for n < 3. For each n > 4 we improve on the best known lower bound for a(n). We present
different approaches. On one hand, we give a probabilistic proof that a(n) > ¢-1.2". (This
improves the random construction given by Erdés and Fiiredi.) On the other hand, we
give an almost exponential constructive example which outdoes the random construction
in low dimension (n < 250). Both approaches use the small dimensional examples that
we found partly by hand (n = 4,5), partly by computer (6 < n < 10).

We also investigate the following variant of this problem: what is the maximal size
k(n) of an n-dimensional cubic acute set (that is, an acute set contained in the vertex set
of an n-dimensional hypercube). We give an almost exponential constructive lower bound,
and we improve on the best known upper bound.

Finally, in Chapter 4 we show that the Koch curve is tube-null, that is, it can be
covered by strips of arbitrarily small total width. In fact, we prove the following stronger
result: the Koch curve can be decomposed into three sets such that each can be projected
to a line in such a way that the image has Hausdorff dimension less than 1. The proof
contains geometric, combinatorial, algebraic and probabilistic arguments.

Chapter 2 is based on [19] and [20]. The latter is a joint paper with Keleti, Kiss,
Maga, Mathé, Mattila and Strenner. For the sake of completeness some constructions due
to Mathé are also included in this thesis (Section 2.5). Chapter 3 and 4 are based on [21]
and [22], respectively.



Chapter 2

How large dimension guarantees a

given angle?

An easy consequence of Lebesgue’s density theorem claims that for any Lebesgue measur-
able set A C R™ with positive Lebesgue measure it holds that a similar copy of any finite
configuration of points can be found in A.

What can be said about infinite configurations? Erdds asked whether there is a se-
quence x,, — 0 such that a similar copy of this sequence can be found in every measurable
set A C R with A(A) > 0. This question is usually referred to as Erdés similarity problem
and still unsolved.

And what about finite configurations in null sets? The following problem was also
posed by Erdés. How large (in terms of Hausdorff dimension) can a set A C R? be if there
is no equilateral triangle with all three vertices in A? Falconer answered this question by
showing that there exists a compact set A on the plane with Hausdorff dimension 2 such
that A does not contain three points that form an equilateral triangle. In fact, it was
shown in [15, 26, 27| that for any three points in R or in R? there exists a compact set
(in R or in R?) of full Hausdorff dimension, which does not contain a similar copy of the
three points. It is open whether the analogous result holds in higher dimension.

It would be interesting to find patterns, which can be found in every full dimensional
set. In this chapter we investigate such a pattern. We say that a set A C R"™ contains
the angle « if there exist distinct points P, @, R € A such that ZPQR = a. Keleti posed
the following question: how large can a set A C R™ be if it does not contain «a? If there
is no restriction on A, then for any given o € [0, 7] one can use transfinite recursion to
construct a full dimensional set not containing «, see Section 2.6. The problem is more
interesting, though, if we restrict ourselves to, for example, compact sets. What is the

smallest s for which dim(A) > s implies that A must contain « provided that A C R™ is



compact? (Or equivalently, what is the maximal Hausdorff dimension s of a compact set
A C R"™ with the property that A does not contain the angle ?) This minimal (maximal)
value of s will be denoted by C(n,«a). It is not hard to show that C'(n,a) < n —1 for
arbitrary «, in other words, if the Hausdorff dimension of a compact set A C R" is greater
than n — 1, then A contains every angle a € [0,7]. For a = /2 we even prove that
compact sets in R™ with Hausdorff dimension greater than [n/2] must contain 7 /2, that
is C'(n,m/2) < [n/2], see Section 2.4.

As far as lower bounds are concerned, the line segment shows that C'(n,a) > 1 for
any « € (0,7). Our first goal is to improve on this obvious lower bound by construct-
ing a compact set of Hausdorff dimension greater than 1 which does not contain some
angle a € (0,7). In Section 2.1 for any 6 > 0 we present a self-similar set K C R"
of dimension ¢sn such that all angles contained by A are from the d-neighbourhood of
the set {0,7/3,7/2,27/3,7}. It implies that C(n,a) > c¢(a)n given that a € (0,7) and
a#7m/3,m/2,2m/3.

What about the exceptional angles /3, 7/2, 2w /37 In Section 2.2 we present a more
involved construction of a self-similar set in R” with dimension ¢¢/n/logn that contains
neither 7/3, nor 27/3. The constructed sets also avoid a small neighbourhood of 7/3
and 27/3. To be more precise, for any § > 0 we prove the existence of a set (in some
Euclidean space of sufficiently large dimension) which has dimension ¢d—!/log(6~!) and
which contains no angle in the d-neighbourhood of 7/3 and 27/3. This latter result is
essentially sharp: if the dimension of A is at least C'9~'log(6~!) for some § > 0, then A
must contain an angle in the §-neighbourhood of 7/3 as well in the J-neighbourhood of
27/3 (see Section 2.3). (Throughout this chapter ¢ and C' denote absolute constants but
different appearances may denote different values.)

Both above constructions (the one for general angles and the one for 7/3, 27/3) are so
called homothetic self-similar sets (see Section 2.1 for details) and have the property that
they avoid not only the given angle a but also a small neighbourhood of a. As Theorem
2.37 will show, one cannot avoid 7/2 with such homothetic self-similar sets given that the
dimension of the set is greater than 1. Moreover, it is shown in Section 2.3 that if the
dimension of any set A is greater than 1, then A must contain angles arbitrarily close to
/2. In other words, it is impossible to construct sets of dimension greater than 1 that
avoid a neighbourhood of /2.

We outline another type of constructions in Section 2.5. These constructions use num-
ber theoretic methods and they are due to Andras Mathé. He proves, for example, that
there exist compact sets in R” with Hausdorff dimension n/2 such that they do not con-

tain the angle 7/2. Consequently, C(n,7/2) > n/2. As we have mentioned before,



C(n,n/2) < [n/2]. In particular, if n is even, we have C'(n,7/2) = n/2.

We emphasize the difference between the tasks of finding an angle precisely and finding
it approximately. For example, we can find angles arbitrarily close to 7/2 given that the
dimension of our set is greater than 1, while if we want to find the exact angle 7/2 in our
set, we need to know that its dimension is greater than n/2.

Sections 2.3, 2.4, 2.6 and parts of Section 2.1 are from [20] and thus joint work with
Keleti, Kiss, Maga, Mathé, Mattila and Strenner. Section 2.2 and parts of Section 2.1 are

from [19]. Section 2.5 contains results due to Mathé.

2.1 Avoiding general angles

In this section we construct sets with the property that any angle contained by the set is
close to one of the following angles: 0,7/3,7/2,27/3, .

First we define homothetic self-similar sets and prove some simple facts about them.
Let us take points P, ..., P,, in some Euclidean space R". We denote the convex hull of
these points by K. For every ¢ = 1,...,m we take a homothety ¢; with center P; and scale
factor 0 < ¢; < 1. Let K be the unique non-empty compact set satisfying K = |, ¢;(K).
One can get this homothetic self-similar set K by setting

def "
K S Jei(Ke) = | wio- 0@ (K),
i=1 i1y

then K = (2, K,. We will use the following notations:

dmin - mln{|P7, - Pj| ) %j};dmax = maX{’Pi _P]| ) %j};QmaX = maX{Qla"'7qm}-

Set n dof Gmaxdmax/dmin- We will assume that 7 < 1/2 which clearly implies that the sets

vi(Kp) (i =1,...,m) are pairwise disjoint. Therefore the well-known Moran equation for

the dimension s of the self-similar K holds:

Gt =1,

which yields that in the special case ¢; = - -+ = ¢, = ¢ the dimension is
logm
§=—.
log (1/q)

For these sets most of the dimension notions (like Hausdorff or Minkowski dimension)
coincide, so for the sake of simplicity in this and the next section we simply say dimension.

The next proposition says that the set of directions in K is close to the set of directions
in {P,...,P,}.



Proposition 2.1. Suppose that 1 = Gmaxdmax/dmin < 1/2. Then for any two distinct
points A, B € K there exist i # j such that the angle between the vectors A — B and
P; — P; is less than ).

Proof. There exist unique sequences i1, i, ... and jq, Jo, . .. such that
A€ pio--op,(K)and B € pj o---0gp; (K)

for any positive integer r. Let r be the smallest index with i, # j.. Now let ¢ be the
homothety defined as ¢;, 0---0¢; | = @; 0---0¢; ,. Clearly A’ = PpHA) € ;. (K)
and B’ d:efzﬂ_l(B) € ;. (K). It also follows that A’ — B’ and A — B are parallel (one is a
positive scalar multiple of the other).

So we can assume that A and B are in different level 1 parts of K, that is, there exist
indices ¢ # j such that A € ;(K) and B € ¢,;(K). Thus |[A — B, |B — Pj| < ¢max@max-
Let us now translate the segment P;P; by the vector A — P; so that P; goes to A, and
P; goes to some point ). Then the angle in question is equal to ZBAQ. We have
|B—Q| <|A—P|+|B— Pj| < 2¢maxdmax- On the other hand, [A — Q| = |P; — P;| > duin.
Since n < 1/2, it follows that |B — Q| < |A — @|. Under this condition the angle ZBAQ

is clearly at most

: IB—QI> ,
arcsin < arcsin(2n) < 7.
((r=g) = wesnen <o

O

Corollary 2.2. Suppose that n < 1/2. Then for any three distinct points A, B,C of K

there exist indices 11,13, 13,14 Such that

‘AABC - 4(1311 - Pi27Pi3 - ]Di4)‘ < 27”7

Proof. Let A, B,C,D € K with A # B and C' # D. We apply the above proposition for
the vectors A — B and C — D. It follows that there exist indices i1, is, i3, ¢4 such that

£(A= B,C = D)~ L(P, - Py, Py — P)| < 27,

27
Setting B = D completes the proof. n

In [20] this self-similar construction was used in the special case when the points P; are
the vertices of a regular simplex in R”. Then m = n+1; dyj, = dmax and the possible values
of Z/(P, — P,,, P, — P;,) are 0, 7/3, /2, 2rr/3 and 7. So setting ¢; = -+ = g = q¢ < 1/2
yields that K has dimension log(n + 1)/log(1/¢) and all the angles contained by K are in
the 2mg-neighbourhood of the set {0, 7/3,7/2,27/3,7}. So for any angle a not in this set



there is a constant ¢(«) such that in R™ a set K of dimension ¢(«)log(n+ 1) can be given
with the property that K does not contain « as an angle.

The following simple observation enables us to do better than that, namely, we show the
existence of a set of dimension ¢(a)n having the same property. For the above construction
to work, it suffices to know that the distances | P; — P;| are approximately the same (equal
with some small error ¢). And there are a lot of points in a Euclidean space with this
property: in 1983 Erdés and Fiiredi proved [12] that for any § > 0 there exist at least
(14 ¢6?)" points in R™ such that the distance of any two is between 1 and 1 + 6. This is
also a special case of the well-known lemma of Johnson and Lindenstrauss which was first
published in 1984 (see Lemma 2.7 in the next section).

Now we prove the simple fact that if we have four points with each pair having approx-
imately the same distance, then the angles enclosed by the segments are close to either
/3 or m/2.

Lemma 2.3. Suppose that the distance of any two of some given points is between 1 and
149 for some § > 0. Then the angle between two arbitrary nonzero vectors with endpoints
from the given set is in the C'd-neighbourhood of the set {0,7/3,7/2,27/3,7}.

Proof. We assume that 0 < § < 0.1. If the lemma holds under this assumption, then it
must also hold for arbitrary 6 > 0 (possibly with some larger C').

Take the endpoints of the two vectors. The set of these endpoints consists of either
two, three or four points.

In the first case the two vectors coincide or they are the negative of each other. So the
enclosed angle is 0 or 7.

In the second case the two vectors share exactly one common endpoint which we denote
by A. Let the two other endpoints be By, By and let a = ZB;AB,. (So the angle enclosed
by the vectors is o or m — a.) By the cosine law we have
|A— B> +|A — By]? — |B; — By?

2|A — By||A — By '

Ccos . =

Using this and the inequalities (1 +6)? <1436 and 1 — 30 < 1/(1 + 39) we obtain that

1 (1 — 35)2 2 — (1 —|—3(5) 2(1 —|—35) —1 1
— < < U T X
5 35 < 9 2(1 35> COS ¥ 9 9 —|—35

Since arccos is a Lipschitz function on the interval [0.2,0.8], it follows that |a —7/3| < C9.
Therefore, in this case the enclosed angle is in the C'd-neighbourhood of 7/3 or 27/3.
Finally, in the third case we have four distinct points Ay, As, By, Bs. Using coordinates,

one can easily obtain the following formula for the inner product of the vectors A; — A,



and B1 — BQZ
(A1 = Ag, B — By) = (JA1 = Bo|* + |Ay = B’ = |A1 = Bi|* = [Ay — By[?) /2,

which yields that for the angle 3 enclosed by A; — Ay and By — B, it holds that

|A; — BQ|2 + |As — B1|2 — |4 — B1|2 — Ay — Bz|2

COs 0 =
b 2|A; — As||B1 — Bs|

Using that each distance is between 1 and 1+ & we obtain that

2(1+0)% -2

|cos 3] < =20+ 6% < 30.

It follows that |5 — 7/2| < C4. O

In the next theorem we put together the above results to obtain large dimensional sets

with all angles close to the special angles 0,7/3,7/2,27/3, .

Theorem 2.4. There is a dg > 0 such that for any 0 < § < dg there exists a self-similar

set in R™ of dimension at least
csn = cd?log 1(1/8) - n

such that the angle determined by any three points of the set is in the d-neighbourhood of
the set {0,m/3,7/2,2n/3,7}.

Proof. Take some real number 0 < 6 < 1/3. As we mentioned before Lemma 2.3, there
exist m > (1 + ¢6*)" points P, ..., P, € R" such that the distance of any two of them
is between 1 and 1 4 §. Take the homotheties with center P; and ratio ¢; = ¢ = 9, and

consider the corresponding self-similar set K. On one hand, the dimension of K is

logm nlog(1 + cé?) . 52
log(1/q) = log(1/6)  — 'log(1/6
On the other hand, Lemma 2.3 and Corollary 2.2 imply that any angle in our self-similar
set is in the Cd-neighbourhood of {0,7/3,7/2,27/3,7}. Changing ¢ to 6/C completes
the proof. O

>TL.

2.2 Avoiding angles 7/3 and 27/3

Our goal in this section is to construct large dimensional sets avoiding the angles 7/3 and
27/3. Again, we will use the self-similar construction described at the beginning of the

previous section. The idea is to find (many) points P; such that any angle determined



by them is in a small neighbourhood of 7/3 but avoids an even smaller neighbourhood of
/3.

We were inspired by the following r-colouring of the complete graph on 2" vertices.
Let C',...,C, denote the colours and let us associate to each vertex a 0-1 sequence of
length r. Consider the edge between the vertices corresponding to the sequences iy, ...,
and jq,...,J.. We colour this edge with C} where k denotes the first index where the
sequences differ, that is, i1 = 1, ..., 9k_1 = Jr_1, ik # Jr. Let us denote this coloured graph
by G, = G.(Cy,...,C,). This is a folklore graph colouring showing that the multicolour
Ramsey number R, (3) is greater than 2.

One can obtain G, recursively as well. Consider the colouring G, _1(Cs,...,C,), and
take two copies of this coloured graph. Let the edges going between the two copies be all
coloured with C;. It is easy to see that this way we get G,.(Cy,...,C;). This colouring
clearly has the property that there is no monochromatic triangle in the graph. Moreover,
every triangle has two sides with the same colour and a third side with a different colour
of higher index.

The idea is to realize G, geometrically in the following manner: the vertices of the
graph will be represented by points of a Euclidean space and edges with the same colour
will correspond to equal distances. In the sequel we will show that G, can be represented

in the above sense. First we prove a simple geometric fact.

Proposition 2.5. Let m be a non-negative integer and R, be positive real numbers with
R <1/v2. Take a (2m + 2)-dimensional sphere S with radius

Cder 1 1 1 1/ 1\? 1
= —l2 — 2< —l2 — e = —.
PENE +ZR_¢4 STER

Then there exist two m-dimensional spheres X,Y C S with radius R such that | X =Y | =1
for any X € X and any Y € ).

Proof. We may assume that S = {P € R*+3 : |P| = R'}. Set t € /12 — 2R2/2 and take
the spheres

XX = (21, Ty, —1,0,..,0) € R0 4y g2 = R?Y
y(iéf{yz(07""07t7y1)-"7ym+1) ER2m+3:y%+'”+ygﬁ-l :RQ}
For any X € X we have |X| =V R?+t?> = R and thus X C §. Similarly, Y C S. On the

other hand, for any X € X and Y € Y it clearly holds that | X —Y| = /R2 + (2t)2 + R? =
l. O




Lemma 2.6. Let ly > Iy > ... > [, > 0 be a decreasing sequence of positive reals. By
Z, we denote the set of 0-1 sequences of length r. Then 2" points P, ., (i1,...,i,) € L,
can be given in some Fuclidean space in such a way that for two distinct 0-1 sequences
(i1,...,0) # (J1, ..., Jr) the distance of P;, ;. and Pj, _; s equal to l;, where k denotes

the first index where the sequences differ, that is, i1 = j1,...,0k—1 = Jk—1, %% 7 Jk-

Proof. For the sake of simplicity, we say that the points P, ., (i1,...,%,) € Z, have
configuration P,(ly,...,[,) if the distances between the points are as in the claim of the
lemma.

We will prove by induction that there exist points with configuration P.(ly,...,[.)
on a (2" — 2)-dimensional sphere with radius at most I;/v/2. This is clearly true for
r = 1. Suppose that it holds for r — 1. The induction hypothesis applied for the distances
Iy > ... >, yields that there exist points with configuration P,_1(ls, ..., [.) on a (21 —2)-
dimensional sphere with radius R < ly/ V2.

Since R <[5/ V2 <, / V2, Proposition 2.5 implies that there is a (2" — 2)-dimensional
sphere § with some radius R < [;/ v/2 such that it contains two (277! — 2)-dimensional
spheres with common radius R such that no matter how we take one point from each
sphere their distance is /.

We can take a copy of the configuration P._i(ls,...,[,) on each of these two spheres.

The union of them clearly have configuration P,.(l1,...,[,). O

Using the above lemma we now construct a large set of points with the property
that any angle determined by them is in a small neighbourhood of 7/3 but avoids an
even smaller neighbourhood of 7/3. We will need the previously mentioned Johnson-

Lindenstrauss lemma.

Lemma 2.7 (Johnson-Lindenstrauss lemma, [25]). Suppose that m points P, ..., P,, are
given in some Euclidean space RY. For any 6 > 0 one can find points P],..., P’ in the

[Clogm/§%]-dimensional Euclidean space in such a way that
P— B <[P =Pl <(1+8)P—P| (1<ij<m).

Theorem 2.8. There exist absolute constants ¢,C' > 0 such that for any positive integer
r and positive real € < 1, 2" points can be given in the [Cr®/e*]-dimensional Euclidean
space with the property that for any angle o determined by three given points the following
holds:

C; < ‘oz - g‘ <eE.

Moreover, for any four distinct points A, B, C', D of these points we have

)A(A—B,C—D)—g‘ <e

10



Proof. Let A > 1 be a real number. We use Lemma 2.6 with [, = \"~* (i = 1,...,r). The
lemma gives us 2" points which have configuration P,(\"~%,... A, 1). Let us denote the
set of these points by S, and take three distinct points in .S. By construction, the triangle
determined by these points has two sides with the same length A* and a third side with a
smaller length \! for some integers 0 <t < s < r — 1. Let this third side be A; A, and let
B denote the remaining vertex. (That is, |A; — Ay| = A" < X\* = |A; — B| = |A; — BJ.)

Now we apply the Johnson-Lindenstrauss lemma for the points in S with some 0 <
0 < 1; by S” we will denote the set of the points obtained. We consider the points
A, Ay B € ' corresponding to the points A;, Ay, B. Using the fact that (1449)? < 1+36
we get that

NE<AL = AP < (14360 M <A - B P < (1+30)\* (i=1,2).

By the cosine law we have

_ A - AP+ A - B - A - B

LALALBY) =
ol AE 204, - A4~ B
(14 38) (A% + \#) — \* 1 P S| A+ 1
_ < = _
AN et T T Sy T

Set A =1+ < and 0 = 3= with a sufficiently small constant c. Then
N = (1 + ﬁ) < exp(ee) <14 2ce < 2.
r

Thus

ce
8r

ce ce

cos(lA’lA’QB’)<%+35)\;1<(%—%>+g(5<% " 87“_%
Since cos is a Lipschitz function with Lipschitz constant 1, it follows that ZA]AB" >
/3 + ce/8r. The same holds for the angle ZA}, A} B’. Therefore for the third angle in the
triangle we get LA\ B' Ay < /3 — ce/4r.

On the other hand, the distance of any two points in S’ is at least 1 and at most
(140)N\" "1 < A" < 1+2ce. Now let us take four distinct points A, B, C', D in S’. As we have
seen in the proof of Lemma 2.3, |Z(ABC) —7/3| < ¢ and |[£L(A—B,C—D)—7/2| <¢
provided that c is sufficiently small.

Finally, by the Johnson-Lindenstrauss lemma the set S’ is contained in a Euclidean

space of dimension at most [C'log(2")/§?] = [Cr3/&?]. O

This discrete set of points can be blown up (using the self-similar construction described

in Section 2.1) to a large dimensional set that does not contain the angles 7/3 and 27/3.
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Theorem 2.9. There exist absolute constants ¢,C' > 0 such that for any 0 < § < e < 1

with €/§ > C' there ezists a self-similar set of dimension

ce/d

* 2 Tog(1/0)

in a Fuclidean space of dimension

such that any angle determined by three points of the set is inside the e-neighbourhood of
{0,7/3,7/2,21/3, 7} but outside the d-neighbourhood of {m/3,2n/3}.

Proof. Set r = [ce/d]. The previous theorem claims that for
n=[Cr*/e?] < Ce/6® m=2",

there exist m points P, ..., P, € R" such that for any three distinct points F;, P}, Py
€
<5

2 < |2£PP;P, - 5
and for any four different points P, P;, Py, P,
T €

‘4(}1—1@,&—3)—- <3

Now we take the self-similar set of Section 2.1 with ¢; = ¢ = ¢d. The set obtained has

dimension
logm cr ce/d

> .

log(1/(cd)) — log(1/8) — log(1/9)
Moreover, Corollary 2.2 implies that all the angles occurring in this set are inside the e-
neighbourhood of {0, 7/3,7/2,27/3, 7} but outside the J-neighbourhood of {x/3,27/3}.
[

By fixing a small € and setting 0 = ¢/+/n in the above theorem, we obtain the following

corollaries.

Corollary 2.10. A self-similar set K C R™ can be given such that the dimension of K is

3
5>C\/ﬁ

~ logn’

at least

and K does not contain the angle w/3 and 27/3 (moreover, K does not contain any angle

in the ¢//n-neighbourhood of /3 and 27 /3).

f Y7 that avoids a small
ogn

neighbourhood of the angles 7/3 and 27 /3. Probably, this result is quite far from being

So there exists a compact set in R™ of dimension at least

sharp. However, as we will see in the next section, the following corollary is surprisingly

sharp.
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Corollary 2.11. For any 0 < 0 < 1 there exists a self-similar set K of dimension at
least c6~1/log(6~1) in some Euclidean space such that K does not contain any angle in

(m/3—=0,7/34+0)U(21/3 —6,2w/3+9).

Finally, we mention that the constructions of this and the previous section have the
additional property that the constructed self-similar sets K avoid « even in the sense that
for any A, B,C,D € K with A # B and C # D we have Z(A — B,C — D) # « (see the
proof of Corollary 2.2).

2.3 Finding angles close to a given angle

We start this section by proving that a set that does not contain angles near to 7/2 must
be very small, it cannot have Hausdorff dimension bigger than 1. This makes 7/2 very
special since, as we have seen, the analogous statement would be false for any other angle

a e (0,7).

Theorem 2.12. Any analytic (compact) set A in R" (n > 2) with Hausdorff dimension

greater than 1 contains angles arbitrarily close to the right angle.

Proof. 1t is a well-known fact that any analytic set A with positive H® measure contains a
compact s-set (see e.g. [16, 2.10.47-48]). Consequently, we can assume that 0 < H*(A) <
oo for some s > 1. Then for H*® almost all z € A it holds that for almost all (n — 1)-
dimensional hyperplane through x intersect A in a set of dimension s—1 (see Theorem 2.30
of the next section). Let us fix a point x with this property and let y # x be an arbitrary
point in A. Since the set of hyperplanes forming an angle at least 7/2 — ¢ with the vector
y — = has positive measure for any 6 > 0, while the set of exceptional hyperplanes has

measure zero, the theorem follows. O

Now we prove the same result for upper Minkowski dimension instead of Hausdorff
dimension. It is well-known that the upper Minkowski dimension is always greater or
equal than the Hausdorff dimension. Hence the following theorem is stronger than the

previous one.

Theorem 2.13. Any set A in R™ (n > 2) with upper Minkowski dimension greater than

1 contains angles arbitrarily close to the right angle.

The upper Minkowski dimension can be defined in many different ways, we will use
the following definition (see [31, Section 5.3] for details).

13



Definition 2.14. By B(xz,r) we denote the closed ball with center x € R™ and radius
r. For a non-empty bounded set A C R" let P(A,¢) denote the greatest integer k for
which there exist disjoint balls B(x;,¢) with x; € A, ¢ = 1,..., k. The upper Minkowski
dimension of A is defined as

dimy(A) o sup{s : limsup P(A4,)e® = oo}.
e—0+

Note that we get an equivalent definition if we consider the lim sup for €’s only in the form
e=2"%LkeN

The next lemma is mainly technical. It roughly says that in a set of large upper
Minkowski dimension one can find many points such that the distance of each pair is more

or less the same.

Lemma 2.15. Suppose that dimy(A) >t for a set A C R™ and a positive real t. Then for
infinitely many positive integers k it holds that for any integer 0 < I < k there are more

than 2Dt points in A with the property that the distance of any two of them is between

27k+1 gnd 2712,

Proof. Let
rp = P(A,27F) 27

Due to the previous definition limsup,_, 7, = oo. It follows that there are infinitely
many values of k£ such that r, > r; for all [ < k. Let us fix such a k and let 0 < [ < k be
arbitrary.

By the definition of rj, there are r;2* disjoint balls with radii 27% and centers in A.
Let S denote the set of the centers of these balls. Clearly the distance of any two of them
is at least 27+,

Similarly, we can find a maximal system of disjoint balls B(z;,27!) with 2; € A,
i =1,...,72"% Consider the balls B(x;,27!"!) of doubled radii. These doubled balls
are covering the whole A (otherwise the original system would not be maximal). By the

pigeonhole principle, one of these doubled balls contains at least

kt
TR2T  Tho(k-it o okl

7’12” T

points of §. These points clearly have the desired property. H
Now we are ready to prove the theorem.

Proof of Theorem 2.13. We can assume that diam(A) > 2. Fix a ¢ such that dimy(A) >
t > 1. Lemma 2.15 tells us that there are arbitrarily large integers k such that for any

14



| < k one can have more than 2~9% points in A such that each distance is between
27k+1 and 272, Let S be a set of such points and pick an arbitrary point O € S. Since
diam(A) > 2, there exists a point P € A with OP > 1. Now we project the points of S
to the line OP. There must be two distinct points Q1,2 € S such that the distance of

their projection is at most

2—l+2
— og—l+2—(k=Dt
9(k—D)t ’
It follows that
9—1+2—(k-1)t R
cos Z(Qa — Q1, P —0) < T — 9= (k=D(t=1)+1

Since Q0 < 272 and OP > 1, the angle of the lines OP and QP is at most C;2~! with

some constant C. Combining the previous results we get that
|4PQ1Q2 - 7T/2‘ < 012*1 + 0227(1:71)(#1)

with some constants C,C5. The right hand side can be arbitrarily small since ¢ — 1 is

positive and both [ and k£ — [ can be chosen to be large. O]

Now we try to find angles close to 7/3. We will do that by finding three points forming
an almost reqular triangle provided that the dimension of the set is sufficiently large.

We will need a simple result from Ramsey theory. Let R,(3) denote the least positive
integer k for which it holds that no matter how we colour the edges of a complete graph
on k vertices with r colours it contains a monochromatic triangle. The next inequality
can be obtained easily:

R.(3)<r-R,_1(3) — (r—2).

(A more general form of the above inequality can be found in e.g. [17, p. 90, Eq. 2].) It
readily implies the following upper bound for R,.(3).

Lemma 2.16. For any positive integer r > 2
R.(3) < 3r!,

that is, any complete graph on at least 3r! vertices edge-coloured by r colours contains a

monochromatic triangle.
Using this lemma we can prove the following theorem.

Theorem 2.17. There exists an absolute constant C such that whenever dimy(A) >
Cotlog(671) for some set A CR™ and § > 0 the following holds: A contains three points
that form a d-almost reqular triangle, that is, the ratio of the longest and shortest side is

at most 1 + 4.
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As an immediate consequence, we can find angles close to /3.

Corollary 2.18. Suppose that dimy(A) > C5 ' log(671) for some set A C R™ and § > 0.
Then A contains angles from the interval (w/3 — §,7/3] and also from [7/3,7/3 +9).

Remark 2.19. The above theorem and even the corollary is essentially sharp: in the
previous section we constructed a set with Hausdorff dimension ¢6~1/log(6~!) and without

any angles from the interval (7/3 — 9§, 7/3 +9).

Proof of Theorem 2.17. Let t = C6~'log(6~') and apply Lemma 2.15 for [ = k — 1. We
obtain at least 2! points in A such that each distance is in the interval [27*F1 2773 Tet
a = 27%*! and divide [a,4a] into N = [2] disjoint intervals of length at most da. Regard
the points of A as the vertices of a graph. Colour the edges of this graph with N colours
according to which interval contains the distance of the corresponding points.

Easy computation shows that 2¢ > 3N! (with a suitable choice of C'). Therefore the
above graph contains a monochromatic triangle by Lemma 2.16. It easily follows that the

three corresponding points form a d-almost regular triangle in R"™. O]

Remark 2.20. The same proof yields the following: for any positive integer d and positive
real § there is a number K(d,d) such that whenever dimy(A) > K (d,§) for some set A,
one can find d points in A with the property that the ratio of the largest and the smallest
distance among these points is at most 1 +¢. (One needs to use the fact that the Ramsey
number R,.(d) is finite.)

In order to derive similar results for 27 /3 instead of /3 we show that if large Hausdorff
dimension implies the existence of an angle near «, then it also implies the existence of an

angle near m — a.

Proposition 2.21. Suppose that s = s(«,d,n) is a positive real number such that any
analytic set A C R™ with H*(A) > 0 contains an angle from the interval (o — 6, + §).
Then any analytic set B C R™ with H*(B) > 0 contains an angle from the interval
(m—a—0d,1—a+d) for any o' > 6.

Proof. Again, we can assume that 0 < H*(B) < oco. It is well-known that for H*® almost
all z € B the set BN B(x,r) has positive H* measure for any r > 0 [31, Theorem 6.2]. If
we omit the exceptional points from B, this will be true for every point of the obtained
set. Assume that B had this property in the first place. Then, by the assumptions of the
proposition, any ball around any point of B contains an angle from the §-neighbourhood
of a.

We define the points P,,, @, R,, € B recursively in the following way. Fix a small
e. First take Py, Qo, Ro such that the angle ZPyQo R falls into the interval (o — §, v +
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). If the points P,,, Q,, R, are given, then choose points P, 1, Qmi1, Ryt from the
e - min(Q,, Py, QR )-neighbourhood of P, such that ZP,,11Qmi1Rms1 € (=65, a+9).

We can find two indices k£ > [ such that the angle enclosed by the vectors QZ—P; and
m is less than e. It is clear that if we choose ¢ sufficiently small, then Z(Q;, Q, Ry) €
(mr—a—0,7m—a+d). O

Remark 2.22. Proposition 2.21 holds for ¢’ = ¢ as well. Surprisingly, it even holds for
some &' < 0. The reason behind is the following. If every analytic set A C R" with
H*(A) > 0 contains an angle from the interval (o — d, a + J), then there necessarily exists
a closed subinterval [ — v, + 7] (v < 0) such that every analytic set A C R"™ with
H*(A) > 0 contains an angle from the interval [o — 7, a + y]. We prove this statement at
the end of this section (Theorem 2.25).

Theorem 2.23. There exists an absolute constant C' such that any analytic set A C R"
with dim(A) > C6 1 log(6~1) contains an angle from the §-neighbourhood of 2m/3.

Proof. The claim readily follows from Corollary 2.18, Proposition 2.21 and the fact that

the upper Minkowski dimension is greater or equal than the Hausdorff dimension. O
To find angles arbitrarily close to 0 and 7, it suffices to have infinitely many points.

Proposition 2.24. Any A C R" of infinite cardinality contains angles arbitrarily close to

0 and angles arbitrarily close to .

Sketch of the proof. We claim that given N points in R™ they must contain an angle less

than ¢; = and an angle greater than m — dy with 6y = %m. The former

o
Tllv
follows easily from the pigeonhole principle. The latter is a result of Erdés and Fiiredi [12,
Theorem 4.3]. O

In this section we have seen results saying that large dimensional sets contain angles
close to a given angle o € {0, 7/3,7/2,27/3,7}. Note that in these results the dimension
of the Euclidean space (n) did not play any role. To sum up the results we introduce the

following function C' depending on an angle o € [0, 7] and a small positive .

C(a,d) o sup{dim(A) : A C R" for some n; A is analytic;

A does not contain any angle from (o — 6, + ) }.
Remark 2.22 implies that C satisfies the symmetry property

C(a,0) = C(m — «,0).

17



In Section 2.1 for any positive € we constructed sets of arbitrarily large dimension such
that all the angles fall into the e-neighbourhood of the special angles 0, 7/3, 7/2, 27/3,
7 (Theorem 2.4). So for any angle o other than the special angles 5(04,(5) = o0 if 9 is
smaller than the distance of « from the special angles. Therefore this construction and

the results of this section give essentially all the values of C (e, 9), see the table below.

Table 2.1: Smallest dimensions that guarantee angle in the d-neighbourhood of «

a C(a,0)
0, =0
/2 =1

7/3,2m/3 ~ 1/§ | apart from a multiplicative error C - log(1/6)

other angles | = oo provided that ¢ is sufficiently small

Finally, we prove the following theorem, which was claimed in Remark 2.22.

Theorem 2.25. Suppose that s = s(«,d,n) is a positive real number such that every
analytic set A C R™ with H*(A) > 0 contains an angle from the interval (o — 0, + 0).
Then there exists a closed subinterval [ — v, + 7| (v < &) such that every analytic set
A C R" with H*(A) > 0 contains an angle from the interval [ — v, o + 7].

To prove this theorem, we need two lemmas. For r € (0, o] let
H:(A) = inf {Z diam(U;)* : diam(U;) <r, AC U;’ilUl} :
i=1

thus H*(A) = lim, o+ HI(A).

Lemma 2.26. Let A; be a sequence of compact sets converging in the Hausdorff metric
to a set A. Then the following two statements hold.

(i) Hi(A) > limsup HZ (4.

(i) Suppose that for everyi = 1,2, ... the set A; does not contain an angle from [o— 6+

i, a+d—¢;|, wheree; — 0+. Then A does not contain an angle from (a—0, a+9).

Proof. The first statement is well-known and easy. To prove the second, notice that for
any three points x,y, z of A there exist three points in A; arbitrarily close to x,y, z, for

sufficiently large 7. O]

The next lemma follows easily from [16, Theorem 2.10.17 (3)]. For the sake of com-

pleteness, we give a short direct proof.
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Lemma 2.27. Let A C R" be a compact set satisfying H*(A) > 0. Then there erists a
ball B such that HS (AN B) > ¢ - diam(B)®, where ¢ > 0 depends only on s.

Proof. We may suppose without loss of generality that H*(A) < oo. (Otherwise we choose
a compact subset of A with positive and finite H® measure. If the theorem holds for a
subset of A, then it clearly holds for A as well.)

Choose r > 0 so that H:(A) > H*(A)/2. Cover A by sets U; of diameter at most
r/2 such that ). diam(U;)* < 2H*(A). Cover each U; by a ball B; of radius at most the
diameter of U;. Then the balls B; cover A, have diameter at most 7, and ), diam(B;)* <
214575 (A).

We claim that one of these balls B; satisfies the conditions of the Lemma for ¢ = 27275,

Otherwise we have
H;(A N Bz) < 2_2_8 dlam(BZ)S
for every i. Since the sets ANB; have diameter at most r, clearly Hi(ANDB;) = H: (ANDB;).

Therefore

Hi(A) <D HIANDB) < Y 272" diam(B;)* < 272721 (A) = H*(A)/2,

which contradicts the choice of r. O]

Proof of Theorem 2.25. Suppose on the contrary that there exist analytic sets K; C R"
with H*(K;) > 0 such that K; does not contain an angle from [« —d+1/i, a+d—1/i]. We
can clearly assume that the sets K; are compact. Choose a ball B; for each compact set K;
according to Lemma 2.27. Let B be a ball of diameter 1. Let K! be the image of K; N B;
under a similarity transformation which maps B; to the ball B. Thus H3_ (K]) > c¢. Let K
denote the limit of a convergent subsequence of the sets K;. We can apply Lemma 2.26 to
this subsequence and obtain H?_(K) > ¢, implying H*(K) > 0. Also, K does not contain

any angle from the interval (o« — §, @ 4 §), which is a contradiction. O

2.4 Finding a given angle
In this section we give upper bounds for C'(n, «) which is defined as follows.

Definition 2.28. If n > 2 is an integer and « € [0, 7], then let

C(n,a) = sup{s : 3A C R" compact such that

dim(A) = s and A does not contain the angle a}.
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As we already mentioned, any analytic set A with positive H* measure contains a com-
pact s-set. Consequently, whenever we want to prove that every compact set of dimension
greater than s contains the angle «, then instead of compactness it is enough to assume
that the set is analytic (or Borel) and on the other hand, we can always suppose that the
given compact or analytic set is a compact t-set for some ¢ > s. Thus C'(n, «) can be also

expressed as

C(n,a) = sup{s : 3A C R" analytic such that

dim(A) = s and A does not contain the angle a},

or

C(n,a) = sup{s : 3A C R" compact such that

0 < H*(A) < 0o and A does not contain the angle a}.

However, as we prove it in Section 2.6, some assumption about the set is necessary,
otherwise the above function would be n for any «. In fact, for any given n and a we
construct by transfinite recursion a set in R™ with positive Lebesgue outer measure that
does not contain the angle .

The following theorem, which is the first statement of [31, Theorem 10.11], plays

essential role in some of our proofs.

Notation 2.29. The set of k-dimensional subspaces of R will be denoted by G(n, k) and

the natural probability measure on it by 7, x (see e.g. [31] for more details).

Theorem 2.30. If m < s <n and A is an H® measurable subset of R™ with 0 < H*(A) <
oo, then
dim (AN(W +2)) =s—m
for H® X Yppn—m almost all (x,W) € A x G(n,n —m).
In two dimensions it says that for H® almost all z € A, almost all lines through =z
intersect A in a set of dimension s — 1. One would expect that this theorem also holds for
half-lines instead of lines. Indeed, Marstrand proved it in [28, Lemma 17]. Although the

lemma only says that it holds for lines, he actually proves it for half-lines. Therefore the

following theorem is also true.

Theorem 2.31. Let 1 < s < 2 and let A C R? be H® measurable with 0 < H*(A) < oo.
For any v € R? and 9 € [0,27) let L9 = {x +te’ : t > 0}. Then

dim (A N ng) =s—1
for H® x X almost all (z,9) € A x [0, 27).
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In this section we give estimates to C'(n,«). For n = 2 we get the following exact

result.
Theorem 2.32. For any « € [0, 7] we have C(2,a) = 1.

Proof. A line has dimension 1 and it contains only the angles 0 and 7. A circle also has
dimension 1, but does not contain the angles 0 and 7. Therefore C'(2,a) > 1 for all
a € [0, 7.

For the other direction let o € [0,7] and s > 1 fixed. We have to prove that any
compact s-set contains the angle . By Theorem 2.31, there exists x € K such that
dim(KNL,y) =s—1 for almost all ¥ € [0, 27), where L,y = {z+te” : ¢t > 0}. Hence we
can take 1,7, € [0,27) such that |J; — U3 = o, and dim(K N L, y,) = s — 1 for i =1,2.
If z; € Ly, \ {z}, then the angle between the vectors 1 — z and z2 — 2 is «a, so indeed,

K contains the angle a. O]
An analogous theorem holds for higher dimensions.
Theorem 2.33. Ifn > 2 and « € [0, 7], then C(n,a) <n —1.

Proof. We have already seen the case n = 2, so we may assume that n > 3. It is enough to
show that if s > n—1 and K is a compact s-set, then K contains the angle a. By Theorem

2.30, there exists € K such that there exists a W € G(n,2) with dim(B) =s—n+2 > 1
def

for B= AN (W +a). The set B lies in a two-dimensional plane, so we can think of B as
a subset of R2. Applying Theorem 2.32 completes the proof. m
Now we are able to give the exact value of C'(n,0) and C(n, ).

Theorem 2.34. C(n,0) = C(n,7) =n—1 for alln > 2.

Proof. One of the inequalities was proven in the previous theorem, while the other one is

shown by the (n — 1)-dimensional sphere. O
We prove a better upper bound for C(n,7/2).

Theorem 2.35. If n is even, then C(n,7/2) < n/2. If n is odd, then C(n,n/2) <
(n+1)/2.

Proof. First suppose that n is even. Let s > n/2 and let K be a compact s-set. From

Theorem 2.30 we know that there exists a point x € K such that
dim (KN (z+W))=s—n/2>0 (2.1)

for vy, n/2 almost all W € G(n,n/2). There exists a W € G(n,n/2) such that (2.1) holds
both for W and W+. As (z + W) N (z+ W) = {z}, by choosing a y € K N (z+ W) and
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z € KN (xz+ W) such that x # y and o # 2, we find a right angle at z in the triangle
TYz.

Now suppose that n is odd, s > (n+ 1)/2 and K is a compact s-set. With a similar
argument we can conclude that 3z € K and W € G(n, (n + 1)/2) such that dim (K N
(z+W)) =s—(n+1)/2>0and dm(KN@z+Wh)) =s—(n—-1)/2 > 1. If
ye KN(x+ W)\ {z} and z € KN (x+ W)\ {z}, then there is again a right angle at

x in the triangle zyz. O

Remark 2.36. By the following result of Andras Mathé the above estimate is sharp if
n is even: for any n there exists a compact set of Hausdorff dimension n/2 in R™ that
does not contain /2. Therefore if n is even, we have C(n,7/2) = n/2. We outline this

construction in the next section.

Finally, we prove that if we have a homothetic self-similar set K with dim(K) > 1
and the strong separation condition is satisfied, then K must contain the vertices of a
rectangle, in particular, it contains the angle 7/2. It means that it is impossible to avoid

7/2 with constructions like the ones presented in Section 2.1 and 2.2.

Theorem 2.37. Let K C R™ be a homothetic self-similar set, that is, K is compact
and there exist homotheties @1, ..., o, with ratios less than 1 such that K = p1(K) U
©a(K)U---Upn(K). Suppose that the sets o;(K) are pairwise disjoint (that is, the strong
separation condition is satisfied). Then K contains four points that form a non-degenerate

rectangle given that dim(K) > 1.

Proof. We begin the proof by defining the following map:

T—y

v =yl

We denote the range of D by Range(D). The set Range(D) can be considered as the set

D: KxK\{(z,z):z€ K} — S"" (z,y) —

of directions in K. First we are going to prove that if K is such a self-similar set, then
Range(D) is closed.

As we have seen in the proof of Proposition 2.1, for any z,y € K, x # y there exist
' € p;i(K) and y' € ¢;(K) for some i # j such that x = ¢ (2’) and y = ¢(y') where 9 is
the composition of finitely many ;’s. The important thing for us is that z — y is parallel
to ' —y'. If d(-,-) denotes the Euclidean distance, then

oJuin  d(ei(K), ¢;(K)) = c >0,

so Range(D) actually equals to the image of D restricted to the set K x K \ {(z,y) :
d(xz,y) < c}. As this is a compact set, the continuous image is also compact. That is what

we wanted to prove.
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Next we show that for any v € S™~! there exist x,y € K, x # y such that the vectors v
and D(z,y) are perpendicular. If this was not true, the compactness of Range(D) would
imply that the orthogonal projection p to a line parallel to v would be a one-to-one map
on K with p~! being a Lipschitz map on p(K). This would imply dim(K) < 1, which is a
contradiction.

o 2. The homotheties fog and go f have

For simplifying our notation, let f o Y1, g
the same ratio. Denote their fixed points by P and @), respectively. Since P # (), there
are T,y € K, x # y such that x — y is perpendicular to P — ). It is easy to check that

the points f(g(x)), f(g(v)), 9(f(y)) and g(f(z)) form a non-degenerate rectangle. O

2.5 Number theoretic constructions

Although the constructions of this section are due to Andras Mathé, we include them in
this thesis for the sake of completeness.
The starting point is Falconer’s famous distance set problem. Instead of regarding the

angles contained by our set A, we now consider the set of distances occurring in A, that is
def
D(A) =A{lz —y| : z,y € A}.

Now it does not make much sense to ask whether a particular distance is in D(A) or not.

Instead, we are interested in the size of D(A). The next theorem was proved by Falconer.

Theorem 2.38 (Falconer, [13]). If A C R" is an analytic set with dim(A) > n/2 +1/2,

then the distance set D(A) has positive Lebesque measure.

Certain improvements have been done by Bourgain [5], Mattila [30] and Wolff [35].
Recently it was proved by Erdogan that n/2 + 1/2 can be replaced with n/2 4+ 1/3 in the
above theorem given that n > 3 [11]. It is generally believed that it can be replaced even
with n/2. As we will see, one cannot do better than that.

One can use the above theorem to say something about angles, as well. The following
simple observation is due to Mathé. Let A C R" be analytic with dim(A) > n/2 + 3/2.
Let us take an arbitrary point z € A and project the set A from x onto S(x,1), the unit
sphere centered at z; we denote the image of the projection by A, C S(x,1). It is easy
to see that dim(A4,) > dim(A) — 1 > n/2 + 1/2. Thus Falconer’s theorem yields that
the distance set of A, has positive Lebesgue measure. However, if y,z € S(x, 1), then
the angle Zyxz depends only on the distance of y and z. It follows that the set of angles
contained by A has positive Lebesgue measure.

Let us now turn our attention to constructions. First we show how to construct large

dimensional sets with distance set of measure zero. The following construction is due to
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Falconer [13, Theorem 2.4]. Let N; be a sufficiently fast growing sequence and let x > 1.
By E, we denote the set of those = € [0, 1] for which Vi 3m; € Z such that

1

— NK"

7

m;
‘Q’/'__
N;

Theorem 2.39. E, is a compact set with dim(FE,) = 1/k.

For a proof see [14, Theorem 8.15]. The key property of this set is that the Minkowski
sum E, + F, + ...+ E, also has Hausdorff dimension 1/k.

Now let us consider the set
A.=FE.x E. x---x E. CR"

It can be shown that dim(A,) = n/k. It is not hard to prove that A\(D(A,)) = 0 given that
k > 2. If Kk — 2+, then we get compact sets in R” with Hausdorff dimension arbitrarily
close to n/2 such that their distance sets are null sets. (With a little more effort, one can
construct sets with the same property and of dimension precisely n/2.)

As Mathé proved, the set of angles contained by A, has Lebesgue measure zero provided
that x > 6. It immediately follows that for almost all a € [0, 7] we have C(n,«) > n/6.

Moreover, using similar number theoretic techniques, for any given angle a € (0, )
Mathé constructed sets in R™ of Hausdorff dimension cn that avoid «. Even though the
constructed sets contain angles arbitrarily close to a, they succeed to avoid . (Recall
that the constructions presented in Section 2.1 and 2.2 had the property that they avoided
not only a certain angle o but also a whole neighbourhood of «.) Here we outline the

construction only for the simplest case o = /2.

Theorem 2.40 (Mathé, [29]). There ezists a compact set K C R™ such that dim(K) = n/2

and K does not contain the angle 7 /2.
It follows from Theorem 2.35 that this result is sharp given that n is even.

Sketch of the proof. Let us take the points
Py=(0,0,...,0); P, =(1,0,...,0); P,=(0,1,...,0)

in the n-dimensional Euclidean space; Py P, P, is clearly a right-angled triangle. As a first
step, we make sure that our set contains no right-angled triangle lying close to Py P Ps.
Let B; be the closed ball with center P; and radius 1/100; ¢ = 0,1, 2. Fix some positive

integer N and consider the following point lattice in the n-dimensional Euclidean space:

my1 Mo my,
TR miez)
S F ) me
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The 1/N*"-neighbourhood of this lattice will be denoted by L. We take the following
sets:

1
ngBoﬂL, KlzBlﬂL, KQZBQH(L—{—(W,O,O,,O))

If we take a point @; from each K, then ZQ1QoQ2 # 7/2, which can be seen easily by
computing the scalar product (Q1 — Qo, Q2 — Qo). Now let us consider the set

KoUK UK, U (R"\ (ByU B, UB,)). (2.2)

As we have just seen, this set has the property that it contains no right-angled triangles
lying close to PP, Ps.

Note that in the above argument we can replace Py P, P, by any right-angled triangle
with all three vertices having rational coordinates. Let us take the set (2.2) for each of
these countably many triangles (we might use different N’s for different triangles). The
intersection of these sets clearly contains no right angle at all. It can be also shown that if
we choose the N’s carefully, then the intersection will have Hausdorff dimension n/(2+¢).
(It is not hard to modify this proof in such a way that the Hausdorff dimension of the

constructed set is precisely n/2.) O

Finally, to sum up the results of this and the previous section, we gathered the best

known bounds for C(n, a) in the following table.

Table 2.2: Best known bounds for C'(n, «)

Q lower bound | upper bound

0,7 n—1 n—1
€0,m); a#7/2 | cn n—1

/2 n/2 [n/2]

2.6 A construction using transfinite recursion

Now we show that if we allowed arbitrary sets in Definition 2.28, then C'(n,«) would be

n.

Theorem 2.41. Let n > 2. For any o € [0, 7| there exists H C R"™ such that H does not
contain the angle o, and H has positive Lebesgue outer measure. In particular, dim(H) =

n.
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Proof. Take a well-ordering { B : 5 < ¢} of the Borel null-sets of R (with respect to the
n-dimensional Lebesgue measure). We will construct a sequence of points {zg: 3 < ¢} of
R™ using transfinite recursion, and define H as {zg: 5 < c}.

We introduce the following notation. If y, 2 € R™ and y # z, then

Cy: o {r € R"\ {y, 2z} : the angle between x — y and z — y is a} U {y, z};

D,, & {z € R"\ {y, 2} : the angle between y — z and z — x is a} U{y, z}.

Cy. is a cone with vertex y, while D, has the property that a 2-dimensional plane con-
taining y and z intersects it in the union of two circular arcs going between y and z. When
a = 0 or 7, both sets are degenerate: Cy, becomes a half-line, D,. becomes a segment or
the union of two half-lines.

First we show that if v is a vector such that the angle between v and z — y is not «
or m — «, then any line [ parallel to v intersects ), in at most two points. Let x € [ be
arbitrary. Then [ = {z 4 tv : t € R}. Suppose that ¢, € R such that z + tov € Cy,. Then
((z+tov) —y,z—y)* _ pilto)

(2 +tov) —ylPlz —yl*  palto)’

where p;(t) and py(t) are polynomials of degree 2, with leading coefficients (v, z — y)? and

COS2 o =

|v|?|z — y|?, respectively. The number ¢, is a root of
def 2
p(t) = pa(t) cos” a — py(t),
which has degree 2, as the coefficient of #? is
[0]|z = y|? cos” @ — (v, 2 — y)* # 0.

Hence p(t) has at most two roots which means that [ intersects Cy, in at most two points.
Similarly, we prove that if D,, is non-degenerate, then any line [ intersects it in at
most four points. Let | = {x +tv : t € R} again, and suppose that x4 tov € D,,, for some
to € R. Then
cos? o — (y — (z+tov),z — (z+tv))* _ pa(to)
ly — (& + tov)]lz — (z + tov) [ palto)’

where pq(t) and po(t) now denote polynomials of degree 4. Again, ty is a root of the

polynomial po(t) cos® a— py (t) which has degree exactly 4 as the leading coefficient of both
p1 and py are |v|*, and cos? a # 1. As it has at most four roots, we are done. When D,, is
degenerate, any line that does not go through both y and z intersects D,, in at most one
point.

Now we move on to the construction. Suppose that 3 < ¢ and we have already defined
x, for all v < 3. Let Hz = {z, : v < B}.

We want the point 3 to satisfy the following properties:
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(i) x5 ¢ Cy, for any y, z € Hg with y # z;
(i) zg ¢ D, for any y, z € Hg with y # z;

If we prove that it is possible to define x4 this way, then we are done, because (i) and
(ii) guarantee that the resulting set H will not contain the angle «, while (iii) ensures that
H will not be a null set as each null set is contained by a Borel null set.

First we show that there is a direction v € S™ ! such that each line parallel to v
intersects the set

A= |J (€.uD,)
y,2€Hp,y#2
in less than ¢ points. We say that v is good for Cy, (or D,,) if each line parallel to v
intersects C,, (or D,.) in less than ¢ points. We have already shown that for each D,,
there are at most two v € S"~! which are not good for D,,. Therefore there are less than
¢ directions that are not good for some D,,..

For a fixed y and z the set of directions which are not good for Cy, is
fve S (v,z—y)==%]z —y|lcosa} =S"""N(S, .U, ),

where ¥, denotes the hyperplane {x € R" : (z,w) = |w|cosa} for w € R™\ {0}. First,
suppose that a # /2, whence 0 ¢ ¥,,. Take arbitrary v; and vy with vy # +vq, and
denote the two-dimensional plane {sv; + tvy : s,t € R} by F. The set C L on-1nFis
an ordinary circle. It is clear that the set S" ' N X, NC = S" 1N (3, N F) has at most
two elements for all w € R™\ {0}, because ¥,, N F' is an at most one-dimensional affine
subspace of R" as 0 ¢ ¥,,. From this we can conclude that there are less than ¢ points on
C which are not good for some C), hence there is a point on C' which is good for every
Cy. and D,,.

This method does not work if o = 7/2. In this case take a subset V of S"~! such that
card(V') = ¢ and no n distinct elements of V' are linearly dependent. For example, the
set U = {(1,¢,...,t" 1) : t € [0,1]} does not contain n distinct points which are linearly
dependent (their determinant is a Vandermonde determinant), so we may get a good V'
by normalizing each u € U to u/|u|. As X, goes through the origin in this case, it can
contain at most n — 1 points of V. It follows that the union of the hyperplanes ¥,_. and
¥,_, can cover only less than ¢ points of V' (y,z € Hg,y # z). Hence there exists av € V
which is good for every C,, and D, in this case, too.

Take such a v. The only thing we need to prove in order to finish the proof of the

theorem is that AzU Bz # R". Taking a Cartesian coordinate system with one axis in the
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direction of v, and applying Fubini’s Theorem for the characteristic function of Bs gives
that H'(l, N Bg) = 0 for almost all z € {v}*, where [, denotes the line {x + tv : t € R}.
We also have card(l, N Ag) < ¢ for all z € {v}*, therefore it remains to show that the
complement of a null set of R has cardinality ¢. But this is clear, as the complement of a
null set contains a compact set with positive measure, which is the union of a non-empty

perfect set and a countable set. O
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Chapter 3
Acute sets in Euclidean spaces

Around 1950 Erd6s conjectured that given more than 2¢ points in R? there must be three
of them determining an obtuse angle. The vertices of the d-dimensional cube show that
24 points exist such that the angle determined by any three of them is at most /2.

In 1962 Danzer and Griinbaum proved this conjecture [10] (their proof can also be
found in [2]). They posed the following question in the same paper: what is the maximal
number of points in R? such that all angles determined are acute (in other words, this
time we want to exclude right angles as well as obtuse angles). A set of such points will
be called an acute set or acute d-set in the sequel.

The exclusion of right angles seemed to decrease the maximal number of points dra-
matically: they could only give 2d — 1 points, and they conjectured that this is the best
possible. However, this was only proved for d = 2,3. (For the non-trivial case d = 3, see
Croft [8], Schiitte [33], Griinbaum [18].)

Then in 1983 Erdés and Fiiredi disproved the conjecture of Danzer and Griinbaum.
They used the probabilistic method to show the existence of an acute d-set of cardinality
exponential in d. Their idea was to choose random points from the vertex set of the
d-dimensional unit cube, that is {0,1}%. Actually they even proved the following result:
for any fixed § > 0 there exist exponentially many points in R? with the property that
the angle determined by any three points is less than 7/3 + 0. We used this result in the
previous chapter to construct large dimensional sets such that each angle contained by the
sets is close to one of the angles 0, 7/3, 7/2, 27/3, .

We denote the maximal size of acute sets in R? and in {0,1}? by a(d) and x(d),
respectively; clearly a(d) > k(d). Our goal in this chapter is to give good bounds for

a(d) and k(d). The random construction of Erdés and Fiiredi implied the following lower
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bound for k(d) (thus for a(d) as well)
9\ ¢

k(d)> = (—=] >05-1.154% 3.1

“ <\/§) 34

The best known lower bound both for «(d) and for x(d) (for large values of d) is due to

DN | —

Ackerman and Ben-Zwi from 2009 [1]. They improved (3.1) with a multiplicative factor

Vd:

a(d) > k(d) > cvd (%)d (3.2)

In Section 3.1 we modify the random construction of Erdés and Fiiredi to get

a(d) > c ( 1/ 12i34> >c-1.2% (3.3)

A different approach can be found in Section 3.2 where we recursively construct acute
sets. These constructions outdo (3.3) up to dimension 250. In Theorem 3.18 we will show
that this constructive lower bound is almost exponential in the following sense: given any
positive integer r, for infinitely many values of d we have an acute d-set of cardinality at
least

exp(d/loglog - - -log(d)).

See Table 3.2 in Section 3.4 for the best known lower bounds of «(d) (d < 84). These
bounds are new results except for d < 3.
Both the probabilistic and the constructive approach use small dimensional acute sets

as building blocks. So it is crucial for us to construct small dimensional acute sets of large

Table 3.1: Results for a(d) (d < 10)

dim(d) | D,G[10] Bevan[3] Our result
9 _
3 _
4 > 8
) > > 12
6 > 11 > 16
7 > 13 > 14 > 20
8 > 15 > 16 > 23
9 > 17 >19 > 27
10 > 19 > 23 > 31

30



cardinality. In Section 3.3 we present an acute set of 8 points in R* and an acute set of
12 points in R® (disproving the conjecture of Danzer and Griinbaum for d > 4 already).
We used computer to find acute sets in dimension 6 < d < 10, for details see Section
3.3. Table 3.1 shows our results compared to the construction of Danzer and Griinbaum
(2d — 1) and the examples found by Bevan using computer.

As far as k(d) is concerned, in large dimension (3.2) is still the best known lower bound.
Bevan used computer to determine the exact values of k(d) for d < 9 [3]. He also gave a
recursive construction improving upon the random constructions in low dimension. The
constructive approach of Section 3.2 yields a lower bound not only for a(d) but also for
k(d), which further improves the bounds of Bevan in low dimension. Table 3.3 in Section
3.4 shows the best known lower bounds for x(d) (d < 82). These bounds are new results
except for d < 12 and d = 27.

The following notion plays an important role in both approaches.

Definition 3.1. A triple A, B, C of three points in R? will be called bad if for each integer
1 <7 < d the i-th coordinate of B equals the i-th coordinate of A or C.

We denote by k,(d) the maximal size of a set S C {0,1,...,n — 1}? that contains no
bad triples. Tt is easy to see that ko(d) = k(d) but our main motivation to investigate
kn(d) is that we can use sets without bad triples to construct acute sets recursively (see
Lemma 3.2). We give an upper bound for k,(d) (Theorem 3.8) and two different lower
bounds (Theorem 3.3 and 3.12). In the special case n = 2 the upper bound yields that

r(d) < 3(vV2)",

which improves the bound v/2 (\/g)d given by Erdds and Fiiredi in [12]. Note that for
a(d) the best known upper bound is 2¢ — 1.

Although we can make no contribution to it, we mention that there is an affine variant
of this problem. A finite set H in R? is called strictly antipodal if for any two distinct
points P, () € H there exist two parallel hyperplanes, one through P and the other through
@, such that all other points of H lie strictly between them. Let o/(d) denote the maximal
cardinality of a d-dimensional strictly antipodal set. An acute set is strictly antipodal,

thus o/(d) > a(d). For o/(d) Talata gave the following constructive lower bound [34]:
o/(d) > /5 /4 > 0.25 - 1.495¢.

A weaker result (also due to Talata) can be found in [4, Lemma 9.11.2].
This chapter is based on [21].
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3.1 The probabilistic approach

As we have mentioned, in 1983 Erdos and Fiiredi proved the existence of an acute d-set of
exponential cardinality [12]. Since then their proof has become a well-known example to
demonstrate the probabilistic method. In this section we use similar arguments to prove
a better lower bound for a(d).

We shall study the following problem: what is the maximal cardinality x,(d) of a set
S c{0,1,...,n— 1}% that contains no bad triples? (Recall Definition 3.1.)

In the case n = 2, given three distinct points A, B,C € {0,1}¢, ZABC = 7/2 holds if
and only if A, B, C is a bad triple, otherwise ZABC < 7/2. So a set S C {0,1}¢ contains
no bad triples if and only if S is an acute set, thus ks(d) = x(d).

If n > 2, then a triple being bad still implies that the angle determined by the triple is
/2 but we can get right angles from good triples as well, moreover, we can even get obtuse
angles. So for n > 2 the above problem is not directly related to acute sets. However, the
following simple lemma shows how one can use sets without bad triples to construct acute

sets recursively.

Lemma 3.2. Suppose that H = {hg,h1,...,hn_1} CR™ is an acute m-set of cardinality
n. If S € {0,1,...,n — 1}% contains no bad triples, then the set

HS E {(hiy, iy, hiy) < (inyin, . ia) € S} CH X H x ... x H C R™
d

is an acute (md)-set. Consequently,
a(md) > Kam)(d) and  K(md) > Kem)(d). (3.4)
Proof. Take three distinct points of S:
i = (i1,iny . ia); 5= Grogos.orja)i k= (ki ko ka),
and the corresponding points in H?:
hi = (hiy, higy oo hiy) s by = (hyy hyyy oo i hyy) s hie = Ry, Pgs oo, By ) -

We show that Zh;h;hy is acute by proving that the scalar product

d
<hz — hj, hk — hj> = Z <hlr - hjr7hkr - hjr>

r=1
is positive. Since H is an acute set, the summands on the right-hand side are positive
with the exception of those where j, equals 7, or k,, in which case the r-th summand is 0.

This cannot happen for each r though, else i, j, kK would be a bad triple in S.
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To prove (3.4) we set |H| = n = a(m) and [S| = k,(d) = Ka@m)(d). Then a(md) >
|H| = |S| = Ka@m)(d). A similar argument works for x(md). (Note that if H C {0,1}™,
then HS C {0,1}™4.) O

In view of the above lemma, it would be useful to construct large sets without bad
triples. One possibility is using the probabilistic method. The next theorem is a general-

ization of the original random construction of Erdés and Fiiredi.

Theorem 3.3.

Kn(d) > ! ( " )g > L <E>g = (l)dfng
2\ 2n—-1 2 \2 2
Proof. For a positive integer m, we take 2m (independent and uniformly distributed)
random points in {0,1,...,n — 1}% A;, Ay, ..., As,. What is the probability that the
triple Ay, Ay, As is bad? For a fixed i, the probability that the i-th coordinate of A, is

equal to the i-th coordinate of A; or Aj is clearly (2n—1)/n?. These events are independent
so the probability that this holds for every ¢ (that is to say Ay, Ay, Ag is a bad triple) is

We get the same probability for all triples, thus the expected value of the number of bad

triples is

3(2gz>p _ 2m(2m — ;)(Qm —2)

1
p < 4m®p < m, where we set m = L—J :
2\/p
Consequently, the 2m random points determine less than m bad triples with positive

probability. Now we take out one point from each bad triple. Then the remaining at least

m + 1 points obviously contain no bad triples. So we have proved that there exist

d
+1> ! ! n?
m — = =
2yp 2 on —1

points in {0,1}¢ without a bad triple. (Note that the original 2m random points might

contain duplicated points. However, a triple of the form A, A, B is always bad, thus the
final (at least) m + 1 points contain no duplicated points.) O

Combining Lemma 3.2 and Theorem 3.3 we readily get the following.

Corollary 3.4. Suppose that we have an m-dimensional acute set of sizen. Then for any

t
1 n?
£)> =
a(m) 2( 2n—1> ’
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which yields the following lower bound in general dimension:

—\ ) .
a(d)Za(m{%J>>%<2m 2nn—1> Zc(m 2n—1> '

Using this corollary with m = 5 and n = 12 (see Example 3.26 for a 5-dimensional

acute set with 12 points) we obtain the following.

d
/144 .

— - 1.2

a(d)>c< 23) > c :

that is, there exist at least c- 1.2 points in R such that any angle determined by three of

Theorem 3.5.

these points is acute. (If d is divisible by 5, then ¢ can be chosen to be 1/2, for general d

we need to use a somewhat smaller c.)

Remark 3.6. We remark that one can improve the above result with a factor v/d by using

the method suggested by Ackerman and Ben-Zwi in [1].

Remark 3.7. We could have applied Corollary 3.4 with any specific acute set. The larger
the value *{/n?/(2n — 1) is, the better the lower bound we obtain. For m = 1,2, 3 the

largest values of n are known.

m=1 .4 m =2 49 m =3 6/25
-~ 1.154 — ~ 1.158 — ~ 1.185

We will construct small dimensional acute sets in Section 3.3 (see Table 3.1 for the results).
For m = 4,5,6 these constructions yield the following values for *{/n?/(2n —1).

m o[04 1108 ™ Y B /26 1 109

However, we do not know whether these acute sets are optimal or not. If we found an
acute set of 9 points in R*, 13 points in R® or 18 points in RS we could immediately

improve Theorem 3.5.

3.2 The constructive approach

3.2.1 On the maximal cardinality of sets without bad triples

Lemma 3.2 of the previous section shows how sets without bad triples (recall Definition

3.1) can be used to construct acute sets. In this subsection we investigate the maximal
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cardinality k,(d) of a set in {0,1,...,n — 1}? containing no bad triples. We have already
seen a probabilistic lower bound for k,(d) (Theorem 3.3). Now we first give an upper
bound. As we will see it, this upper bound is essentially sharp if n is large enough

(compared to d).

Theorem 3.8. For even d
Kn(d) < 2072,

and for odd d
Fon(d) < nlTD2 p pld=D/2,

Proof. Suppose that S C {0,1,...,n — 1}¢ contains no bad triples. Let 0 < r < d be an

integer, and consider the following two projections:

w1 ((T1, .. ) = (21, ..y 2) 5 mo (21,2, 2q)) = (Tpaty -+, Tg).

Now we take the set

ef
So = {z € 5:3y € (S\ {2}) mlz) =m(y)}.
By definition 7 is injective on S\ Sy, thus |S '\ So| < n". We claim that 7, is injective on
So, 50 |Sg| < n?". Otherwise there would exist @,y € Sy such that mo(x) = mo(y). Since
y € Sp, there exists z € S such that 7 (y) = m1(2). It follows that the triple z,y, z is bad,
contradiction.
d

Consequently, |S| < n" +n?". Setting r = bj we get the desired upper bound. [

Setting n = 2 and using that xo(d) = k(d) the next corollary readily follows.

Corollary 3.9. For even d

d

k(d) < 2004272 — 9 (\/5) ,

and for odd d ;

d+1)/2 d—1)/2 d
k(d) < 2@+D/2 | o(d=1)/ :ﬁ(ﬂ) _

This corollary improves the upper bound v/2(v/3)¢ given by Erdés and Fiiredi in [12].
(We note though that they proved not only that a subset of {0,1}% of size larger than
v2(v/3)? must contain three points determining a right angle but they also showed that
such a set cannot be strictly antipodal which is a stronger assertion.)

If n is a prime power greater than d, then the following constructive method gives better
lower bound than the random construction of the previous section. We will need matrices

over finite fields with the property that every square submatrix of theirs is invertible. In

coding theory the so-called Cauchy matrices are used for that purpose.
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Definition 3.10. Let F, denote the finite field of order ¢. A k x [ matrix A over F, is

called a Cauchy matriz if it can be written in the form

Ay S (@i—y)™ =L k=10, (3:5)

1,J
where x1, ..., 2, y1, ...,y € Fy and x; # y; for any pair of indices 1, j.

In the case k = [ = r, the determinant of a Cauchy matrix A is given by
Hi<j (2 — z;) Hz’<j (yi — ys)
ngi,jgr (i — y5)

This well-known fact can be easily proved by induction. It follows that A is invertible

det(A) =

provided that the elements xy,...,x,,y1,...,¥y, are pairwise distinct.

Lemma 3.11. Let q be a prime power and k.l be positive integers. Suppose that ¢ > k—+1.

Then there ezists a k x | matriz over F, any square submatriz of which is invertible.

Proof. Let x1,...,2k,y1,. ..,y be pairwise distinct elements of F,, and take the k x [
Cauchy matrix A as in (3.5). Clearly, every submatrix of A is also a Cauchy matrix thus

the determinant of every square submatrix of A is invertible. O]

Now let k + 1= d > 2 and n be a prime power greater than or equal to d. Due to the
lemma, there exists a k x [ matrix A over the field IF,, such that each square submatrix of
A is invertible. Let us think of {0,1,...,n—1}¢ as the d-dimensional vector space F¢. We
define an IF,,-linear subspace of F¢: take all points (z, Az) € F¢ as x runs through F!, (thus
Az € F¥). This is an [-dimensional subspace consisting n! points. We claim that each of
its points has at least k£ + 1 nonzero coordinates. We prove this by contradiction. Assume
that there is a point (z, Az) which has at most k nonzero coordinates. Let the number of
nonzero coordinates of x be r. It follows that the number of nonzero coordinates of Ax
is at most £ — r, in other words, Ax has at least r zero coordinates. Consequently, A has
an r X r submatrix which takes a vector with nonzero elements to the null vector. This
contradicts the assumption that every square submatrix is invertible.

d d d

Setting k = bJ and [ = (ﬂ we get a subspace of dimension (ﬂ, every point of

which has at least [gJ +1 > %l nonzero coordinates. We claim that this subspace
does not contain bad triples. Indeed, taking distinct points 1,22, 23 € R, the points
(1 — 29, A(x1 — x2)) and (x3 — 29, A(x3 — x3)) are elements of the subspace, thus both
have more than g nonzero coordinates which means that there is a coordinate where both

of them take nonzero value. We have proved the following theorem.
Theorem 3.12. If d > 2 is an integer and n > d is a prime power, then

Kn(d) > nl2l,
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If n is not a prime power, then there exists no finite field of order n. We can still

consider matrices over the ring Z, = Z/nZ. If we could find a L%J X (%q matrix with
all of its square submatrices invertible, it would imply the existence of a set without bad
triples and of cardinality nlel. For example, in the case d = 3 the matrix (1 1) over Z,

is clearly good for any n so the next theorem follows.

Theorem 3.13. For arbitrary positive integer n it holds that r,(3) > n?.

Proof. We can prove this directly by taking all points in the form (i, j, i+ j) where 7, j run
through Z, (addition is meant modulo n). Clearly, there are no bad triples among these

n? points. O

Finally we show that the upper bound given in Theorem 3.8 is sharp apart from a

constant factor provided that n > d®.

Theorem 3.14. Suppose thatn > d° for some positive integersn,d > 2. Ifn is sufficiently
large, then ki, (d) > nlfl /64.

Proof. Let k be the unique positive integer for which k% < n < (k+1)3. Obviously k > d.
If k is large enough, then there is a prime number ¢ between the consecutive cubes (k—1)3
and k? [24, 7]. Since ¢ > d, by Theorem 3.12 we can find a set S C {0,1,...,q —1}¢ C
{0,1,...,n — 1}% such that S contains no bad triples and

d d — 3[%1 d — 3’7§—| d d
|S\ > q[?] > (k;— 1)3fﬂ > <Z—+1> n(ﬂ > <%) n[ﬂ > in[ﬂ,

k
2

where the last inequality holds because the expression ((k —1)/(k + 1))( | takes its min-
imum value at k = 3. (For k£ = 2 and k = 3 it equals 1/3 and 1/4, respectively, and it
is monotone increasing for even values of k as well as for odd values of k, which follows

easily from the well-known fact that ((k —1)/(k + 1))* is monotone increasing.) O

Remark 3.15. The claim that there is a prime number between any two consecutive
cubes (k — 1)® and k® has been only verified if k is large enough. It is widely conjectured
though that the claim holds for any £ > 1. If this was true, we could omit the condition
that n should be sufficiently large in the theorem.

3.2.2 Constructive lower bounds for «(d) and «(d)

Random constructions of acute sets (as the original one of Erdés and Fiiredi or the one
given in Section 3.1) give exponential lower bound for a(d). However, these only prove
existence without telling us exactly how to find such large acute sets. Also, one can give

better (constructive) lower bound if the dimension is small.
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The first (non-linear) constructive lower bound is due to Bevan[3]:

log 2
a(d) > k(d) > exp (cd") , where u = % = 0.631... (3.6)

For small d this is a better bound than the probabilistic ones.

Our goal in this section is to obtain even better constructive bounds. The key will be
the next theorem which follows readily from Lemma 3.2, Theorem 3.12 and Theorem 3.13
setting d = 2s — 1. (In fact, the special case s = 2 was already proved by Bevan, see [3,

Theorem 4.2]. He obtained (3.6) by the repeated application of this special case.)

Theorem 3.16. Let s > 2 be an integer, and suppose that n > 2s — 1 is a prime power.
(In the case s = 2 the theorem holds for arbitrary positive integer n.) If H C R™ is an

acute m-set of cardinality n, then we can choose n® points of the set

H X - x H CREDm
—_—

2s—1

that form an acute set.

Remark 3.17. If H is cubic (that is, H C {0,1}™), then the obtained acute set is also
cubic (that is, it is in {0, 1}(2s=1m),

Now we start with an acute set H of prime power cardinality and we apply the previous
theorem with the largest possible s. Then we do the same for the obtained larger acute
set (the cardinality of which is also a prime power). How large acute sets do we get if we
keep doing this? For the sake of simplicity, let us start with the dy = 4 dimensional acute
set of size ng = 8 that we will construct in Section 3.3. Let us denote the dimension and
the size of the acute set we obtain in the k-th step by di and ny, respectively. Clearly ny
is a power of 2, thus at step (k 4+ 1) we can apply Theorem 3.16 with s, = ny/2. Setting

ug = log, ng, we get the following:
dk—i—l = dk(28k — 1) < dknk; Nyl = nZk — n';:k/Q7

et = ta(n/2) = 21 > 2201 — g,

It follows that dgi1/ukr1 < 2dg/uy so

d 4
dk S —Oquk = —Qkuk.
Ug 3

It yields that in dimension dy we get an acute set of size

ny, = 2 > 2(3/4)27kdk'
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Due to the factor 27% in the exponent, n, is not exponential in dj,. However, the inequality
Ugs1 > 2" implies that uy grows extremely fast (and so does ny and dj) which means that
ny is almost exponential. For instance, we can easily obtain that for any positive integer
r there exists kg such that for £ > k; it holds that

ny > exp(dy/ loglog - - - log(dy)).
—_—

T

We have given a constructive proof of the following theorem.

Theorem 3.18. For any positive integer r we have infinitely many values of d such that

a(d) > exp(d/loglog - - -logd).
r

We can also get a constructive lower bound for x(d). We do the same iterated process
but this time we start with an acute set in {0, 1}%. (For instance, we can set dy = 3 and
no = 4.) Then the acute set obtained in step k will be in {0,1}%. This way we get an
almost exponential lower bound for x(d) as well.

However, Theorem 3.16 gives acute sets only in certain dimensions. In the remainder
of this section we consider the problems investigated so far in a slightly more general
setting to get large acute sets in any dimension. (The proofs of these more general results
are essentially the same as the original ones. Thus we could have considered this general
setting in the first place, but for the sake of better understanding we opted not to.)

Let ny,no,...,nqg > 2 be positive integers and consider the n; X --- X ng lattice, that
is the set {0,1,...,ny — 1} x --- x {0,1,...,ny — 1}. What is the maximal cardinality of
a subset S of the ny x --- x ny lattice containing no bad triples?

We claim that if n > max{ny,...,ng} and the set Sy C {0,1,...,n — 1}¢ contains no
bad triples, then we can get a set in the ny x --- x ng lattice without bad triples and of
cardinality at least

n

Mg
— S
n n

Indeed, starting with the n x ... x n lattice, we replace the n’s one-by-one with the n;’s;
in each step we keep those n; sections that contain the biggest part of S;. Combining this

argument with Theorem 3.12 and 3.13 we get the following for the odd case d = 2s — 1.

Theorem 3.19. Let s > 2, and suppose thatn > 2s—1 is a prime power (in the case s = 2
the theorem holds for arbitrary positive integer n). For positive integers ny, ..., ngs 1 < n
in the ny Xng X - - - X N1 lattice at least [ning - - - nos_1 /01| points can be chosen without

any bad triple.

Also, one can get a more general version of Lemma 3.2 with the same proof.
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Lemma 3.20. Suppose that the set Hy = {h{,hi,..., hl, 1} C R™ 1is acute for each
1<t<d IfSc{0,1,...,ny—1} x---x{0,1,...,ng — 1} contains no bad triples, then
the set

{(n} B hi) : (i1,ia,...,00) € S} CHy x Hy X -+ X Hy C R™M*Hma

i Py g,
is an (my + -+ + my)-dimensional acute set.
Putting these results together we obtain a more general form of Theorem 3.16.

Theorem 3.21. Let s > 2, and suppose that n > 2s—1 is a prime power (in the case s = 2
the theorem holds for arbitrary positive integer n). Assume that for eacht =1,...,2s — 1
we have an acute set of ny < n points in R™. Then in R™*+tM2s-1 there exists an acute
set of cardinality at least

(nlng . 'n2s_1/ns_lw )

The obtained acute set is cubic provided that all acute sets used are cubic.

Remark 3.22. We also note that in the case s = 3 the theorem can be applied for n =4
as well. Consider the 4-element field Fy = {0, 1,a,b}. Then the 2 x 3 matrix

1 11
A p—
<1 a b)

has no singular square submatrix which implies that Theorem 3.12 holds for d = 5;n = 4,
thus Theorem 3.19 and Theorem 3.21 hold for s = 3;n = 4.

Now we can use the small dimensional acute sets of Section 3.3 as building blocks to
build higher dimensional acute sets by Theorem 3.21. Table 3.2 in Section 3.4 shows the
lower bounds we get this way for d < 84. (We could keep doing that for larger values of
d and up to dimension 250 we would get better bound than the probabilistic one given in
Section 3.1.) These bounds are all new results except for d < 3.

We can do the same for x(d), see Table 3.3 in Section 3.4 for d < 82. This method
outdoes the random construction up to dimension 200. (We need small dimensional cubic
acute sets as building blocks. We use the ones found by Bevan who used computer to
determine the exact values of k(d) for d < 9. He also used a recursive construction to
obtain bounds for larger d’s. His method is similar but less effective: our results are better
for d > 13;d # 27. In dimension d = 63 we get a cubic acute set of size 65536. This is
almost ten times bigger than the one Bevan obtained which contains 6561 points.)

Tables 3.4 and 3.5 in Section 3.5 compare the probabilistic and constructive lower
bounds for a(d) and k(d).

Finally we prove the simple fact that a(d) is strictly monotone increasing. We will
need this fact in Table 3.2.
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Lemma 3.23. a(d + 1) > «a(d) holds for any positive integer d.

Proof. Assume that we have an acute set H = {z1,...,2,} C R% Let P be the convex
hull of H and y be any point in P\ H. We claim that Zyx;z; < 7/2 for any i # j. Let
H; ; be the hyperplane that is perpendicular to the segment z;z; and goes through x;. Let
S;.; be the open half-space bounded by H; ; that contains z;. For a point z € R? the angle
Zzx;xj is acute if and only if z € S; ;. It follows that H \ {z;} C S;; while x; lies on the
boundary of S; ;. Thus y € P\ {x;} C S;; which implies that Zyz;z; < /2.

Now let us consider the usual embedding of R? into R*! and let v denote the unit
vector (0,...,0,1). Consider the point y* = y + tv for sufficiently large ¢. It is easy to see
that Zy'z;x; < m/2 still holds, but now even the angles Zz;y'z; are acute. It follows that
H U {y'} C R is an acute set. O

Remark 3.24. For x(d) it is only known that x(d +2) > k(d) [3, Theorem 4.1]. In Table

3.3 we will refer to this result as almost strict monotonicity.

3.3 Small dimensional acute sets

In this section we construct acute sets in dimension m = 4,5 and use computer to find
such sets for 6 < m < 10. These small dimensional examples are important because the
random construction of Section 3.1 and the recursive construction of Section 3.2 use them
to find higher dimensional acute sets of large cardinality.

Danzer and Griinbaum presented an acute set of 2m — 1 points in R™ [10]. It is also
known that for m = 2,3 this is the best possible [8, 33, 18]. Bevan used computer to find
small dimensional acute sets by generating random points on the unit sphere. For m > 7
he found more than 2m — 1 points [3].

Our approach starts similarly as the construction of Danzer and Griinbaum. We con-
sider the following 2m — 2 points in R™:

P =(0,...,0, £1,0,...,0) (i=1,2,...,m—1).
—~
-t
What angles do these points determine? Clearly, ZPi_leﬂP;r1 = 7/2 for i # j and all
other angles are acute. We can get rid of the right angles by slightly perturbing the points
in the following manner:
P =(0,...,0, £1,0,...,0,&) (i=1,2,...,m—1),
~—
i-th

where €1,¢9,...,6,_1 are pairwise distinct real numbers.
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Our goal is to complement the points ]5ii1 with some additional points such that they
still form an acute set. In fact, we will complement the points PijEl such that all new
angles are acute. (Then changing points Piil to ]5?1 we get an acute set provided that
the ¢;’s are small enough.)

Under what condition can a point x = (z1,...,z,) be added in the above sense?

Simple computation shows that the exact condition is
|x|| > 1 and |z;| + |z;] < 1for 1 <i,j <m—1;i# j. (3.7)

For example, the point A = (0,...,0,a) can be added for a > 1. This way we get an
acute set of size 2m — 1. Basically, this was the construction of Danzer and Griinbaum.
We know that this is the best possible for m = 2,3. However, we can do better if m > 4.

Suppose that we have two points x = (z1,...,%,,) and y = (y1, ..., yn) both satisfying
(3.7) (that is, they can be separately added). Both points can be added (at the same time)
if and only if

lz; +yi| <1+ (x,y) and |z; — y;| < min (||X||2 , ||y||2) —(x,y) for 1 <i<m—1. (3.8)

We can find two such points in the following simple form: A; = (ay,a4,...,a1,a2) and
Ay = (—ay,—ay,...,—ay,az). Then points A; and Ay can be added if and only if
1 1
m_l<a1<§anda§>|1—(m—1)aﬂ. (3.9)

Such aq and a, clearly exist if m > 4.

Example 3.25. For sufficiently small and pairwise distinct ¢;’s the 8 points below form

an acute set in R*.
1

-1 0

€1
€1
€9

)
)
)
gy )
)
)
)

—_
_ o O O O

0

0

0 -1
0 €3
0

-1 €3

04 04 04 1
( —04 —04 —04 1 )

For m =5, we can even add four points of the following form:

Ay = (a1>a17a1,a1,a2);142 = (—Gh —ap, —aq, —ahaz);

B, = (51751, —by, —b, —bz);B2 = (—bl, —b1, b1, b1, —bz).

We have seen that 1/4 < ay,b; < 1/2 must hold so we set a; =1/4+4 6 and by =1/2 — .
Then we set ay = v/3/2 and by = 21/0 so that ||4;|| and || B;|| are slightly bigger than 1.
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Example 3.26. Let us fix a positive real number § < 1/48 and consider the points below.

( 1/446 1/4+86 1/4+6 1/4+46 /3/2 )
( —1/4—0 —1/4—0 —1/4—6 —1/4—6 +/3/2 )
( 1/2—6 1/2—86 —1/2+486 —1/2+6 —2V5 )
( —1/240 —1/246 1/2—-6 1/2—-6 —2V6 )

[\]

Ay
As
B,
B,

Then the set {Piﬂ ci = 1,2,3,4} U{Ay, Ay, By, By} is an acute set of 12 points in R®
assuming that ¢;’s are sufficiently small and pairwise distinct.
(This specific example is important because the random method presented in Section 3.1

gives the best result starting from this example.)

Proof. We need to prove that A, Ay, By, By can be added to P"’s in such a way that all
new angles are acute. First we prove that any pair of these 4 points can be added. Since
each of them satisfies (3.7), we only have to check that each pair satisfies (3.8). For the
pair Ay, As it is done since they satisfy (3.9). It goes similarly for the pair By, By. For the
pairs A;, B; (3.8) yields the condition 3/4 < 1 — /35 < § < 1/48.

Now we have checked all new angles except those that are determined by three new

points. The squares of the distances between the 4 new points are:
d(Ay, Ay)? = 1485 4 1602 d(By, By)? = 4 — 160 + 160%; d(A;, B;)? = 24 2V/30 + 26 4 862,

Now for any triangle in {A;, Ay, By, Bo} the square of the length of each side is less than
the sum of the squares of the two other side lengths which means that the triangle is

acute-angled. O

For m > 6 we used computer to find additional points. We generated random points
on the sphere with radius 1+ 0 and we added the point whenever it was possible. Table 3.1
shows the cardinality of acute sets we found this way compared to previous results. Below
the reader can find examples for m = 6,7,8. For m > 11, the recursive construction
presented in Section 3.2 gives better result than the computer search (see Table 3.2 in

Section 3.4 for the best known lower bounds of a(d) for d < 84).
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The following 16 points form an acute 6-set.

0 =+£999 0 e €5
—88 2 =244 =35 124 957
1 —448 —458 —482 485 349
—-537 364 —358 —227 —426 466
—386 473 494 —420 455 18
455 467  —47 490 296 494
435 411 —431 —-533 -39 —413

A~~~ /N /N /N /N /N
~— N~ N~

The following 20 points form an acute 7-set.

( 0 999 0 o 0 €

( —398 —425 —271 548 316 —191 —389
( —29 174 —-320 278 322 250 789

( —413 —261 —498 —295 —263 —288 524

( 453 —273 —380 —241 —493 438 —288
( —224 473 —260 —410 73 319 —619
( —398 28 348 475 511 479 60

( —117 —420 377 —422 548 386 199

( 506 —444 490 292 —233 —409 —20

e N N N T e N N

The following 23 points form an acute 8-set.

0 e 0 £999 0 e 0 E;
—403 160 381 120 —438 470 435 —226
-3 470 —158 —424 375 423 233 447
—456 349 387 135 —32 =538 —438 145
166 —-170 —-16 286 —35 —314 188 833
239 —281 451 297 521 255 —454 173
271 273 438 =543 204 446 148 321
384 149 408 476 —499 116 —195 —370
—239 —414 —-499 -151 -230 -273 99 —603
563 410 93 219 —399 415 354 26

e N U N N e N N N N

(The €;’s denote small and pairwise distinct real numbers.)

44

~—_— — — — — — — ' — ——



3.4 Best known bounds in low dimension

The following tables show the best known lower bounds for «(d) and (d). Beside the di-
mension and the bound itself, we stated the value of s, n and the product n; - - - ngs_1/ ns1
with which Theorem 3.21 is applied. From the n;’s the reader can easily obtain the m;’s.
Str. mon. and a. str. mon. stand for strict monotonicity (cf. Lemma 3.23) and almost
strict monotonicity (cf. Remark 3.24).

For example, in dimension 39 in Table 3.2 we see that s = 5 and n = 9. (Note that n
is indeed a prime power and n > 2s — 1 holds.) The expression 8% - 9%/9* means that we
need to apply Theorem 3.21 with n; =ny = ... = ng = 8 and n; = ng = ng = 9. (Note
that they are all indeed at most n.) Then for each i we take the smallest dimension m; in
which we have an acute set containing at least n; points. In our case the corresponding
dimensions are m; = mg = ... = mg = 4 and m; = mg = mg = 5. Consequently, the
total dimension is 6 -4 + 3 -5 = 39. We obtain that in R3 there exists an acute set of
cardinality at least [8%-93/9%] = 29128.

Recall that in the case s = 2 we can take arbitrary n (it does not need to be a prime
power). Also, according to Remark 3.22, in the case s = 3 we can have n = 4 (even though
n > 2s — 1 does not hold). See dimension 13 and 15 in Table 3.3.
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Table 3.2: Best known lower bound for a(d) (1 < d < 84)

dim LLb.|s| n dim l.b.|s

1 2 43 85184 | 5| 11 ] 8- 117/111

2 3 44 120439 | 5 | 13| 8. 128/13%

3 5 45 180659 | 5 | 13 | 129/13*

4 8 construction 46 195714 | 5| 13 | 128 -13' /134
5 12 construction A7 212023 | 5 | 13| 127-13%/13*
6 16 computer 48 229692 | 5| 13 | 126-133/13%
7 20 computer 49 262144 | 6 | 11 | 8%-11°/11°

8 23 computer 50 360448 | 6 | 11 | 8°-11%/11°

9 27 computer 51 495616 | 6 | 11 | 8*-117/11°
10 31 computer 52 681472 | 6 | 11 | 8 -118/11°
11 40 2| 8|5t.82/8! 53 937024 | 6 | 11 | 8*-117/11°
12 642 | 8|8%/8t 54 1334092 | 6 | 13 | 8+ -1219/13°
13 65 str. mon. 55 2001138 | 6 | 13 | 121/13°

14 96 | 2 | 12| 8- 122/12! 56 | 2167900 | 6 | 13 | 1210131 /135
15 144 | 2 | 12 | 123/12! 57 2348558 | 6 | 13 | 129 -13%/13°
16 145 str. mon. o8 2544271 | 6 | 13| 128 -133/13°
17 192 | 2 | 16 | 12" - 16%/16" 59 2756293 | 6 | 13 | 127 -131/135
18 256 | 2| 16 | 16%/16" 60 2085984 | 6 | 16 | 12°-16°/16°
19 320 [ 3| 8|5'-8%/82 61 4378558 | 7| 13 | 8*-129/13°
20 512 | 3| 8| 8/82 62 6567837 | 7| 13 | 83 -12'0/136
21 513 str. mon. 63 9851755 | 7| 13 | 8- 1211/13°
22 514 str. mon. 64 14777632 | 7 | 13 | 8- 1212/13°
23 704 | 3|11 | 8 -113/112 65 22166447 | 7 | 13 | 1213/13°

24 982 | 3| 13| 8'-12%/13? 66 24013651 | 7 | 13 | 1212 -13!/13°
25 1473 | 3| 13 | 125/13? 67 26014789 | 7 | 13 | 12'1.13%/136
26 1600 | 4 | 8 |5%.8°/8° 68 28182688 | 7 | 13 | 1210.13%/13°
27 2560 | 4 | 8| 5'-8%/83 69 30531245 | 7 | 13 | 129 -131/136
28 4096 | 4| 8|87/8 70 33075516 | 7 | 13 | 128 -13°/13°
29 4097 str. mon. 71 35831808 | 7 | 16 | 127 - 16°/16°
30 4098 str. mon. 72 47775744 | 7 16 | 12°-167/16°
31 4099 str. mon. 73 63700992 | 7 | 16 | 12° - 16%/16°
32 5632 | 4 [ 11 | 8% -11%/113 74 84934656 | 7 | 16 | 12* - 16%/16°
33 7744 | 4 | 11 | 82-115/113 75 | 113246208 | 7 | 16 | 123 -16'°/16°
34 | 10873 | 4 | 13| 8'.126/133 76 || 150994944 | 7 | 16 | 122 - 16'!/16°
35 || 16310 | 4 | 13 | 127/13° 77 | 201326592 | 7 | 16 | 12' - 16'%/16°
36 || 20457 | 5| 9| 87/9% 78 || 268435456 | 7 | 16 | 16'%/16°

37 1123015 (5| 9 |8%-9'/9 79 || 268435457 str. mon.

38 | 25891 (5| 9 |87-92/9 80 || 268435458 str. mon.

39 | 29128 |5 | 9 |8%.93/9 81 || 322486272 | 8 | 16 | 127 - 16%/167
40 || 36864 | 4 | 16 | 122 -16°/16° 82 | 429981696 | 8 | 16 | 128 -167/16"
41 | 49152 | 4 | 16 | 12 - 165/163 83 || 573308928 | 8 | 16 | 127 - 16%/167
42 | 65536 | 4 | 16 | 167/163 84 | 764411904 | 8 | 16 | 126 -16°/167
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Table 3.3: Best known lower bound for x(d) (1 < d < 82)

dim | LLb.|s| n dim LLb.|s| n

1 2 42 4096 | 4 87 /83

2 2 43 4096

3 4 44 4097 a. str. mon.
4 5 Bevan 45 4097

5 6 Bevan 46 4608 | 4| 9|8 -9%/93

6 8 Bevan 47 5184 4| 9| 8%-9°/9°

7 9 Bevan 48 5832 | 4| 9| 8'-95/93

8 10 Bevan 49 6561 | 4| 9]97/93

9 16 | 2| 4 |43/4! 50 7991 | 5| 9| 5%-87/91
10 16 51 10229 | 5| 9| 4'-8%/94
11 20| 2| 54! 5%/5! 52 12786 | 5| 9| 5'-8%/91
12 252 | 5|5%/5! 53 15343 | 5| 9| 6'-8/9
13 32| 3| 4] 2t-41/42 54 20457 | 5| 9| 8Y/91

14 32 55 23015 | 5| 9|8 -91/91
15 64 | 3| 4]4°/42 56 25891 | 5| 9 |8"-9%/9
16 64 57 29128 | 5| 9| 85.93/9¢
17 65 a. str. mon. 58 32768 | 5| 9|8 .91/9
18 80| 3| 5]|4%-5%/5 59 36864 | 5| 9 |8-95/91
19 100 | 3| 5 |4'-51/52 60 41472 | 5| 9|8 -95/91
20 1253 | 555/52 61 46656 | 5| 9| 82-97/9
21 125 62 52488 | 5| 9| 8'.98/9%
22 126 a. str. mon. 63 65536 | 4 | 16 | 167/163

23 126 64 65536

24 133 13| 7|5 -6Y7° 65 65537 a. str. mon.
25 160 | 3| 8|4'-5'.8%/82 66 65537

26 200 | 3| 8] 5%-8%/8? 67 65538 a. str. mon.
27 256 | 2| 16 | 16%/161 68 67505 | 6 | 11 | 87 -9%/11°
28 320 | 3| 8|5!-81/82 69 75943 | 6 | 11 | 8%-93/11°
29 384 | 3| 86! 81/82 70 85436 | 6 | 11 | 87-9/11°
30 512 | 3| 8| 8/82 71 102400 | 5 | 16 | 5% - 167/16%
31 || 512 72 || 131072 |5 | 16 | 4'-81.167/16*
32 || 513 a. str. mon. 73 163840 | 5 | 16 | 5 - 8. 167/16%
33 576 | 3| 9| 8%-93/92 74 196608 | 5 | 16 | 6! - 8' - 167/16*
34 681 | 4| 7|5-69/73 75 262144 | 5| 16 | 4* - 16%/16*
35 817 | 4| 7|67/7° 76 327680 | 5| 16 | 5' - 168/16*
36 || 1024 | 4| 8| 4*-85/83 7 393216 | 5| 16 | 6' - 168/16*
37 | 1280 | 4| 8|4!'.-5'.8%/8° 78 524288 | 5| 16 | 8! - 168/16*
38 || 1600 | 4 | 8| 5*.8/83 79 589824 | 5| 16 | 9 - 16%/16*
39 | 2048 | 4| 8| 4!.86/83 80 655360 | 5| 16 | 10' - 16%/16%
40 | 2560 | 4| 8| 5'-85/83 81 || 1048576 | 5 | 16 | 16°/16*

41 |[ 3072 | 4| 8 |6'-8%/83 82 || 1048576
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3.5 Comparing the two approaches

Finally, we compare the lower bounds given by the probabilistic and the constructive
approach. For a small m we take an m-dimensional acute set of prime power cardinality
n, then we apply Theorem 3.16 with the largest possible s to get an acute set of size n®
in dimension d = (2s — 1)n. Then we compare this to the probabilistic bound «a(d) >
(1/2)(144/23)4/1° (in fact, we obtained this result only for d divisible by 5; for general
d it only holds with a somewhat smaller constant factor). For the sake of simplicity we

consider the base-10 logarithm of the bounds. (See Table 3.2 for values of n used here.)

Table 3.4: Comparing constructive and probabilistic lower bound of «/(d)

m| n| s dimension | constructive l.b. probabilistic 1.b.
d=(2s—1)m slgn lgi+ Ligi

4| 8| 4 28 3.61 1.92
5111 | 6 55 6.24 4.08
616 | 8 90 9.63 6.86
711910 133 12.78 10.29
8123 |12 184 16.34 14.35
9127 |14 243 20.03 19.05
10 | 31 | 16 310 23.86 24.39
11 (37|19 407 29.79 32.12
12 | 64 | 32 756 57.79 59.92

We can do the same for x(d). We apply Theorem 3.16 for small dimensional acute
sets in {0, 1} with the largest possible s and compare what we get to the bound (d) >
(1/2)(4/3)4? given by Erdds and Fiiredi. (See Table 3.3 for values of n used here.)

Table 3.5: Comparing constructive and probabilistic lower bound of x(d)

m| n| s dimension | constructive l.b. probabilistic 1.b.
d=(2s—1)m slgn lg%—k%lg%

41 5] 3 20 2.09 0.94
6| 8| 4 42 3.61 2.32
16| 8 135 9.63 8.13

11 {19 | 10 209 12.78 12.75
12 125 | 13 300 18.17 18.43
1313216 403 24.08 24.87
15|64 | 32 945 57.79 58.73
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Chapter 4
The Koch curve is tube-null

In this chapter we show that the Koch curve is tube-null, that is, it can be covered by
strips of arbitrarily small total width. In fact, we prove the following stronger result: the
Koch curve can be decomposed into three sets such that each can be projected to a line
in such a way that the image has Hausdorff dimension less than 1. The proof contains
geometric, combinatorial, algebraic and probabilistic arguments. This chapter is based on
[22].

4.1 Tube-nullity

In R™ an infinite tube is the closed r-neighbourhood of [ for some positive real » and some

straight line [. The tube-measure of a set £ C R" is defined as

p(E) = inf {Z%_lr;@—l Jno E} ,

where T; is a tube with cross-sectional radius r;, and =, _; denotes the volume of the unit
ball of R". The set F is called tube-null if u(E) = 0.

Csornyei and Wisewell showed that the only p-measurable sets are the tube-null sets
and their complements [9]. Tube-null sets come up in Fourier analysis: Carbery, Soria
and Vargas proved that every tube-null set is a “set of divergence” for the localisation
problem [6]. From this point of view, it could be useful to see non-trivial examples for
tube-null sets. In many cases, it is hard to tell whether a set is tube-null or not (even for
simple sets). The following question was posed by, among others, Marianna Csornyei: is
the Koch snowflake curve tube-null?

In this chapter we answer this question affirmatively. In the plane tubes are infinite
strips and tube-nullity simply means the existence of a covering with strips of arbitrarily

small total width. Actually, we will prove more than that. For some s < 1 we will
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show that K can be covered by strips such that the sum of the s-powers of the widths is
arbitrarily small, and we will get such coverings by using strips in only three directions.
This will give a decomposition of the Koch curve into three sets, each of which can be

projected to a line in such a way that the image has Hausdorff dimension less than 1.

Theorem 4.1. The Koch curve K 1is tube-null, that is, it can be covered by strips of
arbitrarily small total width.

Moreover, there exists a decomposition K = Ky U K1 U Ky and projections mg, my, T
such that the Hausdorff dimension of m;(K;) is less than 1 for i =0,1,2.

We mention that in a conference talk T.C. O’Neil proved that a certain variant of the
Koch curve (which uses only right angles) is tube-null [32]. He also asked whether this
holds for the Koch curve.

4.2 Covering the Koch curve with strips

Let AgA;A; be an equilateral triangle with side length 2/4/3 so that each height of the
triangle is 1. This is our level 0 triangle. Let e; be the line that is parallel to A; 1 A; 0
and goes through A; (indices are cyclic). The strip bounded by the lines A; 1 A;.» and e;
is the level 0 strip in direction 7. For some positive integer n we decompose this strip into
3" strips with equal width 37". These strips will be called the level n strips in direction 4.
The boundary lines of these strips (in all three directions) determine a triangle grid. The
triangles in this grid are called level n triangles.

Let us consider the Koch curve K connecting A; with Ay and contained in the triangle
AgAi1Ay. Tt is a self-similar set: it is the union of 4™ pieces, each similar to K. Each of
these level n pieces is contained in one of the level n triangle of the grid and connects two
vertices of that triangle.

Our goal is to find a collection of level n strips such that they cover K and they have
a small total width. For a level n strip we define its covering number as the number of
level n pieces covered by the strip (see Figure 4.1). The idea is to use strips with large
covering number. The next lemma shows that each piece is covered by at least one strip

with a large covering number.

Lemma 4.2. For each level n piece (at least) one of the three level n strips through this

piece contains at least 23 level n pieces.

Proof. For an arbitrary level n piece take all three level n strips covering this piece. It

is sufficient to prove that the product of the covering numbers of these strips is at least
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Figure 4.1: The covering numbers corresponding to level 2 strips

2™. We prove this by induction on n. It clearly holds for n = 0. For arbitrary n > 1, a
level n piece can be viewed as a level (n — 1) piece in one of the four level 1 pieces. Due
to the reflection symmetry of K the level n strip in direction 0 covers at least twice as
many level n pieces in the whole curve as it covers in any of the level 1 pieces. For the
other two directions, we simply use the fact that the strips cover at least as many pieces
in K as in a level 1 piece. It follows that the product is at least the double of the product
corresponding to the same piece when it is considered as a level (n — 1) piece of a level 1

piece, which completes the proof. O

Now take all level n strips that contain at least 2/% pieces. The lemma yields that
these strips cover K. Our goal is to prove that the number of such strips is very small
(compared to 3™). Since the width of a level n strip is 37", this would imply that the total
width is also very small.

For a given strip we distinguish two different ways it can cover a piece. A piece connects
two points lying on the border lines of the strip. If these endpoints lie on the same border
line, then we say that it is a border piece. If, on the other hand, its endpoints are on
different border lines, then it is a crossing piece. Note that a piece can have different types
when covered by different strips. In fact, for each level n piece out of the three level n

strips covering the piece, two cover it as a crossing piece and one covers it as a border
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piece.

To every strip we associate a two dimensional vector called the covering vector, the first
and second coordinate of which denotes the number of border and the number of crossing
pieces in the strip, respectively. Clearly, the covering number of a strip is simply the sum
of the coordinates of the covering vector. First we show that the covering vector of a strip
determines the covering vectors corresponding to the three offspring strips. (By offspring

strips of a level n strip we mean the three level n + 1 strips contained in the strip.)

Proposition 4.3. A covering vector (vi,vy) yields the following three vectors on the next
level:

(2'1}1, 21)1 + 'UQ); (O, U2>; (UQ, ’Ug).

In other words, to get a next level covering vector we simply right-multiply with one of the

three 2 X 2 matrices below:

() el )

Proof. Take an arbitrary strip and the pieces covered by the strip. Theoretically, there are
6 possible types of these pieces (two types of border pieces labelled with BT and B~ in
Figure 4.2 and four types of crossing pieces labelled with C}", Cyf, C; and C;.) However,
the truth is that each strip has an orientation and depending on this orientation either
all the pieces (covered by the strip) are of types BT, C;",Cy or all of them are of types
B~,C[,C5 . This can be proved by induction on the level of the strip: using Figure 4.2 the
reader can easily check that the middle offspring strip always changes orientation while
the other two offspring strips have the same orientation as the original strip. Now the

statement of the proposition is immediate. H

Figure 4.2: The different types of pieces covered by a strip

af 3RS

+ +
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Now we fix a direction (0, 1 or 2) and take the level O strip in this direction. The
covering vector v associated to this strip is either (1,0) or (0, 1) depending on the direction.
The covering vectors of level n strips in the fixed direction can be obtained in the following
way. We take the product of n matrices, each matrix being A, B or C' and right-multiply
v with this product matrix. If we do this for all possible 3" products, then we get the
covering vectors of all 3" level n strips in the fixed direction.

So we need to compute such matrix products. It is not that complicated due to the

following relations between A, B and C"
BA=B; BB=B; BC=C; CC=C. (4.1)

So there are a lot of cancellations in such a product: a matrix B cancels all the subsequent
A’s and B’s until a C' comes which cancels B. (For example, BAABAC = BC = C.)
Also, if there are more than one successive C’s, then we can write only one C' instead.

After all possible cancellations have been done we get a product of the following form:
(CYARCAR=C...CA* (B or O).

By induction, we get that

ok okl _ 9 0 0
AF = .50 CAF = .
0 1 ok okl g

Now it is easy to see that the sum of the elements in the product matrix is at most

k14+1)+(ko+1)+4(kr+1 co+reduced_length
I - 9kit1)+(ko+1) (kr 1) < 9c0 gen

where L, ¢y are absolute constants and reduced_length denotes the length of the product
after the cancellations.

The covering number of a strip is the sum of the elements in the covering vector which
is bounded above by the sum of the elements in the corresponding product matrix that

has been shown to be at most 2¢0Freducedlength Qo e have proved that

covering_number < 2c0treduced-length, (4.2)

Now we forget for a moment that A, B,C denote matrices. We just take a random
sequence of letters A, B, C, choosing every letter independently and with uniform distribu-
tion. We do all the cancellations implied by the relations in (4.1). The reduced length of
the sequence is defined as the number of letters that survive cancellation. The next lemma
claims that the reduced length of a random sequence of length n is less than n/3 — ¢y with

high probability.
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Lemma 4.4. There exists a constant a < 1 such that
P(the reduced length of a random sequence of length n is at least n/3 — cy) < a”.

Before proving this lemma, we first show how it can be used to complete the proof of
Theorem 4.1.

Proof of Theorem 4.1. Let S be the set of level n strips in direction ¢ with covering
number at least 2"/3, and put 8" = S US? U SY. On one hand, Lemma 4.2 yields that
S" is a covering of K. On the other hand, (4.2) and Lemma 4.4 entail that a random level
n strip is in 8™ with probability less than a” for some constant a < 1. Thus |S"| < 3a™3".
It follows that K is tube-null for S™ has total width at most 3a™.

To obtain the decomposition claimed in the theorem we define the set K[ as the set
of those points in K which are covered by at least one strip in §. Since S" is a covering
of K, K = K§ UK UKY. Set

K; .= {x:x € K[ for infinitely many values of n} .

Clearly, K = Ko U K; U K. By definition, K; is covered by §™ U SZ““ U ... for any
positive integer m. Let m; be the projection in direction ¢. Then m;(K;) is covered by
7 (USM™) U (US ) U. .. where 7;(US?) is the union of at most (3a)™ segments of length
37". It easily follows that m;(K;) has Hausdorff dimension at most s = logs(3a) < 1. O

Proof of Lemma 4.4. First we give a heuristic proof. A typical sequence contains about
n/3 of each letter. About half of the A’s survive (depending on whether the first preceding
non-A letter is B or ('), basically no B’s survive and about one third of the C’s survive
(depending on whether the next letter is A or not). Thus the reduced length of a typical
sequence is about n/3(1/2 + 0+ 1/3) = 5n/18. In the sequel we make these heuristics
precise.

First we compute the expected value of the reduced length of a random sequence of
length n. Consider the letter in position k. We will determine the probability that this
letter survives cancellation. Clearly, the sum of these probabilities is the expected value
in question. However, for these probabilities to be well defined we need to agree on which
letter is cancelled in case of two successive B’s or C’s. When we have two successive
B’s, let the first B survive and the second one be cancelled. On the other hand, for two
successive C’s let the first be cancelled and the second survive. (In other words, B’s have
a forward-mouth and they eat A’s and other B’s, while C’s have a backward-mouth eating
B’s and other C’s.) Now it is a well-defined question whether a letter survives or not. Let

the random sequence be MMy --- M,,.

o4



Case M), = A: with probability 1/3*7! it holds that for each i < k —1 M; = A
when M survives. If it is not so, then there is an index i < k for which M; # A but
My = Mo =---= M, =A. If M; = B, then M; cancels all the subsequent A’s so it
cancels My,. If M; = C, then Mj, survives. The probability of this is clearly (1—1/3%71)/2.
Consequently:

1 1

P(Mj, survives| My, = A) = 5 + 33T

Case My = B: it survives only if M; equals A or B for each i > k 4+ 1 (and even in this
case it might be cancelled due to a preceding B):
' 1 9 n—=k

P(M,, survives|M;, = B) < 313 .
Case My, = C': if My, = A, then Mj survives; if M,y = C, then M} is cancelled. If
My.y1 = B, then My survives if and only if My, survives which holds if and only if M;
equals A or B for each i > k 4+ 2. Thus

1 92 n—k—1
+_(_) Q<k<n—1),

1
3 3\3
P(M,, survives|M,, = C') = 1.

P(Mj, survives|M;, = C) =

It follows that

5 1 1/2\"F 1 2\ *!
P(M; survives) < 18 + 5 3k + 9 (g) + 9 <§> (1<k<n-1).

When we add up these terms, the sum of the geometric progressions will be bounded so

there exists an absolute constant ¢; such that

5
E, := E(reduced length of a random sequence of length n) < 1—8n + c;.

Let 0 < & < 1/36 and let us fix ng in such a way that E,, < (1/3 — 2¢)ng. Now let
n = kngy for some positive integer k. We take a random sequence of length n and split it
up into subsequences of length ng. Let X; be the random variable defined as the reduced
length of the j-th subsequence (7 = 1,2,...,k), and let X be the reduced length of the
whole sequence. Clearly, X < X; +---+ Xj. The X;’s are independent random variables
with E(X;) = E,, and X; € (0,n9]. We know that under these conditions the sum
Xi + -+ Xj is highly concentrated around its expectation which is kE,, < (1/3 — 2¢)n.
For example, we can use Hoeffding’s inequality [23] (since X7, ..., X are independent and

bounded). For sufficiently large & it holds that ¢y < en, thus
n 1 i
P(Xz g—co> gP(X> (§—g> n) SP(Z(Xj—EnO) >5n0k> <

Jj=1
( 25%3]{2) .
exp | — =a
knk
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for some constant a < 1. This already proves the lemma for n’s that are sufficiently large
multiples of ny. However, with a larger a < 1 the lemma clearly holds for arbitrary positive

integer n. [
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Abstract

The thesis addresses problems from the field of geometric measure theory. It turns out
that discrete methods can be used efficiently to solve these problems. Let us summarize
the main results of the thesis.

In Chapter 2 we investigate the following question proposed by Tamas Keleti. How
large (in terms of Hausdorff dimension) can a compact set A C R™ be if it does not
contain some given angle «, that is, it does not contain distinct points P, @, R € A with
ZPQR = a? Or equivalently, how large dimension guarantees that our set must contain
a?

We also study an approximate version of this problem, where we only want our set to
contain angles close to o rather than contain the exact angle o. This version turns out to
be completely different from the original one, which is best illustrated by the case a = /2.
If the dimension of our set is greater than 1, then it must contain angles arbitrarily close
to m/2. However, if we want to make sure that it contains the exact angle 7/2, then we
need to assume that its dimension is greater than n/2.

Another interesting phenomenon is that different angles show different behaviour. In
the approximate version the angles 7/3, /2 and 27/3 play special roles, while in the
original version 7/2 seems to behave differently than other angles.

The investigation of the above problems led us to the study of the so-called acute sets. A
finite set H in R™ is called an acute set if any angle determined by three points of H is acute.
Chapter 3 of the thesis studies the maximal cardinality «a(n) of an n-dimensional acute
set. The exact value of a(n) is known only for n < 3. For each n > 4 we improve on the
best known lower bound for a(n). We present different approaches. On one hand, we give
a probabilistic proof that a(n) > ¢-1.2". (This improves a random construction given by
Erd6s and Fiiredi.) On the other hand, we give an almost exponential constructive example
which outdoes the random construction in low dimension (n < 250). Both approaches
use the small dimensional examples that we found partly by hand (n = 4,5), partly by
computer (6 < n < 10).

Finally, in Chapter 4 we show that the Koch curve is tube-null, that is, it can be
covered by strips of arbitrarily small total width. In fact, we prove the following stronger
result: the Koch curve can be decomposed into three sets such that each can be projected
to a line in such a way that the image has Hausdorff dimension less than 1. The proof

contains geometric, combinatorial, algebraic and probabilistic arguments.






Osszefoglalés

Az értekezés olyan problémaékat vizsgdl a geometriai mértékelmélet teriiletérol, amelyek
megoldasanal kiilonbozo diszkrét modszerek rendkiviil hasznosnak bizonyultak. Roviden
ismertetjik az értekezés fobb eredményeit.

A miésodik fejezetben a kovetkezo, Keleti Taméstol szarmazd kérdést jarjuk koriil.
Mekkora lehet (Hausdorff dimenzié szempontjébdl) egy A C R™ kompakt halmaz, amely
nem tartalmaz valamilyen adott o szoget, azaz nem tartalmaz kiilonbozé P,Q), R € A
pontokat, melyekre ZPQR = «a? Avagy masik megfogalmazasban: mekkora dimenzid
garantalja, hogy a halmazunk biztosan tartalmaz o szoget?

Az értekezés vizsgdlja a fenti probléma egy approximativ valtozatat is. Ahelyett,
hogy azt akarnank garantdlni, hogy a halmazban taldlhaté pontosan a szog, ez esetben
megelégsziink azzal, ha a-hoz kozeli szoget talalunk. Ez a probléma jelentosen kiilonbozik
az eredetit6l, amit legjobban az o = 7/2 eset illusztrdl. Ha a dimenzié 1-nél nagyobb,
akkor a halmaz biztosan tartalmaz m/2-h6z akarmilyen kozeli szogeket. Azonban csak
n/2-nél nagyobb dimenzié esetén lehetiink abban biztosak, hogy a halmazunk tartalmazza
T/2-t.

Ugyancsak meglepd, hogy mas-més a szogek esetén a fenti kérdésekre egészen mas
vélaszokat kapunk. Az approximativ valtozatban a 7/3, 7/2 és 27 /3 szogeknek kiilonleges
szerepiik van, mig az eredeti probléméban 7/2 mutat a tobbi szogtél eltérd viselkedést.

A fent vazolt problémék tanulmanyozasa vezetett el az ugynevezett hegyes halmok
vizsgalatdhoz. Egy véges 'H C R™ halmazt hegyes halomnak neveziink, ha barmely
harom pontja altal meghatarozott szog hegyesszog. Az értekezés harmadik fejezete az
n-dimenzids hegyes halmok a(n) maximaélis szamossagat vizsgdlja. Ennek a pontos értéke
csak n < 3 esetén ismert. Az értekezésben minden n > 4 esetén javitunk a legjobb is-
mert alsé becslésen. Két megkozelitést mutatunk be. Egyrészt valdszintiségi modszerrel
bebizonyitjuk, hogy a(n) > ¢-1.2™ (javitva ezzel Erdés és Fiiredi egy véletlen konstrukeié-
jan). Mésrészt egy teljesen konstruktiv eljarast is ismertetiink, ami alacsony dimenziéban
(n < 250) nagyobb hegyes halmot ad, mint a véletlen médszer. Mindkét megkdzelitésben
hasznaljuk azokat a kis dimenziés hegyes halmokat, amiket részben kézzel konstrualtunk
(n = 4,5), részben pedig szamitégéppel talaltunk (6 < n < 10).

Végil a negyedik fejezetben belatjuk, hogy a Koch gorbe tubus-nulla, azaz lefedheto
akarmilyen kis 6sszszélességii savokkal. Valdjaban a kévetkezo erésebb allitast bizonyitjuk:
a Koch gorbe feloszthaté harom részre, melyek mindegyikére fenndll, hogy alkalmas egye-
nesre vetitve a vetiilet Hausdorff dimenziéja kisebb, mint 1. A bizonyitds geometriai,

kombinatorikai, algebrai és valdszintiségszamitasi eszkozoket is hasznal.



