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Introdution
In this thesis we prove some results about the additive representation fun-tions. Let N denote the set of positive integers, and let k ≥ 2 be a �xedinteger. Let A = {a1, a2, . . .} (a1 < a2 < . . . ) be an in�nite sequene ofpositive integers. For k ≥ 2 integer and A ⊂ N, and for n = 0, 1, 2, . . . let
R1(A, n, k), R2(A, n, k), R3(A, n, k) denote the number of solutions of theequations

ai1 + ai2 + · · ·+ aik = n, ai1 ∈ A, . . . , aik ∈ A,

ai1 + ai2 + · · ·+ aik = n, ai1 < ai2 < . . . < aik ai1 ∈ A, . . . , aik ∈ A,and
ai1 + ai2 + · · ·+ aik = n, ai1 ≤ ai2 ≤ . . . ≤ aik , ai1 ∈ A, . . . , aik ∈ A,respetively. If F (n) = O(G(n)) then we write F (n) << G(n). Put

A(n) =
∑

a∈A
a≤n

1.The researh of the additive representation funtions began in the 1950'swith the famous Erd®s - Fuhs theorem [12℄, whih plays fundamental role inthis topi, aording to Erd®s this theorem ertainly will survive the authorsby enturies [22℄. The Erd®s - Fuhs theorem states that if c is a positiveonstant, then
∑

n≤N

R1(A, n, 2) = cN + o(N1/4(log N)−1/2)3



annot hold. This result have been generalized and extended by many people.As a orollary one an get an Ω - result for the error term in the irleproblem. Starting from a problem of Sidon, P. Erd®s proved that thereexists a sequene A ⊂ N so that there are two onstans c1 and c2 for whihfor every n

c1 log n < R1(A, n, 2) < c2 log n.On the other hand an old onjeture of Erd®s states that for no sequene Aan we have
R1(A, n, 2)

log n
→ c (0 < c < +∞).There are some related questions in [3℄ and [12℄. These problems led P.Erd®s, A. Sárközy and V. T. Sós to study the regularity property and themonotoniity of the funtion R1(A, n, 2) see in [6℄, [7℄, [8℄, [9℄. In this thesisI study the regularity properties and the monotoniity of the representationfuntion R1(A, n, k) for k > 2 integer. I extend and generalize some result ofP. Erd®s, A. Sárközy and V. T. Sós by using the generator funtion methodand the probabilisti method.In hapter 1. I give a short survey about the probabilisti method weare working with. We use the de�nitions and notations of the Halberstam- Roth book [12℄. This method plays a ruial role in this thesis. The nextfour hapters of the thesis onsist my papers. In hapter 2. I study themonotoniity of R1(A, n, k). For k = 2, P. Erd®s, A. Sárközy and V. T. Sósstudied the monotoniity of R1(A, n, 2). I extend one of their results to any

k > 2 by using the generator funtion method [18℄. In hapter 3. I studythe di�erene sequene of the additive representation funtions. I extendand generalize some of the results of Erd®s, Sárközy and V. T. Sós [16℄, [17℄,[20℄ by using the generator funtion method and the probabilisti method.In hapter 4. I study the regularity property of an additive representation4



funtion. I extend one of the result of Erd®s and Sárközy by using proba-bilisti methods [19℄. Finally in hapter 5. I study the onnetion betweenthe asymptoti bases and Sidon sets. For h ≥ 2 integer we say a set Aof positive integers is an asymptoti basis of order h if every large enoughpositive integer an be represented as the sum of h terms from A. A setof positive integers A is alled Sidon set if all the sums a + b with a ∈ A,
b ∈ A, a ≤ b are distint. In hapter 5. we prove the existene of Sidon setswhih are asymptoti bases of order 5 by using probabilisti methods [21℄,espeially the Janson inequality. In some hapter of this thesis the de�nitionssometimes repeated, whih helps the reader to understand this thesis better.Aknowledgement. I would like to thank my supervisor Professor AndrásSárközy, drawing my attention to the additive representation funtions. Ihave learned a lot from our onsultations, without his valuable advie, prob-lems and questions I would never have been able to write my papers andthis thesis. I would like to thank Professor Imre Ruzsa for the helpful andvaluable disussions about Sidon sets and asymptoti bases.
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Chapter 1The Probabilisti Method
An important problem in additive number theory is to prove that a sequenewith ertain properties exists. One of the essential ways to obtain an a�r-mative answer for suh a problem is to use the probabilisti method due toErd®s and Rényi. There is an exellent summary of this method in the Hal-berstam - Roth book [12℄. In this thesis we use the notation and terminologyof this book. To show that a sequene with a property P exists, it su�iesto show that a properly de�ned random sequene satis�es P with positiveprobability. Usually the property P requires that for all su�iently large
n ∈ N, some relation P(n) holds. The general strategy to handle this situa-tion is the following. For eah n one �rst shows that P(n) fails with a smallprobability, say fn. If fn is su�iently small so that∑+∞

n=1 fn onverges, thenby the Borel - Cantelli lemma, P(n) holds for all su�iently large n withprobability 1 (see also [26℄).Now we give a survey of the probabilisti tools and notations whih weuse in this thesis. Let Ω denote the set of stritly inreasing sequenes ofpositive integers. In this thesis we denote the probability of an event E by
P (E), and the expetation of a random variable ζ by E(ζ). The followingLemma plays an important role in our proofs.6



1.1 Lemma Let
α1, α2, α3 . . . (1.1)be real numbers satisfying

0 ≤ αn ≤ 1 (n = 1, 2, . . . ). (1.2)Then there exists a probability spae (Ω, X, P ) with the following two prop-erties:(i) For every natural number n, the event E (n) = {A: A ∈ Ω, n ∈ A} ismeasurable, and P (E (n)) = αn.(ii) The events E (1), E (2), ... are independent.See Theorem 13. in [12℄, p. 142. We denote the harateristi funtion ofthe event E (n) by ̺(A, n):̺
(A, n) =







1, if n ∈ A

0, if n /∈ A.Furthermore, we denote the number of solutions of ai1 + ai2 + . . . + aik = nby rk(A, n), where ai1 ∈ A, ai2 ∈ A, ...,aik ∈ A, 1 ≤ ai1 < ai2 . . . < aik < n.Thus
rk(A, n) = rk(n) =

∑

(a1,a2,...,ak)∈Nk

1≤a1<...<ak<n
a1+a2+...+ak=n

̺(A, a1)̺(A, a2) . . . ̺(A, ak). (1.3)It is easy to see from (1.3) that rk(A, n) is the sum of random variables.However for k > 2 these variables are not independent beause the same
̺(A, ai) may appear in many terms. There are some probabilisti resultswhih an help us to overome this trouble. First we present a method of J.H. Kim and V. H. Vu. Interested reader an �nd more details in [15℄, [25℄,[26℄, [27℄. Assume that t1, t2, . . . , tn are independent binary (i.e., all ti's arein {0, 1}) random variables. Consider a polynomial Y in t1, t2, . . . , tn with7



degree k. We say a polynomial Y is positive if it an be written in the form
Y =

∑

i eiΓi, where the ei's are positive and Γi is a produt of some tj 's.Given a (multi-) set A, ∂A(Y ) denotes the partial derivative of Y with respetto the variables with indies in A. For instane, if Y = t1t
2
2 and A1 = {1, 2}and A2 = {2, 2} then ∂A1(Y ) = 2t2 and ∂AY = 2t1. If A is empty then

∂A(Y ) = Y . EA(Y ) denotes the expetation of ∂A(Y ). Furthermore, set
Ej(Y ) = max|A|≥jEA(Y ), for all j = 0, 1, . . . , k, thus E0(Y ) = E(Y ).1.2 Theorem (J. H. Kim - V. H. Vu) For every positive integer k thereare positive onstants dk and bk depending only on k suh that the followingholds. For any positive polynomial Y = Y (t1, t2, . . . , tn) of degree k, wherethe ti's are independent binary random variables,

P
(

|Y − E(Y )| ≥ dkλ
k
√

E0(Y )E1(Y )
)

≤ bke
−λ/4+(k−1) log n.See [15℄ for the proof. The following inequality due to S. Janson [10℄, [14℄,[25℄ whih also plays important role in our proofs.Consider a set {ti}i∈Q of independent random indiator variables and foran index set Γ a family {Q(γ)}γ∈Γ of subsets of the index set Q, and de�ne

Iγ =
∏

i∈Q(γ) ti and N =
∑

γ∈Γ Iγ . (In other words N ounts the number ofthe given sets {Q(γ)} that are ontained in the random set {i ∈ Q : ti = 1}.)Let us write γ ∼ δ if Q(γ) ∩ Q(δ) 6= ∅ but γ 6= δ, and de�ne
pγ = E(Iγ),

λ = E(N) =
∑

γ

pγ ,

∆ =
1

λ

∑

γ∼δ

E(IγIδ).1.3 Theorem (Janson) With notations as above, if 0 ≤ ε ≤ 1, then
P (N ≤ (1 − ε)λ) ≤ exp

(

− 1

2(1 + ∆)
ε2λ
)

.8



We will apply the following result due to Erd®s and Tetali whih is alleddisjointness lemma. We say events G1, . . . , Gn are independent if for allsubsets I ⊆ {1, . . . , n}, P (∩i∈IGi) =
∏

i∈I P (Gi).1.4 Lemma Let {Bi} be a sequene of events in a probability spae. If
∑

i P (Bi) ≤ µ, then
∑

(B1,...,Bl)

independent

P (B1 ∩ . . . ∩ Bl) ≤ µl/l!.See [10℄ for the proof.We also need the Borel - Cantelli lemma (see in [12℄):1.5 Lemma Let {Bi} be a sequene of events in a probability spae. If
+∞
∑

j=1

P (Bj) < ∞,then with probability 1, at most a �nite number of the events Bj an our.Finally we need the following ombinatorial result due to Erd®s and Rado,see [2℄. Let r be a positive integer, r ≥ 3. A olletion of sets A1, A2, . . . Arforms a Delta - system if the sets have pairwise the same intersetion.1.6 Lemma If H is a olletion of sets of size at most m and
|H| > (r − 1)mm!then H ontains r sets forming a Delta - system.
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Chapter 2On the monotoniity of anadditive representation funtion
2.1 IntrodutionLet k ≥ 2 be a �xed integer. For i = 1, 2, 3 we say Ri(A, n, k) is monotonousinreasing in n from a ertain point on, if there exists an integer n0 with

Ri(A, n + 1, k) ≥ Ri(A, n, k) for n ≥ n0.In a series of papers P. Erd®s, A. Sárközy and V. T. Sós studied the mono-toniity properties of the three representation funtionsR1(A, n, 2), R2(A, n, 2),
R3(A, n, 2). In [9℄ they proved the following theorems:2.1 Theorem (Erd®s - Sárközy - T. Sós) The funtion R1(A, n, 2) is monotonousinreasing from a ertain point on, if and only if the sequene A ontains allthe integers from a ertain point on, i.e., there exists an integer n1 with

A ∩ {n1, n1 + 1, n1 + 2, . . .} = {n1, n1 + 1, n1 + 2, . . .}.2.2 Theorem (Erd®s - Sárközy - T. Sós) If
A(n) = o

( n

log n

)

10



then the funtions R2(A, n, 2) and R3(A, n, 2) annot be monotonous inreas-ing from a ertain point on, i.e., for i = 2 or 3, there does not exist an integer
n0 suh that

Ri(A, n + 1, 2) ≥ Ri(A, n, 2) for n ≥ n0.A. Sárközy proposed the study of the monotoniity of the funtionsRi(A, n, k)for k > 2 [24, Problem 5℄. He onjetured [23, p. 337℄ that for any k ≥ 2 in-teger, if Ri(A, n, k) (i = 1, 2, 3) is monotonous inreasing in n from a ertainpoint on, then A(n) = O(n2/k−ε) annot hold. In this hapter I will provethe following slightly stronger result on R1(A, n, k) by using similar methodsas in [9℄:2.3 Theorem If k ∈ N, k ≥ 2, A ⊂ N and R1(A, n, k) is monotonousinreasing in n from a ertain point on, then
A(n) = o

(

n2/k

(log n)2/k

)annot hold.Unfortunately I have not been able to prove the onjeture for R2(A, n, k)and R3(A, n, k), thus the onjeture remains open in these ases.2.2 Proof of Theorem 2.3We write R1(A, n, k) = Rk(n). We prove the result by ontradition. As-sume that Rk(n) is monotonous inreasing from a ertain point on and
A(n) = o

(

n2/k

(log n)2/k

). First we show that there exist in�nitely many inte-gers N satisfying
A(N + j) < A(N)

(

N + j

N

)2

for j = 1, 2, . . . . (2.1)11



If (2.1) holds only for �nitely many N , then there exists an integer N0 suhthat
A(N0) > 1and for N ≥ N0, there exists an integer N ′ = N ′(N) satisfying N ′ > N and

A(N ′) ≥ A(N)

(

N ′

N

)2

.Then we get by indution that there exist integers N1 < N2 < . . . < Nj < . . .suh that
A(Nj+1) ≥ A(Nj)

(

Nj+1

Nj

)2

for j = 0, 1, 2, . . . ,hene
A(Nl+1) = A(N0)

l
∏

j=0

A(Nj+1)

A(Nj)
≥ A(N0)

l
∏

j=0

(

Nj+1

Nj

)2 (2.2)
= A(N0)

(

Nl+1

N0

)2

>

(

Nl+1

N0

)2

> N
3/2
l+1for large enough l. On the other hand, learly we have

A(Nl+1) =
∑

a∈A

a≤Nl+1

1 ≤
∑

a≤Nl+1

1 = Nl+1 (2.3)(2.2) and (2.3) annot hold simultaneously and this ontradition proves theexistene of in�nitely many integers N satisfying (2.1).Throughout the remaining part of the proof of Theorem 2.3 we usethe following notations: N denotes a large integer satisfying (2.1). Wewrite e2iπα = e(α) and we put r = e−1/N , z = re(α) where α is a realvariable (so that a funtion of form p(z) is a funtion of the real variable
α : p(z) = p(re(α)) = P (α)). We write

f(z) =
∑

a∈A
za.12



(Sine r < 1, this in�nite series and all the other in�nite series in the remain-ing part of the proof are absolutely onvergent.) Then we have
fk(z) =

+∞
∑

n=1

Rk(n)zn.Let I denote
I =

∫ 1

0

|f(z)|kdα.We will give lower and upper bound for I. The lower bound will be greaterthen the upper bound, and this ontradition will prove that our indiretassumption annot hold whih will omplete the proof of Theorem 2.3.First we will give lower bound for I. Using Hölder's inequality and Par-seval's formula we have
I2/k =

(
∫ 1

0

|f(z)|kdα

)2/k(∫ 1

0

1dα

)1−2/k

≥
∫ 1

0

|f(z)|2dα

=
∑

a∈A
r2a ≥

∑

a∈A

a≤N

r2N = e−2
∑

a∈A

a≤N

1 = e−2A(N)hene
I ≥ e−k(A(N))k/2. (2.4)Now we will give upper bound for I. First we will estimate Rk(n) interms of A(2n). Sine Rk(n) is monotonous inreasing from a ertain pointon, i.e., there exists an integer n0 suh that Rk(n + 1) ≥ Rk(n) for n ≥ n0,we have

(A(2n))k =
(

∑

a∈A
a≤2n

1
)k

=
∑

a1∈A,a2∈A,...,ak∈A

a1≤2n,a2≤2n,...,ak≤2n

1 ≥
∑

a1+a2+...+ak≤2n

a1∈A,...,ak∈A

1

≥
2n
∑

i=1

Rk(i) ≥
2n
∑

i=n+1

Rk(i) ≥
2n
∑

i=n+1

Rk(n) = nRk(n)hene
(A(2n))k

n
≥ Rk(n) (2.5)13



for n ≥ n0. In view of the monotoniity of Rk(n), and sine A is in�nite, wehave Rk(n) ≥ 1 for n large enough. Thus we obtain from (2.5) that
(A(2n))k ≥ n (2.6)for n large enough. We have

I =

∫ 1

0

|f(z)|kdα =

∫ 1

0

|fk(z)|dα =

∫ 1

0

∣

∣

∣

∣

+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

dα (2.7)
=

∫ 1

0

|(1 − z)
+∞
∑

n=1

Rk(n)zn||1 − z|−1dα.By the monotoniity, and if N and n0 are large enough we have
∣

∣

∣

∣

(1 − z)
+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

=

∣

∣

∣

∣

+∞
∑

n=1

(Rk(n) − Rk(n − 1))zn

∣

∣

∣

∣

≤
n0
∑

n=1

|Rk(n) − Rk(n − 1)|rn +
+∞
∑

n=n0+1

|Rk(n) − Rk(n − 1)|rn

<

n0
∑

n=1

|Rk(n) − Rk(n − 1)| +
+∞
∑

n=n0+1

|Rk(n) − Rk(n − 1)|rn

=

n0
∑

n=1

|Rk(n) − Rk(n − 1)| +
+∞
∑

n=n0+1

(Rk(n) − Rk(n − 1))rn

< 2

n0
∑

n=1

|Rk(n) − Rk(n − 1)| +
+∞
∑

n=1

(Rk(n) − Rk(n − 1))rn

= c1 +
+∞
∑

n=1

Rk(n)(rn − rn+1) = c1 + (1 − r)
+∞
∑

n=1

Rk(n)rn

< c1 +

n0−1
∑

n=1

Rk(n) + (1 − r)
+∞
∑

n=n0

Rk(n)rn

< c2 + (1 − e−1/N )

( N
∑

n=n0

Rk(N) +
+∞
∑

n=N+1

Rk(n)rn

)

.Thus by (2.1), (2.5) and (2.6) we have14



∣

∣

∣

∣

(1 − z)
+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

< c2 + N−1

(

N
(A(2N))k

N
+

+∞
∑

n=N+1

(A(2n))k

n
rn

)

< c2 + N−1

(

(A(N))k

(

2N

N

)2k

+
+∞
∑

n=N+1

(

A(N)

(

2n

N

)2)k
1

n
rn

)

< c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

+∞
∑

n=1

n2k−1rn

)

< c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

+∞
∑

n=1

(n + 1)(n + 2) . . . (n + 2k − 1)rn

)

= c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

+∞
∑

m=2k

m(m − 1) . . . (m − 2k + 2)rm−2k+1

)

< c2 + (A(N))k

(

22kN−1 +
22k

N2k+1
(

+∞
∑

m=0

rm)(2k−1)

)

= c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

(

1

1 − r

)(2k−1))

= c2 + (A(N))k

(

22kN−1 +
22k

N2k+1
(2k − 1)!(1 − r)−2k

)

= c2 + (A(N))k

(

22kN−1 +
22k(2k − 1)!

N2k+1
(1 − e−1/N )−2k

)

.Sine
1 − e−x = x − x2

2!
+

x3

3!
− . . . > x − x2

2!
= x(1 − x

2
) >

x

2for 0 < x < 1, it follows by (2.5) that
∣

∣

∣

∣

(1 − z)

+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

< c2 + (A(N))k

(

22kN−1 +
22k(2k − 1)!

N2k+1
(2N)2k

)

= c2 + (A(N))kN−1(22k + 24k(2k − 1)!) < c3(A(N))kN−1. (2.8)15



Furthermore we have
|1 − z| = ((1 − z)(1 − z̄))1/2 = (1 + |z|2 − 2Rez)1/2 = (2.9)

(1 + r2 − 2r cos 2πα)1/2 = ((1 − r)2 + 2r(1 − cos 2πα))1/2 >

(2r(1 − cos 2πα))1/2 = (2e−1/N2 sin2 πα)1/2

≥ (2(2α)2)1/2 ≥ 2αfor 0 ≤ α ≤ 1
2
and for large N , and

|1 − z| = ((1 − r)2 + 2r(1 − cos 2πα))1/2 ≥ ((1 − r)2)1/2 (2.10)
= 1 − r = 1 − e−1/N > 1/2Nfor all α. It follows from (2.7), (2.8), (2.9) and (2.10) that

I ≤
∫ 1

0

c3(A(N))kN−1|1 − z|−1dα (2.11)
= 2c3(A(N))kN−1

∫ 1/2

0

|1 − z|−1dα

= c4(A(N))kN−1

(
∫ 1/N

0

|1 − z|−1dα +

∫ 1/2

1/N

|1 − z|−1dα

)

< c4(A(N))kN−1

(
∫ 1/N

0

2Ndα +

∫ 1/2

1/N

(2α)−1dα

)

< c4(A(N))kN−1(2 +
1

2
log N) < c5(A(N))kN−1 log N.In view of (2.4), (2.11) and our indiret assumption we have

e−k(A(N))k/2 ≤ I < c5(A(N))kN−1 log N,

N < c6(A(N))k/2 log N = o

(

(

N2/k

(log N)2/k

)k/2

log N

)

= o(N).This ontradition ompletes the proof of Theorem 2.3.16



Chapter 3On the di�erene sequene of anadditive representation funtion
3.1 IntrodutionIn this hapter we write R1(A, n, k) = Rk(n). Let k ≥ 2, t ≥ 1 be �xed inte-gers. If s0, s1, s2 . . . is a given sequene of real numbers, then let ∆tsn denotethe t-th di�erene of the sequene s0, s1, s2 . . . de�ned by ∆1sn = sn+1 − snand ∆tsn = ∆1(∆t−1sn). It is well-known and it is easy to see by indutionthat

∆tsn =
t
∑

i=0

(−1)t−i

(

t

i

)

sn+i. (3.1)Let B(A, N) denote the number of bloks formed by onseutive integers in
A up to N , i.e.,

B(A, N) =
∑

a≤N

a−1/∈A,a∈A

1.We will onsider the following problem : what ondition is needed to guar-antee that |∆tRk(n)| annot be bounded. P. Erd®s, A. Sárközy and V. T.Sós proved in [8℄ that if k = 2, t = 1 then17



3.1 Theorem (Erd®s, Sárközy, T.Sós): If limN→∞
B(A,N)√

N
= ∞, then |∆1(R2(n))| =

|R2(n + 1) − R2(n)| annot be bounded.They also proved in [8℄ that the above result is nearly best possible:3.2 Theorem (Erd®s, Sárközy, T.Sós): For all ε > 0, there exists an in�-nite sequene A suh that(i) B(A, N) ≫ N1/2−ε,(ii) R2(n) is bounded so that also ∆1R2(n) is bounded.In [16℄ I extended Theorem 3.1 to any k > 2 :3.3 Theorem If k ≥ 2 is an integer and limN→∞
B(A,N)

k√N
= ∞, and t ≤ k,then |∆tRk(n)| annot be bounded.I also proved in [20℄ that the above result is nearly best possible:3.4 Theorem For all ε > 0, there exists an in�nite sequene A suh that(i) B(A, N) ≫ N1/k−ε,(ii) Rk(n) is bounded so that also ∆tRk(n) is bounded if t ≤ k.In the ase t > k I have only a partial result ([17℄):3.5 Theorem If t ≥ 2 is an integer and limN→∞

B(A,N)√
N

= ∞, then |∆t(R2(n))|annot be bounded.In the next part of this hapter I prove Theorem 3.3 and Theorem 3.4. Iomit the proof of Theorem 3.5 beause it is similar to the proof Theorem 3.3.Interested reader an �nd it in [17℄.
18



3.2 Proof of Theorem 3.3Clearly it su�ies to prove the assertion of the theorem in the speial ase
t = k. We prove by ontradition. Assume that ontrary to the onlusion ofthe theorem there is a positive onstant C > 0 suh that |∆kRk(n)| < C forevery n. Throughout the remaining part of the proof of the theorem we usethe following notations: N denotes a large integer. We write e2iπα = e(α) andwe put r = e−1/N , z = re(α) where α is a real variable (so that a funtion ofform p(z) is a funtion of the real variable α : p(z) = p(re(α)) = P (α)). Wewrite f(z) =

∑

a∈A
za. (By r < 1, this in�nite series and all the other in�niteseries in the remaining part of the proof are absolutely onvergent).We start out from the integral I =

1
∫

0

|f(z)(1− z)|kdα. We will give lowerand upper bound for I. The omparison of these bounds will show that
B(A,N)

k√N
is bounded whih ontradits the assumption of the theorem. Thisontradition will prove that our indiret assumption on |∆kRk(n)| annothold whih will omplete the proof of the theorem.First we will give a lower bound for I. We write f(z)(1 − z) =

∞
∑

n=1

βnzn.Then for n − 1 /∈ A, n ∈ A we have βn = 1, thus by the Hölder inequalityand the Parseval formula, we have
I2/k =

(

1
∫

0

|f(z)(1 − z)|kdα

)2/k(
1
∫

0

1dα

)1−2/k

≥
1
∫

0

|f(z)(1 − z)|2dα

=

1
∫

0

∣

∣

∞
∑

n=1

βnz
n
∣

∣

2
dα =

∞
∑

n=1

β2
nr

2n ≥ r2N
∑

n≤N

n−1/∈A,n∈A

β2
n =

= e−2
∑

n≤N

n−1/∈A,n∈A

1 = e−2B(A, N).

19



whene
I ≥ e−k(B(A, N))k/2.Now we will give an upper bound for I. By (3.1), our indiret assumption,the Cauhy inequality and the Parseval formula we have

I =

1
∫

0

|f(z)(1 − z)|kdα =

1
∫

0

|fk(z)(1 − z)k|dα =

1
∫

0

∣

∣(
∑

a∈A
za)k(1 − z)k

∣

∣dα

=

1
∫

0

∣

∣(

∞
∑

n=1

Rk(n)zn)(1 − z)k
∣

∣dα =

1
∫

0

∣

∣(

∞
∑

n=1

Rk(n)zn)(

k
∑

i=0

(−1)i

(

k

i

)

zi)
∣

∣dα

=

1
∫

0

∣

∣

∞
∑

m=1

k
∑

i=0

(−1)i

(

k

i

)

Rk(m − i)zm
∣

∣dα =

1
∫

0

∣

∣

∞
∑

m=1

∆kRk(m − k)zm
∣

∣dα

≤
(

1
∫

0

∣

∣

∞
∑

m=1

∆kRk(m − k)zm
∣

∣

2
dα

)1/2

=

( ∞
∑

m=1

∣

∣∆kRk(m − k)
∣

∣

2
r2m

)1/2

≤ C

( ∞
∑

m=1

r2m

)1/2

= C

(

1

1 − r2

)1/2

≤ C

(

1

1 − r

)1/2

= C

(

1

1 − e−
1
N

)1/2

< C
√

2Nsine we have
1 − e−x = x − x2

2!
+

x3

3!
− · · · > x − x2

2!
= x(1 − x

2
) >

x

2for 0 < x < 1.Now we will omplete the proof of the theorem. We have
e−k

(

B(A, N)

)k/2

≤ I < C
√

2N20



hene
B(A, N)

k
√

N
< e2 k

√
2C2.This ontradits our assumption on B(A, N) whih ompletes the proof ofTheorem 3.3.3.3 Proof of Theorem 3.4The proof of Theorem 3.4 is based on the probabilisti method due to Erd®sand Rényi we introdued in hapter 2.First we proof part (i) of Theorem 3.4. The proof is similar as in [8℄. Todo this, we need the following important lemma:3.6 Lemma If the sequene (1.1) satis�es (1.2) and

αj = δj−c for j ≥ j0,where δ, c are onstants suh that 0 < δ, 0 < c < 1, then with probability 1,we have
A(n) ∼ δ

1 − c
n1−c.This lemma is a onsequene of Lemmas 10 and 11 in [12℄, pp. 144 - 145.For A ∈ Ω, we write

T (A, n) =
∑

a≤n
a−1∈A,a∈A

1so that
B(A, n) + T (A, n) =

∑

a≤n

a−1/∈A,a∈A

1 +
∑

a≤n

a−1∈A,a∈A

1

=
∑

a∈A

a≤n

1 = A(n).The following lemma will play a ruial role in the proof.21



3.7 Lemma If the sequene (1.1) satis�es (1.2) and
+∞
∑

j=1

αjαj+1 < +∞, (3.2)then, with probability 1,
T (A, n) < 4 log n for n > n2(A)(where n2 may depend on both the sequene (1.1) and A).See this lemma and the proof in [8℄. De�ne the sequene (1.1) by

αj =
1

k
j1/k−1−ε. (3.3)Thus by Lemma 3.6 with probability 1, we have

A(n) ∼ 1

k

(1

k
− ε
)−1

n
1
k
−εso that, with probability 1,

A(n) >
1

k
kn

1
k
−ε = n

1
k
−ε, (3.4)for n large enough. By Lemma 3.7 (learly, the sequene (3.3) satis�es (3.2)),with probability 1,

B(A, n) = A(n) − T (A, n) > n
1
k
−ε − 4 log n >

1

k
n

1
k
−εfor n > n3(ε,A). In the next setion we will prove part (ii) of Theorem 3.4.Remember that

rk(n) =
∑

(a1,a2,...,ak)∈Nk

1≤a1<...<ak<n
a1+a2+...+ak=n

̺(A, a1)̺(A, a2) . . . ̺(A, ak).(see in (1.3) in Chapter 2). Let r∗k(A, n) denote the number of those repre-sentations of n as the sum of k terms from A in whih there are at least twoequal terms. Thus we have
R1(A, n, k) = k!rk(A, n) + r∗k(A, n). (3.5)22



Write r∗k(A, n) = r∗k(n). It follows that we have to show that with probability1, both rk(n) and r∗k(n) are bounded by a onstant. First we prove rk(n) isbounded by using similar methods as Erd®s and Tetali in [10℄. Let S1 =

{a1, a2, . . . ak} and S2 = {b1, b2, . . . bk}, be two di�erent representations of nas the sum of k terms from A, that is, S1 6= S2 and S1, S2 ⊂ A and
a1 + a2 + . . . + ak = b1 + b2 + . . . + bk = n.We say S1 and S2 are disjoint if they share no element in ommon. Let h(n)denote the size of a maximal olletion of pairwise disjoint representations of

n as the sum of k distint numbers from A. We an see in (1.3) that rk(n)is the sum of random variables. However, for k > 2 these variables are notindependent beause any ̺(A, ai) may appear in many terms. To overomethis problem we will prove that with probability 1, h(n) and rk−1(n) arebounded by a onstant, i. e., almost always there exist onstans g and c1suh that f(n) < g and rk−1(n) < c1. The following argument shows that thisimplies rk(n) almost always bounded by a onstant. Let S be any maximalolletion of pairwise disjoint representations of n as a sum of k distintnumbers. Clearly |S| = h(n). It is lear that if h(n) < g then there are atmost k×g numbers in our olletion S. As S is maximal, any representationof n must use at least one number from the olletion. However, the numberof representations of n whih use x is preisely rk−1(n − x). If rk−1(n) < c1then the total number of representations of n is at most c1 × k × g. Now wegive an upper estimation for h(n). Let E(rk(n)) denote the expetation of
rk(n). We need an upper estimation for E(rk(n)). Clearly ak > n/k, thuswe have

E(rk(n)) =
∑

a1+a2+...+ak=n

1≤a1<a2<...<ak<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (ak ∈ A) (3.6)23



=
∑

a1+a2+...+ak=n

1≤a1<a2<...<ak<n

1

(a1 . . . ak)1+ε−1/k

<
(k

n

)1+ε−1/k( ∑

a1+a2+...+ak=n

1≤a1<a2<...<ak<n

1

(a1 . . . ak−1)1+ε−1/k

)

≤
(k

n

)1+ε−1/k ∑

1≤ai≤n

i=1...k−1

1

(a1 . . . ak−1)1+ε−1/k

=
(k

n

)1+ε−1/k( ∑

1≤a1≤n

1

a
1+ε−1/k
1

)k−1

=
(k

n

)1+ε−1/k(
∫ n

1

1

a
1+ε−1/k
1

da1+O(1)
)k−1

=
(k

n

)1+ε−1/k([a
1/k−ε
1

1
k
− ε

]n

1
+ O(1)

)k−1

=
(k

n

)1+ε−1/k
(

( k

1 − kε

)k−1

n
(1−kε)(k−1)

k + o(n
(1−kε)(k−1)

k )

)

=
k1+ε−1/k

nkε

(

( k

1 − kε

)k−1

+ o(1)

)

< C(k, ε)n−kε = c2n
−kε,where c2 is a onstant depending on k and ε. Let

B = {(a1, . . . , ak) : a1+. . .+ak = n, a1 ∈ A, . . . , ak ∈ A, 1 ≤ a1 < . . . < ak < n},and let H(B) = {T ⊂ B: all the S ∈ T are pairwise disjoint}. It is learthat the pairwise disjointness of the sets implies the independene of theassoiated events, i. e., if S1 and S2 are pairwise disjoint representations, theevents S1 ⊂ A, S2 ⊂ A are independent. Thus by (3.6) and Lemma 1.4 for
g =

[

1
ε

] we have
P (h(n) > g) ≤ P

(

⋃

T ⊂H(B)

|T |=g+1

⋂

S∈T
S
)

≤
∑

T ⊂H(B)

|T |=g+1

P
(

⋂

S∈T
S
) (3.7)

=
∑

(S1,...,Sg+1)

Pairwise
disjoint

P (S1 ∩ . . . ∩ Sg+1) ≤
1

(g + 1)!
(E(h(n)))g+1

24



≤ 1

(g + 1)!
(E(rk(n)))g+1 ≤ 1

(g + 1)!
cg+1
2 n−k(g+1)ε ≤ c3(ε)n

−k,where c3(ε) is a onstant depending on ε. Using the Borel - Cantelli lemma,it follows that with probability 1, there exists an n0 suh that
h(n) ≤ g for n > n0. (3.8)In the next step we will give an upper bound for rk−1(n). Before doing this,we introdue some new notations. Let rl(n) denote the number of represen-tations of n as the sum of l distint numbers from A and let hl(n) denotethe size of a maximal olletion of pairwise disjoint suh representations. Wewill give an upper estimation for hl(n) similarly as in (3.7). First we give anupper estimation for E(rl(n)) similarly to (3.6): Let 2 ≤ l ≤ k − 1 be �xed.Then using the de�nition, we have n/l < al, thus

E(rl(n)) =
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (al ∈ A) (3.9)
=

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al)1+ε−1/k

< n−1−ε+1/k+o(1)
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al−1)1+ε−1/k

< n−1−ε+1/k+o(1)
∑

1≤ai≤n

i=1...l−1

1

(a1 . . . al−1)1+ε−1/k

= n−1−ε+1/k+o(1)
(

∑

1≤a1≤n

1

a
1+ε−1/k
1

)l−1

= n−1−ε+1/k+o(1)(n1/k−ε+o(1))l−1 = n−1+l/k−(lε)+o(1).Let S [l] denote a representation of n as a sum of l distint numbers. When
S

[l]
i and S

[l]
j are disjoint S

[l]
i ⊂ A and S

[l]
j ⊂ A are independent events. For25



2 ≤ l ≤ (k − 1), applying Lemma 1.4, using an argument similar to (3.7),and in view of (3.9) we have
P (hl(n) > 2k) <

∑

(S
[l]
1 ,...,S

[l]
2k+1

)

Pairwise
disjoint

P (S
[l]
1 ∩ . . . ∩ S

[l]
2k+1)

<
(E(rl(n))2k

(2k + 1)!
<

1

(2k + 1)!
(n−1+l/k−lε+o(1))2k = n−2k+2l(1−kε)+o(1).By l ≤ (k − 1) it follows that

P (hl(n) > 2k) < n−2+o(1).Thus by the Borel - Cantelli lemma with probability 1, the above assertionimplies that almost always for 2 ≤ l ≤ (k − 1) there exists nl suh that if
n > nl then hl(n) ≤ 2k. But for any �nite nl, there are at most a �nitenumber of representations as a sum of l numbers. Therefore, almost alwaysfor 2 ≤ l ≤ (k − 1) there exists a Cl suh that for every n, hl(n) < Cl. Set
cmax = maxl{Cl}. Now we show similarly as in [10℄ that almost always thereexists c4 = c4(A) suh that for every n,

rk−1(n) < c4. (3.10)The proof of (3.10) is purely ombinatorial. We show that (whenever every
Cl exists), for every n

rk−1(n) ≤ (cmax)
k−1(k − 1)!. (3.11)We prove by ontradition. Suppose (3.11) is false for some n = n

′ , i. e.,
rk−1(n

′

) > (cmax)
k−1(k − 1)!. (3.12)We want to apply Lemma 1.6. Let H be the set of representations of n′ as thesum of k−1 distint numbers from A. Clearly |H| = rk−1(n

′

), thus by (3.12)26



and applying Lemma 1.6 we get that H ontains cmax + 1 representationsof n
′ as the sum of k − 1 distint numbers whih form a Delta - system

{Sk−1
1 , . . . , Sk−1

cmax+1}. If the ommon intersetion of these sets is empty thenthis cmax + 1 set form a family of disjoint k − 1 representations of n
′ , whihontradits the de�nition of cmax. Otherwise let the ommon intersetion ofthe system be {x1, . . . , xv}, where 0 ≤ v ≤ k−2. If∑i xi = m, then removingthe ommon intersetion eah set will yield hk−1−v(n

′ −m) ≥ cmax + 1. Thisis impossible in view of hl(n) < Cl and the de�nition of cmax. This proves(3.11), and in fat, also shows that c4 ≤ ck−1
max(k − 1)!.In the last setion we will give an upper estimation for r∗k(n). It an beprove similarly to the estimate of rk(n) that is r∗k(n) is also bounded by aonstant. For the sake of ompleteness I sketh the proof leaving the detailsto the reader. If we ollet the equal terms, we have

u1a1 + u2a2 + . . . + uhah = n, (3.13)where the ui's are natural numbers, and
u1 + u2 + . . . + uh = k. (3.14)Thus r∗k(n) denotes the number of representations of n in the form (3.13),where the ai's are di�erent. Similarly to the estimate of rk(n), we show thatwith probability 1, r∗k(n) is also bounded by a onstant. Let 2 ≤ h ≤ k − 1be �xed. For a �xed u1, . . . , uh denote wh(n) the number of representationsof n in the form (3.13). We show that with probability 1, wh(n) is boundedby a onstant. (Note that in the previous setion we proved the ase whenall ui's equal to one, and h = k). First we will give an upper estimationfor E(wh(n)), with a alulation similar to (3.9). Using the de�nition, and

27



n/k < ah, we have
E(wh(n)) =

∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (ah ∈ A) (3.15)
=

∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

1

(a1 . . . ah)1+ε−1/k

≤ n−1−ε+1/k+o(1)
∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

1

(a1 . . . ah−1)1+ε−1/k

< n−1+h/k−(hε)+o(1).Let w∗
h(n) denote the size of a maximal olletion of pairwise disjoint rep-resentations in the form (3.13). The same argument as in (3.7) and (3.8)shows that almost always there exists a dh onstant suh that for every largeenough n, w∗

h(n) ≤ dh. In view of (3.15), and applying Lemma 1.4 we have
P (w∗

h(n) > dh) < n−2+o(1),thus by the Borel - Cantelli lemma we get that with probability 1, w∗
h(n) < dhif n is large enough. We say that a m - tuple (a1, . . . , am) (m ≤ h) isan m - representation of n in the form (3.13) if there is a permutation πof the numbers {1, 2, . . . , h} suh that ∑m

i=1 uπ(i)ai = n. For all m < h,let w∗
m(n) denote the size of a maximal olletion of pairwise disjoint suhrepresentations of n. The same argument as above shows that almost alwaysthere exists pm onstant suh that for all large enough n, w∗

m(n) < pm.In the last step we apply Lemma 1.6 to prove that wh(n) is bounded bya onstant. Let D =
(

max(pmh!, dh)
)h

h!. Let H in Lemma 1.6 is theolletion of representations of n in the form (3.13). Clearly |H| = wh(n). If
wh(n) > D, and n is su�iently large then by Lemma 1.6, H ontains a Delta- system with max(pmh!, dh)+1 sets. If the intersetion of these sets is empty,28



then they form a family of disjoint h - representations in the form (3.13).Otherwise let the ommon intersetion of the sets be {y1, . . . , ys}, where
1 ≤ s ≤ h− 1. By the pigeon hole priniple, there exists a permutation π ofthe numbers {1, 2, . . . , h} suh that we an �nd pm+1 (k−s) representationsof n

′′

= n −∑s
i=1 uπ(i)yi. These pm + 1 sets are disjoint, thus in both aseswe obtain a ontradition. Sine there are only �nite number of partitions of

k in the form (3.13), we get that r∗k(n) is bounded by a onstant. From (3.5)we get that Rk(n) is also bounded by a onstant. Thus with probability 1,both (i) and (ii) in Theorem 3.4 hold, so that there exists in�nitely manysequenes satisfying both (i) and (ii), whih proves Theorem 3.4.
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Chapter 4On the regularity property of anadditive representation funtion
4.1 IntrodutionLet k ≥ 2 be a �xed integer. In this hapter we write R1(A, n, k) = Rk(n).For k = 2, P. Erd®s and A. Sárközy studied how regular an be the behaviourof the funtion R2(n). In [6℄ they proved the following theorem:4.1 Theorem (Erd®s-Sárközy) If F (n) is an arithmeti funtion suh that

F (n) → +∞,

F (n + 1) ≥ F (n) for n ≥ n0,

F (n) = o
( n

(log n)2

)

,and we write
Γ(N) =

N
∑

n=1

(R2(n) − F (n))2,then
Γ(N) = o(NF (N))annot hold.In [7℄ they showed that the above result is nearly best possible:30



4.2 Theorem (Erd®s-Sárközy) If F (n) is an arithmeti funtion satisfying
F (n) > 36 log n for n > n0,and there exist a real funtion g(x), de�ned for 0 < x < +∞, and realnumbers x0, n1 suh that(i) g

′

(x) exists and it is ontinuous for 0 < x < +∞,(ii) g
′

(x) ≤ 0 for x ≥ x0,(iii) 0 < g(x) < 1 for x ≥ x0,(iv) |F (n) − 2
∫ n/2

0
g(x)g(n − x)dx| < (F (n) log n)1/2 for n > n1,then there exists a sequene A suh that

|R2(n) − F (n)| < 8(F (n) log n)1/2 for n > n2.In [13℄ G. Horváth extended Theorem 4.1 to any k > 2 :4.3 Theorem (G. Horváth) If F (n) is an arithmeti funtion suh that
F (n) → +∞,

F (n + 1) ≥ F (n) for n ≥ n0,

F (n) = o
( n

(log n)2

)

,and we write
Γ(N) =

N
∑

n=1

(Rk(n) − F (n))2,then
Γ(N) = o(NF (N))annot hold.A. Sárközy proposed to prove the analogue of Theorem 4.2 for k > 2 [23,Problem 3℄. In this hapter my goal is to extend Theorem 4.2 to any k > 2,i. e., to show that Theorem 4.3 is nearly best possible. In fat I will provethe following theorem: 31



4.4 Theorem If k > 2 is a positive integer, c8 is a onstant large enough interms of k, F (n) is an arithmeti funtion satisfying
F (n) > c8 log n for n > n0,and there exists a real funtion g(x), de�ned for 0 < x < +∞, and realnumbers x0, n1 and onstants c7, c9 suh that(i) 0 < g(x) ≤ (log x)
1
k

x
1− k+1

k2
< 1 for x ≥ x0,(ii) ∣∣

∣
F (n) − k!

∑

x1+x2+...+xk=n

1≤x1<x2<...<xk<n
g(x1)g(x2) . . . g(xk)

∣

∣

∣
< c7(F (n) log n)1/2for n > n1,then there exists a sequene A suh that

|Rk(n) − F (n)| < c9(F (n) log n)1/2 for n > n2.It is easy to see that the following futions satisfy the onditions of Theorem4.4: g(x) = c10

(

(log x)β

xα

), where c10 is a positive onstant, α > 1 − k+1
k2 ,or α = 1 − k+1

k2 and β ≤ 1/k. It follows that for F (n) = nδ(log n)γ with
0 < δ ≤ 1/k, or 0 ≤ γ < 1 there is a sequene A for whih Rk(n) satis�esthe olusion of the theorem. For k = 2 in [6℄ P. Erd®s and A. Sárközy usedprobabilisti method to onstrut a sequene A. In the ase k = 2, in theirpaper ertain events were mutually independent. For k > 2 the independenyfails, thus in order to prove Theorem 4.4 we need deeper probabilisti tools.4.2 Proof of Theorem 4.4Fix a number n and write
Sn = {(a1, a2, . . . ak) ∈ N

k : 0 < a1 < a2 . . . < ak < n, a1 +a2 + . . . +ak = n}.De�ne the sequene (1.1) of real numbers by
αn =







g(n) if n ≥ x0,

0 otherwise ,32



and let (Ω, X, P ) be the probability spae as desribed in Lemma 1.1. Clearlythe sequene αn satis�es (1.2). Thus
rk(n,A) = rk(n) =

∑

(a1,a2,...,ak)∈Sn

ta1ta2 . . . tak
,where

tai
=







1, if ai ∈ A

0, if ai /∈ A
.Then we have

λn = E(rk(n)) =
∑

(a1,a2,...,ak)∈Sn

P (a1 ∈ A)P (a2 ∈ A) . . . P (ak ∈ A),where E(ζ) denotes the expetation of the random variable ζ . To proveTheorem 4.4 we will give an upper estimation for |Rk(n) − k!λn|. As Vuin [26℄ we split rk(n) into two parts, as follows. Let a be a small positiveonstant say a < 1
2(k+1)

and let S
[1]
n be the subset of Sn onsisting of all

k-tuples whose smallest element is at least na, i. e., S
[1]
n = {(a1, a2, . . . ak) ∈

N
k : na ≤ a1 < a2 . . . < ak < n, a1 + a2 + . . . + ak = n} and S

[2]
n = Sn \ S

[1]
n .We split rk(n) into the sum of two terms orresponding to S

[1]
n and S

[2]
n ,respetively:

rk(n) = r
[1]
k (n) + r

[2]
k (n),where

r
[j]
k (n) =

∑

(a1,a2,...,ak)∈S
[j]
n

ta1ta2 . . . tak
, (4.1)and set

λ[j]
n = E(r

[j]
k (n)).Let r∗k(A, n) denote the number of those representations of n as the sumof k terms from A in whih there are at least two equal terms. Thus we have

Rk(n) = k!rk(A, n) + r∗k(A, n). (4.2)33



Clearly
|Rk(n) − k!λn| ≤ |Rk(n) − k!rk(n)| + k!|rk(n) − λn| (4.3)

= r∗k(n) + k!|r[1]
k (n) + r

[2]
k (n) − λ[1]

n − λ[2]
n |

≤ r∗k(n) + k!|r[1]
k (n) − λ[1]

n | + k!|r[2]
k (n) − λ[2]

n |

= r∗k(n) + I1 + I2.The rest of the proof of Theorem 4.4 has four parts. In the �rst part we givean upper estimation for I1, in the seond part we give an upper estimationfor I2, in the third part we give an upper estimation for r∗k(n), and in thelast part we omplete the proof of Theorem 4.4.To estimate I1 we will apply Theorem 1.2 so we need an upper bound for
E1(r

[1]
k (n)). To do this, it is lear from the de�nition of E1 that we need thefollowing lemma, whih guarantees that every partial derivative of r

[1]
k (n) hassmall expetation.4.5 Lemma For all non-empty multi-sets A of size at most k − 1,

E(∂A(r
[1]
k (n))) = O(n−a/2k2

).Proof. This an be proved similarly to Lemma 5.3 in [26℄. For the sake ofompleteness I will present the proof. Consider a multi-set A of k−l elementsand ∑x∈A x = n − m. There exists a onstant c(k) suh that
∂A(r

[1]
k (n)) ≤ c(k)

∑

na<a1<a2<...,<al
a1+...+al=m

ta1ta2 . . . tal
.As al ≥ m/l, and using the fat that ∑m

x=1 x1/k−1 ≈
∫ m

1
z1/k−1dz ≈ m1/k,and (i) of Theorem 4, we have

E(∂A(r
[1]
k (n))) = O

(

∑

na<a1<a2<...,<al
a1+...+al=m

P (a1 ∈ A) . . . P (al ∈ A)

)

34



= O

(

∑

na<a1<a2<...,<al
a1+...+al=m

g(a1)g(a2) . . . g(al)

)

= O(log n)
∑

na<a1<a2<...,<al
a1+...+al=m

a
k+1

k2 −1

1 a
k+1

k2 −1

2 . . . a
k+1

k2 −1

l

= O(logn)O

((

m
∑

x=1

x
k+1
k2 −1

)l−1

(m/l)
k+1
k2 −1

)

= O(log n)O(m
(l−1)(k+1)

k2 (m/l)
k+1
k2 −1) = O(log n)O(m

l(k+1)−k2

k2 ) = O(n−a/2k2

),sine k − 1 ≥ l and m ≥ na. The proof of Lemma 4.5 is ompleted.By the de�nition of E1(r
[1]
k (n)), and from Lemma 4.5 it is lear that

E1(r
[1]
k (n)) = max|A|≥1EA(r

[1]
k (n)) ≤ cn−a/2k2 , where c is a onstant. It islear from (4.1) that r

[1]
k (n) is a positive polynomial of degree k. Now weapply Theorem 1.2 with λ =

(

log n

E1(r
[1]
k (n))

)
1
2k . If n is large enough we have

P
(

|r[1]
k (n) − λ[1]

n | ≥ dk

√

log n

E1(r
[1]
k (n))

√

λ
[1]
n E1(r

[1]
k (n))

)

≤

≤ bkexp
(

−1

4
2k

√

log n

E1(r
[1]
k (n))

+(k−1) log n
)

≤ bkexp
(

−1

4
2k

√

log n

n−a/2k2 +(k−1) log n
)

< exp(−2 log n) =
1

n2
.Applying the above result we obtain

+∞
∑

n=1

P
(

|r[1]
k (n) − λ[1]

n | ≥ dk

√

λ
[1]
n log n

)

<
+∞
∑

n=1

1

n2
< +∞.By the Borel - Cantelli lemma with probability 1, there exists a number n0suh that

|r[1]
k (n) − λ[1]

n | < dk

√

λ
[1]
n log n for n > n0. (4.4)35



In the next setion we will give an upper estimation for I2. We will provesimilarly to the proof in [26℄ that for almost every sequene A, there is a�nite number c11(A) suh that r
[2]
k (n) ≤ c11(A) for all su�iently large n.Let rl(n) denote the number of representations of n as the sum of l distintnumbers from A. First we give an upper estimation for E(rl(n)) similarly tothe estimate in [10℄. Fix 2 ≤ l ≤ (k − 1). As n/l < al, and (i) of Theorem4.4, we have

E(rl(n)) ≤
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

P (a1 ∈ A) . . . P (al ∈ A) (4.5)
<

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

g(a1)g(a2) . . . g(al)

≤
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

(log a1)
1
k

a
1− k+1

k2

1

. . .
(log al)

1
k

a
1− k+1

k2

l

= no(1)
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al)
1− k+1

k2

≤ no(1)
(

n
k+1
k2 −1+o(1)

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al−1)
1− k+1

k2

)

≤ n
k+1
k2 −1+o(1)

∑

1≤ai≤n

i=1...l−1

1

(a1 . . . al−1)
1− k+1

k2

= n
k+1
k2 −1+o(1)

(

∑

1≤a1≤n

1

a
1− k+1

k2

1

)l−1

= n
k+1

k2 −1+o(1)(n
k+1

k2 +o(1))l−1 = n−1+l k+1

k2 +o(1).Let T1 = {a1, a2, . . . ak}, T2 = {b1, b2, . . . bk} be two di�erent representationsof n as the sum of k terms from A, that is, T1 6= T2, T1, T2 ⊂ A and
a1 + a2 + . . . + ak = b1 + b2 + . . . + bk = n.We say these representations are disjoint if they share no element in ommon.Let fl(n) denote the maximum number of pairwise disjoint representations36



of n as the sum of l distint numbers from A. We show that with probability1, fl(n) is bounded. Let
B = {(a1, . . . , al) : a1+. . .+al = n, a1 ∈ A, . . . , al ∈ A, 1 ≤ a1 < . . . < al < n}.Let H(B) = {T ⊂ B: all the K ∈ T are pairwise disjoint} and c1 bea onstant. It is lear that the pairwise disjointness of the sets implies theindependene of the assoiated events, i. e., if K1 and K2 are pairwise disjointrepresentations, the events K1 ⊂ A, K2 ⊂ A are independent. Thus by (4.5)and Lemma 1.4 we have

P (fl(n) > c1) ≤ P
(

⋃

T ⊂H(B)

|T |=c1+1

⋂

K∈T
K
)

≤
∑

T ⊂H(B)

|T |=c1+1

P
(

⋂

K∈T
K
) (4.6)

=
∑

(K1,...,Kc1+1)

Pairwise
disjoint

P (K1 ∩ . . . ∩ Kc1+1) ≤
1

(c1 + 1)!
(E(fl(n)))c1+1

≤ 1

(c1 + 1)!
(E(rl(n)))c1+1 ≤ 1

(c1 + 1)!
n−2+o(1),if c1 large enough. By the Borel - Cantelli lemma, with probability 1 foralmost every random sequene A there is a �nite number c1(A) suh that forany l < k and all n, the maximal number of disjoint l - representations of nfrom A is at most c1(A). In the next step we give an upper estimation for

E(r
[2]
k (n)) similarly as in Lemma 4.5. Using also the fat that∑m

x=1 x1/k−1 ≈
∫ m

1
z1/k−1dz ≈ m1/k, and ak ≥ n/k, a < 1

2(k+1)
, and (i) of Theorem 4.4, wehave

E(r
[2]
k (n)) = E

(

∑

(a1,a2,...,ak)∈S
[2]
n

ta1 . . . tak

)

= O

(

∑

(a1,a2,...,ak)∈S
[2]
n

P (a1 ∈ A) . . . P (ak ∈ A)

)
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= O(log n)
∑

a1+a2+...+ak=n

a1≤na

a
k+1
k2 −1

1 a
k+1
k2 −1

2 . . . a
k+1
k2 −1

k

= O(log n)O

(

na
∑

x=1

x
k+1
k2 −1

(

n
∑

x=1

x
k+1
k2 −1

)k−2

(n/k)
k+1
k2 −1

)

= O(n
a(k+1)−1

k2 log n) = O(n−1/2k2

).Thus by Lemma 1.4 and the Borel - Cantelli lemma, with probability 1, thereis a onstant c2 suh that almost surely the maximum number of disjoint rep-resentations of n in r
[2]
k (n) is at most c2 for all large n. The proof is similar to(4.6). To �nish the proof it su�es to show that r

[2]
k (n) is bounded by a on-stant. The proof is purely ombinatorial. Set C(A) =

(

max(c1(A), c2)
)k

k!and assume that n is su�iently large. To eah representation of n ountedin r
[2]
k (n) we assign the set formed by the k terms ouring in this represen-tation. We will apply Lemma 1.6 with the olletion of these sets in plae of

H . It is lear that if r
[2]
k (n) > C(A), then by Lemma 1.6, r

[2]
k (n) ontains aDelta - system with c3 = max(c1(A), c2) + 1 sets. If the intersetion of thesesets is empty, then they form a family of c3 disjoint k-representations of n,whih ontradits the de�nition of c3. Otherwise, assume that the interse-tion of these sets is {y1, y2 . . . yj}, where 1 ≤ j ≤ k − 1, and ∑j

i=1 yi = m.Removing the ommon intersetion of these sets we an �nd c1(A)+1 (k−j)representations of n−m = n−∑j
i=1 yi. These c1(A)+1 sets are disjoint dueto the de�nition of the Delta - system. Therefore in both ases we obtain aontradition.In the next setion we will give an upper estimation for r∗k(n). If weollet the equal terms, we have

u1a1 + u2a2 + . . . + uhah = n, (4.7)
38



where the ui's are positive integers, and
u1 + u2 + . . . + uh = k. (4.8)Thus r∗k(n) denotes the number of representations of n in the form (4.7),where the ai's are di�erent. It an be proved similarly to the estimate of

r
[2]
k (n), that r∗k(n) is also bounded by a onstant. For the sake of ompletenesswe sketh the proof and we leave the details to the reader. Let 2 ≤ h ≤ k−1be �xed. For a �xed u1, . . . , uh let sh(n) denote the number of representationsof n in the form (4.7). We show that sh(n) is bounded by a onstant. (Notethat in the previous setion we proved this in the ase when all ui's are equalto one, and h = k). First we will give an upper estimation for E(sh(n)), witha alulation similar to (4.5). Using the de�nition of sh(n), and n/k < ah,we have

E(sh(n)) ≤
∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (ah ∈ A) (4.9)
=

∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

g(a1)g(a2) . . . g(ah)

≤
∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

(log a1)
1
k

a
1− k+1

k2

1

. . .
(log ah)

1
k

a
1− k+1

k2

h

= n−1+h k+1
k2 +o(1).Let s∗h(n) denote the size of a maximal olletion of pairwise disjoint repre-sentations in the form (4.7). The same argument as in (4.6) shows that thereexists a onstant vh suh that for n large enough s∗h(n) < vh. In view of (4.9),and applying Lemma 1.4 we have

P (s∗h(n) > vh) < n−2+o(1),39



if vh is large enough. Thus by the Borel - Cantelli lemma, with probability 1,
s∗h(n) < vh for every n large enough. We say that an m - tuple (a1, . . . , am)

(m ≤ h) is an m - representation of n in the form (4.7) if there is a per-mutation π of the numbers {1, 2, . . . , h} suh that ∑m
i=1 uπ(i)ai = n. For all

m < h, let s∗m(n) denote the size of a maximal olletion of pairwise disjointsuh representations of n. The same argument as above shows that almostalways there exists a onstant pm suh that for every n, s∗m(n) < pm. Inthe last step we apply Lemma 1.6 to prove that sh(n) is bounded by a on-stant. Let C =
(

max(pmh!, vh)
)h

h!. Let H in Lemma 1.6 is the olletionof representations of n in the form (4.7). Clearly |H| = sh(n). If sh(n) > C,and n is su�iently large then by Lemma 1.6, H ontains a Delta - sys-tem with max(pmh!, vh) + 1 sets. If the intersetion of these sets is empty,then they form a family of disjoint h - representations in the form (4.7).Otherwise let the ommon intersetion of the sets be {y1, . . . , ys}, where
1 ≤ s ≤ h − 1. By the pigeon hole priniple there exists a permutation π ofthe numbers {1, 2, . . . , h} suh that we an �nd pm+1 (k−s) representationsof n

′′

= n −∑s
i=1 uπ(i)ys. These pm + 1 sets are disjoint, thus in both aseswe obtain a ontradition. Sine there are only �nite number of partitionsof k in the form (4.8), we get that r∗k(n) is bounded by a onstant, i.e., thereexists a onstant C3 suh that r∗k(n) < C3. Let c4, c5, c6 be onstants. Thusby (4.3) and (4.4) we have

|Rk(n)−k!λn| ≤ |Rk(n)−k!rk(n)|+k!|rk(n)−λn| < C3+k!|r[1]
n +r[2]

n −λ[1]
n −λ[2]

n |

≤ C3 + k!|r[1]
n − λ[1]

n | + k!|r[2]
n − λ[2]

n | ≤ C3 + dkk!

√

λ
[1]
n log n + 2k!c4

≤ c5 + dkk!
√

λn log n.In the last setion we omplete the proof of Theorem 4.4, similarly as in [7℄.40



In view of the estimate above and (ii) in Theorem 4.4, for large n we have
|Rk(n) − F (n)| ≤ |Rk(n) − k!λn| + |k!λn − F (n)|

< c5 + dkk!(λn log n)1/2 + |k!λn − F (n)|

≤ c5 + c6

((

1

k!
F (n) +

1

k!
|k!λn − F (n)|

)

log n

)1/2

+ |k!λn − F (n)|

< c5 + c6

((

1

k!
F (n) +

c7

k!
(F (n) log n)1/2

)

log n

)1/2

+ c7(F (n) logn)1/2

< c5 + c6

((

1

k!
F (n) +

c7

k!

(

F (n)
F (n)

c8

)1/2)

log n

)1/2

+ c7(F (n) log n)1/2

= c5+c6

((

1

k!
+

c7√
c8k!

)

F (n) log n

)1/2

+c7(F (n) log n)1/2 < c9(F (n) log n)1/2.The proof of Theorem 4.4 is ompleted.
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Chapter 5On Sidon sets whih areasymptoti bases
5.1 IntrodutionA (�nite or in�nite) set A of positive integers is said to be a Sidon set if allthe sums a + b with a ∈ A, b ∈ A, a ≤ b are distint. In other words A is aSidon set if for every n positive integer R3(A, n, 2) ≤ 1. We say a set A ⊂ Nis an asymptoti basis of order h, if every large enough positive integer nan be represented as a sum of h terms from A, i.e., if there exists a positiveinteger n0 suh that R3(A, n, h) > 0 for n > n0. In [4℄ and [5℄ P. Erd®s, A.Sárközy and V. T. Sós asked if there exists a Sidon set whih is an asymptotibasis of order 3. The problem was also appears in [24℄ (with a typo in it:order 2 is written instead of order 3). In [11℄ G. Grekos, L. Haddad, C. Helouand J. Pihko proved that a Sidon set annot be an asymptoti basis of order2. Reently J. M. Deshouillers and A. Plagne in [1℄ onstruted a Sidon setwhih is an asymptoti basis of order at most 7. In this hapter I will provethat there exists an asymptoti basis of order 5 whih is a Sidon set by usingprobabilisti methods. In fat I will prove the following theorem:42



5.1 Theorem There exists an asymptoti basis of order 5 whih is a Sidonset.5.2 Proof of Theorem 5.1Let 1
5

< α < 3
14

be real number. De�ne the sequene αn in Lemma 1.1 by
αn =

1

n1−α
,so that P ({A: A ∈ Ω, n ∈ A}) = 1

n1−α . The proof of Theorem 5.1 has threeparts. In the �rst part we prove similarly as in [10℄ that with probability 1,
A is asymptoti basis of order 5, i.e., with probability 1, R3(A, n, 5) > 0 if nis large enough. In the seond part we show that deleting �nitely many ele-ments from A we obtain a Sidon set. Finally in the third part we prove thatthe above deletion does not destroy the asymptoti basis property, thereforewe obtain the desired set.Let T1 = {a1, a2, . . . a5}, T2 = {b1, b2, . . . b5} be two di�erent representa-tions of n, that is T1 6= T2, T1, T2 ⊂ A and

a1 + a2 + . . . + a5 = b1 + b2 + . . . + b5 = n.We say T1 and T2 are disjoint if they share no element in ommon. To provethat A is asymptoti basis of order 5 we apply Theorem 1.3. We use thetheorem with Q = N. In our ase ti in Theorem 1.3 is ̺(A, i). For a �xed nthe sets {Q(γ)}γ∈Γ denote all the representations of n as the sum of 5 distintpositive integers, i.e.,
{Q(γ)}γ∈Γ = {(a1, . . . , a5) : a1 + . . . + a5 = n, 1 ≤ a1 < . . . < a5 < n}.Thus Iγ =

∏

ai∈Q(γ) ̺(ai,A). In other words Iγ is the indiator variable that
Q(γ) i.e., a representation of n as the sum of 5 terms is in A. Then it is lear43



that
N =

∑

γ∈Γ

Iγ =
∑

γ∈Γ

∏

ai∈Q(γ)

̺(A, ai)

=
∑

(a1,a2,...,a5)∈N5

1≤a1<...<a5<n
a1+a2+...+a5=n

̺(A, a1)̺(A, a2) . . . ̺(A, a5) = r5(n).If Q(γ), Q(δ) are two di�erent representations of n as the sum of 5 terms and
γ 6= δ, then γ ∼ δ implies that they have at least 1 but at most 3 ommonterms. It is lear that E(IγIδ) = P ({Q(γ) ∈ A} ∩ {Q(δ) ∈ A}). To applyTheorem 1.3 we have to estimate E(r5(n)) and alulate ∆.First we give lower estimation to E(r5(n)). Let a be a small positiveonstant. By a5 < n, we have

E(r5(n)) =
∑

a1+a2+a3+a4+a5=n

1≤a1<a2<a3<a4<a5<n

P (a1 ∈ A) . . . P (a5 ∈ A) (5.1)
=

∑

a1+a2+a3+a4+a5=n

1≤a1<a2<a3<a4<a5<n

1

(a1a2a3a4a5)1−α

≥
∑

a1+a2+a3+a4+a5=n

na≤a1<a2<a3<a4<a5<n

1

(a1a2a3a4a5)1−α

>
1

n1−α

∑

na<a1< n
20

1

a1−α
1

∑

n
20

<a2< 2n
20

1

a1−α
2

∑

2n
20

<a3< 3n
20

1

a1−α
3

∑

3n
20

<a4< 4n
20

1

a1−α
4

=
1

n1−α

(

∫ n
20

na

1

a1−α
1

+ O(1)
)(

∫ 2n
20

n
20

1

a1−α
2

+ O(1)
)

×
(

∫ 3n
20

2n
20

1

a1−α
3

+ O(1)
)(

∫ 4n
20

3n
20

1

a1−α
4

+ O(1)
)

=
1

n1−α

( nα

20αα
− naα

α
+ O(1)

)(nα(2α − 1)

20αα
+ O(1)

)

×
(nα(3α − 2α)

20αα
+ O(1)

)(nα(4α − 3α)

20αα
+ O(1)

)44



=
1

n1−α
n4α(1 + o(1))c1(1 − nα(a−1)) > c2n

5α−1,if n large enough, and c1, c2 are onstants depending on α.For 1 ≤ l ≤ 4, denote by rl(n) the number of representations of n as thesum of l distint numbers from A. Let E(rl(n)) = λl(n). In the next stepwe give upper estimation for E(rl(n)). By n/l < al, we have
λl(n) = E(rl(n)) =

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (al ∈ A)(5.2)
=

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al)1−α

≤ n−1+α+o(1)
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al−1)1−α

≤ n−1+α+o(1)
∑

1≤ai≤n

i=1...l−1

1

(a1 . . . al−1)1−α

≤ n−1+α+o(1)
(

∑

1≤a1≤n

1

a1−α
1

)l−1

= n−1+α+o(1)(nα+o(1))l−1 = n−1+lα+o(1).Let Q(i) and Q(j) be two di�erent representations of n as the sum of 5terms. Let Fi denote the event that Q(i) ⊂ A. The following lemma showsthat the above events have low orrelation in the following sense:5.2 Lemma
∑

i∼j

P (Fi ∩ Fj) = o(1).Proof. The proof of this lemma is similar to Lemma 11 in [10℄. Note that
i ∼ j implies that Q(i) and Q(j) share at least 1 number and at most 3numbers.

∑

i∼j

P (Fi ∩ Fj) =
3
∑

l=1

∑

|Q(i)∩Q(j)|=l

P (Fi ∩ Fj).45



Consider Q(i), Q(j) suh that |Q(i) ∩ Q(j)| = l. Say,
Q(i) = (z1, . . . , zl, x1, x2, . . . , x5−l)and
Q(j) = (z1, . . . , zl, y1, y2, . . . , y5−l).Let ∑i zi = m. Then ∑i xi =

∑

i yi = n−m. Write P (xi ∈ A) = P (xi). So
∑

|Q(i)∩Q(j)|=l

P (Fi ∩ Fj) =

=
∑

m

∑

z1+...+zl=m
x1+...+x5−l=n−m

y1+...+y5−l=n−m

(P (z1) . . . P (zl))(P (x1) . . . P (x5−l))(P (y1) . . . P (y5−l))

=
∑

m

(

∑

z1+...+zl=m

P (z1) . . . P (zl)
)(

∑

x1+...+x5−l=n−m

P (x1) . . . P (x5−l)
)2

=
∑

m

λl(m)[λ5−l(n − m)]2.We already made the estimates in (5.2) that λl(n) < n−1+lα+o(1), for 1 ≤ l ≤
4. Fix ε < 1/28. Then there exists an m0 suh that

λl(m) < m−1+lα+ε,for m > m0. Sine m0 is a onstant, λl(m) < C, where C is a onstant, for
m ≤ m0. We split the above summation in four parts:
∑

m

λl(m)[λ5−l(n−m)]2 =
∑

m≤m0

λl(m)[λ5−l(n−m)]2+
∑

m0<m≤n/2

λl(m)[λ5−l(n−m)]2+

+
∑

n/2<m≤n−m0

λl(m)[λ5−l(n − m)]2 +
∑

n−m0<m

λl(m)[λ5−l(n − m)]2

= ∆1 + ∆2 + ∆3 + ∆4.First we estimate ∆1:
∆1 =

∑

m≤m0

λl(m)[λ5−l(n − m)]246



< (n−1+(5−l)α+o(1))2
∑

m≤m0

C = n−2−2lα+10α+o(1) = o(1).In the next step we estimate ∆2:
∆2 =

∑

m0<m≤n/2

λl(m)[λ5−l(n − m)]2

< (n−1+(5−l)α+o(1))2
∑

m0<m≤n/2

m−1+lα+ε

= n−2−2lα+10α+o(1)
∑

m0<m≤n/2

m−1+lα+ε.Now we estimate by integrals over the full range:
∆2 < n−2−2lα+10α+o(1)

(

∫ n

0

m−1+lα+εdm + O(1)
)

= n−2−lα+10α+o(1)+ε = o(1).In the next step we estimate ∆3:
∆3 =

∑

n/2<m≤n−m0

λl(m)[λ5−l(n − m)]2

< (n−1+lα+o(1))
∑

n/2<m≤n−m0

[(n − m)−1+(5−l)α+ε]2

= (n−1+lα+o(1))
∑

n/2<m≤n−m0

(n − m)−2−2lα+10α+2ε.One again estimating by integral over the full range
∆3 < n−1+lα+o(1)

(

∫ n

0

(n − m)−2−2lα+10α+2εdm + O(1)
)

= n−2−lα+10α+2ε+o(1) = o(1).In the last step we estimate ∆4:
∆4 =

∑

n−m0<m

λl(m)[λ5−l(n − m)]247



< (n−1+lα+o(1))
∑

n−m0<m

C2 = n−1−lα+o(1) = o(1).Thus we have
∑

i∼j

P (Fi ∩ Fj) = ∆1 + ∆2 + ∆3 + ∆4 = o(1).The proof of Lemma 5.2 is ompleted.Then it follows from Theorem 1.3 that for 0 ≤ c3 ≤ 1 onstant, we have
P (r5(n) ≤ c3λ) ≤ e−1/2(1+∆)(1−c3)2λ.It follows from Lemma 5.2 that ∆ = o(1). Thus in view of (5.1) it followsfrom Theorem 1.3 that

P (r5(n) ≤ c3E(r5(n))) ≤ e−1/2(1+o(1))(1−c3)2c2n5α−1

< e−c4 log n,where c4 is a onstant. Note that c3 an be hosen arbitrarily small, thus if
c4 is large enough we have

P (r5(n) ≤ c3E(r5(n))) ≤ n−2+o(1).Thus by (5.1) and the Borel - Cantelli lemma we get that with probability1, there exists an n0 = n0(A) suh that
r5(n) > c3n

5α−1 for n > n0. (5.3)Let r∗k(n) denote the number of those representations of n as the sum of kterms from A in whih there are at least two equal terms. Thus we have
R3(A, n, k) = k!rk(n) + r∗k(n).It is lear that with probability 1, R3(A, n, 5) > c3n

5α−1 for n > n0 beause
r∗5(n) ≥ 0, thus A is asymptoti basis of order 5.In the next setion we prove similarly as in [5℄ that with probability 1,48



A is almost Sidon set in the sense that it is enough to disard �nitely manyelements from A in order to get a Sidon set. It is lear from the de�nitionthat we have to prove that with probability 1, R3(A, n, 2) ≤ 1 if n is largeenough.Let Gn denote the event
Gn = {A : A ∈ Ω, R3(A, n, 2) > 1},and write

F = Ω \
+∞
⋂

j=1

(

+∞
⋃

n=j

Gn

) (5.4)so that A ∈ F if and only if there exists a number n1 = n1(A) suh that wehave
R3(A, n, 2) ≤ 1 for n ≥ n1. (5.5)We will prove that

P (F) = 1. (5.6)For 1 ≤ i < j ≤ n/2, let Un(i, j) denote the event
Un(i, j) = {A : A ∈ Ω, i ∈ A, n − i ∈ A, j ∈ A, n − j ∈ A}.Then learly,

Gn ⊂
⋃

1≤i<j≤n/2

Un(i, j)whene
P (Gn) ≤

∑

1≤i<j≤n/2

P (Un(i, j)). (5.7)By (i) and (ii) in Lemma 1.1 we have
P (Un(i, j)) =







αiαn−iαjαn−j, for 1 ≤ i < j < n/2

αiαn−iαn/2, for 1 ≤ i < j = n/2.49



Let δn = 1, if n is even and δn = 0 if n is odd. Thus we have
∑

1≤i<j≤n/2

P (Un(i, j)) =
∑

1≤i<j<n/2

αiαn−iαjαn−j + δnαn/2

∑

1≤i<n/2

αiαn−i

≤
(

∑

1≤i<n/2

αiαn−i + δnαn/2

)2

≤
(( 2

n

)1−α( ∑

1≤i<n

1

i1−α

)

+ δnαn/2

)2

=
((2

n

)1−α(
∫ n

1

1

i1−α
di + O(1)

)

+ δnαn/2

)2

((2

n

)1−α([ iα

α

]n

1
+ O(1)

)

+ δnαn/2

)2

=
((2

n

)1−α
(

nα + O(1)

)

+ δnαn/2

)2

=
(21−α

n1−α
nα(1 + o(1)) + δnαn/2

)2

<
(

c5n
2α−1 + δn21−αnα−1

)2

< c15n
4α−2, (5.8)where c15 depends on α. By the de�nition of α, (5.6) and (5.7) we have

+∞
∑

n=1

P (Gn) < +∞.Thus by the Borel - Cantelli lemma, with probability 1 at most a �nitenumber of the events Gn an our whih, by (5.4), proves (5.6). By A ∈ F ,there exists a number n1 = n1(A) suh that (5.5) holds. Let
C = A ∩ [n1, +∞).It follows from (5.5) that C is a Sidon set.In the following lemma we estimate r4(n).5.3 Lemma Almost always there exists a onstant c6 = c6(A) suh that forevery n positive integer

r4(n) < c6. (5.9)50



Proof. The proof of this lemma is similar to the proof of Lemma 10 in [10℄.Let S [l] denote a representation of n as a sum of l distint numbers. When
S

[l]
i and S

[l]
j are disjoint S

[l]
i ⊂ A and S

[l]
j ⊂ A are independent events. For

2 ≤ l ≤ 4, let fl(n) denote the size of a maximal olletion of pairwise disjointsuh representations. Let
G = {(a1, . . . , al) : a1+. . .+al = n, a1 ∈ A, . . . , al ∈ A, 1 ≤ a1 < . . . < al < n}.In view of Lemma 1.4 and (5.2) we have

P (fl(n) > 10) ≤ P
(

⋃

T ⊂G

|T |=11

⋂

K∈T
K
)

≤
∑

T ⊂G

|T |=11

P
(

⋂

K∈T
K
)

=
∑

(S
[l]
1

,...,S
[l]
11

)

Pairwise
disjoint

P (S
[l]
1 ∩ . . . ∩ S

[l]
11)

≤ (E(rl(n))11

11!
<

1

11!
(n−1+lα+o(1))11 = n−11+11lα+o(1).By l ≤ 4 it follows that

P (fl(n) > 10) < n−1.1+o(1).Thus by the Borel - Cantelli lemma the above assertion implies that almostalways for 2 ≤ l ≤ 4 there exists nl suh that if n > nl then fl(n) ≤ 10.But for any �nite nl, there are at most a �nite number of representations asthe sum of l numbers. Therefore, almost always for 2 ≤ l ≤ 4 there exists a
Cl suh that for every n, fl(n) < Cl. Set Cmax = maxl{Cl}. We show that(whenever every Cl is exist), for every n

r4(n) ≤ (Cmax)
44!. (5.10)We prove by ontradition. Suppose (5.10) is false for some n = n

′ , i.e.,
r4(n

′

) > (Cmax)
44!. (5.11)51



We want to apply Lemma 1.6. Let H be the set of representations of n′ as thesum of 4 distint numbers from A. Clearly |H| = r4(n
′

), thus by (5.11) andapplying Lemma 1.6 we get that H ontains Cmax +1 representations of n
′ asthe sum of 4 distint numbers whih form a Delta - system {S4

1 , . . . , S
4
Cmax+1}.If the ommon intersetion of these sets is empty then this Cmax +1 set forma family of disjoint 4 representations of n

′ , whih ontradits the de�nition of
Cmax. Otherwise let the ommon intersetion of the system be {v1, . . . , vr},where 0 ≤ r ≤ 2. If ∑i vi = s, then removing the ommon intersetioneah set will yield f4−1−r(n

′ − s) ≥ Cmax + 1. This is impossible in view of
fl(n) < Cl and the de�nition of Cmax. This proves (5.10), and in fat, alsoshows that c6 ≤ C4

max4!. The proof of Lemma 5.3 is ompleted.Now we omplete the proof of Theorem 5.1. Let J denote the event
J = {A : A ∈ Ω, ∃n0 = n0(A), such that r5(n) > c3n

5α−1 for n > n0}.By (5.3), (5.6) we have
P (J ∩ F) = 1,so that J ∩ F is non - empty. Consider a set A ∈ J ∩ F . By A ∈ F , thereexists a number n1 = n1(A) suh that (5.5) holds. Let

C = C(A) = A ∩ [n1, +∞),and D = {u1, . . . , ut} = A\C. It follows from (5.5) that C is a Sidon set. Weprove that with probability 1, C is an asymptoti basis of order 5, i.e., thedeletion of the �small� elements of A does not destroy its asymptoti basisproperty. We prove by ontradition. Assume that with positive probabilitythere exist in�nitely many positive integers whih annot be represented asthe sum of 5 numbers from C. Choose suh an M large enough. By A ∈ J ,we have r5(M) > c3(A)M5α−1. It follows from our assumption that every52



representations of M as the sum of 5 numbers from A ontains at least oneelement from D. By the pigeon hole priniple there exists an y ∈ D whih isin at least r5(M)
t

representations of M . Then it follows from Lemma 5.3 thatwith probability 1,
c2M

5α−1

t
<

r5(M)

t
≤ r4(M − y) < c6,whih is a ontradition if M is large enough.
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ÖsszefoglalásEbben a disszertáióban additív reprezentáiófüggvényekkel és Sidon -sorozatokkal foglalkozunk. Megvizsgáljuk, hogyan lehet a kéttagú összegrevonatkozó eredményeket kiterjeszteni többtagú összegekre. A dolgozat beve-zet® részében röviden ismertetem a szükséges de�níiókat, fogalmakat, jelö-léseket valamint a kezdeti eredményeket. Az els® fejezetben rövid áttekintéstadok az Erd®s és Rényi által bevezetett valószín¶ségszámítási módszerr®l. Eza módszer fontos szerepet játszik a disszertáióban. A módszer alapjainakismertetése után adom meg a felhasznált tételeket. A második fejezetbenegy az additív reprezentáiófüggvény monotonitására vonatkozó eredményttárgyalok, amely Sárközy András egy korábbi sejtése volt. Az eredményErd®s, Sárközy és T. Sós egy korábbi tételének kiterjesztése kéttagú összeg-r®l többtagúra. A bizonyításban a generátorfüggvény módszert használom.A harmadik fejezetben foglalkozom az additív reprezentáiófüggvény di�e-reniájának korlátosságával, itt Erd®s, Sárközy és T.Sós Vera eredményeitélesítem, és terjesztem ki kéttagú összegr®l többtagúra. Valószín¶ségszá-mítási módszerrel bebizonyítom, hogy létezik olyan sorozat amely mutatja,hogy az ebben a fejezetben szerepl® egyik eredményem lényegében a legjobb.A negyedik fejezetben Erd®s és Sárközy egy tételét általánosítom többtagúösszegekre, ehhez V. H. Vu tételét használom. Az ötödik fejezetben Sidon -sorozatokkal foglalkozom. Nemrégiben Deshouillers és Plagne konstruáltakolyan Sidon - sorozatot, amely hetedrend¶ aszimptotikus bázis. Én javí-tottam ezt az eredményt, és valószínúségszámítási módszerekkel, mégpediga Janson - egyenl®tlenséget felhasználva bebizonyítom, hogy létezik olyanSidon - sorozat, amely ötödrend¶ aszimptotikus bázis.
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SummaryIn this thesis we devoted to the additive representation funtions andSidon sequenes. We extend and generalize some results of Erd®s, Sárközyand V. T. Sós. In the Introdution we give a short survey about the def-initions and notations. In hapter 1. we give a short survey about theprobabilisti method due to Erd®s and Rényi. This method plays an im-portant role in this thesis. First I introdue the probability spae we areworking with, and then I give some important theorems. In hapter 2. Istudy the monotoniity of an additive representation funtion. I extend oneof the results of Erd®s, Sárközy and V. T. Sós, by using the generating fun-tion method. In hapter 3. I generalized and sharpen the results of Erd®s,Sárközy and V. T. Sós about the boundary of the di�erene sequene of anadditive representation funtion. In this hapter I also prove, that one of myresult is nearly best possible by using probabilisti methods. In hapter 4.I prove that one of the results of Erd®s and Sárközy about the behaviour ofan additive representation funtion is nearly best possible by using proba-bilisti methods, espeially the theorem of V. H. Vu. We say a set A ⊂ N isan asymptoti basis of order k if every large enough positive integer an berepresented as the sum of k terms from A. We say a set A ⊂ N is a Sidon setif every sum of two terms from the set A are di�erent. In hapter 5. I provethe existene of Sidon sets, whih are asimptoti bases of order 5. ReentlyDeshouillers and Plagne onstruted a Sidon set whih is asymptoti basisof order 7. My proof is based on the probabilisti methods espeially theJanson's inequality.
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