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Introduction

In this thesis we prove some results about the additive representation func-
tions. Let N denote the set of positive integers, and let & > 2 be a fixed
integer. Let A = {aj,as,...} (a1 < az < ...) be an infinite sequence of
positive integers. For £ > 2 integer and A C N, and for n = 0,1,2,... let
Ri(A,n, k), Ro(A,n, k), R3(A,n,k) denote the number of solutions of the
equations
ay, +a,+---+a,=n, a;, €A, ...,q, €A,
ay, fa,+ - ta,=n, a4 <a, <...<a, a, €A ... q, €A,

and

Gy o a, =n, ay <a,<...<a,, a €A .. a4, €A,

respectively. If F'(n) = O(G(n)) then we write F'(n) << G(n). Put

An)=> 1.

6<n
The research of the additive representation functions began in the 1950’s
with the famous Erdds - Fuchs theorem [12], which plays fundamental role in
this topic, according to Erdés this theorem certainly will survive the authors
by centuries [22]. The Erdds - Fuchs theorem states that if ¢ is a positive
constant, then

3" Ri(An,2) = eN +o(NV!(log N)~1/2)

n<N



cannot hold. This result have been generalized and extended by many people.
As a corollary one can get an € - result for the error term in the circle
problem. Starting from a problem of Sidon, P. Erd&s proved that there
exists a sequence A C N so that there are two constans ¢; and ¢y for which
for every n

cplogn < Ri(A,n,2) < cylogn.

On the other hand an old conjecture of Erdés states that for no sequence A

can we have
Rl (Aa n, 2)
—_— _)
logn

¢ (0<c<+40).

There are some related questions in [3| and [12]. These problems led P.
Erdés, A. Sarkézy and V. T. So6s to study the regularity property and the
monotonicity of the function R;(A,n,2) see in [6], [7], [8], [9]. In this thesis
I study the regularity properties and the monotonicity of the representation
function R;(A,n, k) for k > 2 integer. I extend and generalize some result of
P. Erdés, A. Sarkézy and V. T. Sos by using the generator function method
and the probabilistic method.

In chapter 1. T give a short survey about the probabilistic method we
are working with. We use the definitions and notations of the Halberstam
- Roth book [12]. This method plays a crucial role in this thesis. The next
four chapters of the thesis consist my papers. In chapter 2. I study the
monotonicity of Ry(A,n, k). For k = 2, P. Erdés, A. Sarkozy and V. T. Sos
studied the monotonicity of Ri(A,n,2). I extend one of their results to any
k > 2 by using the generator function method [18]|. In chapter 3. T study
the difference sequence of the additive representation functions. I extend
and generalize some of the results of Erdés, Sarkézy and V. T. Sos [16], [17],
[20] by using the generator function method and the probabilistic method.
In chapter 4. T study the regularity property of an additive representation



function. I extend one of the result of ErdGs and Sarkézy by using proba-
bilistic methods [19]. Finally in chapter 5. I study the connection between
the asymptotic bases and Sidon sets. For h > 2 integer we say a set A
of positive integers is an asymptotic basis of order h if every large enough
positive integer can be represented as the sum of h terms from A. A set
of positive integers A is called Sidon set if all the sums a + b with a € A,
be A, a <b are distinct. In chapter 5. we prove the existence of Sidon sets
which are asymptotic bases of order 5 by using probabilistic methods [21],
especially the Janson inequality. In some chapter of this thesis the definitions
sometimes repeated, which helps the reader to understand this thesis better.
Acknowledgement. I would like to thank my supervisor Professor Andras
Sarkdzy, drawing my attention to the additive representation functions. I
have learned a lot from our consultations, without his valuable advice, prob-
lems and questions I would never have been able to write my papers and
this thesis. I would like to thank Professor Imre Ruzsa for the helpful and

valuable discussions about Sidon sets and asymptotic bases.



Chapter 1

The Probabilistic Method

An important problem in additive number theory is to prove that a sequene
with certain properties exists. One of the essential ways to obtain an affir-
mative answer for such a problem is to use the probabilistic method due to
Erdgs and Rényi. There is an excellent summary of this method in the Hal-
berstam - Roth book [12]. In this thesis we use the notation and terminology
of this book. To show that a sequence with a property P exists, it sufficies
to show that a properly defined random sequence satisfies P with positive
probability. Usually the property P requires that for all sufficiently large
n € N, some relation P(n) holds. The general strategy to handle this situa-
tion is the following. For each n one first shows that P(n) fails with a small
probability, say f,. If f, is sufficiently small so that Z:g fn converges, then
by the Borel - Cantelli lemma, P(n) holds for all sufficiently large n with
probability 1 (see also [26]).

Now we give a survey of the probabilistic tools and notations which we
use in this thesis. Let {2 denote the set of strictly increasing sequences of
positive integers. In this thesis we denote the probability of an event £ by
P(&), and the expectation of a random variable ¢ by E(¢). The following

Lemma plays an important role in our proofs.



1.1 Lemma Let

ap,09,03 ... (11)

be real numbers satisfying
0<a,<1 (n=1,2,...). (1.2)

Then there exists a probability space (Q, X, P) with the following two prop-

erties:

(i) For every natural number n, the event E™ = {A: A€ Q, n € A} is

measurable, and P(E™) = a,.

(ii) The events EV, €@ ... are independent.

See Theorem 13. in [12]|, p. 142. We denote the characteristic function of
the event £ by o(A,n):

l,ifne A
o(A;n) =
0,ifn ¢ A.

Furthermore, we denote the number of solutions of a;, + a;, +... +a; =n
by 7.(A,n), where a;, € A, a;, € A, ..,a;, € A, 1 <a;, <a;y... <a;, <n.
Thus

rAm) =nm = Y eAa)eda)..olAa). (13

(a1,a9,..., ak)ENk
1<ap<...<ap<n
aj+tag+...+ap=n

It is easy to see from (1.3) that r4(A,n) is the sum of random variables.
However for k& > 2 these variables are not independent because the same
0(A, a;) may appear in many terms. There are some probabilistic results
which can help us to overcome this trouble. First we present a method of J.
H. Kim and V. H. Vu. Interested reader can find more details in [15], [25],
[26], [27]. Assume that ¢,ts,...,¢, are independent binary (i.e., all ¢;’s are

in {0,1}) random variables. Consider a polynomial Y in ¢,ts,... ¢, with



degree k. We say a polynomial Y is positive if it can be written in the form
Y = >, el';, where the e;’s are positive and I'; is a product of some t;’s.
Given a (multi-) set A, 04(Y") denotes the partial derivative of Y with respect
to the variables with indices in A. For instance, if Y = #1t3 and A; = {1,2}
and Ay = {2,2} then 04, (Y) = 2ty and 04Y = 2t;. If A is empty then
04(Y) =Y. E4(Y) denotes the expectation of d4(Y). Furthermore, set
E;(Y) = maxja>;E4(Y), for all j =0,1,... k, thus Ey(Y) = E(Y).

1.2 Theorem (J. H. Kim - V. H. Vu) For every positive integer k there
are positive constants dy and by, depending only on k such that the following
holds. For any positive polynomial Y = Y (t1,ta,...,t,) of degree k, where

the t;’s are independent binary random variables,

P<|Y — E(Y)| > dk)\k E()(Y)El(Y)) < bke—)\/4+(k—1)logn.

See [15] for the proof. The following inequality due to S. Janson [10], [14],
[25] which also plays important role in our proofs.

Consider a set {¢;};cq of independent random indicator variables and for
an index set I' a family {Q(v)},er of subsets of the index set ), and define
Ly = Ilicgyy ti and N = >~ I,. (In other words N counts the number of
the given sets {Q(~)} that are contained in the random set {i € @ : t; = 1}.)

Let us write v ~ 0 if Q(7) N Q(J) # @ but v # ¢, and define

A=E(N) =Y p,

A= % > E(LI).

y~3

1.3 Theorem (Janson) With notations as above, if 0 < e < 1, then

P(N<(1—-¢))) < e;z:p( — ﬁe%\).



We will apply the following result due to Erdgs and Tetali which is called
disjointness lemma. We say events Gi,...,G, are independent if for all
subsets 1 C {1,...,n}, P(Nic1Gi) = [L;c; P(Gy).

1.4 Lemma Let {B;} be a sequence of events in a probability space. If

> P(BiN...NB) <l

(B1,.-B})
independent

See [10] for the proof.

We also need the Borel - Cantelli lemma (see in [12]):

1.5 Lemma Let {B;} be a sequence of events in a probability space. If
+o0
Y P(B;) < o,
j=1

then with probability 1, at most a finite number of the events B; can occur.

Finally we need the following combinatorial result due to Erdds and Rado,
see [2|. Let r be a positive integer, r > 3. A collection of sets Ay, Ay, ... A,

forms a Delta - system if the sets have pairwise the same intersection.

1.6 Lemma If H is a collection of sets of size at most m and
|H| > (r —1)™m!

then H contains r sets forming a Delta - system.



Chapter 2

On the monotonicity of an

additive representation function

2.1 Introduction

Let & > 2 be a fixed integer. For i = 1,2, 3 we say R;(A, n, k) is monotonous

increasing in n from a certain point on, if there exists an integer ny with

Ri(A,n+1,k) > Ri(A,n, k) for n>ny.

In a series of papers P. Erdgs, A. Sarkozy and V. T. Sés studied the mono-
tonicity properties of the three representation functions Ry (A, n,2), Ra(A,n,2),
R3(A,n,2). In [9] they proved the following theorems:

2.1 Theorem (Erdds - Sdarkézy - T. Sos) The function Ry (A, n,2) is monotonous
increasing from a certain point on, if and only if the sequence A contains all

the integers from a certain point on, i.e., there exists an integer ny with
Aﬂ{nl,nl +1,n1+2,} = {nl,nl + 1,n1 —|—2,}

2.2 Theorem (Erdds - Sdarkézy - T. Sos) If

A(n) :0( n )

logn

10



then the functions Ry(A,n,2) and R3(A,n,2) cannot be monotonous increas-
ing from a certain point on, i.e., fori = 2 or 3, there does not exist an integer

no such that

Ri(A,n+1,2) > Ri(A,n,2) for n>mny.

A. Sarkozy proposed the study of the monotonicity of the functions R; (A, n, k)
for k > 2 |24, Problem 5|. He conjectured [23, p. 337] that for any k£ > 2 in-
teger, if R;(A,n, k) (i = 1,2,3) is monotonous increasing in n from a certain
point on, then A(n) = O(n?*~¢) cannot hold. In this chapter I will prove
the following slightly stronger result on R;(A,n, k) by using similar methods
as in [9):

2.3 Theorem If k € N, k > 2, A C N and Ri(A,n, k) is monotonous

increasing in n from a certain point on, then

10 = ag)

cannot hold.

Unfortunately T have not been able to prove the conjecture for Ry(A,n, k)

and R3(A,n, k), thus the conjecture remains open in these cases.

2.2 Proof of Theorem 2.3

We write Ry(A,n,k) = Rg(n). We prove the result by contradiction. As-
sume that Ry(n) is monotonous increasing from a certain point on and
A(n) = 0(%). First we show that there exist infinitely many inte-
gers N satisfying

N+j

N ) for j=1,2,.... (2.1)

MN+ﬁ<mN(

11



If (2.1) holds only for finitely many N, then there exists an integer Ny such
that
A(No) > 1

and for N > Ny, there exists an integer N = N'(NV) satisfying N’ > N and

A(N") > A(N) (%)2

Then we get by induction that there exist integers Ny < N < ... < N; < ...

such that
Nig\?
A<NJ+1> ZA(N])(]]V'—Jr) fOT j:071727"'7

J
hence

A(Niy1) = A(Ny) H A1) > A(Ny) H (N” ) (2.2)

A N,
N2 N\
:A(NO)( ]gl) > ( ]gl) > N2

J
for large enough [. On the other hand, clearly we have

ANg) = > 1< > 1=Ny (2.3)

acA a<Nj;i1
a<Nij1 -

(2.2) and (2.3) cannot hold simultaneously and this contradiction proves the
existence of infinitely many integers N satisfying (2.1).
Throughout the remaining part of the proof of Theorem 2.3 we use

the following notations: N denotes a large integer satisfying (2.1). We

2T

write e -1/N

= e(a) and we put r = e , 2z = re(a) where « is a real
variable (so that a function of form p(z) is a function of the real variable
a:p(z) =p(re(a)) = P(a)). We write

fl2)=> ="

acA

12



(Since r < 1, this infinite series and all the other infinite series in the remain-

ing part of the proof are absolutely convergent.) Then we have

+00
F5(z) =Y Ri(n)2".

Let I denote
1
1= [ 11l de.
0

We will give lower and upper bound for /. The lower bound will be greater

then the upper bound, and this contradiction will prove that our indirect

assumption cannot hold which will complete the proof of Theorem 2.3.
First we will give lower bound for I. Using Hélder’s inequality and Par-

seval’s formula we have

o= ([ 1) M( A 1da)1_2/k > [P

_Y s Y — 2 Y 1= e 2A(N)

acA acA a€A
a<N a<N
hence
1> e "(A(N))H2. (2.4)

Now we will give upper bound for /. First we will estimate Ry(n) in
terms of A(2n). Since Rj(n) is monotonous increasing from a certain point

on, i.e., there exists an integer ng such that Ri(n + 1) > Rx(n) for n > ny,

we have
k
(Aem)i=(1) = X 1z ¥
ac A a1 €Aag€A,..., ap€A ay+tag+...+ap<2n
a<2n a1<2n,a2<2n,...,a, <2n a1€A,...,a,€EA
2n 2n 2n
> Ri(i)> Y Ri(i) > Y Ri(n) =nRy(n)
i=1 i=n+1 i=n+1
hence
A(2n))k
(A(2n))" > Ry(n) (2.5)
n

13



for n > ng. In view of the monotonicity of Ry(n), and since A is infinite, we

have Ri(n) > 1 for n large enough. Thus we obtain from (2.5) that
(A(2n))* > n (2.6)

for n large enough. We have

1= [iretaa= [ 7Ea= [

1 +oo
_ / (1-2)Y R(m)="||1 - 2" Ada.
0 n=1

By the monotonicity, and if N and ng are large enough we have

'(1 —z)iﬁ’k(n

do (2.7)

+oo

)2"| = | D (Bi(n) — Ry(n —1))z"

n=1

+oo

< Z |Ri(n) — Rg(n — 1)|r" + Z |Rk(n) — Rg(n — 1)r"

n=ng+1
—+00

<Z|Rk — Ri(n— 1|+ > [Ru(n) = Ri(n—1)}r"

n=ng+1
—+00

= Z |Ri(n) — Re(n — 1)+ > (Ri(n) — Re(n —1))r"

n=ng-+1

<2Z|Rk Rkn—1|+z Ry(n) — Rp(n — 1))

n=1
+o0 +oo
=i+ Y Rim)(" =" = o+ (1—1) Y Ri(n)r
n=1 n=1
no—1 +oo
<eit+ Y Re(n)+(1—7) > Ri(n)r
n=1 n=ngo
+o00
<CQ+ 1—6_1/N (ZRk Z Rk(n)r")
n=no n=N+1

Thus by (2.1), (2.5) and (2.6) we have

14



<c2+N—1(N

n=N+1

‘(1 ~2) :fl Ry(n)z"

<CQ+N—1((A(N))’C(%)%+ io (A(N)(%”)Q)k%rn)

n=N+1

22k +00
<+ (AN) (z%Nl + ST Zn%lrn)

n=1

2k t+oo

< ¢y + (A(N))F (2%]\[_1 + N22k+1 Z(n +1)(n+2)...(n+2k—1)r"

n=1

ARN)F &2 (4en)t
N T)

)

22k +o00
=C (A(N))k (2%]\]_1 + NZT Z m(m—1)...(m —2k+ Q)Tm_%"'l)
m=2k
k 2k 1 22k <= 2%—1
<&+ (AN) (2 N+ N%H(Z rm)( - ))
m=0

k_
=y + (A(N))F( 22N + 2 . e
- 2 N2k+1\ 1 _
Ef o2k nr—1 22 | 9k
=co+ (A(N))*| 2**N +7N2’“+1 2k -1 —1r)

22k (2k —1)! (1- 6_1/N)_2k).

— o (AN (24 T
Since

1 . :p2+x3 - x? (1 )>x
—e'=x—-=+=—...>r——==x(1l—-= -
21 3l 2! 2

for 0 < x < 1, it follows by (2.5) that

’(1 - z)gﬂ’k(n)z”

=cy + (A(N))ENTH(22F 4 2% (2k — 1)!) < c3(A(N))* N~

15

% (o7
<o (ampt (2 ZE R onp)

(2.8)



Furthermore we have
11— 2] =((1—2)(1—=2)"Y%= (14 |2]* = 2Re2)"/? = (2.9)
(1+ 7% = 2rcos2ma)’? = (1 — )2 + 2r(1 — cos 2ma))"/? >
(2r(1 — cos 2ma))Y? = (27N 2sin? o) '/?
> (2(20))Y% > 2a

for0<a< % and for large N, and

11— 2| = ((1—7)*+2r(1 — cos 27a)) /2 > ((1 — r)*)"/? (2.10)
—1-r=1-¢"">1/2N
for all a. It follows from (2.7), (2.8), (2.9) and (2.10) that

I< /01 cs(A(N))ENTYT — 2| da (2.11)

1/2
= 203(A(N))kN_1/ 11— 2| da
0
/N 1/2

= c4(A(N))ENT! (/01 11— 2| 'da + /1/N 11— z|1da>

< c4(A(N))kN1(/01/N 2Nda + /11/2(2a)1d04)

/N
< cy(AN)FNTL(2 + %bg N) < ¢s(A(N))*N~'log N.

In view of (2.4), (2.11) and our indirect assumption we have

e F(A(N)*? < T < ¢e5(A(N))*N~'log N,

2/k k/2
N < cg(A(N))*?log N = 0(((10{ng) logN> =o(N).

This contradiction completes the proof of Theorem 2.3.

16



Chapter 3

On the difference sequence of an

additive representation function

3.1 Introduction

In this chapter we write Ry(A,n, k) = Ri(n). Let kK > 2, ¢ > 1 be fixed inte-
gers. If s, s1, 8o ... is a given sequence of real numbers, then let A;s,, denote
the t-th difference of the sequence sq, s1, S5 ... defined by Ays, = s,11 — Sn
and Ays, = A1(A;_15,). It is well-known and it is easy to see by induction

that

Ays, = i(—nt—i C) Spti- (3.1)

i=0
Let B(A, N) denote the number of blocks formed by consecutive integers in
Aup to N, ie.,
BAN)= > 1

a<N

a—1¢A,ae A

We will consider the following problem : what condition is needed to guar-
antee that |A;Ry(n)| cannot be bounded. P. Erdés, A. Sarkézy and V. T.
Sos proved in [8] that if £ =2, t =1 then

17



3.1 Theorem (Erdds, Sarkiozy, T.50s): Iflimy_,« &]’é\[) = 00, then |A1(R2(n))| =
|Ra(n+ 1) — Ra(n)| cannot be bounded.
They also proved in [8] that the above result is nearly best possible:

3.2 Theorem (Erdds, Sdrkozy, T.Sds): For all € > 0, there exists an infi-

nite sequence A such that
(i) B(A,N) > N/,

(ii) Ra(n) is bounded so that also Ay Ra(n) is bounded.

In [16] I extended Theorem 3.1 to any k > 2 :

3.3 Theorem If k > 2 is an integer and limy_, BAN) _

oo, and t < k,
VN
then |A¢Ry(n)| cannot be bounded.

I also proved in [20] that the above result is nearly best possible:
3.4 Theorem For all € > 0, there exists an infinite sequence A such that
(i) B(A,N) > NV,

(11) Ry(n) is bounded so that also AyRg(n) is bounded if t < k.

In the case t > k I have only a partial result ([17]):

3.5 Theorem Ift > 2is an integer and limy_, % = 00, then |Ay(R2(n))|

cannot be bounded.

In the next part of this chapter I prove Theorem 3.3 and Theorem 3.4. 1
omit the proof of Theorem 3.5 because it is similar to the proof Theorem 3.3.

Interested reader can find it in [17].

18



3.2 Proof of Theorem 3.3

Clearly it sufficies to prove the assertion of the theorem in the special case
t = k. We prove by contradiction. Assume that contrary to the conclusion of
the theorem there is a positive constant C' > 0 such that |[AyR,(n)| < C for
every n. Throughout the remaining part of the proof of the theorem we use

the following notations: N denotes a large integer. We write e*™ = ¢(a) and

1/N

we put r = e Y z = re(«) where « is a real variable (so that a function of

form p(z) is a function of the real variable a : p(z) = p(re(a)) = P(«)). We

write f(z) = > 2% (By r < 1, this infinite series and all the other infinite
acA
series in the remaining part of the proof are absolutely convergent).
1

We start out from the integral I = [ |f(2)(1— z)|*da. We will give lower
0

and upper bound for I. The comparison of these bounds will show that

B(A,N)
B2
contradiction will prove that our indirect assumption on |AyRg(n)| cannot

is bounded which contradicts the assumption of the theorem. This

hold which will complete the proof of the theorem.
First we will give a lower bound for I. We write f(z)(1 —2) = >_ (3,2"
n=1
Then for n — 1 ¢ A, n € A we have 3, = 1, thus by the Holder inequality

and the Parseval formula, we have

1 1

2k — (/|f( )(1— 2), kda)Q/k(/lda)l o /\f(z)<1—z)|2da

0

o

1
B I ST S R
0 n=1 n=1

n<N
n—1¢AneA
=2 E 1=e2B(A,N).
n<N
nflgz._A,nE.A

19



whence
I>e*(B(A, N))"2

Now we will give an upper bound for /. By (3.1), our indirect assumption,

the Cauchy inequality and the Parseval formula we have

= / ()1 - 2)[da = / ()1 - 2)|da = / (37 241 = 2)*|da

acA
:/1‘(iRk(n)z")(l—z)k‘da:/1‘(iRk(n)zn)(g(_l)i(i)zi)‘d&
:/1}gg(_w(f)m(m—i)zm\da:/1\WiAkRk(m—k)zm}da

: (/ b3 Befetm Ry dn) = ( g s i)

m=1

since we have

for 0 <z < 1.

Now we will complete the proof of the theorem. We have

k/2
e " (B(A, N)) <I<CV2N



hence

B<A7N) 2 k
— = < e*V20°2,
k/N €

This contradicts our assumption on B(.A, N) which completes the proof of

Theorem 3.3.

3.3 Proof of Theorem 3.4

The proof of Theorem 3.4 is based on the probabilistic method due to Erdds

and Rényi we introduced in chapter 2.
First we proof part (i) of Theorem 3.4. The proof is similar as in [8]. To

do this, we need the following important lemma:

3.6 Lemma If the sequence (1.1) satisfies (1.2) and
;=05 for j = jo,

where 6, ¢ are constants such that 0 < 0, 0 < ¢ < 1, then with probability 1,

we have

A(n) ~

1-— cn
This lemma is a consequence of Lemmas 10 and 11 in [12], pp. 144 - 145.

For A € Q, we write

T(An) = > 1
a—16Aac A
so that
BAn) +TAn) = > 1+ > 1

a<n a<n

a—1¢A,ae A a—1€A,acA

=> 1=A(n).

acA
a<n

The following lemma will play a crucial role in the proof.

21



3.7 Lemma If the sequence (1.1) satisfies (1.2) and

“+o0o
ZOJjOéjJrl < +00, (32)

j=1
then, with probability 1,
T(A,n) <4logn for n>ny(A)

(where ny may depend on both the sequence (1.1) and A).

See this lemma and the proof in [8]. Define the sequence (1.1) by

1
o = Ejl/’f—l—f. (3.3)

Thus by Lemma 3.6 with probability 1, we have

1/1 -1,
A(n) ~ E(E - e) nk ¢
so that, with probability 1,

1

1, 1
A(n) > Elﬂﬂ’6 =nk °, (3.4)

for n large enough. By Lemma 3.7 (clearly, the sequence (3.3) satisfies (3.2)),
with probability 1,

1 1 1
B(A,n)=A(n)—T(A,n) >nk*—4logn > EnE’E
for n > ns(e,.A). In the next section we will prove part (i7) of Theorem 3.4.
Remember that

re(n) = D oA a)o(A az) ... oA ay).

(a1,a9,..., ak)ENI’C
1<ap<...<ap<n
altag+...fap=n

(see in (1.3) in Chapter 2). Let r;(A,n) denote the number of those repre-
sentations of n as the sum of k& terms from A in which there are at least two

equal terms. Thus we have
Ri(A,n, k) = Elrp(A,n) +rp(A,n). (3.5)
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Write r; (A, n) = ri(n). It follows that we have to show that with probability
1, both 74(n) and 7} (n) are bounded by a constant. First we prove r(n) is
bounded by using similar methods as Erdds and Tetali in [10]. Let S} =
{ay,a9,...ax} and Sy = {by, by, ...bx}, be two different representations of n

as the sum of k terms from A, that is, S; # Ss and Sy, 55 C A and
a1+a2+... +ak:b1+b2+ +bk:n

We say S; and S, are disjoint if they share no element in common. Let h(n)
denote the size of a maximal collection of pairwise disjoint representations of
n as the sum of k distinct numbers from A. We can see in (1.3) that r4(n)
is the sum of random variables. However, for £ > 2 these variables are not
independent because any o(.A, a;) may appear in many terms. To overcome
this problem we will prove that with probability 1, h(n) and ry_i(n) are
bounded by a constant, i. e., almost always there exist constans g and c¢;
such that f(n) < g and rx_1(n) < ¢;. The following argument shows that this
implies ri(n) almost always bounded by a constant. Let S be any maximal
collection of pairwise disjoint representations of n as a sum of k distinct
numbers. Clearly |S| = h(n). It is clear that if h(n) < g then there are at
most k X g numbers in our collection S. As S is maximal, any representation
of n must use at least one number from the collection. However, the number
of representations of n which use z is precisely r,_1(n — x). If r,_1(n) < ¢
then the total number of representations of n is at most ¢; X k£ x g. Now we
give an upper estimation for h(n). Let E(ri(n)) denote the expectation of
rr(n). We need an upper estimation for E(ry(n)). Clearly ar > n/k, thus

we have

E(ri(n)) = > P(a, € A)P(as € A)...P(ay e A) (3.6

a1+a2+4.4+ak:n
1<a;<az<...<ap<n
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ajtag+...tap=n
1<ay <a2<...<ap<n

< <§)1+€1/k< Z (a .. .ak11)1+51/’f>

a1+a2+.4.+ak:n
1<ai<az<...<ap<n

o Lhe—1/k 1
< | —
- (n) Z (al...ak_1)1+5—1/k

1<a;<n
i=1...k—1

= (§>1+€1/k( Z H%l/k)kl - (§>1+61/k(/1n ﬁdal—i_O(l))kl

1<a1<n %1

1/k—
al/ke

)T o)

k

(k>1+el/k ( k )kl (1—ke)(k—1) (1—ke)(k—1)
= —_ k k
n 1— ke " * O(Tl )

k/,l‘l*efl/k k k—1
= (( ) + 0(1)) < C(k,e)n™ = con™*,

nke 1 — ke

where ¢y is a constant depending on k and €. Let
B={(a,...,ax) :a1+...+ap=n,a1 € A,...;a € A, 1 < a3 <... <a,<n},

and let H(B) = {7 C B: all the S € 7 are pairwise disjoint}. It is clear
that the pairwise disjointness of the sets implies the independence of the
associated events, i. e., if S; and Sy are pairwise disjoint representations, the
events S; C A, Sy C A are independent. Thus by (3.6) and Lemma 1.4 for

g= [1] we have

P =g <P( U NS)< X P(NS) 67

TcH(B) SET TCH(B) SeT
T|=g+1 I T|=g+1
1
= P(Sin...N < E(h g+l
Y, P& Sgt1) < (g+1)'< (h(n)))

(S1,--:8g+1)
Pairwise
disjoint
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1 it 1
< M(E(Tk(n))) < TES

where c3(¢) is a constant depending on €. Using the Borel - Cantelli lemma,

)!Cg—l—ln—k(g—i-l)e < 03(€)n_k,

it follows that with probability 1, there exists an ngy such that
h(n) < g for n > ny. (3.8)

In the next step we will give an upper bound for r;_;1(n). Before doing this,
we introduce some new notations. Let r;(n) denote the number of represen-
tations of n as the sum of [ distinct numbers from A and let h;(n) denote
the size of a maximal collection of pairwise disjoint such representations. We
will give an upper estimation for h;(n) similarly as in (3.7). First we give an
upper estimation for E(r;(n)) similarly to (3.6): Let 2 <[ < k — 1 be fixed.

Then using the definition, we have n/l < q;, thus

E(r(n)) = > P(ay € A)P(ay € A)...P(q € A) (3.9)

a1+a2+.4.+al:n
1<a; <az<...<a;<n

- 1
o Z _._al)1+571/k

(a1
a1+a2+.4.+al:n
1<ai<a2<...<a;<n

1
—1—e+1/k+o(1)
<n ¢ Z (ar .. -al—1)1+6_1/k

altag+...+a;=n
1<ai<ax<...<a;<n

< n717€+1/k+0(1) 1
(a1 ce &1_1)1+6_1/k
1<a;<n
i=1...1—1
_ p—lmet1/k4o(1) ( Z 1 )l !
1+e—1/k
1<ai1<n ay

—1+1/k—(le)+o(1)

_ n7176+1/k+0(1)(nl/kfeJro(l))lfl —n )

Let S denote a representation of n as a sum of [ distinct numbers. When

Sim and S][l] are disjoint SZ-[Z] C A and Sjm C A are independent events. For
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2 <1< (k—1), applying Lemma 1.4, using an argument similar to (3.7),

and in view of (3.9) we have

P(h(n)>2k)< > PSPn...nsh,)

1] [
(S1 ,,,,, S2k+l)
Pairwise

disjoint

(E(ry(n))* 1 A h—leto(1)\ 2k —2k+21(1—ke)+o(1)
ol @ Jh=n '

By [ < (k —1) it follows that

P(hy(n) > 2k) < n=2toM),

Thus by the Borel - Cantelli lemma with probability 1, the above assertion
implies that almost always for 2 < [ < (k — 1) there exists n; such that if
n > n; then hy(n) < 2k. But for any finite n;, there are at most a finite
number of representations as a sum of [ numbers. Therefore, almost always
for 2 <1 < (k — 1) there exists a C; such that for every n, hj(n) < C). Set
Cmaz = max;{C;}. Now we show similarly as in [10]| that almost always there

exists ¢4, = c4(A) such that for every n,
re—1(n) < cq. (3.10)

The proof of (3.10) is purely combinatorial. We show that (whenever every

C) exists), for every n
Te—1(n) < (Cmae)* 1k — 1) (3.11)

We prove by contradiction. Suppose (3.11) is false for some n =n', i. e.,

/

Tro1(n) > (Coaz) 1k — 1)1, (3.12)

We want to apply Lemma 1.6. Let H be the set of representations of n” as the
sum of k — 1 distinct numbers from A. Clearly |H| = r_(n’), thus by (3.12)
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and applying Lemma 1.6 we get that H contains ¢, + 1 representations
of n' as the sum of k — 1 distinct numbers which form a Delta - system
{Sf’l, e Sf;alﬁl}. If the common intersection of these sets is empty then
this ¢e: + 1 set form a family of disjoint £ — 1 representations of n’, which
contradicts the definition of ¢,,,,. Otherwise let the common intersection of
the system be {z1,...,2,}, where 0 <v < k—2. If Y. x; = m, then removing
the common intersection each set will yield hz_1_,(n —m) > Cpaz + 1. This
is impossible in view of h;(n) < C; and the definition of ¢,,4,. This proves
(3.11), and in fact, also shows that cq < -1 (kK — 1)L

In the last section we will give an upper estimation for 7} (n). It can be
prove similarly to the estimate of ry(n) that is r;(n) is also bounded by a

constant. For the sake of completeness I sketch the proof leaving the details

to the reader. If we collect the equal terms, we have
ULy + Ugao + ... +upap = n, (3.13)
where the u;’s are natural numbers, and
Uy +ug+ ... +up =k. (3.14)

Thus 75(n) denotes the number of representations of n in the form (3.13),
where the a;’s are different. Similarly to the estimate of r;(n), we show that
with probability 1, 7} (n) is also bounded by a constant. Let 2 < h < k —1
be fixed. For a fixed wuy,...,u; denote wy(n) the number of representations
of n in the form (3.13). We show that with probability 1, w,(n) is bounded
by a constant. (Note that in the previous section we proved the case when
all u;’s equal to one, and h = k). First we will give an upper estimation

for E(wp(n)), with a calculation similar to (3.9). Using the definition, and
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n/k < ap, we have

E(wy(n)) = > P(a, € A)P(ay € A)...Play € A) (3.15)

u1a1+u2a2+4.4+uhah:n
1§a1<a2<...<ah<n

1
- Z (a1 ...ap)te—1/k

u1a1+u2a2+4.4+uhah:n
1§a1<a2<...<ah<n

< p-ls+1/k+o(1) Z 1
— 1+e—1/k
_ (a1 e ah,l)
u1a1+u2a2+4.4+uhah7n
1<ai<az<...<ap<n

< - 1Hh/k=(he)+o(1)

Let wj(n) denote the size of a maximal collection of pairwise disjoint rep-
resentations in the form (3.13). The same argument as in (3.7) and (3.8)
shows that almost always there exists a d;, constant such that for every large

enough n, wy(n) < dj. In view of (3.15), and applying Lemma 1.4 we have
P(w;(n) > dy) < n~ 2t

thus by the Borel - Cantelli lemma we get that with probability 1, w}(n) < dp,
if n is large enough. We say that a m - tuple (aq,...,a,) (m < h) is
an m - representation of n in the form (3.13) if there is a permutation 7
of the numbers {1,2,..., A} such that > " u,pa; = n. For all m < h,
let w’ (n) denote the size of a maximal collection of pairwise disjoint such
representations of n. The same argument as above shows that almost always
there exists p,, constant such that for all large enough n, w} (n) < pp,.
In the last step we apply Lemma 1.6 to prove that wy(n) is bounded by
a constant. Let D = (max(pmh!,dh))hh!. Let H in Lemma 1.6 is the
collection of representations of n in the form (3.13). Clearly |H| = wy(n). If
wp(n) > D, and n is sufficiently large then by Lemma 1.6, H contains a Delta

- system with max(p,h!, dy)+1 sets. If the intersection of these sets is empty,
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then they form a family of disjoint A - representations in the form (3.13).
Otherwise let the common intersection of the sets be {yi,...,ys}, where
1 < s < h—1. By the pigeon hole principle, there exists a permutation 7w of
the numbers {1,2, ..., h} such that we can find p,,+1 (k—s) representations
of ' =n— > i Un()Yi- These p,, + 1 sets are disjoint, thus in both cases
we obtain a contradiction. Since there are only finite number of partitions of
k in the form (3.13), we get that r}(n) is bounded by a constant. From (3.5)
we get that Ry(n) is also bounded by a constant. Thus with probability 1,
both (i) and (ii) in Theorem 3.4 hold, so that there exists infinitely many

sequences satisfying both (i) and (ii), which proves Theorem 3.4.

29



Chapter 4

On the regularity property of an

additive representation function

4.1 Introduction

Let & > 2 be a fixed integer. In this chapter we write Ry(A,n, k) = Ri(n).
For k = 2, P. Erd6s and A. Sarkozy studied how regular can be the behaviour
of the function Ry(n). In [6] they proved the following theorem:

4.1 Theorem (Erdds-Sarkozy) If F'(n) is an arithmetic function such that
F(n) — +oo,

Fin+1)>F(n) for n>mno,

Fn) :0((1ogn)2>’

and we write

=

D(N) = (Ra(n) = F(n)),

then
['(N) =0o(NF(N))

cannot hold.

In [7] they showed that the above result is nearly best possible:
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4.2 Theorem (Erdds-Sdarkozy) If F(n) is an arithmetic function satisfying
F(n) > 36logn  for mn > ng,

and there exist a real function g(x), defined for 0 < x < +o0, and real

numbers xy,ny such that

(i) g (x) exists and it is continuous for 0 < x < +o0,

(i) g (z) <0 for x > w,

(iii) 0 < g(x) <1 for x > x,

(iv) |F(n)— 2 fon/Qg(x)g(n —z)dx| < (F(n)logn)'/? forn > ny,
then there exists a sequence A such that

|Ry(n) — F(n)| < 8(F(n)logn)?  for n > ny.
In [13] G. Horvath extended Theorem 4.1 to any k > 2 :
4.3 Theorem (G. Horvdth) If F(n) is an arithmetic function such that
F(n) — +o0,

Fn+1)>F(n) for n>ng,

Fn) = 0<(logn)2>’

and we write

D(N) =) (Bu(n) — F(n))*,

M-

then
['(N) = o(NF(N))

cannot hold.
A. Sarkézy proposed to prove the analogue of Theorem 4.2 for k > 2 [23,
Problem 3|. In this chapter my goal is to extend Theorem 4.2 to any k > 2,

i. e., to show that Theorem 4.3 is nearly best possible. In fact I will prove

the following theorem:
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4.4 Theorem If k > 2 is a positive integer, cg is a constant large enough in

terms of k, F\(n) is an arithmetic function satisfying
F(n) > cglogn  for n > ny,

and there ezists a real function g(x), defined for 0 < x < 400, and real

numbers xg,ny and constants cy, cg such that

1
(i) O<g(x)§(llog71)k<1forx2xo,

~ ktl
€T k2

(ii) |[F(n) — k'Y aivepteim=n g(x1)g(22) ... g(z1)| < cr(F(n)logn)!/?

1<z1<z2<...<T) <N
forn > ny,

then there exists a sequence A such that

|Rp(n) — F(n)| < co(F(n)logn)?  for n > n,.

It is easy to see that the following fuctions satisfy the conditions of Theorem

4.4: g(x) = clo<(1°§+)ﬁ>, where cjp is a positive constant, o > 1 — %,
or « =1 — %1 and 8 < 1/k. Tt follows that for F(n) = n°(logn)? with

0 <d<1/k or0 <+ <1 thereis a sequence A for which Ry(n) satisfies
the coclusion of the theorem. For k = 2 in [6] P. Erdés and A. Sarkozy used
probabilistic method to construct a sequence A. In the case k = 2, in their
paper certain events were mutually independent. For k > 2 the independency

fails, thus in order to prove Theorem 4.4 we need deeper probabilistic tools.

4.2 Proof of Theorem 4.4

Fix a number n and write
Sp ={(ay,ae,...a;) € NF:O<ap <as...<ap <n,a +as+...+ay =n}.
Define the sequence (1.1) of real numbers by

g(n) if n > x,
o, =
0 otherwise ,
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and let (2, X, P) be the probability space as described in Lemma 1.1. Clearly

the sequence «, satisfies (1.2). Thus

rr(n, A) = ri(n) = Z tartay - - - tays

(a17a2 ..... ak)ESn

where
1, if a; € ./4

lo, = .

O, if a; ¢ ./4

Then we have

A=E(r(n)= Y Play € A)P(ay € A)...P(a; € A),

(a1,a2,...,ax)ESn
where E(() denotes the expectation of the random variable (. To prove
Theorem 4.4 we will give an upper estimation for |Ry(n) — k!\,|. As Vu
in [26] we split r,(n) into two parts, as follows. Let a be a small positive

constant say a < ) and let 57[11} be the subset of S, consisting of all

_1
20k+1
k-tuples whose smallest element is at least n?, i. e., Sl — {(a1,aq,...a;) €
NF:nt<ay<ay... <ap<n,a;+ay+... +a, =n}and S,LZ] :Sn\Sy[Ll}.

We split 74(n) into the sum of two terms corresponding to st and SE,

respectively:
ri(n) = (n) + 1 (n),
where
riln) = > tate - ta, (4.1)
(a17a2 7777 dk)eslf]
and set

NI = E(rf ().

n

Let 77 (A, n) denote the number of those representations of n as the sum

of k terms from A in which there are at least two equal terms. Thus we have
Ri(n) = Klre(A,n) +ri(A,n). (4.2)
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Clearly
|Ri(n) — kI\| < |Ri(n) — Klrg(n)] + klre(n) — A (4.3)
= ri(n) + Kl () + 72 (n) — AN — \)|
< ri(n) + K ) — A+ Rl ) — A2
=ri(n)+ I + L.

The rest of the proof of Theorem 4.4 has four parts. In the first part we give
an upper estimation for /;, in the second part we give an upper estimation
for I, in the third part we give an upper estimation for r;(n), and in the
last part we complete the proof of Theorem 4.4.

To estimate I; we will apply Theorem 1.2 so we need an upper bound for
El(rE} (n)). To do this, it is clear from the definition of F; that we need the
following lemma, which guarantees that every partial derivative of r,[:} (n) has

small expectation.

4.5 Lemma For all non-empty multi-sets A of size at most k — 1,
E(0a(ry(n))) = O(n~*/**).

Proof. This can be proved similarly to Lemma 5.3 in [26]. For the sake of
completeness I will present the proof. Consider a multi-set A of k—1[ elements
and ) _, o =n —m. There exists a constant c(k) such that
1
oalrii(m)) < (k) Y tatey.--ta
n<aj<ag<...,<ap
al+...4+a;=m
As @; > m/l, and using the fact that Y" 2k~ ~ [ 2V 1dz & ml/k

and (i) of Theorem 4, we have

E04(r(n))) = o( > PlameA).. Ple A))

n?<aj<ag<..,<a;
a1+...4+a;=m
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= O( Z g(a1)g(az) .. -g(al)>

n<aj<ag<..,<a;
a1+...+a;=m

= O(logn) Z a” at L a”

n%<aj<ag<...,<ap

a1+...+a;=m
-1
_ ket
O(logn)O <<E 2 ) (m/1) #2 1)
(1—1)(k+1) ktl_ l(k+1) k2

=O(logn)O(m ¥ (m/l) ¥ ) = O(logn)O(m

since k —1 > [ and m > n® The proof of Lemma 4.5 is completed.
By the definition of El(r,[j](n)), and from Lemma 4.5 it is clear that
El(r,[j] (n)) = max‘AElEA('rE](n)) < en~**’ where ¢ is a constant. Tt is

clear from (4.1) that 7“,[:} (n) is a positive polynomial of degree k. Now we
1

apply Theorem 1.2 with \ = ( loﬁ]” ) If n is large enough we have

Eq( rk (n)

1ogn
P00 01 2y [ B <

1 logn 1 4./ logn
< bkexp<—— 2% ————— 4 (k—1 logn) < bkexp<—— ———+(k—1 logn)
B # Vet

< exp(—2logn) = —

Applying the above result we obtain

+00 +oo
1
1 N
E_1P<|7’,E]( — A > @/ Ay ]logn> E 3 < too.

n=1
By the Borel - Cantelli lemma with probability 1, there exists a number ng
such that

) = M) < diy/ A logn for > m. (44)
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In the next section we will give an upper estimation for I,. We will prove

similarly to the proof in [26] that for almost every sequence A, there is a

finite number ¢;;(A) such that 7’,&21 (n) < ¢11(A) for all sufficiently large n.

Let r;(n) denote the number of representations of n as the sum of [ distinct
numbers from A. First we give an upper estimation for E(r;(n)) similarly to
the estimate in [10]. Fix 2 <1 < (k—1). As n/l < a;, and (i) of Theorem

4.4, we have

E(ri(n)) < > Play € A)...P(a; € A) (4.5)

ajtag+...+aj=n
1<a; <az2<...<a;<n

< Z glar)g(az) .. g(a)

a1+a2+m+al:n
1<ay <a2<..<ai<n

1 1
< Z (loga;)* (log ay)* — o) Z 1

1— k+21 ce 1— k+21
ajtag+...4a;=n a, k a k aptagt..faj=n (a1 R CL[)
1<a1<az2<...<a;<n 1<a1<az2<...<a;<n

1
< ne® (n%—wo(l) 3 — )

a1+a2+m+al:n (al oo a’l*l) k2
1<ai<az<...<aq;<n

Bl 1
< n K2 14o(1) E .
> 1 kil
1<a;<n (al LR al—l) k

I
_.
I
|
—

i

-1
_ o E 140(1) Z 1
= n k2 71_ﬂ
12

1<a1<n aq

= ez () (o)=L (1),

Let T = {ay,aq,...a;}, Ty = {b1, b, ...bx} be two different representations
of n as the sum of k& terms from A, that is, 71 # T5, T1,T> C A and

a1+a2+...+ak:b1+b2+... +bk:n

We say these representations are disjoint if they share no element in common.

Let fi(n) denote the maximum number of pairwise disjoint representations
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of n as the sum of [ distinct numbers from A. We show that with probability
1, fi(n) is bounded. Let

B={(a,...,a;) :a1+...+q=n,a1 € A,...,q; € A, 1 <a; <... <a <n}.

Let H(B) = {7 C B: all the K € T are pairwise disjoint} and ¢; be
a constant. It is clear that the pairwise disjointness of the sets implies the
independence of the associated events, i. e., if K and K, are pairwise disjoint
representations, the events K; C A, Ky C A are independent. Thus by (4.5)

and Lemma 1.4 we have

P(fi(n) > e1) < ( U ﬂK>< S (ﬂ ) (4.6)

TcH(B) KeT TCH(B) KeT
|T|=c1+1 |T|=c1+1

1
c1+1
= P(KiN...NK. < ——(E(filn)))"
> (£ 1) < (01+1)!( (fi(n)))
(Kq,..., KC1+1)
Pairwise
disjoint

1 1
c1+1 —2+0(1)
- (c1 + 1)!(E(Tl(n))) s @+ ’

if ¢; large enough. By the Borel - Cantelli lemma, with probability 1 for
almost every random sequence A there is a finite number ¢; (A) such that for
any | < k and all n, the maximal number of disjoint [ - representations of n
from A is at most ¢;(A). In the next step we give an upper estimation for
E(r?(n)) similarly as in Lemma 4.5. Using also the fact that 3™ | z1/+~1 &
[ 2R dz = mMF, and a, > n/k, a < 2(k+1) and (i) of Theorem 4.4, we
have
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k_+21_1 k_+21_1 k_‘gl_l
_ k k k
= O(logn) g a”” a, .y
ajtag+...fap=n
a1 <n?
o " k—2
B4l B4l Bl
= O(logn)O( E x k2 ( E T K2 ) (n/k) ¥ )
r=1 =1

a(k+1)—1

= O0(n~ = logn) = O(n /%),

Thus by Lemma 1.4 and the Borel - Cantelli lemma, with probability 1, there
is a constant ¢, such that almost surely the maximum number of disjoint rep-
resentations of n in 7“1[92} (n) is at most ¢y for all large n. The proof is similar to
(4.6). To finish the proof it suffices to show that r,[f} (n) is bounded by a con-
stant. The proof is purely combinatorial. Set C(A) = (max(cl (A),CQ))kk!
and assume that n is sufficiently large. To each representation of n counted
in TE](TL) we assign the set formed by the & terms occuring in this represen-
tation. We will apply Lemma 1.6 with the collection of these sets in place of
H. 1t is clear that if r,[f} (n) > C(A), then by Lemma 1.6, r,[f} (n) contains a
Delta - system with ¢3 = maz(ci(A), ca) + 1 sets. If the intersection of these
sets is empty, then they form a family of c3 disjoint k-representations of n,
which contradicts the definition of ¢3. Otherwise, assume that the intersec-
tion of these sets is {y1,y2...y;}, where 1 < j < k — 1, and Zle y; = m.
Removing the common intersection of these sets we can find ¢;(A)+1 (k—7)
representations of n—m = n—Y.7_, y;. These ¢;(A) + 1 sets are disjoint due
to the definition of the Delta - system. Therefore in both cases we obtain a
contradiction.

In the next section we will give an upper estimation for r;(n). If we

collect the equal terms, we have

U A + Usao + ... +upap = n, (4.7)
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where the u;’s are positive integers, and
uy +us + ... +up = k. (4.8)

Thus r;(n) denotes the number of representations of n in the form (4.7),
where the a;’s are different. It can be proved similarly to the estimate of
7“,[3} (n), that 75 (n) is also bounded by a constant. For the sake of completeness
we sketch the proof and we leave the details to the reader. Let 2 < h < k-1
be fixed. For a fixed uy, ..., uy let s,(n) denote the number of representations
of n in the form (4.7). We show that s,(n) is bounded by a constant. (Note
that in the previous section we proved this in the case when all u;’s are equal
to one, and h = k). First we will give an upper estimation for E(s,(n)), with
a calculation similar to (4.5). Using the definition of s,(n), and n/k < a,

we have

E(sp(n)) < > P(a; € A)P(ay € A)...Pa € A)  (4.9)

ujaytugag+t...ftupap=n
1<a1<az2<...<ap<n

= Z g(ar)g(az) ... g(an)

u1a1+u2a2+.4.+uhah:n
1<a; <az<...<ap<n

1 1
_ (logay)x  (logap)x
ujajtugag+t...tupap=n a/1 k ah k
1<ai<az<...<ap<n
_ n71+h%+0(1).

Let sj(n) denote the size of a maximal collection of pairwise disjoint repre-
sentations in the form (4.7). The same argument as in (4.6) shows that there
exists a constant v, such that for n large enough s} (n) < vy. In view of (4.9),

and applying Lemma 1.4 we have

P(s;(n) > vy,) < n 20,
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if vy, is large enough. Thus by the Borel - Cantelli lemma, with probability 1,
sy (n) < vy for every n large enough. We say that an m - tuple (ay,...,an)
(m < h) is an m - representation of n in the form (4.7) if there is a per-
mutation 7 of the numbers {1,2,...,h} such that ", ur;)a; = n. For all
m < h, let s (n) denote the size of a maximal collection of pairwise disjoint
such representations of n. The same argument as above shows that almost
always there exists a constant p,, such that for every n, s’ (n) < p,. In
the last step we apply Lemma 1.6 to prove that s,(n) is bounded by a con-
stant. Let C = <max(pmh!,vh))hh!. Let H in Lemma 1.6 is the collection
of representations of n in the form (4.7). Clearly |H| = s,(n). If si(n) > C,
and n is sufficiently large then by Lemma 1.6, H contains a Delta - sys-
tem with max(p,h!,v,) + 1 sets. If the intersection of these sets is empty,
then they form a family of disjoint h - representations in the form (4.7).
Otherwise let the common intersection of the sets be {y,...,ys}, where
1 < s < h—1. By the pigeon hole principle there exists a permutation 7 of
the numbers {1,2, ..., h} such that we can find p,,+1 (k—s) representations
of n =n—->Y1_, UriYs- These p,, + 1 sets are disjoint, thus in both cases
we obtain a contradiction. Since there are only finite number of partitions
of k in the form (4.8), we get that 7} (n) is bounded by a constant, i.e., there
exists a constant Cj such that 75 (n) < Cs. Let ¢4, 5, ¢g be constants. Thus

by (4.3) and (4.4) we have

|Ri(n)—k!\,| < |Ri(n)—klr(n)|+Eru(n) —An| < Cs+k!r 42 \U_ )2

< Oy + KNrl — A k12— A2 < 5+ digkly/ A Tog n + 2kley

< c5 + dpk!'\/ A\, logn.

In the last section we complete the proof of Theorem 4.4, similarly as in [7].
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In view of the estimate above and (ii) in Theorem 4.4, for large n we have

|Ri(n) = F(n)| < [Ri(n) = kA + [KAn — F(n))|

< ¢5 4 dpk!(A\, logn) Y% + |[kIN, — F(n)|
. . 1/2
<5+ ¢ ( (EFW) + EW}\" - F(n)|> logn> + kN, — F(n)|

Cr

1/2
1
<5+ ( (EF(n) + E(F(n) logn)1/2> log n) + ¢7(F(n)logn)'/?

1/2 1/2
<5+ ¢ ( (%F(n) + % <F(n) Fé:)) ) log n) + ¢7(F(n) logn)'/?

1/2
1
= c5+co <<E+L> F(n)log n) +c7(F(n)logn)'/? < co(F(n)logn)'/2.

vV Cgk!

The proof of Theorem 4.4 is completed.
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Chapter 5

On Sidon sets which are

asymptotic bases

5.1 Introduction

A (finite or infinite) set A of positive integers is said to be a Sidon set if all
the sums a + b with a € A, b € A, a < b are distinct. In other words A is a
Sidon set if for every n positive integer R3(.A4,n,2) < 1. We say a set A C N
is an asymptotic basis of order h, if every large enough positive integer n
can be represented as a sum of h terms from A, i.e., if there exists a positive
integer ny such that R3(A,n,h) > 0 for n > ng. In [4] and [5] P. Erdds, A.
Sarkézy and V. T. Sos asked if there exists a Sidon set which is an asymptotic
basis of order 3. The problem was also appears in [24| (with a typo in it:
order 2 is written instead of order 3). In [11] G. Grekos, L. Haddad, C. Helou
and J. Pihko proved that a Sidon set cannot be an asymptotic basis of order
2. Recently J. M. Deshouillers and A. Plagne in [1] constructed a Sidon set
which is an asymptotic basis of order at most 7. In this chapter I will prove
that there exists an asymptotic basis of order 5 which is a Sidon set by using

probabilistic methods. In fact I will prove the following theorem:
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5.1 Theorem There exists an asymptotic basis of order 5 which is a Sidon

set.

5.2 Proof of Theorem 5.1

Let % <a< % be real number. Define the sequence a,, in Lemma 1.1 by

so that P({A: A€ Q, n € A}) = . The proof of Theorem 5.1 has three
parts. In the first part we prove similarly as in [10] that with probability 1,
A is asymptotic basis of order 5, i.e., with probability 1, R3(A,n,5) > 0if n
is large enough. In the second part we show that deleting finitely many ele-
ments from A we obtain a Sidon set. Finally in the third part we prove that
the above deletion does not destroy the asymptotic basis property, therefore
we obtain the desired set.

Let T = {ay,a9,...as5}, To = {b1,bs,...bs} be two different representa-
tions of n, that is Ty # Ty, T}, Ty C A and

a1+a2+...+a5:bl+b2—|—... —i—b5:n

We say T and T5 are disjoint if they share no element in common. To prove
that A is asymptotic basis of order 5 we apply Theorem 1.3. We use the
theorem with Q = N. In our case t; in Theorem 1.3 is o(A, 7). For a fixed n
the sets {Q(7) }er denote all the representations of n as the sum of 5 distinct

positive integers, i.e.,
{Q(M)}tyer ={(a1,...;a5) ca1+ ... +as=n,1<a; <... <as <n}.

Thus I, = [],,cq(,) 0(ai, A). In other words I, is the indicator variable that

Q(7) i.e., a representation of n as the sum of 5 terms is in 4. Then it is clear
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that

N=>"L=> ][ eAa)

yel Y€l a;€Q(v)

= Y oAae(Aa).. o(A ) = rs(n)

(a1,a9,..., a5)€N5
1<a1<...<ag<n
a1+a2+.4.+a5:n

If Q(), Q(J) are two different representations of n as the sum of 5 terms and
v # 9, then v ~ ¢ implies that they have at least 1 but at most 3 common
terms. It is clear that E(I,1;) = P({Q(y) € A} N {Q(0) € A}). To apply
Theorem 1.3 we have to estimate F(r5(n)) and calculate A.

First we give lower estimation to E(r5(n)). Let a be a small positive

constant. By a5 < n, we have

E(rs(n)) = > P(a; € A)...P(as € A) (5.1)

aj+tagtagztaygtag=n
1<a; <az<ag<as<as<n

Z :
B (a1az2a3a4a5)1~
aj+tagtagztaygtag=n
1<a1<az<asz<as<as<n

1
> > 1
A1Q2a030405) ¢
a1+a2+a3+a4+a5:n ( 14243 4 5)
n?<a;<az<az<as<as<n

1 1 1
Z e P D= R > e

3
na<a1<% 2% 2<20 7<a3<%b g—g<a4<%

Zniuﬁéfa;a+0uﬁ([?a{a+000
x(/ a;a + 0(1>> (/ a;a + 0(1))

- nlla 23304 a n;a + 0(1)>< QOQ; - + O(l))
<na(3a —29)

‘ﬁ
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1
= — n**(1 4 o(1))ey (1 — n®@ V) > ¢ypdat,
n [e%

if n large enough, and c;, ¢y are constants depending on «a.

For 1 <1 <4, denote by 7;(n) the number of representations of n as the
sum of [ distinct numbers from A. Let E(r;(n)) = N(n). In the next step
we give upper estimation for E(r;(n)). By n/l < a;, we have

AN(n) = E(r(n)) = > P(ay € A)P(ay € A)...P(a; € A)

aytag+...+a;=n
1<ay <a2<..<ai<n

1
= > (a1 a) e

(a1 e
aj+tag+...+aj=n
1<ai<az<...<aq<n

1
—14a+o(1)
sn Z (a1 Ce (ll_l)l_a

(5.2)

altag+...+a;=n
1<ai<a2<...<a;<n

I<a;
i=1..0-1
1 \I-1
S n—1+a+o(1)( E 170{)
1<a1<n 1
— n71+a+0(1) (naJro(l))lfl — n71+la+0(1).

Let Q(7) and Q(j) be two different representations of n as the sum of 5
terms. Let F; denote the event that (i) C A. The following lemma shows

that the above events have low correlation in the following sense:

5.2 Lemma

> P(F;NFy) =o(1).

i~
Proof. The proof of this lemma is similar to Lemma 11 in [10]. Note that
i ~ j implies that Q(i) and Q(j) share at least 1 number and at most 3

numbers.

S PRAR) =Y P(F;N F)).

i~j I=11Q(MNQ>G)I=
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Consider Q(i), Q(j) such that |Q(i) N Q(j)| = [. Say,

Q(Z) = (Zlﬂ vy 2L, T2, - - a:L‘S—l)

and
Q(J) = (217"'7zlay17y27---7y5fl)-
Let >,z =m. Then ), z; = >, y;, = n—m. Write P(z; € A) = P(x;). So

Y. PENE)=

lR(HNQ()I=!

=X X (P PEP@) - Ples)(P) - Pl

z1+.. +zl m
z]+.. +x5 j=n—m
y1+m+y5il7n m

:Z < Z P(zl)...P(Zl)>< Z P($1)---P($5—l))2

m 21+...+z;=m r1+...+T5_1=n—m
= Z )\l )\5 l n — )]2
We already made the estimates in (5.2) that \;(n) < n='Hete®) for 1 <1<

4. Fix € < 1/28. Then there exists an mg such that

)\l<m) < m71+la+e’
for m > mg. Since my is a constant, \;(m) < C, where C' is a constant, for
m < mg. We split the above summation in four parts:

Z)\l VA5 (n—m)] Z N (m)[As—i(n—m)]*+ Z N(m)[As—i(n—m)]*+

m<mg mo<m<n/2

+ Z N(m)[As_i(n —m Z A(m)As-i(n —m)]?

n/2<m<n—mg n—mo<m

:A1+A2—|—A3—|—A4.

First we estimate Ay:

= > M(m)Asoi(n —m)P?

m<mg
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< (n71+(5fl)a+o(1))2 Z C = n7272la+10a+0(1) _ 0(1)

m<mg

In the next step we estimate As:

Ay = Z Ai(m)[Xs—i(n —m)]?

mo<m<n/2

<(n71+(571)a+0(1))2 Z 1Hote

mo<m<n/2
_ n—2—21a+10a+0(1) E m—l-‘,—loz-l—e )
mo<m<n/2

Now we estimate by integrals over the full range:

A2 < n7272la+10a+0(1) < /n m71+la+edm + O(l))
0

_ nf2fla+10a+o(1)+€ _ 0(1)

In the next step we estimate As:

As = Z Ai(m)[As—i(n —m)]?

n/2<m<n—mgo

< (n—1+la+o(1)) Z [(n . m)—1+(5—l)a+a]2

n/2<m<n—mg

_ (n71+la+o(1)> Z (n _ m>7272la+10a+25.

n/2<m<n—mg

Once again estimating by integral over the full range

AB < n71+la+0(1) < /n<n _ m)f2f2la+10a+2€dm + O(l))
0

— n—2—la+10a+2€+0(1) — 0(1)

In the last step we estimate Ay:

Ay = Z Ai(m)[Asi(n —m)]?

n—mo<m
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< <n71+la+o(1)) Z 02 _ nflflaJro(l) _ 0(1)

n—mo<m

Thus we have
inj
The proof of Lemma 5.2 is completed.

Then it follows from Theorem 1.3 that for 0 < ¢3 < 1 constant, we have
Plrs(n) < c3)) < ¢~ AFA0-eP

It follows from Lemma 5.2 that A = o(1). Thus in view of (5.1) it follows
from Theorem 1.3 that

1

P(rs(n) < c3E(rs(n))) < e~ 1/2(14+o(1))(1=e3)?ecan® 1 —calogn

I

where ¢4 is a constant. Note that c3 can be chosen arbitrarily small, thus if

cy is large enough we have
P(rs(n) < e3E(r5(n))) < n=2+oM),

Thus by (5.1) and the Borel - Cantelli lemma we get that with probability

1, there exists an ng = ny(A) such that
rs(n) > csn®* ™t for n > mng. (5.3)

Let r;(n) denote the number of those representations of n as the sum of k

terms from A in which there are at least two equal terms. Thus we have
R3(A,n, k) = Kklri(n) + ri(n).

It is clear that with probability 1, R3(A,n,5) > c3n®*~! for n > ny because
ri(n) > 0, thus A is asymptotic basis of order 5.

In the next section we prove similarly as in [5] that with probability 1,
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A is almost Sidon set in the sense that it is enough to discard finitely many
elements from A in order to get a Sidon set. It is clear from the definition
that we have to prove that with probability 1, R3(A,n,2) < 1 if n is large
enough.

Let G,, denote the event
G,={A: A€ Q R3(A n,2) > 1},

and write
“+o0 “+o0

F=o\(Uéc) (5.4)
=1 "n=j
so that A € F if and only if there exists a number n; = ny(.A) such that we

have

R3(A,n,2) <1 for n>n. (5.5)

We will prove that
P(F)=1. (5.6)

For 1 <i < j<n/2, let U,(i,j) denote the event
Upli,j) ={A: A€ QiecAn—icAjeAn—je A}

Then clearly,
GoC |J Ualig)
1<i<j<n/2
whence
P(G,) < Y P(U.Gi,5)). (5.7)
1<i<j<n/2

By (i) and (ii) in Lemma 1.1 we have

o Qo g, for 1 <i < j <n/2
P(Un(i,5)) =
QOO 2, for 1 <@ < j =n/2.
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Let 9, = 1, if n is even and 6,, = 0 if n is odd. Thus we have

Z P(Un(’l,j)) = Z Oél'Oén,Z'OéjOénfj —+ 5nozn/2 Z Qi Oy

1<i<j<n/2 1<i<j<n/2 1<i<n/2

2
S( Z O‘ianfi_'_(snan/Z)

1<i<n/2

() 7(X 575) +fuawr)
) ([ i+ ) + )
() ([5] + o) + o)
() ( +0(1)> )

— (21 Zna(l +o(1))+ 5nozn/2)2

2
< (c5n2°"1 + 5n21’°‘na’1) < c5nto?, (5.8)

where ¢;5 depends on «. By the definition of a, (5.6) and (5.7) we have

+oo
Y P(G,) < +o0.
n=1

Thus by the Borel - Cantelli lemma, with probability 1 at most a finite
number of the events G,, can occur which, by (5.4), proves (5.6). By A € F,
there exists a number n; = ny(A) such that (5.5) holds. Let

C=AnNIny, +00).

It follows from (5.5) that C is a Sidon set.

In the following lemma we estimate r4(n).

5.3 Lemma Almost always there exists a constant cg = c¢(A) such that for
every n positive integer
ry(n) < ce. (5.9)
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Proof. The proof of this lemma is similar to the proof of Lemma 10 in [10].
Let S denote a representation of n as a sum of [ distinct numbers. When
Sim and Sj[l] are disjoint Si[l] C A and S]m C A are independent events. For

2 <1 <4, let fi(n) denote the size of a maximal collection of pairwise disjoint

such representations. Let
G=A{(a,...,q) :a1+... 4y =n,a1 € A,...,q; € A, 1 <a; <... <a <n}.

In view of Lemma 1.4 and (5.2) we have

P(fi(n) > 10) gP( U K@K) <y P( N K)

TCG TCG KeT
|T|=11 |T|=11

= Y pPiPn...nst

s stth

Pairwise

disjoint
(E('f’l(n))n < L<n71+la+o(1))11 — p~HH1lla+o(1)
- 11! 11! '

By [ <4 it follows that

P(fi(n) > 10) < p~ 1o,

Thus by the Borel - Cantelli lemma the above assertion implies that almost
always for 2 < [ < 4 there exists n; such that if n > n; then fj(n) < 10.
But for any finite n;, there are at most a finite number of representations as
the sum of [ numbers. Therefore, almost always for 2 < [ < 4 there exists a
C) such that for every n, fi(n) < C). Set Cy0r = maz;{C;}. We show that
(whenever every () is exist), for every n

r4(n) < (Chaa) 4. (5.10)
We prove by contradiction. Suppose (5.10) is false for some n = n',ie.,

ra(n') > (Croag ) 4. (5.11)
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We want to apply Lemma 1.6. Let H be the set of representations of n" as the
sum of 4 distinct numbers from A. Clearly |H| = 74(n’), thus by (5.11) and
applying Lemma 1.6 we get that H contains C,,,, + 1 representations of n’ as
the sum of 4 distinct numbers which form a Delta - system {S{,...,S¢ . }.
If the common intersection of these sets is empty then this C,,., + 1 set form
a family of disjoint 4 representations of n’, which contradicts the definition of
Cinaz- Otherwise let the common intersection of the system be {vy,..., v},
where 0 < r < 2. If ZZ v; = s, then removing the common intersection
each set will yield f4_1_,.(n" —8) > Cpae + 1. This is impossible in view of
fi(n) < C; and the definition of C,,,,. This proves (5.10), and in fact, also

shows that ¢ < C4

max

4!, The proof of Lemma 5.3 is completed.
Now we complete the proof of Theorem 5.1. Let 7 denote the event

J ={A:AcQ 3Ing=ne(A),such that r5(n) > csn®** for n > ng}.

By (5.3), (5.6) we have
P(TNF) =1,

so that J N F is non - empty. Consider a set A € JNF. By A € F, there
exists a number n; = n;(A) such that (5.5) holds. Let

C=C(A)=AN[ny,+o0),

and D = {uy,...,u;} = A\C. It follows from (5.5) that C is a Sidon set. We
prove that with probability 1, C is an asymptotic basis of order 5, i.e., the
deletion of the “small” elements of A does not destroy its asymptotic basis
property. We prove by contradiction. Assume that with positive probability
there exist infinitely many positive integers which cannot be represented as
the sum of 5 numbers from C. Choose such an M large enough. By A € 7,

we have r5(M) > c3(A)M>* 1. Tt follows from our assumption that every

52



representations of M as the sum of 5 numbers from A contains at least one

element from D. By the pigeon hole principle there exists an y € D which is

5 (M)
t

in at least representations of M. Then it follows from Lemma 5.3 that

with probability 1,

M5a71 M
= " < TS(t ) <ry(M —y) < cg,

which is a contradiction if M is large enough.
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Osszefoglalas

Ebben a disszertacioban additiv reprezentaciofiiggvényekkel és Sidon -
sorozatokkal foglalkozunk. Megvizsgaljuk, hogyan lehet a kéttagi Gsszegre
vonatkozo6 eredményeket kiterjeszteni tobbtagu Osszegekre. A dolgozat beve-
zetd részében roviden ismertetem a sziikséges definiciokat, fogalmakat, jelo-
léseket valamint a kezdeti eredményeket. Az els6 fejezetben rovid attekintést
adok az Erdds és Rényi altal bevezetett valoszintiségszamitasi modszerrsl. Ez
a modszer fontos szerepet jatszik a disszertacioban. A modszer alapjainak
ismertetése utan adom meg a felhasznalt tételeket. A masodik fejezetben
egy az additiv reprezentaciofiiggvény monotonitéasiara vonatkozo eredményt
targyalok, amely Sarkozy Andras egy kordbbi sejtése volt. Az eredmény
Erdés, Sarkozy és T. Sos egy kordbbi tételének kiterjesztése kéttagi Osszeg-
r6l tobbtagira. A bizonyitasban a generatorfiiggvény modszert hasznalom.
A harmadik fejezetben foglalkozom az additiv reprezentaciofiiggvény diffe-
renciajanak korlatossagaval, itt Erdds, Sarkozy és T.Sos Vera eredményeit
élesitem, és terjesztem ki kéttagu 0OsszegrSl tobbtagura. Valdszintiségsza-
mitasi modszerrel bebizonyitom, hogy létezik olyan sorozat amely mutatja,
hogy az ebben a fejezetben szerepls egyik eredményem lényegében a legjobb.
A negyedik fejezetben Erdds és Sarkozy egy tételét altalanositom tobbtagi
Osszegekre, ehhez V. H. Vu tételét hasznalom. Az 6tédik fejezetben Sidon -
sorozatokkal foglalkozom. Nemrégiben Deshouillers és Plagne konstruéltak
olyan Sidon - sorozatot, amely hetedrendii aszimptotikus bazis. En javi-
tottam ezt az eredményt, és valdsziniségszamitasi modszerekkel, mégpedig
a Janson - egyenl6tlenséget felhasznalva bebizonyitom, hogy létezik olyan

Sidon - sorozat, amely 6todrendi aszimptotikus bazis.
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Summary

In this thesis we devoted to the additive representation functions and
Sidon sequences. We extend and generalize some results of Erdgs, Sarkozy
and V. T. Sés. In the Introduction we give a short survey about the def-
initions and notations. In chapter 1. we give a short survey about the
probabilistic method due to ErdGs and Rényi. This method plays an im-
portant role in this thesis. First I introduce the probability space we are
working with, and then I give some important theorems. In chapter 2. I
study the monotonicity of an additive representation function. I extend one
of the results of Erdds, Sarkozy and V. T. So6s, by using the generating func-
tion method. In chapter 3. I generalized and sharpen the results of Erdés,
Sarkézy and V. T. Soés about the boundary of the difference sequence of an
additive representation function. In this chapter I also prove, that one of my
result is nearly best possible by using probabilistic methods. In chapter 4.
I prove that one of the results of Erdés and Sarkozy about the behaviour of
an additive representation function is nearly best possible by using proba-
bilistic methods, especially the theorem of V. H. Vu. We say a set A C N is
an asymptotic basis of order k if every large enough positive integer can be
represented as the sum of k terms from A. We say a set A C N is a Sidon set
if every sum of two terms from the set A are different. In chapter 5. I prove
the existence of Sidon sets, which are asimptotic bases of order 5. Recently
Deshouillers and Plagne constructed a Sidon set which is asymptotic basis
of order 7. My proof is based on the probabilistic methods especially the

Janson’s inequality.
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