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Introdu
tion
In this thesis we prove some results about the additive representation fun
-tions. Let N denote the set of positive integers, and let k ≥ 2 be a �xedinteger. Let A = {a1, a2, . . .} (a1 < a2 < . . . ) be an in�nite sequen
e ofpositive integers. For k ≥ 2 integer and A ⊂ N, and for n = 0, 1, 2, . . . let
R1(A, n, k), R2(A, n, k), R3(A, n, k) denote the number of solutions of theequations

ai1 + ai2 + · · ·+ aik = n, ai1 ∈ A, . . . , aik ∈ A,

ai1 + ai2 + · · ·+ aik = n, ai1 < ai2 < . . . < aik ai1 ∈ A, . . . , aik ∈ A,and
ai1 + ai2 + · · ·+ aik = n, ai1 ≤ ai2 ≤ . . . ≤ aik , ai1 ∈ A, . . . , aik ∈ A,respe
tively. If F (n) = O(G(n)) then we write F (n) << G(n). Put

A(n) =
∑

a∈A
a≤n

1.The resear
h of the additive representation fun
tions began in the 1950'swith the famous Erd®s - Fu
hs theorem [12℄, whi
h plays fundamental role inthis topi
, a

ording to Erd®s this theorem 
ertainly will survive the authorsby 
enturies [22℄. The Erd®s - Fu
hs theorem states that if c is a positive
onstant, then
∑

n≤N

R1(A, n, 2) = cN + o(N1/4(log N)−1/2)3




annot hold. This result have been generalized and extended by many people.As a 
orollary one 
an get an Ω - result for the error term in the 
ir
leproblem. Starting from a problem of Sidon, P. Erd®s proved that thereexists a sequen
e A ⊂ N so that there are two 
onstans c1 and c2 for whi
hfor every n

c1 log n < R1(A, n, 2) < c2 log n.On the other hand an old 
onje
ture of Erd®s states that for no sequen
e A
an we have
R1(A, n, 2)

log n
→ c (0 < c < +∞).There are some related questions in [3℄ and [12℄. These problems led P.Erd®s, A. Sárközy and V. T. Sós to study the regularity property and themonotoni
ity of the fun
tion R1(A, n, 2) see in [6℄, [7℄, [8℄, [9℄. In this thesisI study the regularity properties and the monotoni
ity of the representationfun
tion R1(A, n, k) for k > 2 integer. I extend and generalize some result ofP. Erd®s, A. Sárközy and V. T. Sós by using the generator fun
tion methodand the probabilisti
 method.In 
hapter 1. I give a short survey about the probabilisti
 method weare working with. We use the de�nitions and notations of the Halberstam- Roth book [12℄. This method plays a 
ru
ial role in this thesis. The nextfour 
hapters of the thesis 
onsist my papers. In 
hapter 2. I study themonotoni
ity of R1(A, n, k). For k = 2, P. Erd®s, A. Sárközy and V. T. Sósstudied the monotoni
ity of R1(A, n, 2). I extend one of their results to any

k > 2 by using the generator fun
tion method [18℄. In 
hapter 3. I studythe di�eren
e sequen
e of the additive representation fun
tions. I extendand generalize some of the results of Erd®s, Sárközy and V. T. Sós [16℄, [17℄,[20℄ by using the generator fun
tion method and the probabilisti
 method.In 
hapter 4. I study the regularity property of an additive representation4



fun
tion. I extend one of the result of Erd®s and Sárközy by using proba-bilisti
 methods [19℄. Finally in 
hapter 5. I study the 
onne
tion betweenthe asymptoti
 bases and Sidon sets. For h ≥ 2 integer we say a set Aof positive integers is an asymptoti
 basis of order h if every large enoughpositive integer 
an be represented as the sum of h terms from A. A setof positive integers A is 
alled Sidon set if all the sums a + b with a ∈ A,
b ∈ A, a ≤ b are distin
t. In 
hapter 5. we prove the existen
e of Sidon setswhi
h are asymptoti
 bases of order 5 by using probabilisti
 methods [21℄,espe
ially the Janson inequality. In some 
hapter of this thesis the de�nitionssometimes repeated, whi
h helps the reader to understand this thesis better.A
knowledgement. I would like to thank my supervisor Professor AndrásSárközy, drawing my attention to the additive representation fun
tions. Ihave learned a lot from our 
onsultations, without his valuable advi
e, prob-lems and questions I would never have been able to write my papers andthis thesis. I would like to thank Professor Imre Ruzsa for the helpful andvaluable dis
ussions about Sidon sets and asymptoti
 bases.
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Chapter 1The Probabilisti
 Method
An important problem in additive number theory is to prove that a sequenewith 
ertain properties exists. One of the essential ways to obtain an a�r-mative answer for su
h a problem is to use the probabilisti
 method due toErd®s and Rényi. There is an ex
ellent summary of this method in the Hal-berstam - Roth book [12℄. In this thesis we use the notation and terminologyof this book. To show that a sequen
e with a property P exists, it su�
iesto show that a properly de�ned random sequen
e satis�es P with positiveprobability. Usually the property P requires that for all su�
iently large
n ∈ N, some relation P(n) holds. The general strategy to handle this situa-tion is the following. For ea
h n one �rst shows that P(n) fails with a smallprobability, say fn. If fn is su�
iently small so that∑+∞

n=1 fn 
onverges, thenby the Borel - Cantelli lemma, P(n) holds for all su�
iently large n withprobability 1 (see also [26℄).Now we give a survey of the probabilisti
 tools and notations whi
h weuse in this thesis. Let Ω denote the set of stri
tly in
reasing sequen
es ofpositive integers. In this thesis we denote the probability of an event E by
P (E), and the expe
tation of a random variable ζ by E(ζ). The followingLemma plays an important role in our proofs.6



1.1 Lemma Let
α1, α2, α3 . . . (1.1)be real numbers satisfying

0 ≤ αn ≤ 1 (n = 1, 2, . . . ). (1.2)Then there exists a probability spa
e (Ω, X, P ) with the following two prop-erties:(i) For every natural number n, the event E (n) = {A: A ∈ Ω, n ∈ A} ismeasurable, and P (E (n)) = αn.(ii) The events E (1), E (2), ... are independent.See Theorem 13. in [12℄, p. 142. We denote the 
hara
teristi
 fun
tion ofthe event E (n) by ̺(A, n):̺
(A, n) =







1, if n ∈ A

0, if n /∈ A.Furthermore, we denote the number of solutions of ai1 + ai2 + . . . + aik = nby rk(A, n), where ai1 ∈ A, ai2 ∈ A, ...,aik ∈ A, 1 ≤ ai1 < ai2 . . . < aik < n.Thus
rk(A, n) = rk(n) =

∑

(a1,a2,...,ak)∈Nk

1≤a1<...<ak<n
a1+a2+...+ak=n

̺(A, a1)̺(A, a2) . . . ̺(A, ak). (1.3)It is easy to see from (1.3) that rk(A, n) is the sum of random variables.However for k > 2 these variables are not independent be
ause the same
̺(A, ai) may appear in many terms. There are some probabilisti
 resultswhi
h 
an help us to over
ome this trouble. First we present a method of J.H. Kim and V. H. Vu. Interested reader 
an �nd more details in [15℄, [25℄,[26℄, [27℄. Assume that t1, t2, . . . , tn are independent binary (i.e., all ti's arein {0, 1}) random variables. Consider a polynomial Y in t1, t2, . . . , tn with7



degree k. We say a polynomial Y is positive if it 
an be written in the form
Y =

∑

i eiΓi, where the ei's are positive and Γi is a produ
t of some tj 's.Given a (multi-) set A, ∂A(Y ) denotes the partial derivative of Y with respe
tto the variables with indi
es in A. For instan
e, if Y = t1t
2
2 and A1 = {1, 2}and A2 = {2, 2} then ∂A1(Y ) = 2t2 and ∂AY = 2t1. If A is empty then

∂A(Y ) = Y . EA(Y ) denotes the expe
tation of ∂A(Y ). Furthermore, set
Ej(Y ) = max|A|≥jEA(Y ), for all j = 0, 1, . . . , k, thus E0(Y ) = E(Y ).1.2 Theorem (J. H. Kim - V. H. Vu) For every positive integer k thereare positive 
onstants dk and bk depending only on k su
h that the followingholds. For any positive polynomial Y = Y (t1, t2, . . . , tn) of degree k, wherethe ti's are independent binary random variables,

P
(

|Y − E(Y )| ≥ dkλ
k
√

E0(Y )E1(Y )
)

≤ bke
−λ/4+(k−1) log n.See [15℄ for the proof. The following inequality due to S. Janson [10℄, [14℄,[25℄ whi
h also plays important role in our proofs.Consider a set {ti}i∈Q of independent random indi
ator variables and foran index set Γ a family {Q(γ)}γ∈Γ of subsets of the index set Q, and de�ne

Iγ =
∏

i∈Q(γ) ti and N =
∑

γ∈Γ Iγ . (In other words N 
ounts the number ofthe given sets {Q(γ)} that are 
ontained in the random set {i ∈ Q : ti = 1}.)Let us write γ ∼ δ if Q(γ) ∩ Q(δ) 6= ∅ but γ 6= δ, and de�ne
pγ = E(Iγ),

λ = E(N) =
∑

γ

pγ ,

∆ =
1

λ

∑

γ∼δ

E(IγIδ).1.3 Theorem (Janson) With notations as above, if 0 ≤ ε ≤ 1, then
P (N ≤ (1 − ε)λ) ≤ exp

(

− 1

2(1 + ∆)
ε2λ
)

.8



We will apply the following result due to Erd®s and Tetali whi
h is 
alleddisjointness lemma. We say events G1, . . . , Gn are independent if for allsubsets I ⊆ {1, . . . , n}, P (∩i∈IGi) =
∏

i∈I P (Gi).1.4 Lemma Let {Bi} be a sequen
e of events in a probability spa
e. If
∑

i P (Bi) ≤ µ, then
∑

(B1,...,Bl)

independent

P (B1 ∩ . . . ∩ Bl) ≤ µl/l!.See [10℄ for the proof.We also need the Borel - Cantelli lemma (see in [12℄):1.5 Lemma Let {Bi} be a sequen
e of events in a probability spa
e. If
+∞
∑

j=1

P (Bj) < ∞,then with probability 1, at most a �nite number of the events Bj 
an o

ur.Finally we need the following 
ombinatorial result due to Erd®s and Rado,see [2℄. Let r be a positive integer, r ≥ 3. A 
olle
tion of sets A1, A2, . . . Arforms a Delta - system if the sets have pairwise the same interse
tion.1.6 Lemma If H is a 
olle
tion of sets of size at most m and
|H| > (r − 1)mm!then H 
ontains r sets forming a Delta - system.
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Chapter 2On the monotoni
ity of anadditive representation fun
tion
2.1 Introdu
tionLet k ≥ 2 be a �xed integer. For i = 1, 2, 3 we say Ri(A, n, k) is monotonousin
reasing in n from a 
ertain point on, if there exists an integer n0 with

Ri(A, n + 1, k) ≥ Ri(A, n, k) for n ≥ n0.In a series of papers P. Erd®s, A. Sárközy and V. T. Sós studied the mono-toni
ity properties of the three representation fun
tionsR1(A, n, 2), R2(A, n, 2),
R3(A, n, 2). In [9℄ they proved the following theorems:2.1 Theorem (Erd®s - Sárközy - T. Sós) The fun
tion R1(A, n, 2) is monotonousin
reasing from a 
ertain point on, if and only if the sequen
e A 
ontains allthe integers from a 
ertain point on, i.e., there exists an integer n1 with

A ∩ {n1, n1 + 1, n1 + 2, . . .} = {n1, n1 + 1, n1 + 2, . . .}.2.2 Theorem (Erd®s - Sárközy - T. Sós) If
A(n) = o

( n

log n

)

10



then the fun
tions R2(A, n, 2) and R3(A, n, 2) 
annot be monotonous in
reas-ing from a 
ertain point on, i.e., for i = 2 or 3, there does not exist an integer
n0 su
h that

Ri(A, n + 1, 2) ≥ Ri(A, n, 2) for n ≥ n0.A. Sárközy proposed the study of the monotoni
ity of the fun
tionsRi(A, n, k)for k > 2 [24, Problem 5℄. He 
onje
tured [23, p. 337℄ that for any k ≥ 2 in-teger, if Ri(A, n, k) (i = 1, 2, 3) is monotonous in
reasing in n from a 
ertainpoint on, then A(n) = O(n2/k−ε) 
annot hold. In this 
hapter I will provethe following slightly stronger result on R1(A, n, k) by using similar methodsas in [9℄:2.3 Theorem If k ∈ N, k ≥ 2, A ⊂ N and R1(A, n, k) is monotonousin
reasing in n from a 
ertain point on, then
A(n) = o

(

n2/k

(log n)2/k

)
annot hold.Unfortunately I have not been able to prove the 
onje
ture for R2(A, n, k)and R3(A, n, k), thus the 
onje
ture remains open in these 
ases.2.2 Proof of Theorem 2.3We write R1(A, n, k) = Rk(n). We prove the result by 
ontradi
tion. As-sume that Rk(n) is monotonous in
reasing from a 
ertain point on and
A(n) = o

(

n2/k

(log n)2/k

). First we show that there exist in�nitely many inte-gers N satisfying
A(N + j) < A(N)

(

N + j

N

)2

for j = 1, 2, . . . . (2.1)11



If (2.1) holds only for �nitely many N , then there exists an integer N0 su
hthat
A(N0) > 1and for N ≥ N0, there exists an integer N ′ = N ′(N) satisfying N ′ > N and

A(N ′) ≥ A(N)

(

N ′

N

)2

.Then we get by indu
tion that there exist integers N1 < N2 < . . . < Nj < . . .su
h that
A(Nj+1) ≥ A(Nj)

(

Nj+1

Nj

)2

for j = 0, 1, 2, . . . ,hen
e
A(Nl+1) = A(N0)

l
∏

j=0

A(Nj+1)

A(Nj)
≥ A(N0)

l
∏

j=0

(

Nj+1

Nj

)2 (2.2)
= A(N0)

(

Nl+1

N0

)2

>

(

Nl+1

N0

)2

> N
3/2
l+1for large enough l. On the other hand, 
learly we have

A(Nl+1) =
∑

a∈A

a≤Nl+1

1 ≤
∑

a≤Nl+1

1 = Nl+1 (2.3)(2.2) and (2.3) 
annot hold simultaneously and this 
ontradi
tion proves theexisten
e of in�nitely many integers N satisfying (2.1).Throughout the remaining part of the proof of Theorem 2.3 we usethe following notations: N denotes a large integer satisfying (2.1). Wewrite e2iπα = e(α) and we put r = e−1/N , z = re(α) where α is a realvariable (so that a fun
tion of form p(z) is a fun
tion of the real variable
α : p(z) = p(re(α)) = P (α)). We write

f(z) =
∑

a∈A
za.12



(Sin
e r < 1, this in�nite series and all the other in�nite series in the remain-ing part of the proof are absolutely 
onvergent.) Then we have
fk(z) =

+∞
∑

n=1

Rk(n)zn.Let I denote
I =

∫ 1

0

|f(z)|kdα.We will give lower and upper bound for I. The lower bound will be greaterthen the upper bound, and this 
ontradi
tion will prove that our indire
tassumption 
annot hold whi
h will 
omplete the proof of Theorem 2.3.First we will give lower bound for I. Using Hölder's inequality and Par-seval's formula we have
I2/k =

(
∫ 1

0

|f(z)|kdα

)2/k(∫ 1

0

1dα

)1−2/k

≥
∫ 1

0

|f(z)|2dα

=
∑

a∈A
r2a ≥

∑

a∈A

a≤N

r2N = e−2
∑

a∈A

a≤N

1 = e−2A(N)hen
e
I ≥ e−k(A(N))k/2. (2.4)Now we will give upper bound for I. First we will estimate Rk(n) interms of A(2n). Sin
e Rk(n) is monotonous in
reasing from a 
ertain pointon, i.e., there exists an integer n0 su
h that Rk(n + 1) ≥ Rk(n) for n ≥ n0,we have

(A(2n))k =
(

∑

a∈A
a≤2n

1
)k

=
∑

a1∈A,a2∈A,...,ak∈A

a1≤2n,a2≤2n,...,ak≤2n

1 ≥
∑

a1+a2+...+ak≤2n

a1∈A,...,ak∈A

1

≥
2n
∑

i=1

Rk(i) ≥
2n
∑

i=n+1

Rk(i) ≥
2n
∑

i=n+1

Rk(n) = nRk(n)hen
e
(A(2n))k

n
≥ Rk(n) (2.5)13



for n ≥ n0. In view of the monotoni
ity of Rk(n), and sin
e A is in�nite, wehave Rk(n) ≥ 1 for n large enough. Thus we obtain from (2.5) that
(A(2n))k ≥ n (2.6)for n large enough. We have

I =

∫ 1

0

|f(z)|kdα =

∫ 1

0

|fk(z)|dα =

∫ 1

0

∣

∣

∣

∣

+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

dα (2.7)
=

∫ 1

0

|(1 − z)
+∞
∑

n=1

Rk(n)zn||1 − z|−1dα.By the monotoni
ity, and if N and n0 are large enough we have
∣

∣

∣

∣

(1 − z)
+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

=

∣

∣

∣

∣

+∞
∑

n=1

(Rk(n) − Rk(n − 1))zn

∣

∣

∣

∣

≤
n0
∑

n=1

|Rk(n) − Rk(n − 1)|rn +
+∞
∑

n=n0+1

|Rk(n) − Rk(n − 1)|rn

<

n0
∑

n=1

|Rk(n) − Rk(n − 1)| +
+∞
∑

n=n0+1

|Rk(n) − Rk(n − 1)|rn

=

n0
∑

n=1

|Rk(n) − Rk(n − 1)| +
+∞
∑

n=n0+1

(Rk(n) − Rk(n − 1))rn

< 2

n0
∑

n=1

|Rk(n) − Rk(n − 1)| +
+∞
∑

n=1

(Rk(n) − Rk(n − 1))rn

= c1 +
+∞
∑

n=1

Rk(n)(rn − rn+1) = c1 + (1 − r)
+∞
∑

n=1

Rk(n)rn

< c1 +

n0−1
∑

n=1

Rk(n) + (1 − r)
+∞
∑

n=n0

Rk(n)rn

< c2 + (1 − e−1/N )

( N
∑

n=n0

Rk(N) +
+∞
∑

n=N+1

Rk(n)rn

)

.Thus by (2.1), (2.5) and (2.6) we have14



∣

∣

∣

∣

(1 − z)
+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

< c2 + N−1

(

N
(A(2N))k

N
+

+∞
∑

n=N+1

(A(2n))k

n
rn

)

< c2 + N−1

(

(A(N))k

(

2N

N

)2k

+
+∞
∑

n=N+1

(

A(N)

(

2n

N

)2)k
1

n
rn

)

< c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

+∞
∑

n=1

n2k−1rn

)

< c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

+∞
∑

n=1

(n + 1)(n + 2) . . . (n + 2k − 1)rn

)

= c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

+∞
∑

m=2k

m(m − 1) . . . (m − 2k + 2)rm−2k+1

)

< c2 + (A(N))k

(

22kN−1 +
22k

N2k+1
(

+∞
∑

m=0

rm)(2k−1)

)

= c2 + (A(N))k

(

22kN−1 +
22k

N2k+1

(

1

1 − r

)(2k−1))

= c2 + (A(N))k

(

22kN−1 +
22k

N2k+1
(2k − 1)!(1 − r)−2k

)

= c2 + (A(N))k

(

22kN−1 +
22k(2k − 1)!

N2k+1
(1 − e−1/N )−2k

)

.Sin
e
1 − e−x = x − x2

2!
+

x3

3!
− . . . > x − x2

2!
= x(1 − x

2
) >

x

2for 0 < x < 1, it follows by (2.5) that
∣

∣

∣

∣

(1 − z)

+∞
∑

n=1

Rk(n)zn

∣

∣

∣

∣

< c2 + (A(N))k

(

22kN−1 +
22k(2k − 1)!

N2k+1
(2N)2k

)

= c2 + (A(N))kN−1(22k + 24k(2k − 1)!) < c3(A(N))kN−1. (2.8)15



Furthermore we have
|1 − z| = ((1 − z)(1 − z̄))1/2 = (1 + |z|2 − 2Rez)1/2 = (2.9)

(1 + r2 − 2r cos 2πα)1/2 = ((1 − r)2 + 2r(1 − cos 2πα))1/2 >

(2r(1 − cos 2πα))1/2 = (2e−1/N2 sin2 πα)1/2

≥ (2(2α)2)1/2 ≥ 2αfor 0 ≤ α ≤ 1
2
and for large N , and

|1 − z| = ((1 − r)2 + 2r(1 − cos 2πα))1/2 ≥ ((1 − r)2)1/2 (2.10)
= 1 − r = 1 − e−1/N > 1/2Nfor all α. It follows from (2.7), (2.8), (2.9) and (2.10) that

I ≤
∫ 1

0

c3(A(N))kN−1|1 − z|−1dα (2.11)
= 2c3(A(N))kN−1

∫ 1/2

0

|1 − z|−1dα

= c4(A(N))kN−1

(
∫ 1/N

0

|1 − z|−1dα +

∫ 1/2

1/N

|1 − z|−1dα

)

< c4(A(N))kN−1

(
∫ 1/N

0

2Ndα +

∫ 1/2

1/N

(2α)−1dα

)

< c4(A(N))kN−1(2 +
1

2
log N) < c5(A(N))kN−1 log N.In view of (2.4), (2.11) and our indire
t assumption we have

e−k(A(N))k/2 ≤ I < c5(A(N))kN−1 log N,

N < c6(A(N))k/2 log N = o

(

(

N2/k

(log N)2/k

)k/2

log N

)

= o(N).This 
ontradi
tion 
ompletes the proof of Theorem 2.3.16



Chapter 3On the di�eren
e sequen
e of anadditive representation fun
tion
3.1 Introdu
tionIn this 
hapter we write R1(A, n, k) = Rk(n). Let k ≥ 2, t ≥ 1 be �xed inte-gers. If s0, s1, s2 . . . is a given sequen
e of real numbers, then let ∆tsn denotethe t-th di�eren
e of the sequen
e s0, s1, s2 . . . de�ned by ∆1sn = sn+1 − snand ∆tsn = ∆1(∆t−1sn). It is well-known and it is easy to see by indu
tionthat

∆tsn =
t
∑

i=0

(−1)t−i

(

t

i

)

sn+i. (3.1)Let B(A, N) denote the number of blo
ks formed by 
onse
utive integers in
A up to N , i.e.,

B(A, N) =
∑

a≤N

a−1/∈A,a∈A

1.We will 
onsider the following problem : what 
ondition is needed to guar-antee that |∆tRk(n)| 
annot be bounded. P. Erd®s, A. Sárközy and V. T.Sós proved in [8℄ that if k = 2, t = 1 then17



3.1 Theorem (Erd®s, Sárközy, T.Sós): If limN→∞
B(A,N)√

N
= ∞, then |∆1(R2(n))| =

|R2(n + 1) − R2(n)| 
annot be bounded.They also proved in [8℄ that the above result is nearly best possible:3.2 Theorem (Erd®s, Sárközy, T.Sós): For all ε > 0, there exists an in�-nite sequen
e A su
h that(i) B(A, N) ≫ N1/2−ε,(ii) R2(n) is bounded so that also ∆1R2(n) is bounded.In [16℄ I extended Theorem 3.1 to any k > 2 :3.3 Theorem If k ≥ 2 is an integer and limN→∞
B(A,N)

k√N
= ∞, and t ≤ k,then |∆tRk(n)| 
annot be bounded.I also proved in [20℄ that the above result is nearly best possible:3.4 Theorem For all ε > 0, there exists an in�nite sequen
e A su
h that(i) B(A, N) ≫ N1/k−ε,(ii) Rk(n) is bounded so that also ∆tRk(n) is bounded if t ≤ k.In the 
ase t > k I have only a partial result ([17℄):3.5 Theorem If t ≥ 2 is an integer and limN→∞

B(A,N)√
N

= ∞, then |∆t(R2(n))|
annot be bounded.In the next part of this 
hapter I prove Theorem 3.3 and Theorem 3.4. Iomit the proof of Theorem 3.5 be
ause it is similar to the proof Theorem 3.3.Interested reader 
an �nd it in [17℄.
18



3.2 Proof of Theorem 3.3Clearly it su�
ies to prove the assertion of the theorem in the spe
ial 
ase
t = k. We prove by 
ontradi
tion. Assume that 
ontrary to the 
on
lusion ofthe theorem there is a positive 
onstant C > 0 su
h that |∆kRk(n)| < C forevery n. Throughout the remaining part of the proof of the theorem we usethe following notations: N denotes a large integer. We write e2iπα = e(α) andwe put r = e−1/N , z = re(α) where α is a real variable (so that a fun
tion ofform p(z) is a fun
tion of the real variable α : p(z) = p(re(α)) = P (α)). Wewrite f(z) =

∑

a∈A
za. (By r < 1, this in�nite series and all the other in�niteseries in the remaining part of the proof are absolutely 
onvergent).We start out from the integral I =

1
∫

0

|f(z)(1− z)|kdα. We will give lowerand upper bound for I. The 
omparison of these bounds will show that
B(A,N)

k√N
is bounded whi
h 
ontradi
ts the assumption of the theorem. This
ontradi
tion will prove that our indire
t assumption on |∆kRk(n)| 
annothold whi
h will 
omplete the proof of the theorem.First we will give a lower bound for I. We write f(z)(1 − z) =

∞
∑

n=1

βnzn.Then for n − 1 /∈ A, n ∈ A we have βn = 1, thus by the Hölder inequalityand the Parseval formula, we have
I2/k =

(

1
∫

0

|f(z)(1 − z)|kdα

)2/k(
1
∫

0

1dα

)1−2/k

≥
1
∫

0

|f(z)(1 − z)|2dα

=

1
∫

0

∣

∣

∞
∑

n=1

βnz
n
∣

∣

2
dα =

∞
∑

n=1

β2
nr

2n ≥ r2N
∑

n≤N

n−1/∈A,n∈A

β2
n =

= e−2
∑

n≤N

n−1/∈A,n∈A

1 = e−2B(A, N).

19



when
e
I ≥ e−k(B(A, N))k/2.Now we will give an upper bound for I. By (3.1), our indire
t assumption,the Cau
hy inequality and the Parseval formula we have

I =

1
∫

0

|f(z)(1 − z)|kdα =

1
∫

0

|fk(z)(1 − z)k|dα =

1
∫

0

∣

∣(
∑

a∈A
za)k(1 − z)k

∣

∣dα

=

1
∫

0

∣

∣(

∞
∑

n=1

Rk(n)zn)(1 − z)k
∣

∣dα =

1
∫

0

∣

∣(

∞
∑

n=1

Rk(n)zn)(

k
∑

i=0

(−1)i

(

k

i

)

zi)
∣

∣dα

=

1
∫

0

∣

∣

∞
∑

m=1

k
∑

i=0

(−1)i

(

k

i

)

Rk(m − i)zm
∣

∣dα =

1
∫

0

∣

∣

∞
∑

m=1

∆kRk(m − k)zm
∣

∣dα

≤
(

1
∫

0

∣

∣

∞
∑

m=1

∆kRk(m − k)zm
∣

∣

2
dα

)1/2

=

( ∞
∑

m=1

∣

∣∆kRk(m − k)
∣

∣

2
r2m

)1/2

≤ C

( ∞
∑

m=1

r2m

)1/2

= C

(

1

1 − r2

)1/2

≤ C

(

1

1 − r

)1/2

= C

(

1

1 − e−
1
N

)1/2

< C
√

2Nsin
e we have
1 − e−x = x − x2

2!
+

x3

3!
− · · · > x − x2

2!
= x(1 − x

2
) >

x

2for 0 < x < 1.Now we will 
omplete the proof of the theorem. We have
e−k

(

B(A, N)

)k/2

≤ I < C
√

2N20



hen
e
B(A, N)

k
√

N
< e2 k

√
2C2.This 
ontradi
ts our assumption on B(A, N) whi
h 
ompletes the proof ofTheorem 3.3.3.3 Proof of Theorem 3.4The proof of Theorem 3.4 is based on the probabilisti
 method due to Erd®sand Rényi we introdu
ed in 
hapter 2.First we proof part (i) of Theorem 3.4. The proof is similar as in [8℄. Todo this, we need the following important lemma:3.6 Lemma If the sequen
e (1.1) satis�es (1.2) and

αj = δj−c for j ≥ j0,where δ, c are 
onstants su
h that 0 < δ, 0 < c < 1, then with probability 1,we have
A(n) ∼ δ

1 − c
n1−c.This lemma is a 
onsequen
e of Lemmas 10 and 11 in [12℄, pp. 144 - 145.For A ∈ Ω, we write

T (A, n) =
∑

a≤n
a−1∈A,a∈A

1so that
B(A, n) + T (A, n) =

∑

a≤n

a−1/∈A,a∈A

1 +
∑

a≤n

a−1∈A,a∈A

1

=
∑

a∈A

a≤n

1 = A(n).The following lemma will play a 
ru
ial role in the proof.21



3.7 Lemma If the sequen
e (1.1) satis�es (1.2) and
+∞
∑

j=1

αjαj+1 < +∞, (3.2)then, with probability 1,
T (A, n) < 4 log n for n > n2(A)(where n2 may depend on both the sequen
e (1.1) and A).See this lemma and the proof in [8℄. De�ne the sequen
e (1.1) by

αj =
1

k
j1/k−1−ε. (3.3)Thus by Lemma 3.6 with probability 1, we have

A(n) ∼ 1

k

(1

k
− ε
)−1

n
1
k
−εso that, with probability 1,

A(n) >
1

k
kn

1
k
−ε = n

1
k
−ε, (3.4)for n large enough. By Lemma 3.7 (
learly, the sequen
e (3.3) satis�es (3.2)),with probability 1,

B(A, n) = A(n) − T (A, n) > n
1
k
−ε − 4 log n >

1

k
n

1
k
−εfor n > n3(ε,A). In the next se
tion we will prove part (ii) of Theorem 3.4.Remember that

rk(n) =
∑

(a1,a2,...,ak)∈Nk

1≤a1<...<ak<n
a1+a2+...+ak=n

̺(A, a1)̺(A, a2) . . . ̺(A, ak).(see in (1.3) in Chapter 2). Let r∗k(A, n) denote the number of those repre-sentations of n as the sum of k terms from A in whi
h there are at least twoequal terms. Thus we have
R1(A, n, k) = k!rk(A, n) + r∗k(A, n). (3.5)22



Write r∗k(A, n) = r∗k(n). It follows that we have to show that with probability1, both rk(n) and r∗k(n) are bounded by a 
onstant. First we prove rk(n) isbounded by using similar methods as Erd®s and Tetali in [10℄. Let S1 =

{a1, a2, . . . ak} and S2 = {b1, b2, . . . bk}, be two di�erent representations of nas the sum of k terms from A, that is, S1 6= S2 and S1, S2 ⊂ A and
a1 + a2 + . . . + ak = b1 + b2 + . . . + bk = n.We say S1 and S2 are disjoint if they share no element in 
ommon. Let h(n)denote the size of a maximal 
olle
tion of pairwise disjoint representations of

n as the sum of k distin
t numbers from A. We 
an see in (1.3) that rk(n)is the sum of random variables. However, for k > 2 these variables are notindependent be
ause any ̺(A, ai) may appear in many terms. To over
omethis problem we will prove that with probability 1, h(n) and rk−1(n) arebounded by a 
onstant, i. e., almost always there exist 
onstans g and c1su
h that f(n) < g and rk−1(n) < c1. The following argument shows that thisimplies rk(n) almost always bounded by a 
onstant. Let S be any maximal
olle
tion of pairwise disjoint representations of n as a sum of k distin
tnumbers. Clearly |S| = h(n). It is 
lear that if h(n) < g then there are atmost k×g numbers in our 
olle
tion S. As S is maximal, any representationof n must use at least one number from the 
olle
tion. However, the numberof representations of n whi
h use x is pre
isely rk−1(n − x). If rk−1(n) < c1then the total number of representations of n is at most c1 × k × g. Now wegive an upper estimation for h(n). Let E(rk(n)) denote the expe
tation of
rk(n). We need an upper estimation for E(rk(n)). Clearly ak > n/k, thuswe have

E(rk(n)) =
∑

a1+a2+...+ak=n

1≤a1<a2<...<ak<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (ak ∈ A) (3.6)23



=
∑

a1+a2+...+ak=n

1≤a1<a2<...<ak<n

1

(a1 . . . ak)1+ε−1/k

<
(k

n

)1+ε−1/k( ∑

a1+a2+...+ak=n

1≤a1<a2<...<ak<n

1

(a1 . . . ak−1)1+ε−1/k

)

≤
(k

n

)1+ε−1/k ∑

1≤ai≤n

i=1...k−1

1

(a1 . . . ak−1)1+ε−1/k

=
(k

n

)1+ε−1/k( ∑

1≤a1≤n

1

a
1+ε−1/k
1

)k−1

=
(k

n

)1+ε−1/k(
∫ n

1

1

a
1+ε−1/k
1

da1+O(1)
)k−1

=
(k

n

)1+ε−1/k([a
1/k−ε
1

1
k
− ε

]n

1
+ O(1)

)k−1

=
(k

n

)1+ε−1/k
(

( k

1 − kε

)k−1

n
(1−kε)(k−1)

k + o(n
(1−kε)(k−1)

k )

)

=
k1+ε−1/k

nkε

(

( k

1 − kε

)k−1

+ o(1)

)

< C(k, ε)n−kε = c2n
−kε,where c2 is a 
onstant depending on k and ε. Let

B = {(a1, . . . , ak) : a1+. . .+ak = n, a1 ∈ A, . . . , ak ∈ A, 1 ≤ a1 < . . . < ak < n},and let H(B) = {T ⊂ B: all the S ∈ T are pairwise disjoint}. It is 
learthat the pairwise disjointness of the sets implies the independen
e of theasso
iated events, i. e., if S1 and S2 are pairwise disjoint representations, theevents S1 ⊂ A, S2 ⊂ A are independent. Thus by (3.6) and Lemma 1.4 for
g =

[

1
ε

] we have
P (h(n) > g) ≤ P

(

⋃

T ⊂H(B)

|T |=g+1

⋂

S∈T
S
)

≤
∑

T ⊂H(B)

|T |=g+1

P
(

⋂

S∈T
S
) (3.7)

=
∑

(S1,...,Sg+1)

Pairwise
disjoint

P (S1 ∩ . . . ∩ Sg+1) ≤
1

(g + 1)!
(E(h(n)))g+1

24



≤ 1

(g + 1)!
(E(rk(n)))g+1 ≤ 1

(g + 1)!
cg+1
2 n−k(g+1)ε ≤ c3(ε)n

−k,where c3(ε) is a 
onstant depending on ε. Using the Borel - Cantelli lemma,it follows that with probability 1, there exists an n0 su
h that
h(n) ≤ g for n > n0. (3.8)In the next step we will give an upper bound for rk−1(n). Before doing this,we introdu
e some new notations. Let rl(n) denote the number of represen-tations of n as the sum of l distin
t numbers from A and let hl(n) denotethe size of a maximal 
olle
tion of pairwise disjoint su
h representations. Wewill give an upper estimation for hl(n) similarly as in (3.7). First we give anupper estimation for E(rl(n)) similarly to (3.6): Let 2 ≤ l ≤ k − 1 be �xed.Then using the de�nition, we have n/l < al, thus

E(rl(n)) =
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (al ∈ A) (3.9)
=

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al)1+ε−1/k

< n−1−ε+1/k+o(1)
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al−1)1+ε−1/k

< n−1−ε+1/k+o(1)
∑

1≤ai≤n

i=1...l−1

1

(a1 . . . al−1)1+ε−1/k

= n−1−ε+1/k+o(1)
(

∑

1≤a1≤n

1

a
1+ε−1/k
1

)l−1

= n−1−ε+1/k+o(1)(n1/k−ε+o(1))l−1 = n−1+l/k−(lε)+o(1).Let S [l] denote a representation of n as a sum of l distin
t numbers. When
S

[l]
i and S

[l]
j are disjoint S

[l]
i ⊂ A and S

[l]
j ⊂ A are independent events. For25



2 ≤ l ≤ (k − 1), applying Lemma 1.4, using an argument similar to (3.7),and in view of (3.9) we have
P (hl(n) > 2k) <

∑

(S
[l]
1 ,...,S

[l]
2k+1

)

Pairwise
disjoint

P (S
[l]
1 ∩ . . . ∩ S

[l]
2k+1)

<
(E(rl(n))2k

(2k + 1)!
<

1

(2k + 1)!
(n−1+l/k−lε+o(1))2k = n−2k+2l(1−kε)+o(1).By l ≤ (k − 1) it follows that

P (hl(n) > 2k) < n−2+o(1).Thus by the Borel - Cantelli lemma with probability 1, the above assertionimplies that almost always for 2 ≤ l ≤ (k − 1) there exists nl su
h that if
n > nl then hl(n) ≤ 2k. But for any �nite nl, there are at most a �nitenumber of representations as a sum of l numbers. Therefore, almost alwaysfor 2 ≤ l ≤ (k − 1) there exists a Cl su
h that for every n, hl(n) < Cl. Set
cmax = maxl{Cl}. Now we show similarly as in [10℄ that almost always thereexists c4 = c4(A) su
h that for every n,

rk−1(n) < c4. (3.10)The proof of (3.10) is purely 
ombinatorial. We show that (whenever every
Cl exists), for every n

rk−1(n) ≤ (cmax)
k−1(k − 1)!. (3.11)We prove by 
ontradi
tion. Suppose (3.11) is false for some n = n

′ , i. e.,
rk−1(n

′

) > (cmax)
k−1(k − 1)!. (3.12)We want to apply Lemma 1.6. Let H be the set of representations of n′ as thesum of k−1 distin
t numbers from A. Clearly |H| = rk−1(n

′

), thus by (3.12)26



and applying Lemma 1.6 we get that H 
ontains cmax + 1 representationsof n
′ as the sum of k − 1 distin
t numbers whi
h form a Delta - system

{Sk−1
1 , . . . , Sk−1

cmax+1}. If the 
ommon interse
tion of these sets is empty thenthis cmax + 1 set form a family of disjoint k − 1 representations of n
′ , whi
h
ontradi
ts the de�nition of cmax. Otherwise let the 
ommon interse
tion ofthe system be {x1, . . . , xv}, where 0 ≤ v ≤ k−2. If∑i xi = m, then removingthe 
ommon interse
tion ea
h set will yield hk−1−v(n

′ −m) ≥ cmax + 1. Thisis impossible in view of hl(n) < Cl and the de�nition of cmax. This proves(3.11), and in fa
t, also shows that c4 ≤ ck−1
max(k − 1)!.In the last se
tion we will give an upper estimation for r∗k(n). It 
an beprove similarly to the estimate of rk(n) that is r∗k(n) is also bounded by a
onstant. For the sake of 
ompleteness I sket
h the proof leaving the detailsto the reader. If we 
olle
t the equal terms, we have

u1a1 + u2a2 + . . . + uhah = n, (3.13)where the ui's are natural numbers, and
u1 + u2 + . . . + uh = k. (3.14)Thus r∗k(n) denotes the number of representations of n in the form (3.13),where the ai's are di�erent. Similarly to the estimate of rk(n), we show thatwith probability 1, r∗k(n) is also bounded by a 
onstant. Let 2 ≤ h ≤ k − 1be �xed. For a �xed u1, . . . , uh denote wh(n) the number of representationsof n in the form (3.13). We show that with probability 1, wh(n) is boundedby a 
onstant. (Note that in the previous se
tion we proved the 
ase whenall ui's equal to one, and h = k). First we will give an upper estimationfor E(wh(n)), with a 
al
ulation similar to (3.9). Using the de�nition, and

27



n/k < ah, we have
E(wh(n)) =

∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (ah ∈ A) (3.15)
=

∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

1

(a1 . . . ah)1+ε−1/k

≤ n−1−ε+1/k+o(1)
∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

1

(a1 . . . ah−1)1+ε−1/k

< n−1+h/k−(hε)+o(1).Let w∗
h(n) denote the size of a maximal 
olle
tion of pairwise disjoint rep-resentations in the form (3.13). The same argument as in (3.7) and (3.8)shows that almost always there exists a dh 
onstant su
h that for every largeenough n, w∗

h(n) ≤ dh. In view of (3.15), and applying Lemma 1.4 we have
P (w∗

h(n) > dh) < n−2+o(1),thus by the Borel - Cantelli lemma we get that with probability 1, w∗
h(n) < dhif n is large enough. We say that a m - tuple (a1, . . . , am) (m ≤ h) isan m - representation of n in the form (3.13) if there is a permutation πof the numbers {1, 2, . . . , h} su
h that ∑m

i=1 uπ(i)ai = n. For all m < h,let w∗
m(n) denote the size of a maximal 
olle
tion of pairwise disjoint su
hrepresentations of n. The same argument as above shows that almost alwaysthere exists pm 
onstant su
h that for all large enough n, w∗

m(n) < pm.In the last step we apply Lemma 1.6 to prove that wh(n) is bounded bya 
onstant. Let D =
(

max(pmh!, dh)
)h

h!. Let H in Lemma 1.6 is the
olle
tion of representations of n in the form (3.13). Clearly |H| = wh(n). If
wh(n) > D, and n is su�
iently large then by Lemma 1.6, H 
ontains a Delta- system with max(pmh!, dh)+1 sets. If the interse
tion of these sets is empty,28



then they form a family of disjoint h - representations in the form (3.13).Otherwise let the 
ommon interse
tion of the sets be {y1, . . . , ys}, where
1 ≤ s ≤ h− 1. By the pigeon hole prin
iple, there exists a permutation π ofthe numbers {1, 2, . . . , h} su
h that we 
an �nd pm+1 (k−s) representationsof n

′′

= n −∑s
i=1 uπ(i)yi. These pm + 1 sets are disjoint, thus in both 
aseswe obtain a 
ontradi
tion. Sin
e there are only �nite number of partitions of

k in the form (3.13), we get that r∗k(n) is bounded by a 
onstant. From (3.5)we get that Rk(n) is also bounded by a 
onstant. Thus with probability 1,both (i) and (ii) in Theorem 3.4 hold, so that there exists in�nitely manysequen
es satisfying both (i) and (ii), whi
h proves Theorem 3.4.
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Chapter 4On the regularity property of anadditive representation fun
tion
4.1 Introdu
tionLet k ≥ 2 be a �xed integer. In this 
hapter we write R1(A, n, k) = Rk(n).For k = 2, P. Erd®s and A. Sárközy studied how regular 
an be the behaviourof the fun
tion R2(n). In [6℄ they proved the following theorem:4.1 Theorem (Erd®s-Sárközy) If F (n) is an arithmeti
 fun
tion su
h that

F (n) → +∞,

F (n + 1) ≥ F (n) for n ≥ n0,

F (n) = o
( n

(log n)2

)

,and we write
Γ(N) =

N
∑

n=1

(R2(n) − F (n))2,then
Γ(N) = o(NF (N))
annot hold.In [7℄ they showed that the above result is nearly best possible:30



4.2 Theorem (Erd®s-Sárközy) If F (n) is an arithmeti
 fun
tion satisfying
F (n) > 36 log n for n > n0,and there exist a real fun
tion g(x), de�ned for 0 < x < +∞, and realnumbers x0, n1 su
h that(i) g

′

(x) exists and it is 
ontinuous for 0 < x < +∞,(ii) g
′

(x) ≤ 0 for x ≥ x0,(iii) 0 < g(x) < 1 for x ≥ x0,(iv) |F (n) − 2
∫ n/2

0
g(x)g(n − x)dx| < (F (n) log n)1/2 for n > n1,then there exists a sequen
e A su
h that

|R2(n) − F (n)| < 8(F (n) log n)1/2 for n > n2.In [13℄ G. Horváth extended Theorem 4.1 to any k > 2 :4.3 Theorem (G. Horváth) If F (n) is an arithmeti
 fun
tion su
h that
F (n) → +∞,

F (n + 1) ≥ F (n) for n ≥ n0,

F (n) = o
( n

(log n)2

)

,and we write
Γ(N) =

N
∑

n=1

(Rk(n) − F (n))2,then
Γ(N) = o(NF (N))
annot hold.A. Sárközy proposed to prove the analogue of Theorem 4.2 for k > 2 [23,Problem 3℄. In this 
hapter my goal is to extend Theorem 4.2 to any k > 2,i. e., to show that Theorem 4.3 is nearly best possible. In fa
t I will provethe following theorem: 31



4.4 Theorem If k > 2 is a positive integer, c8 is a 
onstant large enough interms of k, F (n) is an arithmeti
 fun
tion satisfying
F (n) > c8 log n for n > n0,and there exists a real fun
tion g(x), de�ned for 0 < x < +∞, and realnumbers x0, n1 and 
onstants c7, c9 su
h that(i) 0 < g(x) ≤ (log x)
1
k

x
1− k+1

k2
< 1 for x ≥ x0,(ii) ∣∣

∣
F (n) − k!

∑

x1+x2+...+xk=n

1≤x1<x2<...<xk<n
g(x1)g(x2) . . . g(xk)

∣

∣

∣
< c7(F (n) log n)1/2for n > n1,then there exists a sequen
e A su
h that

|Rk(n) − F (n)| < c9(F (n) log n)1/2 for n > n2.It is easy to see that the following fu
tions satisfy the 
onditions of Theorem4.4: g(x) = c10

(

(log x)β

xα

), where c10 is a positive 
onstant, α > 1 − k+1
k2 ,or α = 1 − k+1

k2 and β ≤ 1/k. It follows that for F (n) = nδ(log n)γ with
0 < δ ≤ 1/k, or 0 ≤ γ < 1 there is a sequen
e A for whi
h Rk(n) satis�esthe 
o
lusion of the theorem. For k = 2 in [6℄ P. Erd®s and A. Sárközy usedprobabilisti
 method to 
onstru
t a sequen
e A. In the 
ase k = 2, in theirpaper 
ertain events were mutually independent. For k > 2 the independen
yfails, thus in order to prove Theorem 4.4 we need deeper probabilisti
 tools.4.2 Proof of Theorem 4.4Fix a number n and write
Sn = {(a1, a2, . . . ak) ∈ N

k : 0 < a1 < a2 . . . < ak < n, a1 +a2 + . . . +ak = n}.De�ne the sequen
e (1.1) of real numbers by
αn =







g(n) if n ≥ x0,

0 otherwise ,32



and let (Ω, X, P ) be the probability spa
e as des
ribed in Lemma 1.1. Clearlythe sequen
e αn satis�es (1.2). Thus
rk(n,A) = rk(n) =

∑

(a1,a2,...,ak)∈Sn

ta1ta2 . . . tak
,where

tai
=







1, if ai ∈ A

0, if ai /∈ A
.Then we have

λn = E(rk(n)) =
∑

(a1,a2,...,ak)∈Sn

P (a1 ∈ A)P (a2 ∈ A) . . . P (ak ∈ A),where E(ζ) denotes the expe
tation of the random variable ζ . To proveTheorem 4.4 we will give an upper estimation for |Rk(n) − k!λn|. As Vuin [26℄ we split rk(n) into two parts, as follows. Let a be a small positive
onstant say a < 1
2(k+1)

and let S
[1]
n be the subset of Sn 
onsisting of all

k-tuples whose smallest element is at least na, i. e., S
[1]
n = {(a1, a2, . . . ak) ∈

N
k : na ≤ a1 < a2 . . . < ak < n, a1 + a2 + . . . + ak = n} and S

[2]
n = Sn \ S

[1]
n .We split rk(n) into the sum of two terms 
orresponding to S

[1]
n and S

[2]
n ,respe
tively:

rk(n) = r
[1]
k (n) + r

[2]
k (n),where

r
[j]
k (n) =

∑

(a1,a2,...,ak)∈S
[j]
n

ta1ta2 . . . tak
, (4.1)and set

λ[j]
n = E(r

[j]
k (n)).Let r∗k(A, n) denote the number of those representations of n as the sumof k terms from A in whi
h there are at least two equal terms. Thus we have

Rk(n) = k!rk(A, n) + r∗k(A, n). (4.2)33



Clearly
|Rk(n) − k!λn| ≤ |Rk(n) − k!rk(n)| + k!|rk(n) − λn| (4.3)

= r∗k(n) + k!|r[1]
k (n) + r

[2]
k (n) − λ[1]

n − λ[2]
n |

≤ r∗k(n) + k!|r[1]
k (n) − λ[1]

n | + k!|r[2]
k (n) − λ[2]

n |

= r∗k(n) + I1 + I2.The rest of the proof of Theorem 4.4 has four parts. In the �rst part we givean upper estimation for I1, in the se
ond part we give an upper estimationfor I2, in the third part we give an upper estimation for r∗k(n), and in thelast part we 
omplete the proof of Theorem 4.4.To estimate I1 we will apply Theorem 1.2 so we need an upper bound for
E1(r

[1]
k (n)). To do this, it is 
lear from the de�nition of E1 that we need thefollowing lemma, whi
h guarantees that every partial derivative of r

[1]
k (n) hassmall expe
tation.4.5 Lemma For all non-empty multi-sets A of size at most k − 1,

E(∂A(r
[1]
k (n))) = O(n−a/2k2

).Proof. This 
an be proved similarly to Lemma 5.3 in [26℄. For the sake of
ompleteness I will present the proof. Consider a multi-set A of k−l elementsand ∑x∈A x = n − m. There exists a 
onstant c(k) su
h that
∂A(r

[1]
k (n)) ≤ c(k)

∑

na<a1<a2<...,<al
a1+...+al=m

ta1ta2 . . . tal
.As al ≥ m/l, and using the fa
t that ∑m

x=1 x1/k−1 ≈
∫ m

1
z1/k−1dz ≈ m1/k,and (i) of Theorem 4, we have

E(∂A(r
[1]
k (n))) = O

(

∑

na<a1<a2<...,<al
a1+...+al=m

P (a1 ∈ A) . . . P (al ∈ A)

)
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= O

(

∑

na<a1<a2<...,<al
a1+...+al=m

g(a1)g(a2) . . . g(al)

)

= O(log n)
∑

na<a1<a2<...,<al
a1+...+al=m

a
k+1

k2 −1

1 a
k+1

k2 −1

2 . . . a
k+1

k2 −1

l

= O(logn)O

((

m
∑

x=1

x
k+1
k2 −1

)l−1

(m/l)
k+1
k2 −1

)

= O(log n)O(m
(l−1)(k+1)

k2 (m/l)
k+1
k2 −1) = O(log n)O(m

l(k+1)−k2

k2 ) = O(n−a/2k2

),sin
e k − 1 ≥ l and m ≥ na. The proof of Lemma 4.5 is 
ompleted.By the de�nition of E1(r
[1]
k (n)), and from Lemma 4.5 it is 
lear that

E1(r
[1]
k (n)) = max|A|≥1EA(r

[1]
k (n)) ≤ cn−a/2k2 , where c is a 
onstant. It is
lear from (4.1) that r

[1]
k (n) is a positive polynomial of degree k. Now weapply Theorem 1.2 with λ =

(

log n

E1(r
[1]
k (n))

)
1
2k . If n is large enough we have

P
(

|r[1]
k (n) − λ[1]

n | ≥ dk

√

log n

E1(r
[1]
k (n))

√

λ
[1]
n E1(r

[1]
k (n))

)

≤

≤ bkexp
(

−1

4
2k

√

log n

E1(r
[1]
k (n))

+(k−1) log n
)

≤ bkexp
(

−1

4
2k

√

log n

n−a/2k2 +(k−1) log n
)

< exp(−2 log n) =
1

n2
.Applying the above result we obtain

+∞
∑

n=1

P
(

|r[1]
k (n) − λ[1]

n | ≥ dk

√

λ
[1]
n log n

)

<
+∞
∑

n=1

1

n2
< +∞.By the Borel - Cantelli lemma with probability 1, there exists a number n0su
h that

|r[1]
k (n) − λ[1]

n | < dk

√

λ
[1]
n log n for n > n0. (4.4)35



In the next se
tion we will give an upper estimation for I2. We will provesimilarly to the proof in [26℄ that for almost every sequen
e A, there is a�nite number c11(A) su
h that r
[2]
k (n) ≤ c11(A) for all su�
iently large n.Let rl(n) denote the number of representations of n as the sum of l distin
tnumbers from A. First we give an upper estimation for E(rl(n)) similarly tothe estimate in [10℄. Fix 2 ≤ l ≤ (k − 1). As n/l < al, and (i) of Theorem4.4, we have

E(rl(n)) ≤
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

P (a1 ∈ A) . . . P (al ∈ A) (4.5)
<

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

g(a1)g(a2) . . . g(al)

≤
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

(log a1)
1
k

a
1− k+1

k2

1

. . .
(log al)

1
k

a
1− k+1

k2

l

= no(1)
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al)
1− k+1

k2

≤ no(1)
(

n
k+1
k2 −1+o(1)

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al−1)
1− k+1

k2

)

≤ n
k+1
k2 −1+o(1)

∑

1≤ai≤n

i=1...l−1

1

(a1 . . . al−1)
1− k+1

k2

= n
k+1
k2 −1+o(1)

(

∑

1≤a1≤n

1

a
1− k+1

k2

1

)l−1

= n
k+1

k2 −1+o(1)(n
k+1

k2 +o(1))l−1 = n−1+l k+1

k2 +o(1).Let T1 = {a1, a2, . . . ak}, T2 = {b1, b2, . . . bk} be two di�erent representationsof n as the sum of k terms from A, that is, T1 6= T2, T1, T2 ⊂ A and
a1 + a2 + . . . + ak = b1 + b2 + . . . + bk = n.We say these representations are disjoint if they share no element in 
ommon.Let fl(n) denote the maximum number of pairwise disjoint representations36



of n as the sum of l distin
t numbers from A. We show that with probability1, fl(n) is bounded. Let
B = {(a1, . . . , al) : a1+. . .+al = n, a1 ∈ A, . . . , al ∈ A, 1 ≤ a1 < . . . < al < n}.Let H(B) = {T ⊂ B: all the K ∈ T are pairwise disjoint} and c1 bea 
onstant. It is 
lear that the pairwise disjointness of the sets implies theindependen
e of the asso
iated events, i. e., if K1 and K2 are pairwise disjointrepresentations, the events K1 ⊂ A, K2 ⊂ A are independent. Thus by (4.5)and Lemma 1.4 we have

P (fl(n) > c1) ≤ P
(

⋃

T ⊂H(B)

|T |=c1+1

⋂

K∈T
K
)

≤
∑

T ⊂H(B)

|T |=c1+1

P
(

⋂

K∈T
K
) (4.6)

=
∑

(K1,...,Kc1+1)

Pairwise
disjoint

P (K1 ∩ . . . ∩ Kc1+1) ≤
1

(c1 + 1)!
(E(fl(n)))c1+1

≤ 1

(c1 + 1)!
(E(rl(n)))c1+1 ≤ 1

(c1 + 1)!
n−2+o(1),if c1 large enough. By the Borel - Cantelli lemma, with probability 1 foralmost every random sequen
e A there is a �nite number c1(A) su
h that forany l < k and all n, the maximal number of disjoint l - representations of nfrom A is at most c1(A). In the next step we give an upper estimation for

E(r
[2]
k (n)) similarly as in Lemma 4.5. Using also the fa
t that∑m

x=1 x1/k−1 ≈
∫ m

1
z1/k−1dz ≈ m1/k, and ak ≥ n/k, a < 1

2(k+1)
, and (i) of Theorem 4.4, wehave

E(r
[2]
k (n)) = E

(

∑

(a1,a2,...,ak)∈S
[2]
n

ta1 . . . tak

)

= O

(

∑

(a1,a2,...,ak)∈S
[2]
n

P (a1 ∈ A) . . . P (ak ∈ A)

)

37



= O(log n)
∑

a1+a2+...+ak=n

a1≤na

a
k+1
k2 −1

1 a
k+1
k2 −1

2 . . . a
k+1
k2 −1

k

= O(log n)O

(

na
∑

x=1

x
k+1
k2 −1

(

n
∑

x=1

x
k+1
k2 −1

)k−2

(n/k)
k+1
k2 −1

)

= O(n
a(k+1)−1

k2 log n) = O(n−1/2k2

).Thus by Lemma 1.4 and the Borel - Cantelli lemma, with probability 1, thereis a 
onstant c2 su
h that almost surely the maximum number of disjoint rep-resentations of n in r
[2]
k (n) is at most c2 for all large n. The proof is similar to(4.6). To �nish the proof it su�
es to show that r

[2]
k (n) is bounded by a 
on-stant. The proof is purely 
ombinatorial. Set C(A) =

(

max(c1(A), c2)
)k

k!and assume that n is su�
iently large. To ea
h representation of n 
ountedin r
[2]
k (n) we assign the set formed by the k terms o

uring in this represen-tation. We will apply Lemma 1.6 with the 
olle
tion of these sets in pla
e of

H . It is 
lear that if r
[2]
k (n) > C(A), then by Lemma 1.6, r

[2]
k (n) 
ontains aDelta - system with c3 = max(c1(A), c2) + 1 sets. If the interse
tion of thesesets is empty, then they form a family of c3 disjoint k-representations of n,whi
h 
ontradi
ts the de�nition of c3. Otherwise, assume that the interse
-tion of these sets is {y1, y2 . . . yj}, where 1 ≤ j ≤ k − 1, and ∑j

i=1 yi = m.Removing the 
ommon interse
tion of these sets we 
an �nd c1(A)+1 (k−j)representations of n−m = n−∑j
i=1 yi. These c1(A)+1 sets are disjoint dueto the de�nition of the Delta - system. Therefore in both 
ases we obtain a
ontradi
tion.In the next se
tion we will give an upper estimation for r∗k(n). If we
olle
t the equal terms, we have

u1a1 + u2a2 + . . . + uhah = n, (4.7)
38



where the ui's are positive integers, and
u1 + u2 + . . . + uh = k. (4.8)Thus r∗k(n) denotes the number of representations of n in the form (4.7),where the ai's are di�erent. It 
an be proved similarly to the estimate of

r
[2]
k (n), that r∗k(n) is also bounded by a 
onstant. For the sake of 
ompletenesswe sket
h the proof and we leave the details to the reader. Let 2 ≤ h ≤ k−1be �xed. For a �xed u1, . . . , uh let sh(n) denote the number of representationsof n in the form (4.7). We show that sh(n) is bounded by a 
onstant. (Notethat in the previous se
tion we proved this in the 
ase when all ui's are equalto one, and h = k). First we will give an upper estimation for E(sh(n)), witha 
al
ulation similar to (4.5). Using the de�nition of sh(n), and n/k < ah,we have

E(sh(n)) ≤
∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (ah ∈ A) (4.9)
=

∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

g(a1)g(a2) . . . g(ah)

≤
∑

u1a1+u2a2+...+uhah=n

1≤a1<a2<...<ah<n

(log a1)
1
k

a
1− k+1

k2

1

. . .
(log ah)

1
k

a
1− k+1

k2

h

= n−1+h k+1
k2 +o(1).Let s∗h(n) denote the size of a maximal 
olle
tion of pairwise disjoint repre-sentations in the form (4.7). The same argument as in (4.6) shows that thereexists a 
onstant vh su
h that for n large enough s∗h(n) < vh. In view of (4.9),and applying Lemma 1.4 we have

P (s∗h(n) > vh) < n−2+o(1),39



if vh is large enough. Thus by the Borel - Cantelli lemma, with probability 1,
s∗h(n) < vh for every n large enough. We say that an m - tuple (a1, . . . , am)

(m ≤ h) is an m - representation of n in the form (4.7) if there is a per-mutation π of the numbers {1, 2, . . . , h} su
h that ∑m
i=1 uπ(i)ai = n. For all

m < h, let s∗m(n) denote the size of a maximal 
olle
tion of pairwise disjointsu
h representations of n. The same argument as above shows that almostalways there exists a 
onstant pm su
h that for every n, s∗m(n) < pm. Inthe last step we apply Lemma 1.6 to prove that sh(n) is bounded by a 
on-stant. Let C =
(

max(pmh!, vh)
)h

h!. Let H in Lemma 1.6 is the 
olle
tionof representations of n in the form (4.7). Clearly |H| = sh(n). If sh(n) > C,and n is su�
iently large then by Lemma 1.6, H 
ontains a Delta - sys-tem with max(pmh!, vh) + 1 sets. If the interse
tion of these sets is empty,then they form a family of disjoint h - representations in the form (4.7).Otherwise let the 
ommon interse
tion of the sets be {y1, . . . , ys}, where
1 ≤ s ≤ h − 1. By the pigeon hole prin
iple there exists a permutation π ofthe numbers {1, 2, . . . , h} su
h that we 
an �nd pm+1 (k−s) representationsof n

′′

= n −∑s
i=1 uπ(i)ys. These pm + 1 sets are disjoint, thus in both 
aseswe obtain a 
ontradi
tion. Sin
e there are only �nite number of partitionsof k in the form (4.8), we get that r∗k(n) is bounded by a 
onstant, i.e., thereexists a 
onstant C3 su
h that r∗k(n) < C3. Let c4, c5, c6 be 
onstants. Thusby (4.3) and (4.4) we have

|Rk(n)−k!λn| ≤ |Rk(n)−k!rk(n)|+k!|rk(n)−λn| < C3+k!|r[1]
n +r[2]

n −λ[1]
n −λ[2]

n |

≤ C3 + k!|r[1]
n − λ[1]

n | + k!|r[2]
n − λ[2]

n | ≤ C3 + dkk!

√

λ
[1]
n log n + 2k!c4

≤ c5 + dkk!
√

λn log n.In the last se
tion we 
omplete the proof of Theorem 4.4, similarly as in [7℄.40



In view of the estimate above and (ii) in Theorem 4.4, for large n we have
|Rk(n) − F (n)| ≤ |Rk(n) − k!λn| + |k!λn − F (n)|

< c5 + dkk!(λn log n)1/2 + |k!λn − F (n)|

≤ c5 + c6

((

1

k!
F (n) +

1

k!
|k!λn − F (n)|

)

log n

)1/2

+ |k!λn − F (n)|

< c5 + c6

((

1

k!
F (n) +

c7

k!
(F (n) log n)1/2

)

log n

)1/2

+ c7(F (n) logn)1/2

< c5 + c6

((

1

k!
F (n) +

c7

k!

(

F (n)
F (n)

c8

)1/2)

log n

)1/2

+ c7(F (n) log n)1/2

= c5+c6

((

1

k!
+

c7√
c8k!

)

F (n) log n

)1/2

+c7(F (n) log n)1/2 < c9(F (n) log n)1/2.The proof of Theorem 4.4 is 
ompleted.

41



Chapter 5On Sidon sets whi
h areasymptoti
 bases
5.1 Introdu
tionA (�nite or in�nite) set A of positive integers is said to be a Sidon set if allthe sums a + b with a ∈ A, b ∈ A, a ≤ b are distin
t. In other words A is aSidon set if for every n positive integer R3(A, n, 2) ≤ 1. We say a set A ⊂ Nis an asymptoti
 basis of order h, if every large enough positive integer n
an be represented as a sum of h terms from A, i.e., if there exists a positiveinteger n0 su
h that R3(A, n, h) > 0 for n > n0. In [4℄ and [5℄ P. Erd®s, A.Sárközy and V. T. Sós asked if there exists a Sidon set whi
h is an asymptoti
basis of order 3. The problem was also appears in [24℄ (with a typo in it:order 2 is written instead of order 3). In [11℄ G. Grekos, L. Haddad, C. Helouand J. Pihko proved that a Sidon set 
annot be an asymptoti
 basis of order2. Re
ently J. M. Deshouillers and A. Plagne in [1℄ 
onstru
ted a Sidon setwhi
h is an asymptoti
 basis of order at most 7. In this 
hapter I will provethat there exists an asymptoti
 basis of order 5 whi
h is a Sidon set by usingprobabilisti
 methods. In fa
t I will prove the following theorem:42



5.1 Theorem There exists an asymptoti
 basis of order 5 whi
h is a Sidonset.5.2 Proof of Theorem 5.1Let 1
5

< α < 3
14

be real number. De�ne the sequen
e αn in Lemma 1.1 by
αn =

1

n1−α
,so that P ({A: A ∈ Ω, n ∈ A}) = 1

n1−α . The proof of Theorem 5.1 has threeparts. In the �rst part we prove similarly as in [10℄ that with probability 1,
A is asymptoti
 basis of order 5, i.e., with probability 1, R3(A, n, 5) > 0 if nis large enough. In the se
ond part we show that deleting �nitely many ele-ments from A we obtain a Sidon set. Finally in the third part we prove thatthe above deletion does not destroy the asymptoti
 basis property, thereforewe obtain the desired set.Let T1 = {a1, a2, . . . a5}, T2 = {b1, b2, . . . b5} be two di�erent representa-tions of n, that is T1 6= T2, T1, T2 ⊂ A and

a1 + a2 + . . . + a5 = b1 + b2 + . . . + b5 = n.We say T1 and T2 are disjoint if they share no element in 
ommon. To provethat A is asymptoti
 basis of order 5 we apply Theorem 1.3. We use thetheorem with Q = N. In our 
ase ti in Theorem 1.3 is ̺(A, i). For a �xed nthe sets {Q(γ)}γ∈Γ denote all the representations of n as the sum of 5 distin
tpositive integers, i.e.,
{Q(γ)}γ∈Γ = {(a1, . . . , a5) : a1 + . . . + a5 = n, 1 ≤ a1 < . . . < a5 < n}.Thus Iγ =

∏

ai∈Q(γ) ̺(ai,A). In other words Iγ is the indi
ator variable that
Q(γ) i.e., a representation of n as the sum of 5 terms is in A. Then it is 
lear43



that
N =

∑

γ∈Γ

Iγ =
∑

γ∈Γ

∏

ai∈Q(γ)

̺(A, ai)

=
∑

(a1,a2,...,a5)∈N5

1≤a1<...<a5<n
a1+a2+...+a5=n

̺(A, a1)̺(A, a2) . . . ̺(A, a5) = r5(n).If Q(γ), Q(δ) are two di�erent representations of n as the sum of 5 terms and
γ 6= δ, then γ ∼ δ implies that they have at least 1 but at most 3 
ommonterms. It is 
lear that E(IγIδ) = P ({Q(γ) ∈ A} ∩ {Q(δ) ∈ A}). To applyTheorem 1.3 we have to estimate E(r5(n)) and 
al
ulate ∆.First we give lower estimation to E(r5(n)). Let a be a small positive
onstant. By a5 < n, we have

E(r5(n)) =
∑

a1+a2+a3+a4+a5=n

1≤a1<a2<a3<a4<a5<n

P (a1 ∈ A) . . . P (a5 ∈ A) (5.1)
=

∑

a1+a2+a3+a4+a5=n

1≤a1<a2<a3<a4<a5<n

1

(a1a2a3a4a5)1−α

≥
∑

a1+a2+a3+a4+a5=n

na≤a1<a2<a3<a4<a5<n

1

(a1a2a3a4a5)1−α

>
1

n1−α

∑

na<a1< n
20

1

a1−α
1

∑

n
20

<a2< 2n
20

1

a1−α
2

∑

2n
20

<a3< 3n
20

1

a1−α
3

∑

3n
20

<a4< 4n
20

1

a1−α
4

=
1

n1−α

(

∫ n
20

na

1

a1−α
1

+ O(1)
)(

∫ 2n
20

n
20

1

a1−α
2

+ O(1)
)

×
(

∫ 3n
20

2n
20

1

a1−α
3

+ O(1)
)(

∫ 4n
20

3n
20

1

a1−α
4

+ O(1)
)

=
1

n1−α

( nα

20αα
− naα

α
+ O(1)

)(nα(2α − 1)

20αα
+ O(1)

)

×
(nα(3α − 2α)

20αα
+ O(1)

)(nα(4α − 3α)

20αα
+ O(1)

)44



=
1

n1−α
n4α(1 + o(1))c1(1 − nα(a−1)) > c2n

5α−1,if n large enough, and c1, c2 are 
onstants depending on α.For 1 ≤ l ≤ 4, denote by rl(n) the number of representations of n as thesum of l distin
t numbers from A. Let E(rl(n)) = λl(n). In the next stepwe give upper estimation for E(rl(n)). By n/l < al, we have
λl(n) = E(rl(n)) =

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

P (a1 ∈ A)P (a2 ∈ A) . . . P (al ∈ A)(5.2)
=

∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al)1−α

≤ n−1+α+o(1)
∑

a1+a2+...+al=n

1≤a1<a2<...<al<n

1

(a1 . . . al−1)1−α

≤ n−1+α+o(1)
∑

1≤ai≤n

i=1...l−1

1

(a1 . . . al−1)1−α

≤ n−1+α+o(1)
(

∑

1≤a1≤n

1

a1−α
1

)l−1

= n−1+α+o(1)(nα+o(1))l−1 = n−1+lα+o(1).Let Q(i) and Q(j) be two di�erent representations of n as the sum of 5terms. Let Fi denote the event that Q(i) ⊂ A. The following lemma showsthat the above events have low 
orrelation in the following sense:5.2 Lemma
∑

i∼j

P (Fi ∩ Fj) = o(1).Proof. The proof of this lemma is similar to Lemma 11 in [10℄. Note that
i ∼ j implies that Q(i) and Q(j) share at least 1 number and at most 3numbers.

∑

i∼j

P (Fi ∩ Fj) =
3
∑

l=1

∑

|Q(i)∩Q(j)|=l

P (Fi ∩ Fj).45



Consider Q(i), Q(j) su
h that |Q(i) ∩ Q(j)| = l. Say,
Q(i) = (z1, . . . , zl, x1, x2, . . . , x5−l)and
Q(j) = (z1, . . . , zl, y1, y2, . . . , y5−l).Let ∑i zi = m. Then ∑i xi =

∑

i yi = n−m. Write P (xi ∈ A) = P (xi). So
∑

|Q(i)∩Q(j)|=l

P (Fi ∩ Fj) =

=
∑

m

∑

z1+...+zl=m
x1+...+x5−l=n−m

y1+...+y5−l=n−m

(P (z1) . . . P (zl))(P (x1) . . . P (x5−l))(P (y1) . . . P (y5−l))

=
∑

m

(

∑

z1+...+zl=m

P (z1) . . . P (zl)
)(

∑

x1+...+x5−l=n−m

P (x1) . . . P (x5−l)
)2

=
∑

m

λl(m)[λ5−l(n − m)]2.We already made the estimates in (5.2) that λl(n) < n−1+lα+o(1), for 1 ≤ l ≤
4. Fix ε < 1/28. Then there exists an m0 su
h that

λl(m) < m−1+lα+ε,for m > m0. Sin
e m0 is a 
onstant, λl(m) < C, where C is a 
onstant, for
m ≤ m0. We split the above summation in four parts:
∑

m

λl(m)[λ5−l(n−m)]2 =
∑

m≤m0

λl(m)[λ5−l(n−m)]2+
∑

m0<m≤n/2

λl(m)[λ5−l(n−m)]2+

+
∑

n/2<m≤n−m0

λl(m)[λ5−l(n − m)]2 +
∑

n−m0<m

λl(m)[λ5−l(n − m)]2

= ∆1 + ∆2 + ∆3 + ∆4.First we estimate ∆1:
∆1 =

∑

m≤m0

λl(m)[λ5−l(n − m)]246



< (n−1+(5−l)α+o(1))2
∑

m≤m0

C = n−2−2lα+10α+o(1) = o(1).In the next step we estimate ∆2:
∆2 =

∑

m0<m≤n/2

λl(m)[λ5−l(n − m)]2

< (n−1+(5−l)α+o(1))2
∑

m0<m≤n/2

m−1+lα+ε

= n−2−2lα+10α+o(1)
∑

m0<m≤n/2

m−1+lα+ε.Now we estimate by integrals over the full range:
∆2 < n−2−2lα+10α+o(1)

(

∫ n

0

m−1+lα+εdm + O(1)
)

= n−2−lα+10α+o(1)+ε = o(1).In the next step we estimate ∆3:
∆3 =

∑

n/2<m≤n−m0

λl(m)[λ5−l(n − m)]2

< (n−1+lα+o(1))
∑

n/2<m≤n−m0

[(n − m)−1+(5−l)α+ε]2

= (n−1+lα+o(1))
∑

n/2<m≤n−m0

(n − m)−2−2lα+10α+2ε.On
e again estimating by integral over the full range
∆3 < n−1+lα+o(1)

(

∫ n

0

(n − m)−2−2lα+10α+2εdm + O(1)
)

= n−2−lα+10α+2ε+o(1) = o(1).In the last step we estimate ∆4:
∆4 =

∑

n−m0<m

λl(m)[λ5−l(n − m)]247



< (n−1+lα+o(1))
∑

n−m0<m

C2 = n−1−lα+o(1) = o(1).Thus we have
∑

i∼j

P (Fi ∩ Fj) = ∆1 + ∆2 + ∆3 + ∆4 = o(1).The proof of Lemma 5.2 is 
ompleted.Then it follows from Theorem 1.3 that for 0 ≤ c3 ≤ 1 
onstant, we have
P (r5(n) ≤ c3λ) ≤ e−1/2(1+∆)(1−c3)2λ.It follows from Lemma 5.2 that ∆ = o(1). Thus in view of (5.1) it followsfrom Theorem 1.3 that

P (r5(n) ≤ c3E(r5(n))) ≤ e−1/2(1+o(1))(1−c3)2c2n5α−1

< e−c4 log n,where c4 is a 
onstant. Note that c3 
an be 
hosen arbitrarily small, thus if
c4 is large enough we have

P (r5(n) ≤ c3E(r5(n))) ≤ n−2+o(1).Thus by (5.1) and the Borel - Cantelli lemma we get that with probability1, there exists an n0 = n0(A) su
h that
r5(n) > c3n

5α−1 for n > n0. (5.3)Let r∗k(n) denote the number of those representations of n as the sum of kterms from A in whi
h there are at least two equal terms. Thus we have
R3(A, n, k) = k!rk(n) + r∗k(n).It is 
lear that with probability 1, R3(A, n, 5) > c3n

5α−1 for n > n0 be
ause
r∗5(n) ≥ 0, thus A is asymptoti
 basis of order 5.In the next se
tion we prove similarly as in [5℄ that with probability 1,48



A is almost Sidon set in the sense that it is enough to dis
ard �nitely manyelements from A in order to get a Sidon set. It is 
lear from the de�nitionthat we have to prove that with probability 1, R3(A, n, 2) ≤ 1 if n is largeenough.Let Gn denote the event
Gn = {A : A ∈ Ω, R3(A, n, 2) > 1},and write

F = Ω \
+∞
⋂

j=1

(

+∞
⋃

n=j

Gn

) (5.4)so that A ∈ F if and only if there exists a number n1 = n1(A) su
h that wehave
R3(A, n, 2) ≤ 1 for n ≥ n1. (5.5)We will prove that

P (F) = 1. (5.6)For 1 ≤ i < j ≤ n/2, let Un(i, j) denote the event
Un(i, j) = {A : A ∈ Ω, i ∈ A, n − i ∈ A, j ∈ A, n − j ∈ A}.Then 
learly,

Gn ⊂
⋃

1≤i<j≤n/2

Un(i, j)when
e
P (Gn) ≤

∑

1≤i<j≤n/2

P (Un(i, j)). (5.7)By (i) and (ii) in Lemma 1.1 we have
P (Un(i, j)) =







αiαn−iαjαn−j, for 1 ≤ i < j < n/2

αiαn−iαn/2, for 1 ≤ i < j = n/2.49



Let δn = 1, if n is even and δn = 0 if n is odd. Thus we have
∑

1≤i<j≤n/2

P (Un(i, j)) =
∑

1≤i<j<n/2

αiαn−iαjαn−j + δnαn/2

∑

1≤i<n/2

αiαn−i

≤
(

∑

1≤i<n/2

αiαn−i + δnαn/2

)2

≤
(( 2

n

)1−α( ∑

1≤i<n

1

i1−α

)

+ δnαn/2

)2

=
((2

n

)1−α(
∫ n

1

1

i1−α
di + O(1)

)

+ δnαn/2

)2

((2

n

)1−α([ iα

α

]n

1
+ O(1)

)

+ δnαn/2

)2

=
((2

n

)1−α
(

nα + O(1)

)

+ δnαn/2

)2

=
(21−α

n1−α
nα(1 + o(1)) + δnαn/2

)2

<
(

c5n
2α−1 + δn21−αnα−1

)2

< c15n
4α−2, (5.8)where c15 depends on α. By the de�nition of α, (5.6) and (5.7) we have

+∞
∑

n=1

P (Gn) < +∞.Thus by the Borel - Cantelli lemma, with probability 1 at most a �nitenumber of the events Gn 
an o

ur whi
h, by (5.4), proves (5.6). By A ∈ F ,there exists a number n1 = n1(A) su
h that (5.5) holds. Let
C = A ∩ [n1, +∞).It follows from (5.5) that C is a Sidon set.In the following lemma we estimate r4(n).5.3 Lemma Almost always there exists a 
onstant c6 = c6(A) su
h that forevery n positive integer

r4(n) < c6. (5.9)50



Proof. The proof of this lemma is similar to the proof of Lemma 10 in [10℄.Let S [l] denote a representation of n as a sum of l distin
t numbers. When
S

[l]
i and S

[l]
j are disjoint S

[l]
i ⊂ A and S

[l]
j ⊂ A are independent events. For

2 ≤ l ≤ 4, let fl(n) denote the size of a maximal 
olle
tion of pairwise disjointsu
h representations. Let
G = {(a1, . . . , al) : a1+. . .+al = n, a1 ∈ A, . . . , al ∈ A, 1 ≤ a1 < . . . < al < n}.In view of Lemma 1.4 and (5.2) we have

P (fl(n) > 10) ≤ P
(

⋃

T ⊂G

|T |=11

⋂

K∈T
K
)

≤
∑

T ⊂G

|T |=11

P
(

⋂

K∈T
K
)

=
∑

(S
[l]
1

,...,S
[l]
11

)

Pairwise
disjoint

P (S
[l]
1 ∩ . . . ∩ S

[l]
11)

≤ (E(rl(n))11

11!
<

1

11!
(n−1+lα+o(1))11 = n−11+11lα+o(1).By l ≤ 4 it follows that

P (fl(n) > 10) < n−1.1+o(1).Thus by the Borel - Cantelli lemma the above assertion implies that almostalways for 2 ≤ l ≤ 4 there exists nl su
h that if n > nl then fl(n) ≤ 10.But for any �nite nl, there are at most a �nite number of representations asthe sum of l numbers. Therefore, almost always for 2 ≤ l ≤ 4 there exists a
Cl su
h that for every n, fl(n) < Cl. Set Cmax = maxl{Cl}. We show that(whenever every Cl is exist), for every n

r4(n) ≤ (Cmax)
44!. (5.10)We prove by 
ontradi
tion. Suppose (5.10) is false for some n = n

′ , i.e.,
r4(n

′

) > (Cmax)
44!. (5.11)51



We want to apply Lemma 1.6. Let H be the set of representations of n′ as thesum of 4 distin
t numbers from A. Clearly |H| = r4(n
′

), thus by (5.11) andapplying Lemma 1.6 we get that H 
ontains Cmax +1 representations of n
′ asthe sum of 4 distin
t numbers whi
h form a Delta - system {S4

1 , . . . , S
4
Cmax+1}.If the 
ommon interse
tion of these sets is empty then this Cmax +1 set forma family of disjoint 4 representations of n

′ , whi
h 
ontradi
ts the de�nition of
Cmax. Otherwise let the 
ommon interse
tion of the system be {v1, . . . , vr},where 0 ≤ r ≤ 2. If ∑i vi = s, then removing the 
ommon interse
tionea
h set will yield f4−1−r(n

′ − s) ≥ Cmax + 1. This is impossible in view of
fl(n) < Cl and the de�nition of Cmax. This proves (5.10), and in fa
t, alsoshows that c6 ≤ C4

max4!. The proof of Lemma 5.3 is 
ompleted.Now we 
omplete the proof of Theorem 5.1. Let J denote the event
J = {A : A ∈ Ω, ∃n0 = n0(A), such that r5(n) > c3n

5α−1 for n > n0}.By (5.3), (5.6) we have
P (J ∩ F) = 1,so that J ∩ F is non - empty. Consider a set A ∈ J ∩ F . By A ∈ F , thereexists a number n1 = n1(A) su
h that (5.5) holds. Let

C = C(A) = A ∩ [n1, +∞),and D = {u1, . . . , ut} = A\C. It follows from (5.5) that C is a Sidon set. Weprove that with probability 1, C is an asymptoti
 basis of order 5, i.e., thedeletion of the �small� elements of A does not destroy its asymptoti
 basisproperty. We prove by 
ontradi
tion. Assume that with positive probabilitythere exist in�nitely many positive integers whi
h 
annot be represented asthe sum of 5 numbers from C. Choose su
h an M large enough. By A ∈ J ,we have r5(M) > c3(A)M5α−1. It follows from our assumption that every52



representations of M as the sum of 5 numbers from A 
ontains at least oneelement from D. By the pigeon hole prin
iple there exists an y ∈ D whi
h isin at least r5(M)
t

representations of M . Then it follows from Lemma 5.3 thatwith probability 1,
c2M

5α−1

t
<

r5(M)

t
≤ r4(M − y) < c6,whi
h is a 
ontradi
tion if M is large enough.
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ÖsszefoglalásEbben a disszertá
ióban additív reprezentá
iófüggvényekkel és Sidon -sorozatokkal foglalkozunk. Megvizsgáljuk, hogyan lehet a kéttagú összegrevonatkozó eredményeket kiterjeszteni többtagú összegekre. A dolgozat beve-zet® részében röviden ismertetem a szükséges de�ní
iókat, fogalmakat, jelö-léseket valamint a kezdeti eredményeket. Az els® fejezetben rövid áttekintéstadok az Erd®s és Rényi által bevezetett valószín¶ségszámítási módszerr®l. Eza módszer fontos szerepet játszik a disszertá
ióban. A módszer alapjainakismertetése után adom meg a felhasznált tételeket. A második fejezetbenegy az additív reprezentá
iófüggvény monotonitására vonatkozó eredményttárgyalok, amely Sárközy András egy korábbi sejtése volt. Az eredményErd®s, Sárközy és T. Sós egy korábbi tételének kiterjesztése kéttagú összeg-r®l többtagúra. A bizonyításban a generátorfüggvény módszert használom.A harmadik fejezetben foglalkozom az additív reprezentá
iófüggvény di�e-ren
iájának korlátosságával, itt Erd®s, Sárközy és T.Sós Vera eredményeitélesítem, és terjesztem ki kéttagú összegr®l többtagúra. Valószín¶ségszá-mítási módszerrel bebizonyítom, hogy létezik olyan sorozat amely mutatja,hogy az ebben a fejezetben szerepl® egyik eredményem lényegében a legjobb.A negyedik fejezetben Erd®s és Sárközy egy tételét általánosítom többtagúösszegekre, ehhez V. H. Vu tételét használom. Az ötödik fejezetben Sidon -sorozatokkal foglalkozom. Nemrégiben Deshouillers és Plagne konstruáltakolyan Sidon - sorozatot, amely hetedrend¶ aszimptotikus bázis. Én javí-tottam ezt az eredményt, és valószínúségszámítási módszerekkel, mégpediga Janson - egyenl®tlenséget felhasználva bebizonyítom, hogy létezik olyanSidon - sorozat, amely ötödrend¶ aszimptotikus bázis.
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SummaryIn this thesis we devoted to the additive representation fun
tions andSidon sequen
es. We extend and generalize some results of Erd®s, Sárközyand V. T. Sós. In the Introdu
tion we give a short survey about the def-initions and notations. In 
hapter 1. we give a short survey about theprobabilisti
 method due to Erd®s and Rényi. This method plays an im-portant role in this thesis. First I introdu
e the probability spa
e we areworking with, and then I give some important theorems. In 
hapter 2. Istudy the monotoni
ity of an additive representation fun
tion. I extend oneof the results of Erd®s, Sárközy and V. T. Sós, by using the generating fun
-tion method. In 
hapter 3. I generalized and sharpen the results of Erd®s,Sárközy and V. T. Sós about the boundary of the di�eren
e sequen
e of anadditive representation fun
tion. In this 
hapter I also prove, that one of myresult is nearly best possible by using probabilisti
 methods. In 
hapter 4.I prove that one of the results of Erd®s and Sárközy about the behaviour ofan additive representation fun
tion is nearly best possible by using proba-bilisti
 methods, espe
ially the theorem of V. H. Vu. We say a set A ⊂ N isan asymptoti
 basis of order k if every large enough positive integer 
an berepresented as the sum of k terms from A. We say a set A ⊂ N is a Sidon setif every sum of two terms from the set A are di�erent. In 
hapter 5. I provethe existen
e of Sidon sets, whi
h are asimptoti
 bases of order 5. Re
entlyDeshouillers and Plagne 
onstru
ted a Sidon set whi
h is asymptoti
 basisof order 7. My proof is based on the probabilisti
 methods espe
ially theJanson's inequality.
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