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1 Introduction

The structure of the thesis is the following. First we introduce the reader to
those objects in differential topology which are investigated in the thesis (sec-
tion 2). Then we state and prove a generalization of Herbert’s multiple-point
formula (section 3.1). In the rest of section 3 we give various applications of
our main formula.

In section 4 we generalize and a give a new geometric proof of a theorem
of Sziics that describes the relationship between the multiple-points of an
immersion and the singularities of its 1-codimensional projection (see [10]).

The last part of the thesis is devoted to various product constructions.
Using the results from section 3 we investigate Cartesian products of im-
mersions (section 5.1). Then we define multiplication on prim and Morin
maps (sections 5.2, 5.3). As an application of the results on the products of
immersions we can compute the ring structure defined on the Morin maps
(section 5.4). Finally section 5.5 investigates singular strata of products of
generic maps.

The results of section 3 are joint work with Gabor Braun (see |2]), while
the results of section 5 are joint work with Andras Szics (see [12]).
Acknowledgements. [ would like to express my deep gratitude to my
supervisor Andras Sztics. He did not only teach me almost everything I
know about topology, but without his constant help and encouragement I

never could have written this thesis.



2 Basic notions

In this section we briefly review the main definitions and recall the main
constructions used in the thesis. These are all classical notions in topology
so we shall only mention their most relevant properties and give references
for the reader who is interested in the details. We shall also fix the notation

in this section.

2.1 Manifolds and maps

Throughout the whole thesis “manifold” will always mean “smooth (C*°-
differentiable), Hausdorff manifold”. We shall also understand manifolds to
be closed (i.e. compact and without boundary) unless otherwise explicitly
stated or clear from the context. Manifolds will usually be denoted by a cap-
ital letter with a superscript which stands for the dimension of the manifold
(e.g. M™). The superscript will sometimes be omitted for easier reading.

2.1.1 Maps

The main objects of investigation will be maps between manifolds. We will
always assume that all maps are smooth and proper. (Properness means
that the preimage of any compact set is compact. This is automatic when
the source manifold is compact.) Given a map f : M™ — N"*k the integer k
is called the codimension of the map. Recall that such a map induces a map
df : TM — TN of tangent bundles, called the differential of f. The classes

of maps we are interested in are identified using the differential as follows.
Definition 1. A map f : M" — N"** of nonnegative codimension is called

1. an immersion if for any x € M the restricted map df, : T,M — T,N
has rank n (i.e. its kernel is trivial). A map will be denoted by f :

M™ 9 N™* when we want to emphasize that it is an immersion.
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2. a Morin map if dim ker df, < 1 for every z € M.

3. a prim (projected immersion) map if it is Morin and the line bundle
kerdf C T'M is trivialized. (As we will later see this is equivalent to
saying that there is an immersion f: M™ o N"t* xR whose projection
to N is f, and this f is given up to regular homotopy. This explains

the name of these maps.)

2.1.2 Genericity

In most of the cases we are only interested in a special subset of these maps
which behave nicer than the rest. We shall refer to this subset as the “generic”
maps. What we exactly mean by this varies with the type of maps under

consideration.
Definition 2. We fix our notion of genericity for the maps defined above.

1. Animmersion f : M — N is generic if it is self-transverse, which means

that if f(x1) = f(z2) =--- = f(ar) =y € N but z; # z; (i # j) then
the subspaces Im df,,, ..., Im df,, are in general position in 7}, V.

2. A Morin map f : M — N is generic if it is self-transverse and its 1-jet

extension is transverse to the set of all corank 1 germs.

3. A prim map f: M — N is generic if it is generic as a Morin map and

its lift f : M — N x R is a generic immersion.

It is well known that in all the above cases the generic maps form an
open dense subset among all the maps of the given type. This implies that
by a small perturbation we can always make our maps generic, and that a

sufficiently small perturbation of a generic map is still generic.

2.1.3 Powers and diagonals

We shall often use Cartesian products of manifolds. For easier reference we

introduce the following notation.



Definition 3. For a manifold M™ let M) = M x M x --- x M denote its
r-fold Cartesian power. For a map f : M — N let f®) : M) — N0 =

fx fx---x f denote its r-fold Cartesian power.

Definition 4. Let

(@1, ym,) €V (3 £ ) (s = x5)}

A(V) =
O (z,...,2) e VI}

{
{
denote the fat and the narrow diagonals of V(") for any manifold V.

Remark 1. Some properties of a map f : M — N can be nicely expressed
using these constructions. It is easy to see that f is self-transverse if and only
if (") is transverse to 8,(N) outside A,(M) for every r. On the other hand f
is an immersion if and only if for every r the closure of f (T)_l((ST(N D\A (M)
is disjoint from A, (M). (For details see [17].)

2.2 Cobordism

Manifolds and their maps could be considered up to various equivalence
relations leading to completely different areas of topology. Our interest is in

the relation called cobordism.

Definition 5. Two manifolds M"™ and N™ of the same dimension are said
to be cobordant if there exists a compact manifold W with boundary
OW = M II N. It is well know that this is indeed an equivalence relation.
The equivalence classes are called cobordism classes.

It is easy to see that disjoint union gives a well defined addition on the
cobordism classes of n-dimensional manifolds. The empty manifold acts as
the unit element, and every class has an inverse. This makes the set of
cobordism classes into a group denoted by N,, and called the n-dimensional

cobordism group.



The cobordism class of the direct product of two manifolds depends only
on the cobordism classes of the manifolds. This observation allows one to de-
fine a multiplication on the cobordism classes. This makes the group ®;° N,

into a graded ring denoted by N, and called the cobordism ring.

Sometimes we want to consider oriented manifolds only. The cobordism
relation has its direct analogue for oriented manifolds as well. The resulting
ring is denoted by €2,.

The cobordism relation can be easily extended from manifolds to maps.
Let F denote a family of maps to a fixed manifold N. For example F could
be all the immersions mapping to N, or all the prim maps mapping to N,

etc. The maps in F will be referred to as F-maps.

Definition 6. Two F-maps f; : M" — N™** are said to be F-cobordant if
there is a compact manifold W"*! with boundary OW = M, II M, and an
F-map F : W — N x|[1,2] such that F~'(N x{i}) = M; and F|y, = f; x{i}.

Similarly to the manifold case this is an equivalence relation. The equiv-
alence classes (again called cobordism classes) form a group with the dis-
joint union of source manifolds being the addition. These groups are de-
noted N,,(N), Imm,,(N), Prim,,(N), Morin,, (N) when respectively the family
F consist of all maps, immersions, prim maps or Morin maps.

In the case of N = R™"* we shall write Imm(n, k) instead of Imm,, (R™*)

and similarly for the other type of maps.

Definition 7. Just as in the case of manifolds, we get oriented versions of
these cobordism groups if we restrict ourselves to maps between oriented
manifolds.

The oriented cobordism groups are denoted by ,(N), Imm>?(N),

n

Prim??(N), Morin??(N) respectively. In the case of N = R"** we will

mn

use the notation Imm®?(n, k) etc.



2.3 Multiple-point manifolds

Consider a generic immersion f : M" — N"*t*. The r-fold points of f
are those points in N whose preimage consists of exactly r different points.
We shall denote this set N,.. This is not always a closed set in N. Its
closure N, consists of those points that have at least r distinct preimages.
Set M, = f~'(N,) to obtain the r-fold points of f in the source manifold,
and let M, denote its closure.

The sets M, and N, are generally not submanifolds of M and N but
they are images of (non-generic) immersions of manifolds. Here we recall the

well-known construction to fix the notation: Let

Mr(f) = {(-Tla .. wxr) € M(T) : f(-rl) == f(xr)a (7’ 7&]) = (xz 7é x])}
The symmetric group S, acts on this set freely in the obvious way. Let
[z1,...,x,] denote the equivalence class of (zy,...,2,). On the other hand
S,_1 also acts freely on the last » — 1 coordinates. Here the equivalence class
of (x1,...,x,) is denoted by (x1, [z, ..., x,]). The sets of equivalence classes

are denoted by

~

Mr(f)/sr

A(f)
Ar Mr(f)/sr—l‘

(f)

There are natural, well defined mappings

—_—~

friAu(f) = N frllonsm]) o= fla)
friA(f) = M fr(zy, [z2, .. x]) =1
s$r () = AL(F) sp(n, [, -, 2y]) = [21, ..., @),

The images of fr and f, are clearly N, and M, and they are bijective to the
points that have multiplicity exactly . On the other hand s, is clearly an

r-sheeted covering.



The sets A, (f) and A, (f) are called the r-fold multiple-point manifolds of
f in the target and source respectively. They are indeed manifolds. Consider
the r-fold product £ : M) — N Clearly
M(f) = (f7) 71 (00 (N) \ A (M),
Since f is a generic immersion (see Remark 1), f( is transversal to §,(N)
and thus MT( f) is a manifold of dimension n — (r — 1)k. So after factoring

out with the free group actions we still get manifolds.

Remark 2. Let us note how the multiple-point manifolds depend on the
map f. If f is changed by a regular homotopy, then the cobordism classes
of f,, ﬁ, A, (f) and fA:( f) remain the same. This is easily seen by a generic-
position argument. This remains valid for f, and /Av,n( f) even if f is changed
by a cobordism. This explains why it is natural to consider cobordism when

dealing with multiple-points.

2.4 Singular points

Definition 8. Given a smooth map f : M — N where dim M < dim N,
a point x € M is said to be a 3’ point if the corank (i.e. the dimension
of the kernel) of df, : T,M — TN is at least i. The set of such points
is denoted by X'(f). If iy > iy then we can define ¥2(f) = X% (flgi(p)-

This method can be continued recursively to give the definition of 3(i1:2:ir)

points, where i1 > i5 > --- > 1,. This classification of singular points is

called the Thom-Boardman type. For details see e.g. [1].

Remark 3. If f: M — N is a Morin map then it has no X? points. The

singularities of such maps are classified by their Thom-Boardman type, which
/—}h
can only be w11+ 1) = S for some r > 0. (In the notation of [1] this

is A,.)



3 Multiple-point formulas

Multiple-point manifolds have been long studied from different view-
points. From the point of topology the question arises as follows. Given
a generic immersion f : M™ — N"** is it possible to express topological
invariants of its multiple-point manifolds using invariants of M, N and f?

The first such questions considered were the homology classes of the
multiple-point manifolds. It turned out that indeed these homology classes
are related to each other in a simple way that includes only little information
from f (namely the Euler class of its normal bundle and f*, the induced map
in cohomology). The formula was first stated by Lashof and Smale [9] but
it turned out to be partially false. It was corrected by Herbert [5] and later

Ronga [17]| gave a simple and very geometric proof.

Theorem 1 (Herbert’s formula). Let f : M™ — N""* be a generic
immersion. Then the closures of the r-tuple point sets, N,.(f) and M,(f)
carry fundamental classes with Zo coefficients. Denoting by n, and m, their

Poincaré duals in N and M respectively and setting e = e(vy) we have:
m, = f*(n,_1) —e-m,_

If both M and N are oriented and k is even, then the multiple-point
manifolds can be given a natural orientation. Thus one can interpret m, and
n, as cohomology classes with integer coefficients and the formula remains

valid in its original form.

Remark 4. For oriented maps of odd codimension the multiple-points in
the target might be non-orientable and in the source there is no canonical

choice of orientation.

Here we present a generalization of this formula that allows us to move
from homology classes to cobordism classes and is based on ideas of Ronga,

Kamata and Szdcs.
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3.1 The generalized multiple-point formula

Given a generic immersion f : M™ — N"** we can try to determine
the cobordism class of its multiple-point manifolds instead of the homology
classes they represent. It is well known that the cobordism class of a manifold
depends only on its characteristic numbers, thus it suffices to calculate these
numbers. Instead of evaluating a characteristic class of the multiple-point
manifold on its fundamental class we can take its push-forward into M and
evaluate it on [M]. (From now on [M] will denote the fundamental class of
the manifold M, unless otherwise mentioned.) So our goal now is to express
these push-forwards in terms of M, N and f. To do so we set up formulas
involving the push-forwards.

As it turns out these formulas are direct generalizations of Herbert’s orig-
inal formula. This is simply because the represented cohomology class is
exactly the push-forward of the unit element in the cohomology ring of the
multiple-point manifold.

Our result and the idea of the proof has its roots in the works of Sztics and
Kamata. Sziics [23] used the Herbert-Ronga formula in the oriented case for
double-point manifolds in K-theory and translated it to ordinary cohomology
via the Chern character to obtain a sequence of formulas involving push-
forwards of Pontrjagin classes of the double-point manifold.

Kamata [6] used the Herbert-Ronga formula in the unoriented cobordism
cohomology and translated it via the Boardman homomorphism to obtain
a sequence of formulas involving the push-forwards of the Stiefel-Whitney
classes of the multiple-point manifolds.

Later in [24] Sztics investigated the case of oriented manifolds immersed
in Euclidean space. Using a filtration on the multiple-point manifold he could
calculate its Pontrjagin numbers without pushing them forward to M.

The method presented here gives a general result containing all three

above results at the same time and which avoids complicated homological

11



calculations or the use of natural transformations between extraordinary co-

homology theories and ordinary cohomology.

3.1.1 Ronga’s lemma

We need the notion of sub-cartesian diagram and two lemmas from [17].

In the sequel v always denotes the normal bundle of an immersion:

Lemma 1 (Ronga). f, and ]?T are proper immersions with normal bundles

T r—1
vy = (I/](c )‘Mr(f))/sr and vy, = (0 x VJ(C )’Mr(f))/srfl-

Definition 9. A commutative diagram of proper immersions:

is said to be sub-cartesian if

(i) fa x fg: Z — A x B is an embedding onto {(a,b) € A x B : a(a) =
B(b)}

(ii) the following sequence is exact:

d(faxfs (da—dpB)
e

0—-TZ LA x B T, sy

The first condition of the definition says that Z is the intersection of A
and B where multiple intersections (that is: points that are multiple for «
or [3) are counted with appropriate multiplicity. The second condition says
that the intersection is clean in the terminology of Quillen (cf [14]), that
is, the tangent space of the intersection manifold is locally the same as the

intersection of the two tangent spaces.
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Definition 10. In a sub-cartesian diagram E = coker(da — df3) is called the

excess vector bundle.

Let h* denote any generalized cohomology theory with products and let

ep, denote the Euler class of a vector bundle in h*.

Lemma 2 (Ronga). If A, B, X and Z are h-orientable then o*f(c) =
fa(en(E) - f5(c)) holds for any c € h*(B).

We would like to apply Lemma 2 with X = N, A = M, B = A,_;(f), o =
f,B3= ﬁ: since the r-tuple points are in the intersection of the r — 1-tuple
points with the image of f. It is easily seen that in this case we have to set
Z = A (f)UA,_1(f), that is the disjoint union of the r-tuple point manifold
and the r — 1-tuple point manifold. The maps f4 and fg have to be defined

as below to make the diagram a pull-back diagram:

falacn = fr IBlap) = pr
fala, v = fra fBla, () = sr1

Here p, : A.(f) — Z:l(f) is the projection map defined by the formula

pr(x1, [Ty -y 2]) = [m9, ..., 20

This way we get a sub-cartesian diagram. The genericity of f implies that
the excess vector bundle over A, (f) is the zero bundle and Lemma 1 implies
that it is f vy over A,_1(f).

If all manifolds involved are h-orientable we can apply Lemma 2 to an
element ¢ € h*(Z;_/l (f)) to get

F(fr(€)) = fr(pr(€) + frovi(en(favy) - 5741(c))
= [rn(0(c)) +en(vy) - fron(sia(c)). (1)

13



3.1.2 The main formula

Let v denote a multiplicative characteristic class in A*. That is, for any
bundle ¢ : E — B there is a class 7(§) € h*(B) such that this class is natural
with respect to induced bundles and (& ®&2) = v(&1) -y(&2)- This definition
is valid for bundles with any given structure group. Well-known examples of
such a 7 are the total Stiefel-Whitney class when h* = H(-,Z,) or the Euler
class. We shall allow (&) to be an infinite sum but we will assume that there
is an other multiplicative characteristic class  such that -3 = 1 (so the
Euler class is excluded now).

Let us choose ¢ = y(v;— ). Then fi(c) = f5(v(vi—)) = v([5(vim))-
We compute the two parts f3|a,(5)(c) and fj|a,_,(s)(c) separately.

First notice that since A,(f) is the transversal intersection of M and

Z:l(f) it follows that f5(v;— )|a.(f) = Vtala,;) = V4.~ Thus
fu(f5(e)) = F(V (B (vi=)) = fn(h(vp,) (2)

To calculate the other part first we make a trivial remark that we will use
later.
Remark 5. For any immersion g : V' — W we have v, ® TV = ¢g*T'W so
Y(v,) = gzv((TTVV;/). Using the standard formula fi(f*z-y) = x- fi(y) this implies

that

9(1(vg)) = gi(g™y(TW) - B(TV)) = (TW) - gu(B(TV')) (3)
It is easy to see that fg|a,_,(s) is an 7 — 1-sheeted covering of Z:/,l(f)

This implies that the bundle f3v;— [, (s is equal to the normal bundle of

-1

the composite map f,_1 o fg|a,_,(y) Which is in turn equal to f o f,_; since
our sub-cartesian diagram is by definition commutative. Thus we have the

following sequence of equations:

fr(f5(0) = frn (VB (Wg=))) = o0 (V(Wpos, 1))
= L) -y, ))) = 2 (p) - frn(i(vy, ) (4)

14



(We used the fact that vsor, | = vy, @ f,(vf) and the standard formula

which we also used in the previous remark.)

Lemma 3. Let h* be a generalized cohomology theory with products. Then
for any invertible multiplicative characteristic class v taking values in h* and
any generic immersion f : M — N for which all the arising manifolds are

h-orientable we have

P Frenm)) = Fu(rvs) + enlvs) -1 (vg) - fron(y(vs, )
Proof. Plug (2) and (4) into (1). O

The class v of the normal bundles of f,, f._; and ﬁ: are hard to evaluate
directly and so we write them in the terms of classes of the tangent bundles

of the multiple-point manifolds. To this end we use (3). We get
P (=) = ((TN) - f foo(BTA L ()))
Sy (wp)) =v(TM) - fr(B(TA()))

en(vy) - v(yr) - frou((vy,0)) =en(vy) - f1(v(TN)) - B(TM) - v(TM)-
- Jre1(B(TA1()))

Combining these formulas with Lemma 3 and dividing by v(T'M) we get

[ (TN)

(SR BEBS))
—en(vy) - frn(BT D))

We can think of this formula as a recursion which expresses an invariant of
the r-tuple point manifold in terms of invariants of the r — 1-tuple point man-

ifolds. Let us denote by m, = f,(8(TA,(f))) and by n, = f,(B(TA(f)))
the quantities we are interested in.

Main formula.
my =y(vs) - (f "1 —en(vy) - mp_1) (5)

15



The difficulty in applying this formula is that a priori we know nothing
about n,_;. But in favourable cases we can relate it to m,_; thereby obtaining

a real recursion-formula on the m,.

—~

Lemma 4. fi(m,)=p-n, wherep € h°(A.(f)) is a cohomology class such
that s [A.(f)] =p- [A(f)]

Proof. Consider the following commutative diagram:

A ()= A ()
fr 1.
f

M—N

As s, is an r-sheeted covering, the tangent bundle of A.(f) is induced
from the tangent bundle of ANT( f) by s,. By Poincaré duality p = s,/(1) =

spsi(1) € h°(A,.(f)). Thus:

f!(mr> = f'fr'(ﬁ(TAr(f))) = ﬁ'sr'(ﬁ(S:(T/AVT(f))))
= fu(snst(B(TAL(S))))
= Fa(BTALF)) - s055(1) = fulp- BTA(f)) = p- 1y

O

—~

Now if p € h%(A,(f)) is an invertible element then it follows that fi(m,.)
is divisible by p and we can rewrite Lemma 4 in the form n, = @. This
is the case for example if we take cohomology Q coefficients and restrict

ourselves to oriented manifolds:

Theorem 2. Let f : M™ — N™% be a generic immersion of even codi-
mension between oriented manifolds and choose a cohomology theory with
coefficient ring h°(pt) = Q. Then we have

e =atoy) - (FEE2) ey, )

16



Proof. Since M and N are oriented, so is M, (f). The action of the symmetric
groups S, and S,_; are orientation preserving since k is even. So both A, (f)
and A, (f) are oriented and s, : A, (f) — A,(f) is also orientation preserving.
This means that p = r in Lemma 4. Thus we are done if we combine the

Main Formula and Lemma 4. ]

Remark 6. If k£ is odd then the S, action contains orientation reversing
involutions on ]\Zfr( f) and so either &( f) is unorientable or its components

have no preferred orientation.

To make explicit calculations with the formula of Theorem 2 one has to
deal with the term f*f,. One way to do this is to suppose that f* = 0
in positive dimensions. We are going to use this approach in section 3.2.
However there is an other case when we can resolve it, and that is when
there is a bundle ¢ over N such that TM = f*(¢).

Theorem 3. Let f and h* be as in Theorem 2. Further assume that there
is a bundle € : E — N such that TM = f*¢, and that e(vy) = f*(y) for an
y € h*(N). Then for every r > 1 there is a cohomology class k, € h*(N)

such that m, = f*(k.) and the following simple recursion formula holds:

b =N (55 ) o
where ¢ = fif*(1) € h*(N).

Proof. The statement easily follows by induction on r. For r = 1 we have

my = B(TM)=6(f*(&)) = f(B(£)) so we can choose k1 = ().
For the inductional step notice that v(vy) = % = [*(V(TN)B(E)).

So by the inductional hypothesis and Theorem 2

me =t (P, )

]
_p (V(TN)ﬁ(f) (% B kl)) '

17



Thus we may choose

ki :=~(TN)B(E) <%]€1—1) Yy ’fr—l)

kr,1 - C

=)0 (22— ) = W) (5 ) o

which finishes the proof. O

3.2 Special cases

In this section we shall show how the results of Kamata [6] and Sziics [24]
follow from our method. We apply the general machinery of section 3.1.2
with the right choice of the generalized cohomology theory h* and the mul-
tiplicative characteristic class 3 to obtain the various special cases.

3.2.1 The unoriented case

Let our cohomology theory h*(X) = H*(X,Z,)[[t1,1ts,...]] be the ring of
formal power-series of infinite variables over H*(X, Z,). For an n-dimensional
bundle ¢ : F — B let us define

wy(§) = H (14 ity + afty + oty + - - -)
i=1
where the total Stiefel-Whitney class of £ is expanded by the splitting prin-
ciple as
w(é) = (1+ar) - (1+an).

Since w(§) is symmetric in the variables «; it is really a characteristic
class. Its multiplicativity and naturality easily follow from that of w(&). It
is also invertible since w;(&) always starts with 1+.... Thus we may choose
v = wy. It is clear that e,(§) = e(§) € H*(B,Zy) where e(§) is just the

ordinary Euler class of &.

18



Theorem 4 (Kamata). Let f : M™ — N™ be a self-transverse immer-
sion for which f* is the constant map in positive dimension. (This is satisfied

if for example f is null-homotopic.) Then

I (m) =) (wtém)r
in H*(M, Zs)|[[t1, 2, . . .]]-

Proof. Let us look at the Main Formula with the choice of v = w; and

B = L. Since f* = 0 and we are working with Z, coefficients, the for-
wt

mula simplifies to m, = w(vs)e(vy)m,—;. Thus by induction we have
my = (w(vy)e(vs)) ™ my. Here wy(vs) = f*(w(TN)) - B(TM) = B(TM).
On the other hand f is just the identity map of M so my; = S(T'M). Thus
m, = B(TM)" - e(vy)""! and this is exactly what we wanted to prove. 0O

Evaluating both sides on [M] and noticing that

{(fr(), [M]) = (2, [A:()])

we get

Corollary 1 (Kamata).

(a0 = (e (g ) 1)

Remark 7. It would have been simpler to use 5(§) = w(§) since this way
we get a formula for the push-forward of w;(T'A,.(f)) instead of its reciprocal.

Then instead of the above corollary we would get

(we(TA()), [A(F)]) = (elwp) ™" - (wi(TM))", [M]).

Though this form is better for any application, we wanted to state the theo-

rem exactly as Kamata stated it in [6].

This formula then implies:
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Corollary 2 (Kamata). If a self-transverse immersion f : M™ — N™*
s null-homotopic and M 1is null-cobordant then so are all the multiple-point
manifolds A.(f).

Proof. The idea of the proof is the following. The single equation of the
above corollary actually implies equation of every coefficient in the formal
power series. The coefficients on the left hand side are all the characteristic
(Stiefel-Whitney) numbers of the multiple-point manifold. Similarly on the
right hand side the coefficients are Stiefel-Whitney numbers of M. If M
is null-cobordant, then all its Stielfel-Whitney numbers are zero. Thus the
same holds for the multiple-point manifold, hence it is also null-cobordant.

For more details see [6]. O

Remark 8. We cannot see any easy way to avoid the use of formal power
series. If, for instance, we choose 3(£) = w(&) the total Stiefel-Whitney class,
then the corollary will express only one Stielfel-Whitney polynomial in each

dimension, instead of expressing all of them at the same time.

3.2.2 The oriented case

In this section our cohomology theory h*(X) will be H*(X,Q)[[t1,t2,...]]-
Let f: M™ — N™* be a generic immersion where M and N are oriented
and k is even. In the case when f* is the zero homomorphism in positive
dimensions, we will be able to express the push-forward of any Pontrjagin
polynomial of the multiple-point manifolds in terms of the Pontrjagin classes
of M and e(vy).

We present the same result in two different forms. There seems to be no

simple direct proof of the fact that the two forms are actually equivalent.

Symmetric polynomials As in the previous section, we have a multi-

plicative characteristic class which is defined for a bundle £ : £ — B with
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the formula
n
i=1
where the total Pontrjagin class of ¢ is written as

p(&) = T+wy1) - (14 yn)

Here the y; are 4-dimensional cohomology classes and the j** Pontrjagin class
of £isp;(€) = a;(y1, - - -, Yn), the j™ symmetric polynomial in the variables y;.
Since 3 is symmetric in the variables y; it is well-defined. It is also obviously
natural and invertible. It is also multiplicative since the total Pontrjagin
class is multiplicative modulo 2-torsion but with QQ coefficients there is no
2-torsion.

Let us apply the Main Formula with v = 1/8. As in the previ-

ous section the f* = (0 assumption simplifies the formula and we get
my, = —B(TM)e(vg)m,_;. As my = B(T'M), we have by induction that
Fn(BTANS))) = (=evp) - BT M) (6)

This formula is actually not a single equation, since both sides are formal
power series with infinite variables. Thus they can only be equal if the
coefficients of all the corresponding monomials are the same. So we have
an equation for every monomial of the form tlfth - -tZS, s> 0,b; > 0. These
equations contain all the information needed to calculate the push-forwards
of the Pontrjagin polynomials of the multiple-point manifold. To extract this
information we use the Hirzebruch base of symmetric polynomials.

For a partition I = (ay,...,a,) of |I| = a; + -+ + a, let z; €
HY(B,Q) denote the smallest symmetric polynomial containing the mono-

ai, a2

mial y;'yy® - - - Y. For example

Ty =y + -+ Y = p1(§)
1) = Y12 + iy + - = p2(§)
T@) = Yi + - yn = 1(6)* — 2pa(§)
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If (by abuse of notation) we introduce the following operation on parti-
tions:

I(b) = I(by,...,bs) :=(1,...,1,2,...,2,...,8,...,8)
then it is easy to see that

BE) = M+yti+yita+ ... )L 4yots +ysto+... ) - (L Fynty +y2ta+...)
= Y mptR (7)

(b1,..,bs),5>0,b; >0

Now we can think of (6) as a formula that tells us the push-forward of any

characteristic polynomial x7, I = (ay,...,a,) of the multiple-point manifold.
It is exactly (—e(vs))"~! times the coefficient of £2'¢5% - - - % in 3(T'M), where
bi = j:a; =1}

As any x; is a polynomial of Pontrjagin classes and every such polynomial
is a linear combination of the x;, we get the push-forward of all the Pontrjagin

polynomials. And finally the formula

{(fr(), [M]) = (2, [A:()])

gives us all the Pontrjagin numbers of the multiple-point manifolds.

Pontrjagin polynomials With the use of a different multiplicative charac-

teristic class we can express push-forwards of Pontrjagin polynomials directly

with Pontrjagin classes of M and e(vy). The formula we are going to prove

this way was first proved by Sziics in [24| by a completely different method.
For an orientable bundle £ : F — B let

N

8(6) = 1A +pu(Oti + p2(O)EF +---) € H (B, Q)[[t, .. tn]]

i=1
where N is a large number. As p(§ @ n) = p(&) - p(n), an easy calculation

shows that each factor of our class 3 is indeed multiplicative. Naturality and

invertibility of ( is obvious.
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Just as in the previous section, formula (6) holds for our class 3. On the
left-hand side the coefficient of £2* - - - 5 is the push-forward of the Pontrjagin
polynomial pll’l . -p?(,v of the multiple-point manifold. It is also easy to see

the coefficient of the same monomial in the right hand side of (6). As

BTM)" = [+ pi(TM)t; + po(TM)EF + -+ )7,

i=1

the t°* part comes from the first factor, the t5* from the second, and so on. It
is also easy to see that the coefficient of t2* in (14py (T M)ty +po(TM)E3+---)"
is exactly the 4b; dimensional part of p(T'M)" = (1+py (T M )+pe(TM)+---)".

Let us denote by ¢; the 4; dimensional part of p(T'M)". For a partition
I = (b1,by,...,by) let us denote p"(TM); = qb, - - - @by, and let the usual

Pontrjagin polynomial pI(TAT(f)) = DPb:1Pbs " " Doy (TAr(f)

Theorem 5.
Fr(pr(TAN(f))) = (=elvy) P (TM);

Corollary 3 (Szftics).

pr(TA(F), [AN])

(=) ~'p"(TM);, [M]) (8)

3.3 Numerical calculations

Sztics used his original formulas to show that there are cobordism classes
of manifolds that do not contain double-point manifolds. Here we carry out
similar calculations for multiple-point manifolds of arbitrary multiplicity.

We are going to use the machinery of the previous section to obtain
numerical results on the cobordism classes of multiple-point manifolds. We
will show that many cobordism classes do not contain manifolds that arise as

the multiple-point manifold of an immersion f : M™ — N™* with f* = 0.
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Lemma 5. Let V = CP* x CP?*2 x ... x CP?*. Then

s

<pk1+ +ks 7 V]> (k1+ H 2]{? +1
i=1

Proof. 1t is well-known that p(CP") = (1 + y)"*! where y € H*(CP") is the

square of the Euler class of the canonical line bundle over CP". So
p(V) = p(CPH) x p(CP#) x -+ x p(CPH) = (1+5)%1+ x - x (14 5%+,

The 4 dimensional part of this is

S

pl(v):Z(2k2+1)(1xXleX1XX1)

i=1 i—1 5—1

and so
- oy (ki k
plfl-f— +ks _ (yk'l SRR, yks) X H(2kz + 1)]61 . H ( N s)‘
i=1 i=1 t
Since y*1 x --- x y*s is the generator of H*(*17+ks)(V/) this finishes the
proof. O

Lemma 6. The greatest common divisor of all the numbers (pP(V),[V])
where V' runs over the 4n dimensional oriented closed manifolds is 1 if n #
1(3) and is 1 or 3 if n = 1(3).

Proof. The function f(V) = (p?(V),[V]) is an f : Q4, — Z homomorphism.
By the previous lemma we have

F(CP?™) = (2n+1)" = A and f(CP? x CP?"2) = (711) 3. (2n—1)""! = B,

It is clear that n,2n — 1 and 2n + 1 are pairwise coprime, so the greatest
common divisor (A, B) of A and B equals to (3,2n+ 1). Thus (A, B) =1 if
n # 1(3) else (A, B) = 3. Since f : Q4, — Z is a homomorphism, there is a
manifold V4" such that f(V) = (A, B) and this proves the lemma. O
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Theorem 6. If a 4t dimensional oriented manifold V4 is the r-tuple-point
manifold of an immersion f : M™ — N™k (ie. V = A.(f)) with f* =0 in
positive dimension, then (pi(V'),[V]) is divisible by r’.

Proof. Let us calculate (p{(TV),[V]). By (8) we have

O

Define the homomorphism A, : ImmSO(m, k) — Qy—k(r—1) from the
cobordism group of immersions of oriented m-manifolds into R™** to the

oriented cobordism group by

where [-] now denotes cobordism class. This homomorphism is well-defined
when m and k are even. Combining the last theorem with the last lemma

we get:

Corollary 4. If m — k(r — 1) is divisible by four then |coker(A,)| >
m—k(r—1)

r— 1 /3% wheree =1 if 3|r and m — k(r — 1) = 1(3), else ¢ = 0.

This is a generalization of Sz{ics’s result obtained in [23].
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4 Multiple-points and projections

There is a surprising relation between the multiple-points of an immersion
g: M 3~ N x R and the singularities of its projection f : M — N that was
found by Sztics in [25] (see also [20]). Namely he showed that if N is a
Euclidean space then the r + 1-tuple-points of ¢ are cobordant to the X!~
points of f. The proof of this result involved computing the characteristic
numbers of the two manifolds and observing that they coincide.

It is very natural to ask whether this cobordism can be “seen” in an
explicit way hidden in the geometry of f, not just as mere luck that all the
characteristic numbers coincide.

We shall answer this question in the affirmative by constructing a cobor-
dism that connects the two manifolds. This allows us to slightly extend the
original theorem: instead of cobordism of manifolds we obtain singular bor-
dism of maps, and we prove the theorem for any smooth target manifold
N.

Theorem 7. Let f : M™ — N"* be a prim map, and let g : M & N x R
be its lift to an immersion. Then for any r > 1 we have g, ~ L =1(f), that
is they represent the same element in the singular bordism group N(M).

If M and N are oriented and the codimension k is odd, then g, ~gso

Ylr-1(f), that is they represent the same element in the singular oriented
bordism group Q(M).

4.1 Preparations

Let us fix a prim map f : M" — N"t* its lift g : M 9+ N x R and
r > 2 (for r = 1 the statement is obvious). We shall introduce intermediate
manifolds and their maps to M which we shall call 'mixed’-point manifolds.

For any 1 < ¢ < r let us consider those points in M that are i-tuple points
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of g and at the same time X"~ points of f. These points do not necessarily
form a submanifold of M, but we can construct their resolution just like we

did for the multiple-points: Let us consider the map
Gy = glgtri X gx- - xg : T (f)XMx- - XM — (N xR)x---x (N xR),

where we take ¢ — 1 factors of M on the left, and thus i factors of (N x R)
on the right.

Definition 11. The fat diagonal of X' (f) x M~Y can be defined analo-
gously to A;(M), since X' (f) C M is a submanifold. Let us denote

AT(M) = {(21,29, ..., 2;) € (f) x MOV 2 35 £ 12 = ).

Since f is a generic prim map and ¢ its generic lift we have that G,
is transverse to the narrow diagonal §;(N x R) outside of the fat diagonal
AT7{(M). Since g is an immersion the set M;,_;(f) := G (8;(N x R)) \
AI7Y(M) is a closed submanifold in X!~ x M@~ The symmetric group
S;_1 acts on X' x MO~V by permuting the last i — 1 coordinates. This
action restricted to Mim,i( f) is free, so we can factorize and get the manifold

AL = M;,_i(f)/Si-1.

A point of AL can be referred to as (z1, [z2,...,2;]) where the z;’s are all
different, g(z1) = g(z3) = --- = g(x;) and x; € X' —i(f). In this notation
the desired resolution
Moo AL — M
is given by
(x1, [T2, .. ., mi]) — 1.

(The maps f, g are omitted from the notation.) It is easy to see that the man-
ifold A’ has dimension n — (r — 1)(k + 1) and in particular A7 = A,(g), Al =
gr and X! : Al — M is the natural inclusion X'*=1(f) — M. Thus the

theorem follows from the following lemma.
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Lemma 7. A ~ M~ ..~ )

The proof consists of two very different ingredients. The first ingredient
is the global construction of the desired cobordisms using the map f. The
constructed spaces are easy to describe but they are not obviously mani-
folds. The precise proof that they are indeed manifolds requires detailed
study of the map f near its singular points. Thus the second ingredient is a
local computation using normal forms. This computation is only a technical
point so first we give the proofs omitting the computational details. Then in

section 4.3 we finally show how to carry out the computations used earlier.

4.2 Construction of the cobordisms

Let us again consider the map
Gi =gl Xgx-Xg: Sh=i(f)xMx---xM — (NxR)x---x (N xR).
Let us define

AF = {((z,s), (z,1),...,(x,1) € (N xR)D : 5>t}

7

Outside of A7~"(M) the map G; is transverse to A and A} = §;(N xR),
since both f and g are generic and thus self-transverse.

Let us now define H' = G;'(A}) \ A77(M). Transversality implies that
H'is a (not necessarily compact) manifold with boundary G;*(6;(N x R))\
AT (M) = M;,_;(f). Let us denote the closure of H' in X ~(f) x M1
by H. Obviously H \ H' C A/"*(M). We have seen in section 4.1 that OH’
is a closed manifold disjoint from the fat diagonal. Thus OH' is disjoint from
H\ H' C A77(M).

Let us take a point (x1,...,2;) € H\ H'. Then by definition of H’ there
exist points y;“ (k> 1,1> 7 < 1) that fulfill all the following requirements:

1. For every j we have limy_, y;-“ = ;.
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2. yt € Si(f).

3. For any fixed k the y’s are all different.
4. g(y},) = g(y},) for any ji, jo > 2.

5. f(y},) = f(y},) for any ji,jo > 1.

Since g is a generic immersion, 3. and 4. imply that Vj > [ > 2(z; # x;).
Then since H \ H' C A"(M) there must be a j > 1 such that z; = z;.
Thus y} — 1 and y¥ — x; as well. Furthermore yf € X'~ (f). Theorem 8
in section 4.3 can be applied and hence x; € Xtr—=+1(f).

Conversely let us suppose that z; € X'—i+1(f) and z,...,7;_; are all
different from each other and z; and g(z;) is the same for every 1 < j <i—1.
We want to show that in the neighborhood of (z1, 1, %o, ..., x;_1) the set H
is a compact manifold with boundary and (xy,z1,2s,...,2;,1) is on OH.

First consider the first two factors separately from the others.
Go=glsiipy X g : S (f) x M — (N x R)®.

Let us denote H) = G5'(AJ). By Theorem 9 in section 4.3 we know that
locally around (xi, ) its closure Hy = cl(H)) is a compact manifold with
boundary H, = {(u,u) : u € XLl—+1(f)}. Clearly H is locally the complete
intersection of Hy C X'=i(f) x M around (xy, ;) and Mi,g(g) c M2
around (xo,...,2;_1). Thus the genericity of f and g implies that H is also
locally a compact manifold with boundary 0H the complete intersection of
0Hs and Mi,g(g).

Thus H is a compact manifold. Its boundary consist of two disjoint
components H \ H' and 0H' = Mi,r,i(f). The symmetric group S;_; acts on
Nhi(f) x M@V by permuting the last i — 1 coordinates. By definition H’
is invariant under this action. The above considerations show that 0H’ and
H\ H' are also invariant, and the action is free on each. Thus we can factorize

by this action on H and get that the quotient is again a compact manifold
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H with boundary 0H'/S;_; and (H \ H')/S;_1. By definition dH'/S;_, =
Mim,i(f)/Si,l = A’. On the other hand we have seen that

H\ H = {(z1,29,...,2;) € AT (M) \ Slr=+1(f) x A;_1(M) :
pg(xy) = g(a) (L<j <1<}

Thus there is a natural map ¢ : (H \ H')/S;_;1 — A! that is given by
o(x1, [T2, ..., xi]) = (21, [T2, ..., Tj_1, Tj41, . .., 7)) when z; = x;. This map
is clearly a diffeomorphism. Thus (H \ H')/S;_; = Ai

Finally projecting everything to the first coordinate we get a map H—M
that on the boundary coincides with A% and A“"!. Thus A% ~ \ifL. O

Remark 9. If the codimension k is odd, then the codimension of ¢ is even.
So if M and N are oriented, then H' can be given a natural orientation.
This is preserved by the action of S;_; and so the manifold H that creates
the cobordism between A and A\:™! is oriented. Thus A’ ~go A" and the

oriented part of theorem follows as well.

4.3 Local computations

Let us consider a prim map f : M™ — N Let us write n = r(k+1)+2z.
Then the X!"-points of f form a z-dimensional submanifold in M. Let z €
YIr(f) \ Z+1(f). Then (according to e. g. [1]) it is possible to take small
Euclidean neighborhoods of x and f(x) and introduce local coordinates such
that f takes the following local normal form (we take both z and f(z) to be

in the origin):
F- (RT(IC+1)+Z’ O) _ (RlJrkJr(T(kJrl)fl)Jrz’ O)

(t>gTay7,_l7 s aylaﬁ) = (pO(t)>pl(t)a cee >pk(t)>ya§)a

where y = (Y50, Y1 -+ Yj) € REF forevery 1 < j <r—1landy =
(Yr1s Yr2s s Yrk) € R*. By y we denote the collection of all y!, so y €
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R™*+D=1 " Finally s = (s1,...,5,) € R*. The polynomials p; are defined by
po(t) =t 4y, 1 0t" ' +- -4y of which is of degree 7+ 1 and for any i > 0
we have p;(t) = y,;t" + - - - + y1 ;¢ which is of degree r. We will think of the

p; mostly as polynomials of the single variable ¢.
Lemma 8.
1. The point (t,y,s) is a XY -point of F if and only if pi(t) = p}(t) =
:pl(-j)(t) —0 for every 0 < i < k.

2. The set of such points form a submanifold in R D42 which can be

smoothly parametrized by s, YooYy
Proof. Part 2 easily follows from part 1, since if j <r and s,y ,... 'Y,y are
fixed, then pgj )(t) = 0 is a non-degenerate linear equation for Y- This can be

uniquely solved. Then pgj 71)(15) = 0 is a non-degenerate linear equation for
Y, and so on. Finally if 7 = r then obviously the only solution is y;; = 0
for every i, independently of s. Thus it suffices to show part 1.

We will proceed by induction on j. The initial step j = 1 is easy to see:
dF' is singular if and only if p}(t) = 0 for every ¢ and in this case ker dF’
is the t-axis. Now let us suppose we know the statement for ;7 — 1 and
take a point x € XU (F). Then x € XY-1(F) and kerd,F C T, X% (F).
Then there is a sequence of points (i) = (t(i),y(i),s(i) € XY= (F) such

— 1 and 1Oyl — 0. Let us focus on p,

t(i)—t =
|2(i)—=|

that x(i) — = = (t,g, s), FOET
where [ is arbitrary but fixed, and temporarily denote it by p. We will also

temporarily include in the notation of p all its hidden variables. Then

G=1)(4() o) — =1
. pUTH(t(i),y) — YV (t, y)
PP (t,y) = lim = = U

= i—o0 t(z) —t
o PV, ) — P, Y0))
= lim = = = 0.
i—00 t(Z) —t

Here (1) holds since pi=Y(t,y) = pU=Y(t(i),y(i)) = 0 by the inductive hy-

pothesis. (2) holds since p~ is a fixed finite sum of expressions linear in y
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ly(8)—y(3)]
and 0

is true for j. This completes the induction and thus proves part 1. O

— (. This argument can be easily reversed and so the statement

Theorem 8. Let f : M™ — N"** a generic Morin map. If there exist
points x; # x. € M;(i > 1) such that r; — z, ¥, — z, z; € X' (f) and
f(x;) = f(z}) for every i, then x € Ll+1(f).

Proof. 1t is obvious that x € X!(f). Let us suppose that x € X!(f) \
Ylr+1(f). We can consider f locally around  and introduce Euclidean neigh-
borhoods as before, denoting the function in the new coordinate-system by
F. As z; — z and 2 — =z, these points will fall into the chosen neighbor-
hood with at most finite exceptions. From Lemma 8 it is obvious that the
only X'"-points of F' are those for which ¢ = 0 and y = 0, and s is arbi-
trary. On the other hand if F'(t,y,s) = (0,0,...,0,0, §)_then obviously t =0
and y = 0. So none of the Elr-[;oints of F' are double points of F' which is

contradiction. O

If f: M" — N"*is actually a prim map with lifting g : M"™ = N*"** xR
and x € Xl (f)\X!+1(f), then we can take the Euclidean coordinates around
x and f(x) introduced at the beginning of this section, and choose a last extra
coordinate around g(z) such that g takes the local form G(z) = (F(x),t).

Let 7 < r and let us consider the set

A ={(u,v) ER"x R" : u € XY (F), F(u) = F(v), t(u) > t(v)}

and its closure A = cl(4’).

Theorem 9. The set A is a manifold with boundary 0A = {(u,u) : u €
Yli+i(F)}.

Proof. Theorem 8 implies that a boundary point of A" must be in X1+ (F).
We shall give an explicit smooth parametrization of A’ on an open halfspace,
and show that this extends smoothly and bijectively to a parametrization of
Yli+1(F) on the boundary of the halfspace. It is obvious that the variables
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s play no role whatsoever, so without loss of generality we may assume that
z = 0 and omit s from the further calculations.

The condition F'(u) = F(v) obviously implies y(u) = y(v), so (u,v) € A’
if and only if t(u) > t(v), and pi(t(w)) = pl(t(w)) = --- = pP (t(w)) =
pi(t(u)) — pi(t(v)) = 0 for every i. (Here we think of p; as a polynomial of
one variable. Its coefficients depend on y, but since y is independent of u
and v, this notation makes sense.) - -

We claim that for any choice of parameters t(v) > t(u),gr,gr_l, SR

there is a unique choice of y . Y, depending smoothly on the parameters

such that the resulting pailfj:)lf points (u,v) € A’. (In case of j =r — 1 there
is only a single parameter ¢(v) > 0.)

Let us first deal with the case j < r — 1. Then for each i the problem of
finding y;+ 14, Yj: - - yri such that p(t(w)) = p!(t(u)) = -+ = pi’ (H(u)) =
pi(t(u))—p;(t(v)) = 0 holds can be solved independently of each other. In fact
the problem is the same for every ¢, so we fix an arbitrary ¢ and denote p;(t) =
p(t) = A\t"+ -+ -+ it temporarily. Let us write p(t) = q(t) + \j 272+ -+
At =q(t) +r(t). Since A\, ..., Aj1o2,t(u) and t(v) are fixed parameters, we
know the value of 7(t(u)),r(t(v)), " (t(u)),r"(t(u)),...,7V(t(v)). We have
to find the coefficients of ¢q. Let us write ¢ as a Taylor polynomial around
t(u). Then

q(t) = q(t(w) + > ¢ (t(u)) - (= tu)' | Ajg1 - (E—t(w)™'. (9)

7l
i=1

Since 0 = p® (t(u)) = ¢ (t(u)) + r@(¢(u)), in (9) the only unknown value is
Aj+1. By definition

q(t(v)) = q(t(u)) = p(t(v)) = r(t(v)) + r(t(u)) — p(t(w)) = r(t(w)) —r(t()),

and hence by substituting ¢t = ¢(v) in (9) we get that

(L N e S gy @)
=) <<t< D=l = Yoy - = )
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As every quantity on the right hand side is fixed and ¢(u) > t(v) we find
that the parameters uniquely and smoothly determine A;;;. Then all the
remaining \’s are uniquely and smoothly determined by the Taylor expansion
(9). Finally to see what happens on the boundary of the halfspace t(u) > t(v)
just observe, that the vanishing of the derivatives of p at ¢(u) imply that
p(t) = p(t(u)) + (t — t(u))’ ™! - w(t) for some polynomial w(t). Then the
equation p(t(v)) = p(t(u)) is equivalent to w(t(v)) = 0. Then if t(v) — t(u)
converges to 0 the solution will converge to a w(t) for which w(t(u)) = 0,
which is equivalent to saying that pU*V(¢(u)) = 0. So the boundary of the
halfspace t(u) > t(v) parametrizes those points (u,u) for which p'(t(u)) =
P (t(u)) = --- = pUt(t(u)) = 0 which is equivalent to u € X1+ (F).

Now consider the case j = r — 1. The only parameter is ¢(v). Let us
suppose that we have a solution u that satisfies all the equations. Let ¢ > 1.
Then p;(t) is a degree r polynomial for which the first r derivatives vanish at
t(u). Thus p; = ¢; - (t — t(u))". Further we know that p;(t(v)) = p;(t(u)) =0
while ¢(v) > ¢(uw). This is only possible if ¢; = 0. So all the p;’s must
be identically 0, except for pg. Let us temporarily denote po(t) = p(t) =
trtL 4 N _1t" 71 4+ .- - 4+ \it. The constraints on the derivatives imply that

p(t) = ple()) + 97 ew) - Ay

The polynomial p has no 2" term by definition, so p™ (t(u)) = r!(r + 1)t(u),
and so
p(t) = p(t(w)) + (¢t + 7 - t(w))(t — t(w))".

Finally

p(t(u)) = p(t(v)) = p(t(u)) + (t(v) + 7 - t(w))(t(v) — ()",

so t(u) = —t(v)/r, and p(0) = 0 determines p(¢(u)). Thus indeed for any
t(v) > 0 there is a unique solution u, this solution is smoothly parametrized
by t(v), and the boundary ¢(v) = 0 goes to the only X!*-point, the origin. [
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5 Applications to product maps

The results of this section are the first steps in understanding how the
direct product operation affects the singularities of maps. They show that
indeed there is some well controllable effect, at least in the simplest cases.
There are two main difficulties. The first one is that the direct product of
generic maps will not be generic, so one has to take a small perturbation. This
makes it hard to understand the singular strata geometrically. The second
one is that generally the product of two singular maps even after a generic
perturbation will have more complicated singularities then the original maps
had.

In Section 5.1 we study products of immersions. Here only the first type
of problem arises, namely that the self intersections will not be transverse.
This can be overcome by employing the general multiple-point formula from
section 3.1.2 that helps to compute the characteristic numbers of multiple-
point manifolds.

In Section 5.3 we study Morin maps. In this case one has to deal with
the second kind of problem. We get around this by increasing the dimension
of the target space by one.

In Section 5.4 we define and set out to compute the ring Morg (the ring of
rational cobordism classes of Morin maps). First, in Section 5.4.1, we identify
the components of Morg as subgroups of the rational oriented cobordism ring
2, ®Q. Then combining the results of the previous sections we show that the
singular strata behave nicely under the multiplication defined in Section 5.3.
It turns out that this information is actually enough to compute Morg .

Finally Section 5.5 deals with general singular maps. We show that a
Cartan-type formula relates the homology class of X! points of two maps
with that of their direct product. We compute the oriented Thom polynomial
of the Y? singularity with Q coefficients. Finally we derive a Cartan-type

formula for the ¥? points as well.
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5.1 Products of immersions

First we shall introduce a characteristic class 3 that assigns to any ori-
ented vector bundle £ over B an element

e}

BE) = [+ (&)t} +pa()t7 +...) € H(B; Q)[[t, ta, ... ]
i=1

in the ring of formal power series of the variables t; over the ring H*(B; Q).
(Here p;(£) € H*(B;Q) is the 4i-dimensional Pontrjagin class of £). Since
the Cartan formula holds for Pontrjagin classes modulo 2-torsion it follows
that (£ @ n) = B(€) - B(n). (We have got rid of all torsions by taking Q
coefficients.) It is also easily seen that /3 is natural, and always has an inverse

element. When B is a manifold we shall abbreviate 5(7'B) by ((B).
Now let f : M™ — N™* be a generic immersion between oriented mani-
folds. The manifolds and the maps representing the r-fold points of f in the

source and the target respectively are denoted as before by

fr:A(f) — M, and
fr i A(f) = N

When the codimension of the map k is even, these manifolds are equipped
with a natural orientation. Our goal is to obtain information about the
cobordism classes of certain multiple-point manifolds. To this end we will

try to compute their characteristic numbers. Let us denote

m, = m(f) Z%!(B(Ar(f))),

n, =n.(f) = fr(BA(f)))
The reason for considering these elements is the following simple observa-
tion. Evaluating each coefficient of m, on the fundamental class of M we get
an element in Q[[t1, %2, ...]]. The coefficients of this power series are exactly

the Pontrjagin numbers of A,(f).
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The classes m, and n, are related by the Main formula of section 3.1.2:

Me - Blg) = Fres — e(wg)mey (10)

We are going to apply this in the case when the target is a Euclidean
space. This implies f* = 0 so (10) is simplified to m, - B(vf) = —e(vf) - m,_1.
Then applying this recursively one gets that m,.- B(v;) ™' = (—e(vy)) - my.
But my; = (M) and (M) - B(vs) = B(R™) = 1, so we end up with

my = (—e(vy))" - B(M)".

Now we can state and prove the main result of this section.
Theorem 10. Let g; : M — R"*; (i = 1,2) be generic immersions.
Then the r-tuple point manifold A, (g1 X go) ~ (—=1)"" A (g1) X A, (go) where
~ stands for “unoriented-cobordant”.

If the M; are oriented and the k; are even, then their r-tuple point mani-

folds are oriented cobordant.

Proof. We will only consider the oriented case. The unoriented version is
proved exactly the same way, except that there is no need to study Pontrjagin
classes.

Let f = g1 X go. Then
my(f) = e(vp)) - B((My x Ma))" =
e(Vg, X Vg)) 1 B(TM, x TMsy)" =
)
)

D ((—e(vg) ™t BOML)T) X ((—e(vg,) ™ - B(Ma)") =

D" m,(g1) x my(ga).

(=
(=
(=
(=
The following equations are easily checked.

<ﬂ(Ar(f))7 [Ar(f)D = <mr(f)7 [Ml X MZ]) = <mr(gl X gQ)a [Ml X M2]> =
= (=1)""HB(Ag1), [Ar(g1)]) - (B(A(g2), [Ar(g2)]) =
= (_1)r71<ﬁ((Ar(gl) X Ar(92>))? [Ar(gl> X AT(QZ)D
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We have obtained equality of two formal power series, so the correspond-
ing coefficients must be equal on the two sides. As the coefficients are the
Pontrjagin numbers of the manifolds involved, we get that the Pontrjagin
numbers of the two manifolds are all equal.

To finish the proof we have to repeat the whole argument using an anal-

ogous class instead of 3, namely

oo

B =T[A+w (Ot + w1t +...) € H' (B, Ls)[[t1, 1, .. .]]-
i=1
It is obvious that all the above hold for 3’ as well. Thus not only the
Pontrjagin numbers, but also the Stiefel-Whitney numbers of the two man-
ifolds are equal. Since the oriented cobordism class is determined by these

numbers, the claim of the theorem follows.
O

This result will no longer hold if we consider a general target space N.
However the Pontrjagin and Stiefel-Whitney numbers of the multiple-point
manifolds of g, x g, are still expressible in terms of gy, go and their multiple-
point manifolds. This expression is particularly simple for the double-point
set.

First we need a small result about the embedded manifold representing
a vector bundle’s Euler class. Let & — B be a vector bundle over a manifold
B. Let s : B — & be a section transverse to the O-section. Let us denote by
A¢ the submanifold in B that is the inverse image of the 0-section by s, and

let 0¢ : A — B denote the inclusion.

Lemma 9. (3(Ac),[Ad) = (8(B) - 42 [B)).

Proof. Tt suffices to show that

0¢,(B(A¢)) = B(B) -
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By the construction of A, we have the following pull-back diagram:

Ae—2%
‘55 ‘O—section
S

B—— ¢

Hence the normal bundle of d; is just the pull-back of the normal-bundle
of the 0-section. This latter is just £&. Thus we have

TA¢ ® 6 = 6. TB,

which in turn implies that

B(A¢) = o¢” (%) :

Applying the push-forward to this equation gives the proof of the lemma,
since fi(f*xz) = fi(1) - x is well known and obviously d¢,(1) = e(§) . O

Theorem 11. Let g; : M" — N/"™%. (i = 1,2) be generic immersions.
Then

Ag(g1 x ga) ~ Aa(g1) X Az(ga) + Aa(g1) X Ay, + Ay, X As(ga)

where ~ stands for “unoriented-cobordant”. (Recall that v,, is the normal
bundle of g; and A, is the zero set of a generic section of vy,.) If the M; are

oriented and the k; are even, then the same is true up to oriented cobordism.

Proof. We proceed in a similar manner as in the previous theorem. Let us

put f = g1 X go and M = M; x M, again. Then using (10) we get

Blvg) - ma(f) + e(vy) - BOM) = * F(B(M))
= g191(B(M1)) X g392/(B(Ma)) =
= (B )ma(gr) + () - BON)) % (Blg)ma(ge) + e(vy,) - B(Ma))

)
)
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and thus
B(vy) -ma(f) = B(vy) - (mz(gl) X ma(ga2)+

B P50, 5 mZ(“"Z))

Now we can divide by ((vf) as it is an invertible element. We evaluate

+ma(g1) x B(M,)

both sides on [M] = [M;] x [Ms]. Finally we have to apply the previous
lemma to get that all the corresponding characteristic numbers are equal
for the two manifolds in question. As before, we can repeat the argument
for Stiefel-Whitney numbers in Z, coefficients and Pontrjagin numbers in Q

coeflicients, so we get both parts of the theorem at the same time. O

Remark 10. 1. It is possible to carry out similar calculations for triple
points or points of higher (say r) multiplicity. But the number of
terms involved in these formulas grow exponentially with r and the
authors did not manage to find a nice way to write them down, not

even recursively.

2. It would be possible to obtain similar formulas not only for the cobor-
dism classes of the underlying multiple-point manifolds, but for the
cobordism classes of the maps f, themselves. To do this one would
need to consider the characteristic numbers of these maps instead of
the characteristic numbers of the manifolds. These calculations are
more or less the same as the ones described here, but they are harder

to keep track of.

3. It seems that the same results could be obtained using techniques of
Eccles and Grant from [4].

4. We would like to point out that Theorem 11 is a non-trivial generaliza-
tion of the oriented case of Theorem A in [3]|, which considers the case
of n =k.
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5.2 Products of prim maps

Let us recall that a generic map f : M — N is called prim (projected
smmersion) if it can be lifted to a generic immersion, f : M — N x R. We
will always denote the lifting by a tilde.

The cobordism class of a prim map f (as defined in section 2.2) will be
denoted by [f]. (For details see e.g. [20].)

By definition a prim map is necessarily a Morin map. Prim maps provide
a good link between immersions and Morin maps in the sense that they
can be handled using regular immersion techniques and on the other hand
Morin maps are “almost prim”. We shall exploit this idea by first defining
multiplication of prim maps (using their liftings to immersions) and then
show how this gives a multiplication on Morin maps (using results from [26]).
We will only work with prim maps whose target space is Euclidean.

Let us denote [j : pt <— R the inclusion of a point into the line.

Lemma 10.

a) Any two generic hyperplane projections of an immersion represent the
same prim cobordism class.

b) Hyperplane projections of cobordant immersions represent the same

prim cobordism class.

Proof. a) Instead of taking two projections of the same immersion we can
take projection to the same hyperplane of two immersions which differ only
by a rotation. This rotation can be realized by a regular homotopy. Regular
homotopy is a special case of cobordism, hence a) will follow from b).

b) A generic hyperplane projection of the cobordism connecting the two
immersions gives a prim cobordism of the prim maps obtained on the bound-

aries. n

Definition 12. Given two prim maps f; : M; — R™ (i = 1,2) consider the
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product map
g=fi1 X foxlop: My x My — R™2 x R,

The map g might not yet be prim, but we can turn it into such by a small
perturbation. Take liftings fl and fg that are sufficiently close to f; x [y and
faxly. Now fl X f~2 : My x My — R™*72 x R? is a non-generic immersion. Let
us take a sufficiently small perturbation of this product so that it becomes a
generic immersion. Finally take a generic projection of this immersion to a
hyperplane “close” to R™*"2 x R, where the last R factor is the diagonal in
R2. We obviously get a prim map ¢’ that can be arbitrarily close to g. Let
us denote ¢’ = f1 * fo and let us define the multiplication on prim cobordism
classes as follows: [f1] * [fo] = [f1 * fa.

Theorem 12. The above definition is correct, that is the cobordism class
[f1% f2] is independent of the choice of f1 and fs within their cobordism class
and of any other choices made in the definition. The multiplication defined
in this way together with the addition being the disjoint union gives rise to a

ring structure.

Proof. The liftings are given up to regular homotopy. Also the perturbation
of fi X f» is unique up to regular homotopy. Thus Lemma 10 implies that
the resulting prim map is independent of these choices.

Now suppose [fi] = [g1]. Then there is a prim cobordism H joining f;
and ¢;. We can take its lifting H which is an immersed cobordism between
fi and ¢;, and so f; x f and §; x f are regularly homotopic via H X fo. So
their projections are prim cobordant, and this is what we wanted to prove.
(The definition is symmetric so the other factor can be handled the same
way.)

The last claim only requires checking distributivity, which is obvious. [

Remark 11. It is clear that we can carry out the same construction for

oriented prim maps.
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5.3 Products of Morin maps

Let us consider the set of rational cobordism classes of all Morin maps
to Euclidean spaces. This set is a commutative group with addition induced
by the disjoint union of maps. In this section we endow this group with a
ring structure. The main tool in constructing the multiplication will be prim
maps

We shall only consider maps between oriented manifolds. Let us denote
the group of cobordism classes of oriented Morin maps f : M" — R"** by
Morin®?(n, k) and the cobordism classes of prim maps f : M™ — R"** by
Prim®?(n, k). As a prim map is automatically Morin and prim cobordant
maps are Morin cobordant as well, we have a natural forgetting map F' :
Prim® (n, k) — Morin®®(n, k), that induces a map Fg : Prim®?(n, k) @Q —
Morin®?(n, k) ® Q. The following key result, which roughly says that every

Morin map is almost prim, is proved in [26]:
Lemma 11. The map Fy is epimorphic.

This lemma says that every Morin map has a non-zero multiple that
is Morin-cobordant to a prim map. Using this result and the con-

struction in the previous section we can now define a multiplication on

<@nk Morin®?(n, k)) ® Q.

Definition 13. Let us take two Morin maps ¢; : M]" — Rtk By
Lemma 11 we can find prim maps f; and f; that are rationally Morin cobor-
dant to g, and go. Let us define [g;] * [go] o Fo([f1 * f2]), where [f] denotes

the rational Morin cobordism class of the Morin map f.

Theorem 13. The above definition is correct, that is [g1]*[ga] is independent
of the choices made. The multiplication defined this way gives rise to a ring
structure on <@nk Morin®? (n, k)) ® Q.
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Proof. There is only one thing left that needs to be checked: if f; and f{ are
Morin cobordant prim-representatives of g;, then f; % fy is Morin cobordant
to f{ * fo. Let us take the Morin cobordism H connecting f; and f{. Then
H x (fs x 1) is still a Morin cobordism after a sufficiently small perturbation,
since the factor f; X [y can be perturbed to an immersion. This Morin

cobordism connects exactly the two desired maps. O

5.4 Ring structure of Morin maps

Definition 14. Let Morg denote the group P, , Morin®?(n, k) ® Q with
this ring structure. Morg is a bigraded ring, the two grades being n and
k + 1. Note that this implies that the direct sum @, 44 Morin®®(n, k) ® Q

is a subring or Morg .

5.4.1 The structure of Morin®®(n, k)

Let f : M" — R"** be a generic oriented Morin map of codimension k.
To such a map we can associate the subset X' (f) C M™ defined in Remark 3
in section 2.4. This subset is actually a submanifold. The cobordism class
of this submanifold is invariant under a Morin cobordism of f, since the X!
points of the cobordism of f give a cobordism between the X! points of f.
If we tensor with Q then this submanifold becomes an element in 2, ® Q.

Thus by abuse of notation we get maps
B Morin®?(n, k) @ Q - . @ Q,  [f] — [E(/)],

whose image we denote by Im(X'"). Let Imm®?(n, k) denote the oriented
cobordism group of immersions of n-dimensional oriented manifolds to R **.

Our goal in this section is to prove the following theorem:

Theorem 14.
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1. If k = 21 then Morin®°(n, k) ® Q = Imm°°(n, k + 1) and Im(X'") = 0
foranyr > 1.

2. If k =20+ 1 then

Morin®®(n, k) @ Q = @ Im(X") = @ Im(X")
r>0 i>0
where Im(3'2+1) = 0 and Im(3") = {[L] € Q_2i411) @ Q : pr[L] = 0
for any Pontrjagin monomial p; which has a factor p; with index j > 1}

Proof. Part (i) is stated explicitly in [26] in Section 14/B.

To show part (ii) we need some preparations. For any stable singularity
type n there is a bundle én that plays the role of the universal normal bundle
for this singularity type. This means the following: Whenever for a map
f M — N one of its most complicated singularities is 7 then the n-points
of f form a submanifold of M. The restriction of f to this submanifold is an
immersion to N. The normal bundle of this immersion is induced from 5,7.
(See [16] for details.)

Let us write & = &, for short. Let Immé (n—r(k+1),r(k+1)+k)
denote the cobordism group of oriented immersions f : M™ 7+l — Rrtk
whose normal bundles are induced from &,.

We need two results from [26] which we state here in a lemma.

Lemma 12. Let k> 1 be odd. Then

1.
Morin® (n, k) @ Q = @ Imm® (n—2i(k+1), 2i(k+1) + k) ©Q. (11)

1=0

Hyi1(Toi; Q) = Hyyoigiry(BSO(K); Q).
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Proof. Part (i) is an immediate consequence of Example 118 in [26].

For part (i) we cite from [26] that the bundle &, has a counterpart de-
noted by &, which is the universal normal bundle of the 7-points of a map
in the source manifold. The two bundles &, and 5,7 have the same base
space BG, where G, is the maximal compact subgroup of the symmetry
group of the singularity . This implies that the homologies of Tén and T,
are the same up to a dimension shift equal to rank¢, — rank¢, = k, ie.
H, 1 (TE:; Q) = Hy(T¢,; Q). Lemma 102/b in [26] implies that for even r we
have H,(T¢;Q) = Hy—y(41)(BSO(k); Q). The statement follows. O

Now we can return to the proof of Theorem 14 which will follow fairly
easily from part (i) of Lemma 12. Let us introduce the notation a = n —
r(k+1)and b=r(k+ 1)+ k =n+ k — a for convenience. Let us consider
the sequence of forgetting maps

Immgr(a, b) N Imm?®°(a, b) LA Qo (12)

where we first forget about the extra structure on the normal bundle, and
then forget about the immersion and just take the underlying source man-
ifold. On the level of classifying spaces this corresponds to the standard
maps:

Té, — T7© — T+,

and on the level of base spaces to
BSO(k) % BSO(b) 2 BSO.

« induces é} from ;9 and 3 is just the standard inclusion map.
Using the well-known Pontrjagin-Thom construction and part (ii) of

Lemma 12 we get that
Imm® (a,b) ® Q 2 75, (T€,) ® Q = H,1(T€:; Q) = H(BSO(k); Q).
Similarly we have
Imm*?(a,b) © Q = 7 (T7,7) ® Q = H, (T Q) = Hu(BSO(b); Q),
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and Q, ® Q = H,(BSO;Q). In this context the forgetting map in (12)

becomes
Ho(BSO(k); Q) % Hy(BSO(b); Q) ™ Hy(BSO;Q).

We want to prove that this map is injective, and compute its image. Since

we work with rational coefficients it is enough to show that the dual map
H(BSO(k); Q) & H*(BSO(b); Q) & H*(BSO;Q)

is surjective, and compute its kernel. H*(BSO;Q) = Q[p1,p2,...] and
since k is odd H*(BSO(k);Q) = Q[pl,pg,...,p%]. The induced homo-
morphism «*3* takes the total Pontrjagin class p = 1+ p; +p2 + ... to
the total Pontrjagin class of 5} preserving the grading. It is known that
p(&) = PO = (L +pi+po+...pesa)” € H'(BSO(k);Q). Now easy
computation shows that indeed every p; € H*(BSO(k); Q) is in the image
of a*3* so the map is surjective. On the other hand the kernel is generated
exactly by those Pontrjagin monomials in which there is at least one factor
with index larger than #31. Thus the image of Ga Immér(a, b) — Q, is
generated by the cobordism classes of exactly those manifolds L for which
pr[L] = 0 for any Pontrjagin monomial p; which has a factor p; with index
j >t
To finish the proof of the theorem we just have to observe that 3! is the
composition of the projection in the splitting (11) and the forgetting map
in (12): Morin®(n, k) ® Q — Immg’“(n —rk+1,rk+1)+k®Q —
Qnrkr1) @ Q.
O

5.4.2 Ring homomorphisms

We can consider X! as a map from Morg to the rational oriented cobor-

dism ring:
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»ir: @ Morin®®(n, k) ® Q — Q. ® Q.
k,n

Theorem 15. The map X' is a ring homomorphism. In other words

S (fxg) ~ B (f) x 7 (g)

holds for any two Morin maps f, g to Fuclidean spaces where ~ now stands

for rationally cobordant (in the oriented sense).

Proof. The only case that requires proof is when k is odd and r > 0 is even,
since otherwise X' (f) is always 0 and for r = 0 the statement is obvious.
(Note that X°(f) = X'(f) is the rational cobordism class of the source
manifold of f.) We will proceed along the lines explained earlier, that is we
will use prim maps as a link between Morin maps and immersions. Then the
multiplicative properties of multiple-points of immersions will provide the
result.

Let us first consider prim maps. The same argument as above gives a

map
s ( & Prim*(n, k)) Q-0 ®Q
k odd,n
where Y . = %l o Fp.

Given an immersion f : M"™ — R"™**! let us denote by 7(f) its generic
projection to a hyperplane. This map is a prim map whose prim cobordism
class is well defined and depends only on the cobordism class of the immersion
f according to Lemma 10. The direct sum P, 44, Imm®(n, k + 1) has a
natural ring structure with multiplication being the direct product. It is clear
from the definitions that the map
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is a ring homomorphism with respect to the direct product on the left, and
sx-product on the right. The same remains true after forming the tensor
product with Q.

In Theorem 10 we have shown that

M, : @ ImmSO(n,k +1) — Q.
k odd,n
is a ring homomorphism, and obviously the same is true after forming the
tensor product with Q.
To finish the proof we have to use Theorem 7 from section 4 in the fol-

lowing form:

Theorem 16. M, ® idg = (7 ® idg) o Xk . i.e. the rational cobordism

Prim
class of the manifold of r + 1-tuple points of an immersion f : M™ — RnTF+1

coincides with that of the manifold of ¥ points of its hyperplane projection.

(The same result can be found in [25].) Thus the following diagram is

commutative.

(@k odd,n Imm®® (n, k + 1)) ®Q

7 ®idg M,11 ®idg

=k
<@k oddn Prim®™® (n, k)) R 2. ®Q

Fo Bt

(@k odd,n Morin®?(n, k)) ®Q

The vertical maps are ring epimorphisms and ]\7[r+1 is a ring homomor-
phism. This implies that ¥}

Prim

and Y'* are ring homomorphisms too. [0

We can summarize our results as follows. The ring Morg is the direct

sum of clearly identified subgroups of 2, ® Q as stated in Theorem 14. An
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element in Morg is completely determined by its grading and its collection
of X! strata. Then Theorem 15 shows that the multiplication in Morg cor-
responds to the direct product of cobordism classes representing the singular
strata. The manifolds corresponding to the various X! strata multiply inde-

pendently of each other. Thus the ring Morg is completely computed.

5.5 Singular strata of direct products

Our goal in this final section is to show that the cohomology class repre-
sented by the submanifold formed by the closure of the set of certain singular
points of a direct product f x g depends only on those of f, g and some maps
closely related to them. Before formulating the theorems, we have to intro-

duce some notation.

Definition 15. For j > 0 let ¢; : * — S’ denote the inclusion of a point into
S and let g_; : S7 — x be the map that takes the sphere to a point. Now for
any integer j we define f; = f x ¢; and take f; to be a generic perturbation
of f}.

Finally let id}, = idy; X g;.

5.5.1 The X' stratum

In this section we work with Z, coefficients. Let 3X'f = 3!(f) denote the
closure of the set of all singular points in the source manifold of f. (The
parenthesis are omitted for easier reading of the formulas below.) The Thom
polynomial of this singularity type is wg,,. That is, given a map f: M" —
Ntk the cohomology class Poincaré dual to the homology class represented
by 3'f is equal to wgi1(vs) where vy stands for the virtual normal bundle
of f. This dual cohomology class will be denoted by [3! f] for simplicity.

Theorem 17. Let f : M — N™+k g MJ? — NJ2*2 be two generic
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maps. Then for a generic perturbation of their product we have

S fxgl=> <[21fa’71] x (id}y, )" [ gp) + (idhy, ) [S! fop) X [219j71]>

Jj21
Proof. As a first step let us notice that since vy, = vy X v, we can write

ki+ko+1

Whytkot1(Vpng) = D Wel(Vp) X Weyphys1—r (V) =
r=0

= <wks1+j(’/f) X Wiy —j41(Vg) + Why—j1 (V) X wk2+j(Vg))
Jj=1

Now we have to take a closer look at wy,;(vs). If ki + 7 — 1 were equal
to the codimension of f then this characteristic class would just represent
the singular locus of f. When this is not the case, we have to find an
appropriate replacement of f that has the right codimension, whose normal
bundle however is stably equivalent to that of f. This replacement map is
exactly f;_1. Indeed, v, | = vy ® &7 50 wy,4;(Vf) = Wy,4(vs,_,) which in
turn is equal to [32'f;_] since this map has the right codimension.

The argument is just slightly more complicated in the case of wy,_;+1(v).
Here first we take the map g(_j) : My? x S — N3>™*2_ This has codimension
ko —j 80 [%'g(j)] = wk,—j11(vg_,). The only problem is that this class lives
in the cohomology of M, x S7. This is why we have to pull it back to M, by
idf\@. Since the composition of idg\/[2 and g(_j) is just a perturbation of g and
w(v,,;) = 1 it follows that (idg\@)*wkrﬂl(zjg(ﬁ)) = Wky—j+1(Vy)-

Putting all these together gives the result of the theorem. 0

5.5.2 The X? stratum

A very similar result can be proved about the ¥? stratum of oriented maps.
First we need to compute the Thom polynomial of the ¥? stratum in the
oriented case. We will work with rational coefficients, but the same argument

also works for Z, coefficients where p is an odd prime.
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Theorem 18. Let f : M™ — N"** be a generic map where k = 2t —2. Then
the rational cohomology class dual to the closure of the set of X%-points of f
(for short [X%f]) equals p,(vy), where p, € H¥(M;Q) is the ¢th Pontrjagin

class.

Proof. By definition the Thom polynomial ¢ps2 of the X%-stratum is a co-
homology class in H*(BSO;Q) = Q|p1,p2,p3,---]- We want to show that
tps2 = p;. 1t is enough to show that these two cohomology classes evaluated

on any homology class in Hy(BSO;Q) are equal.

Lemma 13. All homology classes in Hy(BSO;Q) can be represented by a
normal map, i.e. by a map h : L* — BSO of an oriented 4t-manifold L*

corresponding to the stable normal bundle of L*.

Proof. 1t is enough to consider BSO(N), (N > 1). By the Pontrjagin-Thom
construction an embedding L* — S¥ gives a map h' : SK — MSO(K — 4t)
such that L* = /") (BSO(K — 4t)) and the restriction map h’|p« : L* —
BSO(K —4t) corresponds to the normal bundle of the embedding L — SK.
The homotopy class [h'] € T (MSO(K — 4t)) is mapped by the composition
of the Hurewicz homomorphism and the Thom isomorphism into a homology
class * = I’ ([L*]) € Hy(BSO(K — 4t)). Hence this class z is represented
by a normal map. Since the Hurewicz homomorphism in stable dimensions
(K > 8t + 2) is a rational isomorphism, we obtain the statement of the

lemma. O

To evaluate a 4t dimensional cohomology class on a 4¢ dimensional ho-
mology class represented by a manifold, one just pulls back the cohomology
class to the manifold and evaluates it on the fundamental class.

Now it is enough to prove, that for every oriented M* the map v* :
H*(BSO;Q) — H*(M;Q) induced by the normal mapping v : M* —
BSO takes p; and tps: to the same cohomology class in H¥(M;Q). As
v*(p;) = pe(var) and v*(tps2) is the dual of the X% stratum of a generic map
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M4 — R%=2 we reduced the problem of finding the Thom polynomial tpsy2
to the special case of maps M4 — R6~2,

If we take an immersion f : M* — R% and project it to two non-
parallel hyperplanes, then we get a map f' : M* — R%~2. Let us denote
the two hyperplanes H, Hy. The projection of f to H; shall be called f;.
It is obvious that those and only those points belong to X2 f’ which belong
to X'f; and X!f, at the same time. This means that for this f’ we have
[X2f] = [B1f1] U [ELf3). The two cohomology classes on the right are both
equal to the Thom polynomial of the X! singularity, which is the Euler class
of the normal bundle of f (see e.g. [25]). As this normal bundle has rank 2¢,
the square of its Euler class is equal to p:(vf), which is the same as p;(var).
Thus we have proved our claim for those maps M* — R%~2 where the source
manifold can be immersed into R%.

Let us recall that by Imm®? (4¢, 2t) we denoted the cobordism group of
oriented immersions from 4¢ dimensional manifolds to R%. There is the
natural forgetting map 1 : Imm®?(4¢, 2t) — Qy, taking the cobordism class
of an immersion to that of its underlying manifold. To finish the proof
of the theorem it is sufficient to show, that this map has finite cokernel.
According to the Pontrjagin-Thom construction and Serre’s theorem on the

stable Hurewicz homomorphism
50 ~ S 2
Imm”® (4t, 2t) = 75, MSO(2t) = He (M SO(2t); Q))

and Q
Que =2 75 (MSO) = Hy(MSO;Q),

Q
where = means: “isomorphic if tensored with Q”. Thus v has finite cokernel
if and only if
Y - Het(MSO(2t); Q) — Hy(MSO;Q)

is epimorphic. The latter is equivalent to (by taking the dual morphism in
cohomology)
v* HY(MSO; Q) — H(MSO(2t); Q))
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being monomorphic. We can apply the Thom-isomorphism to further reduce
the problem to showing that

vy« HY(BSO;Q) — H*(BSO(2t); Q)

is monomorphic. It is easy to see that ¢} is induced by the natural inclusion
map BSO(2t) — BSO. The cohomology ring of BSO(2t) is the polynomial
ring Q[p1, P2, - - ., Pi—1, X2t) generated by the Pontrjagin classes and the Euler
class, whose square is p;. On the other hand H*(BSO; Q) = Q[p1, pa, . . .]. As
1} takes each Pontrjagin class to the same Pontrjagin class, we get that ¢

is indeed injective in dimension 4¢. This completes the proof of tpy2 = p;. O

The proof of the next theorem copies the proof of the previous section.
The equality below in the Theorem is meant in the cohomology groups with

rational coefficients or with Z, for any odd prime p.

Theorem 19. Let f : M — N™+k g M2 — NJZ2*2 pe two generic
maps of even codimension. Then for a generic perturbation of their product

we have

[2F x gl = Y (152 foja] x (id37,) [P g 2p)] + (137, ) (57 fap)] X [£2g55-2])

Jj=1
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