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Notation

Undirected graphs

G=(V;E) An undirected graph G on node setV with edge setE.
G=(S;T;E) A bipartite graph with colour classesS and T and edge set.

V2 The set of all edges on node s&tf.
ds(X) The number of edges irG incident to node setX.
ds(X;Y) The number of edges irnG betweenX Y andY X.
ic(X) The number of edges with both endnodes iX .
ds(X;Y) The number of edges inG betweenX \ Y andV (X [ Y).
Ng(X) The set of neighbours of node seX..
X =V (X[ Ng(X)) for node setX.
c(X) The set of neighbours o)X S or X T in a bipartite graph.
lc(X) The set of edges i with both endnodes inX.
c(u; V) The minimum number of edge-disjoint paths between nodasand v.

Directed graphs

D =(V;A A directed graph (shortly, digraph) on node seWV with edge setA.
\%

5 The set of all (directed) edges on node s&t.
p(X)=p(X) The number of edges irD entering/leaving node setX .
o(X;Y) The number of directed edges iD fromX Y toY X.
do (X;Y) = p(X;Y)+ p(Y;X).
do (X;Y) = p(XVY;V (XTY)+ o(V (X[Y)XVY).
Set pairs

K =(K ;K*) A setpair (see Sectionl.]).

S=5Sy The set of all set pairs on node séey.
F(K) The number of edges in edge sét coveringK .
K L K L andK*® L*.
KA"L =(K \ L ;K*[ L") for dependent set pairsK and L.
K _ L =(K [ L ;K*\ L") for dependent set pairsK and L.
O =0p The set of one-way pairs in the digrapiD.
Ol= 0} The set of strict one-way pairs in the K 1)-connected digraphD.

s(K) =V (K [ K%



Miscellaneous
Z.=R,

X+
f(Z)
X+v
X v

X intersectsY
X crossesy
X is anuv-set
S

the set of nonnegative integer/real numbers.
= maxf 0; xg, for a numberx 2 R.

.7 1(2) foravectorf :V! RandasubsetZ V.
X[fvgforX V,v2V.
X f vgforX V,v2V.
X\VY;X Y;Y X areall nonempty forX;Y V.
X\VY; XYY X;V (X[ Y)are all nonempty forX;Y V.
ForX V,u2 X andv Z X; used also for more than two nodes.
X _yandx 6 y for a partial order
= 1, X; for a subpartition X = (Xy;:::;Xy).
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Chapter 1
Introduction

The rst family of problems considered in the thesis is conneafity augmentation. Given a
graph and a positive integerk, we want to nd a minimum number of edges whose addition
results in ak-node-connected ok-edge-connected digraph. Both edge- and node-connectvit
augmentation can be considered in both directed and undiresd graphs, which raises four
di erent questions, revealing essential di erences both in tens of di culty and of applicable
techniques. An important special case is augmenting connectyiby one, that is, when the
input graph is assumed to be alreadyk( 1)-edge- or node-connected.

A practical motivation is survivable network design. In a netwrk (e.g computer or telecom-
munication network, electric power supply network), it is uterly important to maintain a path
between any two nodesk-node- ork-edge-connectivity of a graph can be interpreted in terms
of security: the network remains connected even if arbitrarit 1 nodes or edges are removed
due to attack or failure. In the connectivity augmentation goblem, we want to increase the
security of an already existing network by adding new connecins. From a practical point of
view, a minimum cost solution is more desireable: adding di er¢ edges may have di erent
costs, and we want to nd a minimum cost augmenting edge set. Unfamately, this problem
is NP-complete even in the simplest cases.

Somewhat surprisingly, the cardinality versions turned out tdoe polynomial time solvable
in three of the four basic problems. Undirected edge-connedtiv augmentation was solved
by Watanabe and Nakamura in 198775, directed edge-connectivity by Frank in 199223,
and directed node-connectivity by Frank and Jordan in 199931]. The complexity of undi-
rected node-connectivity augmentation has been a longstang open question in combinatorial
optimization.

For both undirected and directed edge-connectivity augméation, relatively simple min-
max formulae hold. The dual optimum value is given by a partibn of the nodes and can be
determined via an essentially greedy algorithm. The key tecique here is splitting o : Lowasz'
theorem for undirected and Mader's theorem for directed gphns. In the case of undirected



edge-connectivity, far-reaching generalizations are magossible by Mader's powerful splitting
o theorem on preserving local edge-connectivity. Using thisheorem, Frank solved local edge-
connectivity augmentation, the problem with possibly di ereit connectivity requirements for
any pair of nodes. Chapter5 contains new proofs to classical theorems in this eld using the
technique of edge- ippings. It also gives partial results towas a generalization, when new
edges may only be added between di erent classes of a xed p&idn of the nodes.

For directed node-connectivity augmentation, the dual opmum cannot be described simply
by partitions. The novel contribution of Frank and Jordan [3]] is the introduction of set pairs.
They presented a general abstract theorem (Theoreinl) on covering positively crossing super-
modular functions on set pairs. The theorem is applicable, amg other problems, to directed
node-connectivity augmentation. Also, the proof is based on ¢hclassical uncrossing technique
and it is astonishingly simple. They also gave a polynomial timelgorithm for nding an op-
timal solution. However, their algorithm strongly relied on tre ellipsoid method, and thus the
guestion of nding a purely combinatorial algorithm remaine open. In Chapter2 we present
such an algorithm, a joint work with Andias Frank, for augmenting connectivity by one. As one
of the main results of the thesis, Chapted provides a completely di erent type of combinatorial
algorithm for the general augmentation problem, a joint redu with Andias Bencair. It also
gives a new, algorithmic proof of Theorem.1

As already mentioned, the complexity status of undirected nadconnectivity augmentation
is still open. In Chapter 3 we prove a min-max formula for the important special case of
augmenting connectivity by one, settling a conjecture of Frak and Jorcan from 1994. We also
give combinatorial algorithm for nding an optimal solution.

The second main topic of the thesis is constructive characteaizon, a certain building
procedure for describing a class of graphs. A classical examplehis ear decomposition of
2-connected graphs. Constructive characterizations are alg&mown for higher connectivity,
for example, fork-edge-connected graphs and digraphs. These results are strgngllated to
the eld of connectivity augmentation, with splitting o bei ng the most important method. In
Chapter 6, we give a constructive characterization of the so calle#;(")-edge-connected digraphs.
This is a joint work with Erika Rerata Kowacs and proves a canjecture of Andias Frank. Our
result gives a common generalization of a number of previoudtpown characterizations, and
naturally ts into the framework de ned by splitting o and or ientation theorems.

The rest of this chapter is organized as follows. In Sectiofisl-1.4we exhibit the background
of our results. First, Sectionl.1 presents Theoreml.1 on covering positively crossing super-
modular functions along with its main applications. Sectiorl.2 gives an overview of previous
connectivity augmentation algorithms. Sectionl.3 and Sectionl1.4 are devoted to the elds of
local edge-connectivity and constructive characterizatits, respectively. There is a broad liter-
ature on each of these topics and we do not intend to give compensive overviews here, but



restrict ourselves to concepts and theorems in direct connamt to the results of the thesist
The core of the entire thesis is Sectiod.5 where we state the main results of each chapter,
sketch the main ideas of the proofs and point out the connectie between di erent chapters.

1.1 The Frank-Joréin Theorem and node-connectivity
augmentation

LetuscallK =(K ;K*)asetpair if K andK™ are disjoint nonempty subsets of the ground
setV. K is called thetail and K* the head of K. Let S denote the set of all set pairs. We
say that a (directed) edgexy 2 V2 covers the pairK if x2 K ,y2 K*.2

Two set pairsKk = (K ;K")andL = (L ;L") are tail-disjoint if K \ L =;, head-
disjoint if K*\ L™ = ;, and independent if they are either tail- or head-disjoint. This is
equivalent to the property that no edge invV?2 covers bothK and L. Two non-independent set
pairs are calleddependent . A set F of set pairs isindependent if its members are pairwise
independent.

A natural partial order on S can be de ned as followsK L if K L andK* L~ .
The pairsK and L arecomparable if K L orL K. Two dependent, but not comparable
pairs are calledcrossing .

For dependentK and L, let us de ne the set pairsK L = (K \ L ;K*[ L") and
K_L=(K [L ;K"\ L"). Forthe partial order , K ~ L is the unique greatest common
lower bound andK _ L the least common upper bound. NeverthelessS{ ) is not a lattice
sinceK _ L andK " L are de ned only for dependent set pairs.

The non-negative integer valued functiomp on S is calledpositively crossing supermod-
ular if

p(K)+ p(L) p(K"L)+ p(K_L)

wheneverK;L 2 S, K and L are dependent ando(K); p(L) > O.
For a multiset F consisting of edges iv? and a set pairk 2 S, let ¢(K) denote the number
of edges inF coveringK . We say that the edge seF covers the function pif (K) p(K)
for every set pairK 2 S. Let , denote the minimum size of an edge set coveriqg and let
p = maxf - p(K) : F independeny. , p Clearly holds, since an edge may cover at
most one member of an independent system. The following theorestates that this in fact
holds with equality:

1We use several well-known results (e.g. Mengers's and Dilworth's theorems, the d€lig-Hall or Berge-Tutte

theorems) without references. For all such theorems we refer the reader to Schrijver's emography [69].

2By V? we denote the set of all directed edges on a ground s&t, while \é stands for the set of all undirected

edges onV.



Theorem 1.1 (Frank and Jordan, 1995 [31]). Given a ground setv and a positively crossing
supermodular functionp on the set pairs, , = .

Before turning to the applications, let us consider the impognt special case wheip takes
values only 0 and 1. LetS; = fK 2S : p(K) =1g. The supermodularity ofp implies that if
K;L 2 S; are dependent therK ~ L;K _ L 2 S;. A family of set pairs satisfying this property
is calledcrossing . In fact, we may obtain every crossing family in this form. Give a crossing
family F, the function pdened by p(K)=1if K 2F andp(K) =0 if K 2 F is positively
crossing supermodular. This observation leads to the followirgprollary of Theorem1.1 For a
crossing familyF, let (F) denote the minimum number of edges covering, and let (F) be
the maximum number of pairwise independent members &f.

Theorem 1.2. Given a crossing familyF of set pairs, (F)= (F).

Let us now exhibit some applications of Theorer.1, starting with the most prominent one,
directed connectivity augmentation.

1.1.1 Directed connectivity augmentation

We commence by giving the precise de nition df-edge- and node-connectivity. All directed and
undirected graphs in the thesis will be allowed to have parall edges and loops. By edge set we
will always mean a multiset of edges, even if not mentioned exgtly. A directed graph is called
strongly connected if it contains a directed path between any two nodes. An undiréed or
directed graph is calledk-node-connected or shortly, k-connected if the number of nodes is
at leastk +1, and after the deletion of any subset of at mosk 1 nodes, the remaining graph is
still connected if undirected, and strongly connected if dicded. Analogously, an undirected or
directed graph is calleck-edge-connected , if after the deletion of any at mostk 1 edges, the
remaining graph is still (strongly) connected. It is well-knan, by versions of Menger's theorem,
that a graph or digraph isk-node-connected (respectivelk-edge-connected) if and only if there
are k internally node-disjoint (edge-disjoint) paths from each nde to every other node (and the
graph has at leastk + 1 nodes in thek-node-connected case).

In the directed node-connectivity augmentation problem ware given a digraphD = (V; A)
and a target valuek, and we want to add a minimum number of new edges tD to make it
k-connected. A set pairK 2 S is called aone-way pair if p(K) =0, that is, there are no
edges inD coveringK . We denote byO = Op the set of one-way pairs. For a set paiK, let
usdenes(K):=jVv (K [ K7*)j. The following simple claim shows that we may restrict our
attention to the one-way pairs:

Claim 1.3 ([31]). D is k-connected if and only ifs(K) k for everyK 2 O.



Let us de ne the function p as follows: p(K) := (k s(K))*" if K 2 O, and p(K) := 0 if
K 2 O. Itis easy to verify that p is positively crossing supermodular. By the previous claim,
D + F is k-connected if and only ifF coversp. Hence Theoreml.1 specializes to:

Theorem 1.4. For a digraphD = (V;A), thF()a minimum number of edges whose addition makes
D k-connected equals the maximum value of{zl (k s(Kj)) over pairwise independent one-way

Assume now that the digraphD is already k 1)-connected, implyings(K) k 1 for all
one-way pairs. We call a one-way pastrict if s(K) = k 1 and denote their set byO! = O}.
The theorem simpli es to the following form:

Theorem 1.5. For a (k 1)-connected digraphD = (V;A), the minimum number of edges
whose addition make® k-connected equals the maximum number of pairwise independsnct
one-way pairs.

In Chapter 2, we will also use the following mild generalization of Theoreh.5. This is also
a simple consequence of Theorein2

Theorem 1.6. For a (k 1)-connected digraphD = (V;A), let F O J be a crossing family
of strict one-way pairs. Then (F)= (F).

1.1.2 Other applications
Gyri's theorem

Perhaps the most astonishing applications of Theorem 1 are Gygri's theorems on generators
of interval systems and on rectangle coverings. Let us start wittihe rst problem: let | be a
nite set of closed intervals in [Q1]. We say that the setB of closed intervalsgenerates | if
every interval in | is the union of some members @&. (For example,| generates itself.) Given
|, we are interested in the minimum size of a set generating it. F@n | 2 1 and an interior
point x 2 |, we say that (I;x) is a represented interval. Two represented intervald;(x) and
(J;y) are calledindependent if I \ J does not contain bothx andy.

Theorem 1.7 (Gyori, 1984 [3§]). The minimum size of a generator of a sel equals the
maximum number of pairwise independent represented intais in | .

This was originally conjectured by Frank in the late seventie and proved by Gygri in 1984.
Gyri's original proof was quite sophisticated and the theam did not show any relations to
other min-max theorems known by that time. Let us now derivehis result from Theorem1.2



an edgee with h i Kk 1, we may de ne the set pairK., = (fVy;::;Vi0; fVisr; 10 W0).
Finding a system of generators is equivalent to covering the spairs K., for every possible
choice ofl and g. It is easy to verify that these set pairs form a crossing system, andid pairs
Kie, and K 5, are independent if and only if (;x) and (J;y) are independent for any interior
pointsx 2 e,y 2 g. Theorem1.1also easily implies an extension of Theoret?7 for intervals
on a circuit instead of intervals in [Q1]; this generalization could not be obtained from Gydri's
original proof.

The theorem has a nice application in combinatorial geomstr We say that a polygon in
the plane isrectilinear if all edges are vertical and horizontal lines. A rectilineapolygon is
vertically convex if its intersection with every vertical line is an interval. For a rectilinear
polygon R, we say thatH is arectangle cover of R if H is a set of rectangles contained iR
whose union isR. A set P of points in R is calledindependent if no two points in P can be
covered by a rectangle contained iR.

Theorem 1.8. For a vertically convex rectilinear polygorR, the minimum size of a rectangle
cover of R equals the maximum size of an independent point setin

K -free t-factors in bipartite graphs

Given an undirected graphG = (V; E), a natural relaxation of the Hamiltonian cycle problem is
to nd a C g-free 2-matching, that is, a subgraph with maximum degree 2 ctining no cycle
of length at mostk. Cornwejols and Pulleyblank [L4] showed this problem to be NP-complete
for k 5. In his Ph.D. thesis (], Hartvigsen proposed a solution for the caske = 3. The
casek = 4 is still open along with the other natural question of nding a maximum C,-free
2-matching (possibly containing triangles). Only some partiatesults are known so far (see’[
and [8]).

However, the C4-free 2-matching problem turns out to be tractable under thessumption
that G is bipartite. This was solved by Hartvigsen41, 42] and Kialy [ 53]. A generalization of
the problem to maximumK . -free t-matchings was given by Frank37], who observed that this
can indeed be deduced from Theoreth1

Theorem 1.9 (Frank, 2003 R7]). The maximum size of aK-free t-matching of a bipartite
graphG = (S; T;E) equals

stlpT(tJZJ +i(V  Z) «(2); (1.1)
wherec,(Z) denotes the number of connected components(8ff T) Z which areK;'s.

Let us de ne a functionp on set pairs onV = S[ T as follows. IfK S, K* T,andG
spans a complete bipartite graph betweed andK ™, thenletp(K)=(jK j+jK*j 2t+1)*



if jK ;K] 2,andp(K)=(jK j+jK*j t D" ifjK j=1lor jK*j=1. Let p(K)=0
in all other cases. It can be veri ed that this function is positvely crossing supermodular, and
if F is an edge set covering then E  F is a K-free 2-matching. Moreover, a dual optimal
solution may be transformed to the form {.1).

A generalization of this problem is if we do not exclude alK; subgraphs, but only a
certain subset of them is forbidden. The above reduction metldails to work, still, Makai [65]
generalized Theoreni.9 for this setting. To this end, he formulated and proved a nontvial
generalization of Theorem.1 - which is indeed the only nontrivial generalization known séar.
However, this theorem and the other extensions of Theoren9 are beyond the scope of this
thesis.

There is an interesting connection between the matching prtdms above and undirected
connectivity augmentation. It is easy to see that fok = n 2 (n = jVj), connectivity aug-
mentation is equivalent to nding a maximum matching in the @mplement graph ofG. For
k= n 3, the problem is equivalent to nding a maximumC,-free 2-matching. However, for
k <n 3the problem corresponding to connectivity augmentation isot K -free t-matchings,
but t-matchings not containing any complete bipartite graptK 5., with a+ b= t+2. This latter
problem can also be solved in bipartite graphs using Theoreinl

k-elementary bipartite graphs

Let G = (S;T;E) be a bipartite graph. It is well known by Hall's theorem that there exists
a matching coveringS if and only if jXj j ( X)j holds for everyX S, where (X) T
denotes the set of neighbours of . G is calledelementary bipartite  if either jSj = jTj =1
and E consits of a single edge giSj = jTj > 1 and the stronger propertyjXj+1 | ( X)j
holds for every; & X ( S. This is a well-studied class of graphs, see e.§1[ Chapter 4].

As a generalization, fork 2 Z, we say that the bipartite graph G = (S;T;E) is k-
elementary (with respect to S) if jXj+ k | (X)jor (X) = T for every; & X S.
(Note that |Sj = jTj is not being assumed.) The following problem is an analogue ainmec-
tivity augmentation. Given a bipartite graph G = (S; T; E), add a minimum number of edges
betweenS and T to get a k-elementary bipartite graph. We say that the setX is legal if
;& X S, (X)6 T. Two legal setsX and Y are independent if either X \ 'Y = ; or
(X[Y)=T.

Theorem 1.10. For a bipartite graph G = ( S; T;E), the minimum number of edges between
S and T whose addition make& elementary bipartite equals the maximum value of}=l (k +
jXj (X)) over pairwise independent legal sed$,;:::; X;.

This can easily be derived from Theorenl.1 by mapping each legal seX to the set pair
Kx =(X;T (X)) with p(Kx) = (k+ jXj (X)) and p(K) = 0 for any other set pair



K. Clearly, this function is positive crossing supermodular, anthe set pairsKx and Ky are
independent if and only if the legal setX and Y are independent.

Connectivity augmentation may be easily reduced to this prdbm. Given the digraphD =
(V;A) with jV]j  k+1, construct a bipartite graph G = (S;T; E) by associating two nodes
v?2 S and v®2 T and an edgevd°°2 E with eachv 2 V, and furthermore an edgaud°°2 E
with each edgeuv 2 A. This graph isk-elementary bipartite if and only if D is k-connected. A
similar reduction is possible in the other direction as well, asgung that jSj = jTj and that G
is 0-elementary (that is, it satis es the Hall-condition). This correspondence will be useful for
the algorithmic aspects of augmenting directed connectiyitby one in Chapter2 and even for
undirected connectivity augmentation in Chapter3.

Directed edge-connectivity augmentation

Augmenting directed edge-connectivity is considerably easithan node-connectivity, and was
solved in 1992 by Frank 23] via Mader's directed splitting o theorem (Theorem 1.28. In
Section 1.3 we show that an analogous argument works out for undirected ge-connectivity
augmentation as well.

Let us now formulate the min-max formula and show how it can alsbe derived from
Theorem1.1

Theorem 1.11 (Frank, 1992 p3]). Given a digraphD = (V;A), the minimum number of edges
whose addition make® k-edge-connected equals the maximum value of
X X
maxt  (k  (Xi); (k  (Xi)g;

i=1 i=1

De ne a positively crossing supermodular functiomp on S by giving nonzero values only to
set pairs corresponding to cuts, namely, lgf(K)=(k (K*))" wheneverKk [ K* =V and
p(K) = 0 otherwise. Coveringp is clearly equivalent tok-edge-connectivity augmentation. The
theorem follows by showing that the complex structure of pairise independent set pairs breaks
down to the simple dual optimum in Theoreml.11, established by the next claim.

Claim 1.12. If any two among the setX;:::;X- V are disjoint or co-disjoint, then either
they are all pairwise disjoint or all pairwise co-disjoint.(Two sets are called co-disjoint if their
union is V).

In Section6.3we present Theoren6.19 a generalization of this theorem for positively cross-
ing supermodular set functions, derivable from Theorert.1 (more precisely, from its degree-
prescribed version, which we do not discuss here).



ST-edge-connectivity augmentation

Whereas Theorenil.11can also be obtained by the signi cantly simpler splitting o tednique,
this does not hold for the following generalization of edgssnnectivity augmentation. Let
D = (V;A) be a digraph with two (not necessarly disjoint) setsS; T V. D is calledk-ST-
edge-connected ifforany s2 Sandt 2 T s, there are at leastk-edge-disjoint paths from
stot. S =T = V givesk-edge-connectivity, whileS = frog, T = V f rog gives rooted
k-edge-connectivity.

The problem of adding a minimum number of edges tb to make it K-ST-edge-connected is
NP-complete already fork = 1. However, if adding new edges only betweehand T is allowed,
the problem becomes polynomially solvable. De np on S to be positive only on set pairsK
with K S,K* T. On such pairs, letp(K) =maxf(k (X)) : X\ T=K*";S X =
K g. This is a positively crossing supermodular function, and its eerings coincide with the
augmenting edge sets consisting of edges fr@mo T.

We may also give a min-max formula in terms of sets instead of setipa Let X be called
an ST-setif X\ T6;,S X 6 ;. Two ST-setsX and Y are calledindependent if either
X\VY\VT=0o0orS XJ[Y.

Theorem 1.13. For a digraphD = (V;A) with S;T V, the minimum number of edges from
S to T whose addition make® k-ST-edge-connected equals the maximum ofi\z1 (k X))

The reason why this problem is more complicated than edge-cwttivity augmentation is
that the structure of ST-independence cannot be simpli ed to partitions and co-paitions as
in Claim 1.12

1.2 Previous algorithmic results on connectivity augmen-
tation

For k = 1, the notions of 1-edge- and 1-node-connectivity coinai both giving connectedness
in the undirected and strongly connectedness in the directecage. Augmenting an undirected
graph to be connected is trivial (and even the minimum cost veion is tractable via Kruskal's
algorithm). The casek = 1 for directed graphs was solved in 1976 by Eswaran and Tarjahq).

As already mentioned, min-max formulae and polynomial timelgorithms for optimal edge-
connectivity augmentation were developed by Watanabe and Kamura in 1987 [5 for the
undirected and by Frank in 1992 23] for the directed case; undirected edge-connectivity willeéd
discussed in Sectiori.3.

Concerning directed node-connectivity, even the case= 2 has not been settled until the
result of Frank and Jordan in 1995 B1]. The algorithm in their paper strongly relied on the
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ellipsoid method, thus nding a combinatorial algorithm remained an open problem. The rst
result towards this direction was given by Enni in 19991[g], by nontrivially extending the
algorithm of Eswaran and Tarjan for 1ST-edge-connectivity augmentation. For xedk, Frank
and Jorchn themselves gave a combinatorial algorithm in 199[32] for directed connectivity
augmentation - that is, the running time is the product of a poynomial of n and an exponential
function of k.

For the 0-1 valued case (Theorert.2), two completely di erent and independent algorithms
were given in 2003 by Frankq6] and Bencar [4]. However, Frank's algorithm was not directly
applicable for graph connectivity augmentation. Our jointresult with Frank presented in Chap-
ter 2 is an extension of this work. In contrast, the result of Chapte# is the extension of the
algorithm of Bencaur.

As shown in the previous section, Gyri's theorem (Theorem.?) is also a special case of
Theorem 1.1 Various polynomial time algorithms were given by Franzbla and Kleitman in
1986 B7], by Lubiw in 1990 (2] , by Knuth in 1996 [55], by Frank in 1999 p5] and by Bencaur,
Kialy and Ferster in 1999 [5]. Some fundamental ideas oRp] (and thus of Chapter2) derive
from [25].

For undirected connectivity augmentation, the situation isradically di erent. The complex-
ity of the general problem is still unknown; even augmentingybone has been open for a long
time. This problem is settled in Chapter3 of this thesis. In the same paperld], Eswaran and
Tarjan also gave an algorithm for augmenting a graph to be 2-nnected. Watanabe and Naka-
mura solved the cas& = 3 in 1993 [7€] while k = 4 was done by Hsu in 200044]. Other solved
special casesinclude=n 2;n 3: As mentioned in Sectiorll.1.2 connectivity augmentation
fork = n 2 for the graphG is equivalent to nding a maximum matching in the complement
graph of G. Similarly, augmentation by one fork = n 3 is equivalent to nding a maximum
square-free 2-matching in a subcubic graph, solved recently Bgrczi and Kobayashi [7].

The best previously known result is due to Jackson and Jorcan fro 2005 fi7]. They gave
a polynomial time algorithm for nding an optimal augmentation for any xed k. The running
time is bounded byO(n® + f (k)n3), where f (k) is an exponential function ofk. They proved
even stronger results for some special classes of graphs: for examghle running time of the
algorithm is a polynomial ofn if the minimum degree is at least R 2. An analogous result is
by Liberman and Nutov [59]. They gave a polynomial time algorithm for increasing conmgvity
by one under the assumption that there exists a sef  V with jZj = k 1sothatG Z
has at leastk connected components. (It can be decided in polynomial timeheather a graph
contains such a set, see Cheriyan and Thurimella3.)

It is straightforward to give a 2-approximation for connectvity augmentation by replacing
each edge by two oppositely directed egdes and using that diet node-connectivity can be
augmented optimally. For augmenting connectivity by one, drcan [49, 50] gave an algorithm
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nding an augmenting edge set larger than the optimum by at most 5= . Jackson and

goraan [4€] extended this result for general connecitivity augmentabin with an additive term of
M . A slightly weaker, similar result was established also by Ishii anMagamochi {5].

(The running times of these algorithms can be bounded by polgmials ofn.)

1.3 Undirected edge-connectivity augmentation

The min-max formula on undirected edge-connectivity augnmgation is the following.

Theorem 1.14 (Watanabe and Nakamura, 198775]). For a graphG = (V; E) and a connectiv-
ity requirementk 2, the minimum numbgy, of edges whose addition makésk-edge-connected
equals the maximum of% ;zl(k d(X;)) over subpartitionsXq;:::;X- of V.

In contrast with the other basic augmentation problems, here wean also cope withlocal
edge-connectivity augmentation |, that is, we may have a di erent connectivity requirement
for each pair of nodes:r(u;v) = r(v;u) for the nodesu;v 2 V. Global edge-connectivity
augmentation will refer to the the caser k for somek 2 Z., .

For an undirected graphG = (V;E), let (u;v) = g(u;v) denote the maximum number of
edge-disjoint paths betweeru and v. By Menger's theorem, it is well-known that ¢(u;v) =
minfdg(X): X V; u2 X;v 2 Xg. Given a functionr :V V! Z,, we saythatG =(V;E)
is r-edge-connected if (u;v) r(u;v)forany u;v2 V.

F is called anaugmenting edge set (for G with respect tor) if G+ F is r-edge-connected.
This can be equivalently formulated in terms of cuts: leR(;) = R(V) =0,

R(X) =maxfr(u;v):u2 X;v2Xg if ;& X ( V; 1.2)
and let p(X) := (R(X) dg(X))". Then G+ F is r-edge-connected if and only if
dr(X) p(X) forevery X V: (1.3)

For an arbitrary set function p, we say that the edge seF covers pif (1.3) holds. Frank's
following theorem gives a min-max formula cl):p the minimum sizef an augmenting edge set.
For a partition X = fXq;:::;X-g, let p(X) = ;_; p(X;). AsetC V is called amarginal
set, if R(C) 1andd(C)=0.

Theorem 1.15 (Frank, 1992 P3]). Assume we are given a grap@ = (V; E) and the requirement
function r so that G contains no marginal sets. Then the minimum number of edgehase
addition makesG r-edge-connected equals the maximum value ép(X) over subpartitionsX
of V.
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The max min direction is clear since we need to add at leag(X;) = (R(X;) d(X{))*
new edges for each clag§; of X and a new edge may cover at most twi;'s. Actually, Frank's
original theorem is slightly stronger by excluding only margial components instead of marginal
sets. A connected componen€ V is called amarginal component if R(C) 1, and
p(U) =0forany U ( C. However, this original version can be easily derived from Thesm 1.15
Also, all subsequent theorems where marginal sets are excluded ba strengthened to exclude
only marginal components; we stick to marginal sets for the sakd minor simpli cations in
some proofs. The condition excluding marginal sets or comportgns necessary since g graph
G = (V;;)with r 1 needs at leasiV]j 1 new edges, although the dual optimum isj\’Tj .
Nevertheless, even the most general case without any restriction o can be deduced from
Frank's original theorem (and thus from Theoreml.15, see in P3].

The nontrivial direction is proved via Mader's splitting o t heorem, an extremely powerful
tool for edge-connectivity problems. Bysplitting o edgese = xz andf = zy we mean the
operation of deletinge and f and adding the new edgey (literally the same de nition is used
for digraphs as well, see in Sectiofh.4). We say that a splitting o is admissible if for any
two nodesu;v 2 V  z, the local edge-connectivity value (u;v) does not decrease. The pair of
edgesxz; zy is splittable if splitting o  xz and zy is admissible.

Theorem 1.16 (Mader, 1978 3)). Let G =(V + z;E) be a graph withd(z) 6 3 so that there
is no cut edge incident taz. Then there exist a splittable pair of edges incident tn

Based on this theorem, Theorem.15can be deduced via the following intermediate theorem.
AV ! Z, function m is called adegree-prescription if m(V) even. For a degree-prescription
m, an edge sef is called m-prescribed if dr(v) = m(v) for everyv 2 V. Clearly, such an
edge set always exists.

Theorem 1.17 ([23]). Assume we are given a grap® = (V; E) containing no marginal sets,
a requirement functionr and a degree-prescriptiorm. Then there exists anm-prescribed edge
setF so thatG + F is r-edge-connected if and only if

m(X) p(X) 8X V: (1.4)

This can be proved by adding a new node to the graph G, and connecting it to each node
v by m(v) parallel edges. The resulting graph is-edge-connected iV and has no cut edges
incident to z, hence the iterative application of the splitting o theoremyields the desiredF.

By parity adjusting of a functionm :V ! Z, we mean the following operation: im(V)
is odd then we increasen(v) by one for an arbitrary v 2 V. The following can be proved using
the uncrossing technique (see the detailed argument in Sectibri.]). If we take an arbitrary m
which is a minimal one satisfying {.4), and furthermore we apply parity adjusting onm, then
m(V) will be twice the maximum value in Theorem1.15 The key property of R we use both
in the proof of Theoreml.16and in the uncrossing method is that it isskew supermodular :
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Claim 1.18 ([66],[23]). For any two subsetsX;Y V, at least one of the following two in-
equalities hold:

R(X)+ R(Y) R(XX[Y)+R(X\Y) (1.5a)
R(X)+ R(Y) R(X Y)+R(Y X) (1.5b)

This easily implies that the functionp is also positively skew supermodular, that is, at least
one of the two inequalities hold forp in place ofR for any setsX;Y with p(X);p(Y) > 0. For
the function R, an even stronger property can also be easily veri ed:

Claim 1.19. If one of (1.58) and (1.5b does not hold, then the other is true with equality.

For global edge-connectivity augmentation, Theorenl.16 was preceded by Lowasz' global
splitting o theorem preserving k-edge-connectivity 0], and Theorem1.14 was proved based
on this theorem. The splitting o technique is also important n context of directed edge-
connectivity, discussed in Section.4.

Positively crossing supermodular functions

One might wonder if Theoreml.15extends to a general covering theorem for arbitrary functits
p satisfying certain properties. Unfortunately, the symmetry andoositively skew-supermodu-
larity are not enough by themselves: a special case of this pramblelocal edge-connectivity
augmentation of hypergraphs is NP-complete, seg4.

An abstract extension of Theoreml.14 on global edge-connectivity augmentation was for-
mulated by Bencair and Frank in 1999 §], by replacingk d(X) with a certain type of function
p(X). Let p: 2V I Z, be an arbitrary symmetric and positively crossing supermodulaufc-
tion, that is, p(X) = p(V X)forany X V and

p(X)+ p(Y) p(X [ Y)+ p(X\ Y)

holds whenevemp(X);p(Y) > 0and X andY arecrossingX \ Y, X Y andY X are all
nonempty sets andX [ Y 6 V). Note that this also implies

p(X)+ p(Y) p(X Y)+p(Y X)

if p(X);p(Y) > 0. Theorem1.14does not remain true by simply replacink d(X) by p(X)
and using the subpartition bound max %p(X) . In fact, a new type of obstacle should also

p( i, Xi) > 0 holds for any nonempty subsek ( f1,;2;:::;tg. Clearly, at leastt 1 edges are
needed to cover such p. The maximum cardinality of a p-full partition is called the dimension
of p and is denoted by dimp). While the de nition contains exponentially many conditions,
the following simple lemma shows thap-fullness can be veri ed e ectively:
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Lemma 1.20 ([6]). Assume that forP = fX;:::;Xg, p(X1) =1 and p(X1[ X;) 1for any
i> 0. Then P is p-full.

The theorem is as follows:

Theorem 1.21 (Bencar and Frank, 1999 B]). Let p: 2V | Z, be a symmetric positively
crossing supermodular function. Then the minimum cardindy of an edge set= coveringp is
equal to

. 1
maxf dim(p) 1, max ép(X) o;
where the second maximum ranges over subpartitiodsof V.

An important application of this theorem is global edge-corectivity augmentation of hy-
pergraphs, solved by Bang-Jensen and Jackson in 199p [Recall that Theorem1.150n local
edge-connectivity augmentation was a conseqgence of the dagprescribed Theorem.17. Sim-
ilarly, Theorem 1.21is an easy consequence of the degree-prescribed version.

Theorem 1.22 ([6]). Let us be given a symmetric positively crossing supermodufanction
p:2¥ 1 Z, and a degree-prescriptiorm. There exists anm-prescribed edge sef coveringp
if and only if (1.4) holds and furthermore

m(V) dim(p) 1 (1.6)

A directed counterpart of this theorem is Theoren6.19 The symmetry of p is not required
in that case, and also no obstacle similar tp-full partitions occur.

Partition-constrained problems

The central problem investigated in Chaptel5 is partition-constrained local edge-connec-
tivity augmentation (PCLECA) . Given a partition Q = (Qq;:::; Q) of V, an edge is called
Q-legal if its endnodes lie in dierent classes of). Given a requirement functionr and a
partition Q, we want to nd a minimum cardinality set F consiting of Q-legal edges so that
G + F isr-edge-connected.

For global edge-connectivity  k  2) this problem was solved by Bang-Jensen, Gabow,
Jordan and Szigeti [2]. Given a graphG = (V;E), a partition Q of the nodes and a connectivity
requirementk 2, let OPT('g denote the minimum number ofQ-legal edges whose addition
makesG k-edge-connected. Clearly, the problem is equivalent to aenng the function p(X) =
(k  d(X))* by a minimum number of Q-legal edges.

A natural lower bound on this is the one in Theorenl.14 namely, (G) = max %p(X)
over subpartitionsX of V. For a similar bound foreach1 j t, letus callX aj-subpartition,
if X is a subpartition of Q;. Let ;(G) = max p(X) over j-subpartitions X. Let ¢(G) denote
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Theorem 1.23 ([2]). Given an undirected graphG = (V;E), a partition Q of the nodes and
a connectivity requirementk 2, OPTC‘S = o(G) if k is even, ork is odd andG contains
neither a C4 nor a Cg-con guration. Otherwise, OP Té = o(G)+1.

We de ne only C4-con gurations here as we will not needCg-con gurations in the sequel.
For subpartitions Z and W, we say thatZ is are nement of W if each class o is a subset
of some class oW.

Let fA;1; Ay Cq; Cyg be a partition of V, and for some 1 h t, let Z be ah-partition
which is a re nement off C;; C,g. These form aC4-con guration if they ful | the following: (i)
PZ)= o(G): (i) ds(Ci;Co) = da(A1;Az) =0, and (ii) p(C)=  fp(Z):Z22Z:Z Cg
forj =1;2.

Let us see an example: considé€ = (V;E) on the node setV = fa;;c;;a,; g and edge
setE = fa;¢p; ciay; axCy; oa1g (a square). LetQ = (fag;axg;fcy;cg) and k = 3. At least three
new Q-legal-edges are needed for the augmentation, whilg,(G) = 2.

Similarly to the previous theorems, this one was also proved agi splitting o techniques,
and a degree-prescribed variation can also be formulated. Tipeoof starts by adding a new
node z and an edge seH incident to z with jHj = o(G). (By choosing this edge set, the
partition Q should also be taken into account). A pair of edgesz and yz is called Q-legal if
x andy lie in di erent classes ofQ. As long as possible, we split 0Q-legal admissible pairs of
edges incident toz. If all edges incident toz can be removed in such pairs then we have found
an optimal Q-legal augmentation. If not, then either we are able to achve a complete splitting
after undoing one of the previously performed splitting 0 opgtions, or the existence of &;-
or Ce-con guration can be veri ed.

In Chapter 5, we give new proofs of Theorem$.17 and 1.21 using edge- ippings instead
of splitting o . Furthermore, partial results are presented tawvards the generalization of Theo-
rem 1.23to local edge-connectivity augmentation. A common generaation of Theoremsl1.21
and 1.23was given by Berrath, Grappe and Szigeti]1]. A detailed discussion of these topics
among plenty of new extensions can be found in the recent thesisBerrath [9].

1.4 Constructive characterizations

By a constructive characterization of a graph property? we mean a set of operations preserving
property P, so that each graph with propertyP can be obtained by a sequence of such operations
starting from a small set of basic instances. Such characterizat® are often useful for proving
further properties of graphs with propertyP. The following ear decompositions of 2-connected
and 2-edge-connected graphs are among the rst examples ohstuctive characterizations.

Proposition 1.24. () [77] An undirected graph is2-connected if and only if it can be built
up from a circuit by iteratively adding new paths whose endpts are distinct old nodes.
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(i) [ 60, Problem 6.28] An undirected graph i®-edge-connected if and only if it can be built up
from a single node by iteratively adding new paths whose evidfs are (possibly coincident)
existing nodes.

In this section, we focus on results related to higher edge-cwttivity. Although the ear
decompositions above are almost identical for node- and edgmnectivity, very little is known
on characterizingk-node-connected graphs: there are di erent constructive checterizations
for k = 3, but none for k 4. A survey on constructive characterizations in combinatoai
optimization can be found in p7].

An immediate application of Proposition1.24ii) is the following. Given an undirected graph
G, we want to nd a strongly connected orientation ofG. A trivial necessary condition is that
G should be 2-edge-connected. Using the characterization, suemcy is also straightforward:
when adding a path, let us orient all its edges in the same ditgan. We will see orientation
results for higher edge-connectivity as well and their relain to constructive characterizations.
For 2k-edge-connected graphs, Lowasz proved the following.

Theorem 1.25 (Lowasz, 1976 B0, Problem 6.52]) An undirected graph is2k-edge-connected
if and only if it can be obtained from a single node by iteratly applying the following two
operations:

(i) add a new edge (possibly a loop),
(i) subdivide k existing edges and identify the subdividing nodes.

It is easy to see the equivalence between the case= 1 and the ear decomposition in
Proposition 1.24(ii). Mader gave a similar characterization for R + 1-edge-connected graphs
[63. As for the k = 1 case, Theorem1.25 immediately implies the weak version of Nash-
Williams' orientation theorem:

Theorem 1.26 (Nash-Williams, 1960 §6]). An undirected graph has &-edge-connected orien-
tation if and only if it is 2k-edge-connected.

A directed counterpart of Theoreml1.25is due to Mader:

Theorem 1.27 (Mader, 1982 p4]). A directed graph isk-edge-connected if and only if it can
be obtained from a single node by iteratively applying theltating two operations:

() add a new edge (possibly a loop),
(i) subdivide k existing edges and identify the subdividing nodes with agm nodez.

In this theorem and in Theorem1.25 as well, operation (ii) is calledpinching k edges
with z. By pinching O edges we mean the addition of a node. Note that ngi Theorem1.26
Theorem 1.25can easily be derived from Theorem.27.
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In the proof of Theorem1.27, an intrinsic tool is another deep theorem of Mader on directke
splitting o . Similarly to undirected graphs, in adigraph G = (V; A), splittingo  edges = xz
andf = zy means the operation of deleting andf and adding the new edgey. If (z) = (2),
a complete splitting at  z is a sequence of splitting o operations of all edges incidenb iz
and nally removing z. We say that a digraphD = (U + z;A) is k-edge-connected in U if
there arek-edge-disjoint directed paths between any two nodes lo.

Theorem 1.28 (Mader, 1982 p4]). Let D = (U + z; A) be a digraph which ik-edge-connected
in Uand (z) = (2). Then there exists a complete splitting at resulting in a k-edge-connected
digraph.

From Theorem1.27 one may also derive the constructive characterization of roed k-edge-
connected digraphs (see e.g24]). A digraph D = (V;A) is calledrooted k-edge-connected
if for a noderg 2 V, there arek-edge-disjoint paths fromrg to every node inV  rq. Clearly,
this is equivalent to (X) k foreveryX V rq.

Theorem 1.29. A directed graphD = (V;A) is rooted k-edge-connected with a rooty 2 V if
and only if it can be obtained from the single node by iteratively applying the following two
operations.

(i) add a new edge (possibly a loop),
(i) pinch 0 j k 1 edges with a new node and addk | new edges with head.

From this theorem, one may easily derive Edmonds' classical them on disjoint arbores-
cences:

Theorem 1.30 (Edmonds, 1973 17]). A directed graphD = (V;A) contains k edge disjoint
spanning arborescences with roat 2 V if and only if it is rooted k-edge-connected with root.

Similarly to Theorem 1.26 rooted k-edge-connectivity of digraphs also has an undirected
counterpart. An undirected graph is calledk-partition-connected if for any partition of the
node set intot 2 classes,there are at least(t 1) edges between dierent classes of the
partition. Note that this is a property stronger than k-edge-connectivity.

Theorem 1.31 (Frank, 1980 RZ]). An undirected graphG = (V;E) has a rootedk-edge-
connected orientation with a rootry 2 V if and only if it is k-partition-connected.

From this orientation theorem and Edmonds' theorem we can ed&giobtain Tutte's theorem:

Theorem 1.32 (Tutte, 1961 [71]). An undirected graph containk edge-disjoint spanning trees
if and only if it is k-partition-connected.

We can also derive the following characterization from Theems 1.29and 1.3%
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Theorem 1.33. An undirected graph isk-partition-connected if and only if it can be obtained
from a single node by iteratively applying the following tw@erations.

() add a new edge,
(i) pinch 0 j k 1 edges with a new node and addk | new edges incident ta.

(k; ")-edge-connectivity is a natural common generalization é&Fedge-connectivity and root-
ed k-edge-connectivity of digraphs. We say thaD = (V;A) is (k; )-edge-connected for
some integers 0 k and a root nodery 2 V, if for each nodev 6 rg, there exist k
edge-disjoint paths fromr to v and = edge-disjoint paths fromv to ro. Note that (k; k)-edge-
connectivity coincides withk-edge-connectivity, while k; 0)-edge-connectivity means rootedt-
edge-connectivity. Theoreml.28can also be extended tok; *)-edge-connectivity. We say that
the digraph D = (U + z;A) is (k; )-edge-connected in U for a root nodery 2 U, if for every
nodev 2 U rq there arek-edge-disjoint paths fromry to v and ° edge-disjoint paths fromv
torgin D.

Theorem 1.34 (Frank, 1999 p4]). Let D = (U + z; A) be a digraph(k; *)-edge-connected irJ
and (z) = (z). Then there exists a complete splitting a resulting in a (k; )-edge-connected
graph.

Let us mention that this is still only a special case of Theorens.19 which can also be
derived from Theoreml.1 The analogous concept for undirected graphs is the follavg. An
undirected graph is called K; *)-partition connected if for any partition of the nodes intot 2
classes, there are at leadt(t 1)+ ~ edges connecting distinct classes. The link between these
concepts is the following generalization of Theoreh31

Theorem 1.35 (Frank, 1980 pP2)). For integers0 ° k, an undirected graphG has a
(k; ")-edge-connected orientation if and only i is (k; *)-partition connected.

Hence a natural problem arising is the constructive charactemation of (k; *)-edge-connected
graphs, solved in Theorenm..47of this thesis. Based on Theorerth.35 this will immediately give
a constructive characterization of K; *)-parition-connected graphs. Besides = 0 and ~ = Kk,
the following special cases of Theoreth47were known beforehand. = 1 was shown by Frank
and Szegd B4, and the case = k 1 was proved by Frank and Kialy [33]. Let us exhibit a
nice application of the latter case.

An important open question is the following. Given an undire@d graphG = (V;E) and
a subset of node§  V, we call an orientation of G T-odd if the nodes with odd in-degree
are exactly those inT. The question is: for a given node sefl, decide whether there exists a
strongly connectedT -odd orientation. A trivial necessary condition is thatjTj + JEj should be
even, but no necessary and su cient condition is known. Howeverye may ask whether there
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is a strongly connectedl -odd orientation for everyT  V with jTj+ JEj even. This question
can be answered not only for strongly connectedness but for heghconnectivity as well:

Theorem 1.36 (Frank and Kialy, 2002 [33]). For an undirected graphG = (V; E), the following
three properties are equivalent:

(1) G has ak-edge-connected -odd orientation for everyT  V with jTj+ JEj even.
(2) G is (k +1;Kk)-partition connected.

(3) G can be built up from a single node by a sequence of (i) addingvnedges, and (i)
pinching k existing edges with a new nodeand adding a new edge from an existing node
to z.

At rst sight it is neither clear if property (1) is in NP, nor if it is in co-NP. Property (2)
gives a co-NP certi cate: given a de cient partition, it is eay to construct aT not admitting a
k-edge-connected -odd orientation. On the other hand, (3) gives an NP-certi cée: using the
construction sequence, it is easy to nd a good-odd orientation for any T with jTj+ JEj odd.
This application has motivated the investigation of k;k 1)-partition-connected graphs.
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1.5 Overview of the main results

Chapters2 and 3 are devoted to the directed and undirected connectivity augentation problems
are closely related and we outline them side-by-side. Afterwasdthe subsequent three chapters
will be discussed separately.

1.5.1 Augmenting directed and undirected connectivity by one

For directed connectivity augmentation by one, the size of anptimal augmenting edge set is
given in Theorem1.5 Let us now give a min-max formula for undirected connectity aug-
mentation by one, which was conjectured by Frank and Jordaj30] in 1994. The basic object
analogous to strict one-way pairs will be clumps, a notion casponding to tight node cuts.

Inthe (k 1)-connected graphG = (V; E), a subpartition X =(Xq;:::; X¢)of Vwitht 2
is called aclump if jV Xij = k landd(X;;X;) =0 forany i 6 j. The setsX; are
called the pieces of X while jX | denotest, the number of pieces. It = 2 then X is a small
clump , while fort 3 itis alarge clump . (The setV X is often calledseparator in
the literature, and shredder ift 3.) An edgeuv 2 \g connects X if uandv lie in di erent
pieces ofX . Two clumps are said to bendependent if there is no edgeuv 2 \; connecting
both.

A bush B is a set of pairwise distinct small clumps, so that each edge iPé connects at
most two of them. A shrub, |s g set consisting of pairwise indepgndent (possibly large) clusp
For a bushB let def(B) = 2L, and for a shrubS let def(S) = ,5(iKj 1).

A grove is a set consisting of some (possibly zero) bushes and one (possiblytgjgirub, so
that the clumps belonging to di erent bushes are independenand a clump belonging to a bush
is independent from all clumps belonglibng to the shrub. For a gve consisting of the shrub
Bo and bushesB4;:::;B-, let def() = ; def(B;). Fora (k 1)-connected graphG = (V; E),
let (G) denote the minimum number of edges whose addition maké&s k-connected, and let

(G) denote the maximum value ofdef () over all groves .

Theorem 1.37. For a (k 1)-connected graphG = (V;E) with jVj k+1, (G)= (G).

The theorem is illustrated in Figure1.1 Both Chapters 2 and 3 contain algorithms using
a dual oracle. Assume we are given a subroutine for determiningettoptimum value =
along an optimal dual structure. Based on this, the following sipie algorithm gives a primal
optimal solution. For an undirected graphG = (V;E), let J = ‘g E denote the edge set of
the complement graph ofG. Let us start with computing (G). In each step, choose a2 J,
and removee from J. If (G+ e = (G) 1, then add the edgee to G, otherwise keep the
sameG. The same algorithm works for a directed grapb = (V;A), starting with J = V2 A,
Note that Theorem 1.37 (in the directed case, Theoremi.5 ensures the existence of an edge

with (G+e= (G) 1.
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Figure 1.1: Let G be the graph in the gure with the addition of a complete bipartite graph be-
tween Va and Vg and let k = 8. G is 7-connected, and it can be made 8-connected by
the addition of the edge setfajas; aras; asas; bsby; bybsg. Two clumps (f a;g; f as; asQ)
and (fbsg;fhyg;fbsg) are shown on the gure. A grove with def() = 5 con-
sists of the shrub By and the bush B; with By = f(fbsg;flug;fbsg)g, and By =
f(faug; fas; as0); (fax0; fau; as0); (fasg; f as; a10); (faug; fas; a20); (fasg; f az; asg) 9.

For strict one-way pairs, we have already de ned the notion ofndependence and crossing
families; these can be naturally extended to clumps. A major derence is that no natural partial
order may be de ned on clumps, however, nestedness can be intngdd as a notion analogous
to comparability. In both cases, a cross-free system is a specialssl@f crossing families of pairs
(resp. clumps) so that any two members are either independent oomparable (resp. nested).
A key notion is skeleton: a cross-free system maximal for contament.

Theorems2.1and 3.12state that the maximum dual value over the members of a skeletas
the same as over all strict one-way pairs (resp. clumps). Once Iy a skeleton, we will be able
to determine the dual optimum value relatively easily. In thedirected case, Dilworth's theorem
on the maximum size of an antichain in a poset gives the dual optum. For the undirected case,
instead of Dilworth's theorem we use Fleiner's theoren2(] on covering symmetric posets by
symmetric chains. This may be seen as a common generalizatiorbDdivorth's theorem and the
Berge-Tutte theorem on the maximum size of a matching in a graép While Dilworth's theorem
can be derived from the K§nig-Hall theorem on nding a maximu matching in bipartite graphs,
Fleiner's theorem may be itself deduced from the Berge-Tuttthheorem. The relation between
directed and undirected connectivity augmentation is somdvat analogous, concerning both the
complexity of the min-max formulae and the di culty of the pr oofs.

Two proofs will be presented for Theoren2.1 In Section2.1 we give a simple, direct proof,
while Section2.2 contains a more complicated one. In the latter one, we startdm an edge
set F covering all strict one-way pairs in a given skeleton. Byipping two edgesxy;uv 2 F
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mean replacingF by F°= F f xy;uvg+ fxv;uyg. (We use this de nition both in directed

and undirected graphs.) We prove that by a sequence of such op@yas we can arrive fromF

to a covering of all strict one-way pairs, that is, an augmentingdge set forD. The advantage
of this latter proof is fourfold. First, it gives a proof not orly for Theorem 2.1 but also for
Theorem 1.5. Second, it enables us to construct an algorithm that calls thdual oracle only
once. Third, it extends to node-induced cost functions as welFinally, the greatest advantage
is that the argument carries over with only minor changes tohte undirected case.

In contrast to the astonishingly simple original proof of Theona 1.1 and the direct proof of
Theorem2.1in Section2.1, the only method known so far for proving Theorem4.37and 3.12
is the adaptation of the argument of Sectior2.2 However, | strongly believe that developing
simpler proofs should be possible. In fact, Theoremis37 should be seen as a starting point
rather then a nal achievement in the area. | insist that it shoutl be generalizable not only
for general connectivity augmentation, but it should also adiiha general abstract form anal-
ogous to Theoreml.1 This generalization should include, among others, rooted moectivity
augmentation andK  -free t-matchings (seed)).

The main algorithmic task for the dual oracle is constructing askeleton. Although any
maximal cross-free system of strict one-way pairs (resp. clumps) tsiit is not trivial to nd
one since the number of strict one-way pairs and clumps may bepaxentially large. To tackle
this problem, the notion of stability of cross-free systems is deed in both cases. For stable
cross-free systems, it will be fairly easy to determine whether thare skeletons, and if not, we
will be able to extend them preserving stability. Although the stuctural properties are quite
analogous, the argument in the undirected case will be signi oty more complicated.

1.5.2 General connectivity augmentation

The approach in Chapter4 for directed connectivity augmentation is completely di eéent from

the one in Chapter2. This result is an extension of the previous work of Bencar4] on
augmenting directed connectivity by one. The present resulsiapplicable not only to directed
connectivity augmentation, but gives a new, algorithmic pvof of Theorem1.1 (similarly, the

result in [4] also worked for the more general Theorem.2).

Dilworth's theorem plays an important role in Chapter 2 since it is used for determining
the maximum number of pairwise independent strict one-way pa in a skeleton. Although not
applied directly, it serves as a starting point and motivationfor the current approach. We give
a more general algorithm that resembles the version of Dilwdrs algorithm described in P1].
The main theorem (Theorem1.40 is an equivalent reformulation of Theoreml.l in terms of
posets, for the problem of covering a certain type of weightedpet by a minimum number of
intervals.

De nition 1.38. Consider a posetlP; ). We say that for a minimal elementm and a maximal
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elementM, thesetfz: m z Mgistheinterval [m;M]. Letx;y 2 P be calleddependent
if there exists an interval jn; M ] with x;y 2 [m;M]; otherwise they are calledndependent .
We say that (P; ) satis es the strong interval property if the following hold:

(i) For all dependentx;y 2 P the operationsx _y =minfz:z x;z ygandx”"y=
maxfz:z x;z ygare uniquely de ned.

(i) For every interval [m;M ],
XNy2[m;M]impliesx2 [m;M]ory2 [m;M];
and the same holds withx * y replaced byx _ .

The notion of a positively crossing supermodular function p on such a poset is anal-
ogous to the one on set pairs: for all dependent and y with p(x) > 0 and p(y) > 0 we
require

p(x)+ p(y) p(xX"y)+ p(x_y):

Consider a multiset of intervalsl . We say that| covers the function p or | is acover of p if
for every x, at least p(x) intervals in I contain x. An elementv is calledtight if contained in
exactly p(x) intervals in | .

Given the notion of the cover problem for a poset with the strongqterval property, we next
show its equivalence to Theorem.1l We start with describing the correspondence between set
pairs and poset elements as illustrated in Figl.2 Property (ii) in the de nition can be seen as
the abstraction of the simple Lemma2.2 for set pairs.

Figure 1.2: The correspondence between set pairs and poset elements. &four pairs on the left side
can be covered by one edge, and the corresponding four elentgrare contained in one
interval.

Claim 1.39. The poset of set pairgS; ) with the operations”; _ satisfy De nition 1.38 The
set of intervals of this poset il : uv 2 V?g, wherel,, = fK 2 S : uv coversK g.
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Let us now formulate our theorem, which is an analogoue of Toeem 1.1 for posets.

Theorem 1.40. For a poset(P; ) with the strong interval property and a positively crossing
supermodular functionp, the minimum number of intervals covering is equal to the maximum
of the sum ofp values of pairwise independent elements Bf

Using Claim 1.39 this theorem implies Theoreml.1 We will show that the reverse is also
true: this theorem can also be derived from Theorerh.1

Our algorithm uses a primal-dual scheme for nding covers of thposet. For an initial
(possibly greedy) cover the algorithm searches for withesses the necessity of each element
in the cover. If any two (weighted) witnesses are independerthe solution is optimal. As long
as this is not the case, the witnesses are gradually exchangeddogaller ones. Each witness
change de nes an appropriate change in the solution; these cigees are nally unwound in a
shortest path manner to obtain a solution of size one less.

The algorithm itself is not very complicated (yet far from simpe); however, the proof of cor-
rectness is technically quite involved. When applying it to @ancerete problems such as directed
connectivity augmentation, we have to be careful since the sinf the poset is typically exponen-
tial. The basic steps of the algorithm involve operations as ding the (unique) maximal tight
element of an interval in a certain cover. In Sectiod.2 we show that for directed connectivity
augmentation, such oracle calls can be implemented via maxim ow computations.

The algorithm is pseudopolynomial as the size of the initial @er depends on the maximum
value of p, and the size of the cover is increased by only one in each step. €lrse, for
connectivity augmentation this does not matter as the maximm value ofpis at mostk | Vj 1;
however, for ST-edge-connectivity augmentation,p may take arbitrarly large values® Hence
developing a strongly polynomial or at least a polynomial timelgorithm is still an important
challenge.

1.5.3 Local edge-connectivtiy augmentation

Chapter 5 commences with new proofs of Theorendsl7and 1.22 Then we turn to the problem
of partition-constrained local edge-connectivity augmeation (PCLECA). First, an approxi-
mation algorithm is presented for nding an augmenting edge s®f Q-legal edges of size at
most the optimum plusrax, the largest connectivity requirement. Then, for the biparite case
(that is, if Q consists of two classes) we formulate a conjecture on the minimunzesiof aQ-
legal augmenting edge set. We only give a partial proof of thionjecture, already extremely
complicated. The completion of the proof and the extension tarbitrary number of partition
classes is left for future research.

3Recall that the de nition of k-node-connectivity also imposedk j Vj 1; no similar restrictions exist for
edge-connectivity and thus we may have an arbitrary requirementk independently from jVj.
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To our best knowledge, all undirected edge-connectivity aogentatition results discussed
in Section 1.3 among their extensions (see e.g. the thesis of Berratl®]] were proved via
splitting o techniques. We break this tradition by applying the alternative technique of edge-
ippings. Consider a covering problem of a set functiop and a degree-prescriptiorm. Vaguely
speaking, we want to nd anm-prescribed edge-sgt coveringp \as much as possible”. For an
m-prescribed edge sef, let us de ne the function

o (X) = p(X) de(X):

Let f =maxx v g (X). Note that F coversp if and only if ¢ =0. We will be interested in
m-prescribed edge sets minimizingg . Let

FF=fX Vjg(X)= rand8U( X : g(U)< Fg

Let us de ne a partial order on the m-prescribed edge setsF°® F if ro< g, 0r o= ¢
and jF o < jF¢]. We are going to focus on -minimal m-prescribed edge sets. What we really
use is the local optimality of such arfF: with a small elementary change, we cannot get aR®
from F with F® F.

Recall that for two edgesxy;uv 2 F, by ipping (xy;uv) we mean replacingF by F°=
F f xy,;uvg+ fxv;uyg. In most proofs, it will be enough to assert that from a giverk, we
cannot getanF® F by a single ipping. Consequently, a local search algorithm came applied
for nding an optimal solution, given that we have oracles fordetermining the values ¢ and
JFel.

It turns out that for Theorems 1.17and 1.22 a quite weak property of the demand function
p almost su ces. pis calledsymmetric positively skew supemodular (abbreviated SPSS)
if p is a nonnegative integer-valued function on the ground s&t; p(X) = p(V  X) for every
V X, and for every pair X;Y V with p(X);p(Y) > O, at least one of the following
inequalities hold:

P(X)+ p(Y)  p(X\ Y)+ p(X [ Y); (1.72)
p(X)+ p(Y) p(X  Y)+p(Y X) (1.7b)

One basic example of such a function g(X) = (R(X) d(X))* for R(X) de ned by a local
edge-connectivity requirement, while the other example & symmetric and positively crossing
supermodular function. Although covering an arbitrary SPS3dnction is NP-complete (see
[54)), it is easy to nd an edge set almost coveringg. Namely, we prove the following.

Theorem 1.41. Let p be an SPSS-function andn a degree-prescription so thatX.4) holds.
For a -minimal m-prescribed edge sdét, ¢ 1 holds, or equivalentlyd:(X) p(X) 1for
everyX V.
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Therefore, in both Theoremsl.17and 1.22it will be enough to focus on the case = 1.
For this, stronger properties of the particular functionp are needed. Theorem.41is a folkore
result, appearing in the thesis of Coshlp], in the papers of Nutov 7] and Berrath and Kialy
[12].

Edge- ipping is a classical technique for degree-prescribedoplems: see for example, Ha-
kimi's paper [39 from 1962 or Edmonds' result 16] from 1964. For digraphs, Frank and Z.
Kialy [ 33] applied a similar technique to give a new proof of Theore®.19 a generalization of
Theorem 1.280n directed splitting o .

For Theorem 1.17, we do not claim that edge- ipping leads to a much easier proofFor
Theorem1.22 the two proofs known by the author are the original one by Bexmur and Frank
[6], and a recent, signi cantly simpler one by Berrath [L0]. Let us take a degree-prescriptiom
satisfying (1.4) and add a new nodez connected to each node by m(v) parallel edges. In the
case of Theorenil.17, an arbitrary sequence of legal splittings was feasible, hovegythis does
not apply for Theorem1.22 Bencar and Frank show the existence of \good" pair of splitthle
edges, nevertheless, tremendous technical e ort is required thd such a pair. If we cannot
remove all edges incident ta this way, then a p-full partition can be exhibited, showing that
(1.6) did not hold originally. On the contrary, Berrath proceeds by splitting arbitrary feasible
pairs of edges as long as possible. The drawback of this methedhat we are not nished in
the case when no complete splitting exists. It needs to be checketiether we can obtain a
better situation by undoing a previous splitting o, similarly to the method of Bang-Jensen et
al. [2] as sketched after Theoreni.23

In contrast, our proof of Theorem1.22is quite analogous to that of Theoren1.17. Consider
a degree-prescriptionm satisfying (1.4) and choose anm-prescribed edge seF so that we
cannot get anF°with F® F by performing a single edge ipping. In both cases, such &n is
optimal: in Theorem 1.17we can deduce = 0 while in Theorem 1.22 1,and if =1then
(1.6) does not hold. The proof of 1 is provided by the same Theorem.41in both cases.

My main motivation for applying edge- ippings in the contex of undirected covering prob-
lems was the hope that it could be more suitable for the PCLECArpblem. Splitting o with
the aforementioned technique of undoing splittings is also atural way to attack this problem,
and | also started this way. The main di culty is that, in contra st to global edge-connectivity,
undoing a single splitting o is insu cient. | conjecture that u ndoing two should be enough;
however, at a certain point the analysis becomes severely cdiogted. | think that edge- ipping
is more appropriate to tackle this problem. Unfortunately, Icould neither complete the proof
with this method, however, | think that the partial results might be of some value.

For both augmentation Theorems1.15 and 1.21, we had the degree-prescribed versions
Theoremsl1.17and 1.22 Let us now formulate the degree-prescribed version of the PECA
problem. For some integet 2, let us be given degree sequenaes;:::;m; :V ! Z,, and let
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m = itzl m;. m=(mgq;:::;m) is called alegal degree-prescription if m(V) is even and

m(V)
2

m; (V) fori=1;:::;t (1.8)

my(V) = mz(V) = sm(V). Consider a pair ;" ) consisting of an edge sef equipped with a
mapping ' . This maps the endondes of the edges I to the set of colours so that forxy 2 F,
" (xy;X) 8 ' (xy;y). An edgexy 2 F with ' (xy;x) = i and' (xy;y) = j is called anij -edge?
(F;' ) is is called anm-prescribed legal edge set ° if

jExy ' (xy;x)=igj= mij(x) for x 2 V; i=1;:::;t (1.9

It can be seen easily that ifm is a legal degree-prescription, then there exists an-prescribed
legal edge set. Edge- ippings can be naturally de ned with thing the mapping' also into
account. The dierence is that forxy;uv 2 F, ipping ( Xy;uv) is possible only if" (xy;x) 6
" (uv;v), ' (xy;y) 8 ' (uv;u). Nevertheless, at least one ofxf/; uv) and (xy;vu) can be ipped.

Given a partition Q = fQq;:::; Qg and a degree-prescriptioom : V! Z,, we may de ne
mi(v) = m(v) if v2 Q; and m;(v) = 0 otherwise. (Note that this is not always a legal degree-
prescription as (L.8) is not necessarly satis ed.) The model above is slightly more geral since
we allowm;(v) = m;(v) > O fori 6 j. We advise the reader to keep this example in mind in
the sequel; note that heré is uniquely de ned by the partition Q.

Given the connectivity requirement functionr, we are interested in coverings of the function
p(X)=(R(X) d(X))" by m-prescribed legal edge sets1{) is a necessary, but not su cient
condition. For a legal degree-prescriptiomn satisfying (1.4), we will be interested in minimizing

r over m-prescribed legal edge sets. The rst, relatively simple result warove in Section5.2.1
is the following.

Theorem 1.42. Givenr and a legal degree-prescriptiomn satisfying (1.4), consider an m-
prescribed -minimal F. If ¢ > OthenjFgj=2.

This theorem will enable us to construct a simple approximatioalgorithm for the PCLECA
problem in Section5.2.2with an additive term r .

Theorem 1.43. Assume we are given a grap® = (V;E), a partition Q of the nodes and a
connectivity requirementr so that G contains no marginal sets. Then the minimum number of
Q-legal edges whose addition make€sr-edge-connected is at most o (G) + I max.

“Denoting the same edge byxy or yx has di erent meanings, as the one is anij -edge while the other a

ji -edge. Fort = 2, we could also representF by directed edges.
SWe will often omit ' and refer only to F as an m-prescribed legal edge set. Nevertheless, is always tacitly

included. For example, we speak ofj -edges inF.

28



Recently, a weaker version of this theorem was also proved byu.and Yung [5§ (for two
partition classes and Bnax.)

For t = 2, we formulate conjectures on the optimum value of ¢ in the degree-prescribed
problem and on the minimum size of &-legal augmenting edge set in the augmentation problem.
The dual structure is given by the next sophisticated de nition

De nition 1.44. Consider a partitionH = fX ;Y ;C;;Cy;:::;C.gof V. We say thatH forms
a hydra with heads X ;Y andtentacles C; if

(i) ds(Ci;Cj)=0foreveryl i<j ", and

(i) For ang two disjoint inde>é sets; & ;) f 1 :::;‘g, (1.59 holds Witg equality for
X [(iCG)andX [ ( ;,;C) andalsoforY [ (, CandY [ ( ;,;C).

Similarly to p-full partitions, although the de nition contains exponentially many conditions,
Theorem5.23will give an equivalent characterization in terms of the vales ofr between di erent
classes ofH. This also yields an e cient method to decide whether a partiton forms a hydra.

h t, we call atentacleC; h-odd if p(Ci[ X ) p(X )+ my(C;) is odd® Let | denote the
number of h-odd tentacles. Let us de ne

[
(G = o )+ P(Y ) m(V)+ my( )

Let
(G;r; m) =maxfo; rpia}x h(G;r;m;H): His ahydrag

The conjecture on the degree-prescribed version of the PCLEG#oblem is as follows.

Conjecture 1.45. Let us be given a grapls = (V; E) with a connectivity requirement function
r so that G contains no marginal sets. Ifm = (my; m;) is a legal degree-prescription satisfying
(1.4) and (F;" ) isa -minimal m-prescribed legal edge sets, thep = (G;r; m).

The corresponding conjecture for the augmentation problers as follows. LetQ = fQq; Q.9

Z be anh-subpartition which is a re nement off Cy;:::; C-g. (Recall that by an h-subpartition
we mean a subpartition ofQy.) The tentacle C; is calledh-toxic if
X

PG X) pX)+ (p(2):222;2 C)
is odd. Let ? denote the number ofh-toxic tentacles. Let us de ne

G ZiH) = S( B+ pOX )+ (Y )+ p(Z)

In Lemma 5.26 we shall prove thatp(Ci[ X ) p(X )= (p(Ci[ Y ) p(Y )), thus the role of X and
Y s interchangeable.
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Figure 1.3: Let r(x;y) =8 and r(u;v) = 3 for any other pair. Let Q1 = fx;ygand Q2= fcy;:::;¢9
be the partition classes. We have a hydraH with X = fxg, Y = fyg, Ci = fcg
fori = 1;:::;6. Consider the degree-prescriptiormy(x) = my(y) = 3, my(c) = 1 for
i =1;:::,6 and m;(u) = 0 otherwise. All components C; are 2-odd,p(X )= p(Y )=2
and thus »(G;r; m; H) = 2. For the augmentation version, take the 2-subpartition Z
consisting of the singletonsf ¢;g. Then all C;-s are 2-toxic, and XG;r; Z;H) =8.

Let qG;r; Q) denote the maximum of %G;r; Z;H) over all choices oh, H and Z as above.

Conjecture 1.46. Let us be given a grapls = (V; E) with a connectivity requirement function
r so thatG contains no marginal sets and furthermore a partitior = f Q;; Q.g of V. Then the
minimum size of aQ-legal augmenting edge set equals the maximum @f(G) and 4G;r; Q).

C4-con gurations are special hydra-bounds: consider a partitio (A1; A; Cq; C,) of V and
a h-partition Z forming a C4-con guration, Then H = (X ;Y ;Cy;C,) forms a hydra for
X = A1, Y = A, with both C; and C, being h-toxic; from the properties in the de nition it
follows that X(G;r;H;Z)= o(G)+1.

It is already nontrivial that (G;r;m) and qG;r; Q) are lower bounds on the optimum
values: this will be proved in Sectiorb.2.4 In Section 5.3, we prove Theorem5.3% a special
case of Conjecturel.45under the assumptions that for the optimalF, 2 and Fg = V.
The proof is quite technical. First, we extract structural prgerties from the assumption that
we cannot get a betterF°from F by performing a ipping or a \hexa- ipping", a sequence of
two edge ippings. This results in a set system containing a set \blking” the edges ofF in
a certain sense. Afterwards, a complicated uncrossing method ispéipd to transform this set
system into a laminar one, yielding an optimal hydra.

We think that this method should be extendable for proving Copecture 1.45 however, the
extreme level of complexity and the time and space limitatios have forbidden us to give a
complete proof. Finally, in Section5.3.2 we sketch how Conjecturel.46 could be derived from
Conjecture1.45 Also, we think that the conjectures could easily be extended tarbitrary num-
ber of partition classes, by adding another type of lower boundegeralizing Cs-con gurations.
In the global connectivity version P], the main di culties are already contained in the case
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t = 2; we believe that the situation here should be similar.

1.5.4 Characterization of (k; )-edge-connected digraphs

The main result of this chapter is the following constructive learacterization of (k; )-edge-
connected digraphs, conjectured by Andas Frank 4], Conjecture 5.6. and 28], Conjecture
5.1):

Theorem 1.47. For 0 ~ k 1, a directed graph is(k; ")-edge-connected with root, 2 V
if and only if it can be built up from the single node, by the following two operations.

() add a new edge,

(i) for some i with © ik 1, pinchi existing edges with a new nodg and addk i
new edges entering and leaving existing nodes.

We get the following corollary using Theorenl.35

Theorem 1.48. For 0 ~ k 1, an undirected graph igk; *)-partition-connected if and only
if it can be built up from a single node by the following two ap#ons.

() add a new edge,

(i) for some i with = i k 1, pinchi existing edges with a new node and addk i
new edges betweenand some existing nodes.

In Theorem 1.47, it is straightforward that all graphs constructed by operatons (i) and (ii)
are (k; *)-edge-connected, the nontrivial part is the opposite diréion. Removing an edge is the
reverse of operation (i), hence we may focus our attention toimmally (k; )-edge-connected
digraphs in the sense that removing any edge would destrol; ()-edge-connectivity.

Let us sketch a proof of Theoreml.27, which is a starting point of our argument (and
corresponds to the special cade= ). If a digraph is not minimally k-edge-connected, we can
leave an edge as the reverse of operation of step (i) and congniy induction. For minimally
k-edge-connected digraphs, the existence of a nadé&aving both in- and out-degreek can be
proved. Then Mader's directed splitting theorem (Theoreni.28 can be used since the reverse
of operation (ii) is exactly a complete splitting at a nodez with (z) = (z2). The case” =0
(Theorem 1.29 can also be proved using an easy consequence of Theolep8

However, for the cases =1 and ~ = k 1 of Theorem1.47 we already need the stronger
splitting result Theorem 1.34 The argument is also signi cantly more complicated for the
following reason. For = k and ™ = 0, it was enough to nd a node satisfying certain conditions
on the in- and outdegrees, and one could always perform a coetgl splitting at such a node.
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However, for™ = 1 and ~ = k 1 the conditions on the degrees do not suce and a more
thorough analysis of the structure of minimally k; *)-edge-connected graphs is needed.

Let us now sketch the proof for = k 1 by Frank and Kialy [ 33]. Consider a minimally
(k;k  1)-edge-connected graph. A necessary condition for the reserof operation (ii) to be
applicable at nodez is (z) = k and (z) = k 1. We call such nodespecial. If for a special
nodez we manage to nd an edgauz sothatD wuzis (k;k 1)-edge-connected iU =V z,
then Theorem1.34 may be used foD°= (U + z;A uz), giving a (k;k 1)-edge-connected
graph D%on U. Then we can getD from Dby applying step (ii) with pinching thosek 1
edges withz which were resulted by the splitting o and nally adding the edge uz.

However, not every special node admits an edgeuz as above (and it is already nontrivial
to prove that a special node exists). We use an indirect argumenassume that every edge
Xy 2 A satis es one of the following conditions. Ify is special, then we assume thdd Xy is
not (k;k 1)-edge-connected iv y. If y is not special, we use thaD is minimally (k;k 1)-
edge-connected, and thu® xy is not (k;k 1)-edge-connected. One can de ne a notion of
tight sets so that each edge will be \blocked" by a tight set. Therthe uncrossing method may
be used for these tight sets to derive a nal contradiction.

The proof of Theorem1.47is motivated by this argument, but for general , severe di culties
arise. Starting from a minimally (k; )-edge-connected digraph, we call a node special if
(z) k 1land (z)= k. This means that according to its in- and out-degree, it mighbe
the result of operation (ii) in Theorem1.47. We say that a subset~ of edges entering a special
nodez is locally admissible atzif G F is (k; )-edge-connected iv. zandjFj k (2).
F is calledsucient atzif jFj =k (z). Once a su cient locally admissible F is found,
Theorem1.34may be applied toG F and z and the proof nishes as for = k 1.

Thus our aim is to nd a special nodez and a su cient locally admissible setF at z. Itis easy
to characterize the maximal size of a locally admissible set forgaven specialz, however, this
size may be strictly smaller thank  (z). The main di culty is handling the locally admissible
sets belonging to di erent special nodes together. The notioaf globally admissible edge
sets in De nition 6.3 is introduced for this purpose. For a globally admissible edgetse and
an arbitrary special nodez, the subsetF, F of edges entering is locally admissible atz.
However, the converse is not true in the sense that the union of Hly admissible edge sets
belonging to di erent special nodes will not necessarily be dially admissible. We say that a
globally admissible edge seff is su cient if for some speciak, F, is su cient; otherwise it is
calledinsu cient . What we prove is the existence of a su cient globally admissibledge set.
Unfortunately, it is not true that every maximal globally admissible set is su cient, as it will
be shown by an example in Sectiof.5.

Among other methods, splitting o techniques will be used also infte proof of the existence of
a su cient globally admissible set. However, even Theorerh.34turns out to be too weak for our
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goals. Actually, Theorem1.34is a special case of Theore®.19 on covering positively crossing
supermodular functions by a digraph. Theoren6.20is a further generalization presented in
Section 6.3 It enables us to use a splitting operation preserving a propgrtstronger than
(k; *)-edge-connectivity. The proof relies on edge ippings, usad an analogous manner as in
Chapter 5 for undirected graphs.

The way we handle tight sets also di ers from the standard uncrossy methods. A set is
called tight with respect to a globally admissible sef if the inequality concerning this set
in the de nition of global admissibility holds with equality. As in the proof for™ = k 1, for
a maximal F there is a tight set \blocking" each edge inE F. However, it is not possible
to apply the uncrossing method to arbitrary tight sets for an arfirary globally admissible F.
The intersection and union of two tight sets will be tight only inder the assumption thatF
is maximal and insu cient. It turns out interestingly that und er this assumption, some basic
types of tight sets do not occur at all. This will be discussed in $gon 6.4.

Contributions

Chapter 2 is based on a joint paper with Andas Frank B6], and Chapter 3 is based on the
technical report [73]. The result of Chapter4 is a joint work with Andias Bencair in [ 74], while

that of Chapter 6 is co-authored by Erika Rerata Kowacs [(6]. Chapter 5 contains unpublished
material by the author.

Connections between the chapters

r el
{ Chap. 2 } ~ o Dilworth's theorem Chap. 4
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Figure 1.4. The hypergraph of interconnections.

At this point, the reader might have arrived to the conclusionthat the thesis is rather a
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compilation of scarcely related results with the author's paon being the only common denom-
inator. While we cannot completely refute such an opinion byxibiting one common motif of
the entire thesis, we tried to summarize some less transparent intennections in Figurel.4.

The most intimate relationship is indubitably the one betweenChapters 2 and 3 on aug-
menting node-connectivity by one. We could adapt the main thughts and structural elements
of the proof of the directed case to the undirected case, albdlie min-max formulae being
considerably di erent. In contrast, although Chapters2 and 4 tackle the same problem, the
methods do not have much in common. Nevertheless, we should mentiDilworth's theorem,
which is applied in Chapter2 directly and serves as a motivation for Chapted. As a connec-
tion between Chapters3 and 4, we may exhibit the underlying poset structures. It is of key
importance in both cases that we investigate the abstract posetgperties of clumps and set
pairs, respectively.

The occurence of splitting o techniques in both Chapters and 6 is quite natural: it is
a fundamental and e cient method in edge-connectivity prollems. Another method, edge-
ipping is applied in various contexts in all but Chapter 4. On the one hand, it can be used as
an alternative of splitting o : for example, in Chapter 5 we present new proofs of Theorenis17
and 1.22using edge- ipping and we apply this technique for the PCLECAdroblem as well. The
general directed covering result Theorens.20is also proved via edge- ipping. On the other
hand, in the completely di erent context of directed and undrected connectivity augmentation,
the transformation of a cover of skeleton to a cover of all striobne-way pairs (resp. clumps)
also relies on edge- ippings.

Chapters 3 and 5 share a somewhat odd common feature: parity is involved in batht was
known beforehand, that undirected node-connectivity augentation has to do with parity, since
it generalizes maximum matching. However, the emergence alrity might be surprising in the
context of edge-connectivity. In Conjectured.45and 1.46there are certain odd components,
resembling those in the Berge-Tutte formula. To the extent of pnknowledge, parity has not been
involved in such a way in previous edge-connectivity results. dfe interestingly, we conjecture
that the optimum value described by these formulae can be fourly a local search algorithm.
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Chapter 2

Augmenting directed node-connectivity
by one

In this chapter, we give an alternative proof and a combinataal algorithm for Theorem 1.5,
based on 86|, a joint paper with Andias Frank. We will assume throughout the chapter that
the digraph D = (V;A) is (k 1)-connected. LetO! = O} denote the set of strict one-way
pairs. Since we are now interested in strict one-way pairs onlye omit \strict" and use only
\one-way pair" for the members ofO;. Some de nitions and lemmas are formulated for set
pairs; these are valid in the most general setting.

Let us start with some new notion. We have already introduced ossing families of set
pairs in Sectionl.1. A family F S is calledcross-free if any two members ofF are either
independent or comparable. Note that, somewhat confusinglyery cross-free family is crossing.
For a set pairK 2 F, let F K denote the members of not crossingK. Similarly, for a
subsetK F let F K denote the set of set pairs irfF crossing no element oK. Let us call
a cross-free subsef O ! askeleton if O' F = F. Equivalently, F is a maximal cross-free
subset ofO?.

In Section 2.1, we give the description of the Dual Oracle, a subroutine for tkrmining
(OY). In Section 2.1.2 we analyze the oracle and the rst algorithm, which relies onhis
oracle. In Section2.2, we give a new proof for Theoreni.6, and sketch a second algorithm.
For this algorithm, we present only the main ideas, and omit théechnical details which can be

done similarly as for the rst algorithm.

2.1 The Dual Oracle

The following theorem is the essence of the Dual Oracle.

Theorem 2.1. For a skeletonK O ! the maximum number of pairwise independent one-way
pairs is equal inK and O%, thatis, (K)= (0= (D).
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Clearly, (K) (OY) for every K O !. The advantage of a cross-free system is that we
can easily determine the maximum number of pairwise indepentdeone-way pairs. This is due
to the fact that whenever it contains two dependent one-wayairs, they are comparable. Thus
considering the partially ordered set; ) an antichain consists of pairwise independent pairs.
A maximum antichain in a poset can be easily found by an algorith for Dilworth's theorem
stating the equality of the size of a minimum chain cover and a manum antichain (see e.qg. 49,
Vol A., pp. 217-236]). In order to prove Theoren2.1, we need some elementary propositions.

Lemma 2.2. Let M;N 2 S be two dependent set pairs. If an edgg 2 V2 coversM * N or
M _ N, then it covers at least one oM and N. If it covers bothM * N and M _ N, then it
covers bothM and N.

Claim 2.3. Let M;N 20 M N impliesM N,andM*® NT* impliesM N.

Proof. For the rst part, assume that M 6 N, meaning thatM*™ 6 N*. Although M and
N are not necessarly dependent* \ N* 6 ; is not assumed), we may consider the set pair
L=(M ;M*[ N¥). This is a one-way pair, and sincd is (k 1)-connected,s(L) k 1.
However,M is a strict one-way pair, and sinceM* [ N* ) M*, we gets(L) <s(M)= k 1,
a contradiction. The second part follows similarly. O

Lemma 2.4. For a crossing familyF and for any K 2 O!, the subfamilyF K is crossing.

Proof. Let F°= F K and let M and N be two crossing members df > We have to prove
that neither M _ N nor M * N crosseX.

First assume thatK is comparable with bothM and N. It is not possible thatM K N
orN K M asM andN are not comparable. Therefore eitheK M;N or K M;N.
In the rst case, K is smaller than bothM # N and M _ N, while in the second case it is larger
than both.

Second, assume thaK is independent from bothM and N. We claim that both M ~ N
and M _ N are independent fromK . Indeed, if an edgexy 2 V2 covered bothK and M ~ N
or M _ N, then by Lemma2.2 it would also coverM or N, a contradiction.

In the third caseK is independent from one oM and N, say fromM , and comparable with
the other, N. If K N, then K and M can only be tail-disjoint, sinceM*\ N* 6 ; and
K* N*. NowM ~ N is also tail-disjoint from K, andK M _ N. Similarly, if K N, then
K and M should be head-disjoint, thusM _ N is head-disjoint fromK , whileK M A" N. [

Lemma 2.5. (i) Let L,, L, L3 be one-way pairs withL; and L, dependent,L; * L, and L3
also dependent, buk, and L3 independent. ThenL3\ (L7 L3)6; andL, L, Lj. (ii)
Let L,, L,, L3 be one-way pairs witi.; and L, dependentL,; L, and L3 also dependent, but
L, and L3 independent. ThenL, \ (L, L,)6; andL; L; L3.
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Proof. (i) The dependence oL; " L, and L3 impliesL, \ L; 6 ;, soL, and L3 can only be
independent ifL; \ L3 = ;. The rst part follows since L3 \ (L7 [ L3) 6 ; because of the
dependence ot.; ® L, and L3. For the second part, consider the paiN = (L, L) _ L.
N* =(L;[ L3)\ Lz = Lj\ L3, henceN* Lj. By Claim 2.3 N L,, implying the
claim. (ii) follows the same way, by exchanging the role of th&ils and heads. O

Now we are ready to prove Theoren2.1 The proof is based on the following lemma:

Lemma 2.6. For a crossing systen andK 2 F we have (F)= (F K).

apply Lemma 2.6 for O! and K, then in the ith step for O' f Ky;:::K; 1g and K;. Note
that O! f Kq;:::K; 1gis a crossing system by applying inductively Lemma.4. Thus we have
(Ohy= (0! Ky =:::= (0! K ), hence Theorem2.1follows by O! K = K.

Proof of Lemma?2.6. Trivially, (F K) (F). Consider a maximum independent subset
L of F which has the most common members witk K. For a contradiction, suppose that
L\ (F K)< (F),andchoose anelemerit 2L (F K). By de nition, T crosseX. We
claim that either (LnfTg)[f T Kgor (LnfTg)[f T _ Kgis independent. This leads to
contradiction, since the new system intersects K in a strictly larger subset thanL does.
Suppose that neither LnfTg) [f TAKgnor (LnfTg)[f T _Kgis independent. Then
there is an elementM 2 L nf Tg dependent fromT A K, and an other elementM®°2 Lnf Tg
dependent fromT _ K. If M = MS then M is clearly dependent fromL, a contradiction.
Assume nowM 6 M2 The conditions of Lemma2.5(i) hold for L, = K, L, = T and
L3 = M, and the conditions of (ii) hold forL, = K, L, = T and L3 = M% We claim that M
and M ° are dependent. IndeedK L contains an elementoM \ M°  while K* L*
contains an elementoM*\ M%. O

2.1.1 Constructing a skeleton

A straightforward approach to construct a skeleton oD would be a greedy method, that it,
choose one-way pairs arbitrarly, as long as they do not crossyanf the previously selected ones.
The di culty arises from the fact that it is not clear how to decide whether a given cross-free
system is a skeleton or not. (Note that the size @! may be exponentially large.) To overcome
this di culty, we work with special kind of cross-free systems. Letus call a cross-free system
H O ! stable if it ful lls the following property:

L crosses some element bf wheneverL 20 H and9K 2H :L K: (2.1)

This means that if H has an element larger tharL, then L cannot be added toH. Given
a stable system, the following claim provides a straightforwardvay to decide whether it is a
skeleton.
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Claim 2.7. A stable cross-free system is a skeleton if and only if it coma all the maximal
members ofO?.

Proof. On the one hand, any skeleton should contain all the maximal oneay pairs in O! since
a maximal one-way pair cannot cross any other set. On the othelahd, for a contradiction,
suppose that a stable systeniH contains all the maximal members, yet it is not a skeleton.
Choose anL 2 H with H[f Lg cross-free. There is a maximal elemeit 2 O! with L K.
By our assumption,K 2 H, contradicting the de nition of stability. ]

Assume we are given a stable cross-free systeimwhich is not a skeleton. In the following,
we investigate how a seK 2 O! H can be found with the property thatH [f K g is stable
as well. AsH is not a skeleton, there is a maximal elemed with M 20! H . Let

L, =fK2H: K Mg L,:=fK2H :K 6 Mg (2.2)

We say that a one-way pairL ts the pair (H;M) if (@) L 2 O! H;L M; (b) L is
independent from all members of, and (c) eitherK L orK \ L =; foreveryK 2L;.

Lemma 2.8. If L is a minimal member ofO! H tting (H;M), then H + L is a stable
cross-free system.

This is a straightforward consequence of the following claim.

Claim 2.9. LetL 20! H ,L M. The following two properties are equivalent: (iL ts
(H;M); (i) H+ L is cross-free.

Proof. (i)) (ii) is straightforward. For the other direction we have to veify (b) and (c) of the
above de nition. By (2.1), either K L orL andK are independent for everkK 2 H. Assume
now K L for someK 2 L,. In this caseK L M, contradicting the de nition of L.
For (c) we needKk \ L = ; if K and L are independent for somé& 2 L ;. This follows by
KiL M,thusK*\ L™ M"™. O

Observe thatM itself ts ( H; M) ensuring the existence of a one-way pair satisfying the
conditions of Lemma2.8. SoK = L is an appropriate choice. Such ah can be found using
bipartite matching theory. The description of this subroutire is quite technical and rather
standard, therefore it is postponed to Sectio.4.

2.1.2 Description of the Dual Oracle

Given the above subroutine for constructing a skeleton, we hatree following oracle to determine
the value (D)= (O%')ina (k 1)-connected digraph om nodes: we construct a skeleton,
then we apply Dilworth's theorem. (It is well-known that conputing a maximum antichain

38



and a minimum chain-decomposition of a partially ordered setan be reduced to a maximum
matching computation in a bipartite graph.) The size of the maimum antichain will give the
value (D).

A trivial upper bound on the size of the optimal augmenting edg set { and by Theorem1.5,
also on the number of pairwise independent sets { is°>. A better bound can be given by
Corollary 4.7 in [31]: there is an augmenting edge set consisting of pairwise nodsjdint circuits
and paths, hence the optimum value is at most. A chain can also have at mosh elements,
thus the cardinality of a skeleton is at mosts = n2.

As shown in the Section2.4, if s is an upper bound on the size of a skeleton, then it can
be constructed in timeO(n® + sn*) = O(n®). Finding a maximum antichain in a poset of size
O(s) can be reduced to nding a maximum matching in a bipartite gaph on O(s) nodes and
O(s?) edges. Using the Hopcroft-Karp algorithm@9, Vol A., p. 264] this can be done irDO(s*®)
running time. This gives O(n®) for s = n?, so the total running time of the Dual Oracle is
O(n®).

As already indicated in the Introduction, the Dual Oracle maybe used to compute the
optimal augmentation. For this, we need to call the Dual Ora@ at most n? times, thus the
total complexity is O(n®). (For comparison, the running time of the algorithm in Chaper 4 is
O(n’) for the same problem.)

However, the correctness of the present approach does rely onedbrem1.5. In the next
section we use a more direct approach for nding the optimal amgentation.

2.2 Algorithmic Proof of Theorem 1.6

In this section we give a proof of Theorert.6and sketch another algorithm, which uses the Dual
Oracle only once. After a skeletoK is determined, an augmenting set dk can be transformed
to an augmenting set of the entireD*. More precisely, we will prove the following:

Theorem 2.10. For a crossing systenF and a one-way pairK 2 F, if an edge setF covers
F K, then there exists anF° covering F with jF§ = jFj, and furthermore ro(V) = £ (V),
Fo(v) = g(v) for everyv 2 V.

We begin with the de nition of the elementary augmenting step Consider a crossing family
F O 'andF V2 Anedgeuv?2 V? F isbad (with respecttoF andF) if there exists an
L 2 F covered byuv, but not covered byF. Let W(F) = W (F) denote the set of bad edges.

Consider an augmenting edge sdét of F°:= F K. For two edgesxiyi;Xay. 2 F, by
ipping  (X1y1;X2y2), we mean replacingF by F® = (F f xiy1;Xay20) [ f X1y2; Xoy10. A
ipping is called improving if F®augments a strictly larger subset of than F does. Note
that this is equivalent to requiring that W(F9 ( W(F). Since the total number of edges is?,
we obtain that after at most n? improving ippings the resulting subset of edges must augment
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the whole F. The following lemma, which is the heart of the proof of The@m 1.6 and the
algorithm, asserts the existence of an improving ipping.

Lemma 2.11. LetF O ! be a crossing family. LeK be a member of andF an augmenting
edge set oF °:= F K. If F does not augmenf, then there is an improving ipping.

Proof. Let us choose two (not necessarily distinct) membeds and Y of F that are not covered
by F sothatX Y, X is minimal (in the sense thatX °is covered byF for everyX°2 F ; X °
X), while Y is maximal in an analogous sense.

SinceF does not coverX and Y, we haveX;Y 2 F F © thatis, both X and Y cross
K. ThereforeX * K X andY _K Y. By the minimality of X, X » K is covered byF,
that is, there is an edgex;y; 2 F coveringX * K. SinceF does not coverX, we must have
Xx12X \ K andy; 2 K* X*. Analogously, there is an edge&,y, 2 F coveringY _ K for
which x, 2 K Y ;¥,2Y"\ K™,

Let F°be the edge set resulting by ipping kiy1;X»y»). We are going to show that this
ipping is improving. Since X is covered byF° but not covered by F, we only have to show
that every member ofF covered byF is covered byF? as well.

Suppose indirectly that there is a membeM of F which is covered byF but not by F°
In particular, no element of F f X1y1;X2y»g coversM. It is not possible that both x;y; and
X,Y, cover M since then bothx,y, and x,y; would also coverM, that is, F°would coverM .
Therefore there is exactly one element i coveringM and this only element is eitherx,y; or
X2Y,. Let us assume rst that M is covered byx;y;.

Claim 2.12. Y and M are dependent.

Proof. For a contradiction, suppose thaty andM are independent.K Y and M are dependent
as x1y; covers both. Thus we can apply Lemm&.5(i) with L; = K;L, = Y;Lz = M giving
K Y M . This is contradiction sincex, 2 K Y andx, 2 M asxpy; does not
coverM. [

By the above claim we know thatY _ M 2 F. The assumption that M is not covered
by x1y, givesy, 2 Y* M*,thusM 6 Y, implying Y[ M Y. By the maximality of Y,
Y _ M is covered by an elemenky of F and xy is di erent from both X;y, and X,y; since
y1,¥. 2 (M _Y)". By Lemma 2.2 xy covers eitherM or Y. However,xy 2 F°\ F and hence
Xy covers neitherM nor Y, a contradiction.

The case wherM is covered only byx,y, also leads to contradiction by a similar argument
using Lemma2.(ii). O

Proof of Theorem1.6. is straightforward. The proof of is by induction on jFj. If
F is cross-free, applying Dilworth's theorem to the partially cdered set €; ), we obtain that
there is a maximum subfamilyl of F consisting of pairwise incomparable members and th&t
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can be decomposed into := jlj chains. SinceF is assumed to be cross-free, the members of
| are pairwise independent. Furthermore, it is easy to see that ¢hchain-decomposition of
corresponds to a seF of edges coverind-. Hence we obtained the required covering of F
and independent subfamilyl of F for which jFj = jlIj .

Assume nowF contains crossing one-way pair& and K° Let FO= F K, a crossing
system by Lemma2.4 As K°2 F % we may apply the inductive statement forF ° giving an
edge setF covering F % amongjFj pairwise independent one-way pairs. The proof is nished
using Lemma3.11 ]

2.2.1 Description of the Algorithm

Our next goal is to transform the inductive proof above into aralgorithm, that constructs an
independent subsel of O! and an covering edge sef of O! so thatjlj = jFj. It consists of
two phases.

and by Dilworth's theorem it nds a maximum antichain along with a minimum chain-decom-
position. The chain-decomposition oK corresponds to a subsef °of edges coveringl for which
jF9 = jlj . The antichain | will be output by the whole algorithm as a maximum cardinaliy
independent subset oD,

Phase 2 will terminate by outputting a covering of O of cardinality jlj . Let F; = O*!
and Fj := O f Ky;:::;K g for eachj = 1;:::;". From Phase 1, we havd-- = K covered.
By Lemma 2.11, when applied toF- 1;F-;K- in place of F;F %K, respectively, we can nd an
improving ipping and obtain a revised coveringF ®©of F- which covers a strictly larger subset
of F- ; asF%does. Since the number of bad edges is at mast and an improving ipping
reduces this number, after at mosh? improving ippings the resulting covering of F- will cover
F- 1. Then we can iterate this step withF- ,;F- ;K- 1, :::, Fo;F1; K4, and nally we get a
coverF%of O = F,. FOwill be the output of the algorithm as a minimal augmenting ede set
of D.

We have outlined the steps of the algorithm and proved its vality. Phase 1 can be preformed
as described in Sectior2.1.1 For the realization of Phase 2, we can use similar techniques.
However, we omit this analysis. Our reason for this is that the atysis is quite technical, and
we could not improve on the running time bound of the Dual Algathm.

41



2.3 Further remarks

2.3.1 Node-induced cost functions

The cost funtionc: A! R is callednode-induced if there exists two cost functionsc ;c' :
V! Rsothatc(uv) = ¢ (u)+ ¢ (v) for each edgauv 2 A. Given a node-induced cost function
c, a cover of a skeletorK can be extended to a cover dd?! of the same cost by Theoren2.10
Therefore the only task left is to determine a minimum cost coveof a skeleton.

Finding a minimum cardinality cover of a skeleton was an apgation of Dilworth's theorem.
As already mentioned, this can be deduced to nding a maximum aiching in a bipartite graph.
Analogously, we show that nding a minimum cost cover (for nodenduced costs) goes back to
nding a maximum cost matching in a bipartite graph by using thestandard reduction.

For the poset K; ), construct a bipartite graph G = (A;B;E) so that to each element
K 2 K we have corresponding nodels” 2 A, k2 B, and if K L then k9°°2 E. Given
a matching M, a chain cover of sizen j Mj can be obtained as follows. Starting from an
uncovered nodek? 2 A, if k{%s uncovered byM, then let the singleton chainf K ;g correspond
to k. Otherwise, letk$ be the node so thak?k9 2 M, and de ne k;.; so that if ks covered by
M, then k’%, 2 M. This de nes a chainK; K, ::: K-, and these chains are pairwise
disjoint if starting for di erent uncovered members ofM .

Given the cost functionsc and ¢ on V, dene w(k% = min,x ¢ (v) and w(k% =
miny,k+ C"(v). Observe that minimum cost of an edge covering the chain constited above
is exactly w(k9) + w(k®. Therefore, if we consider the cost function ot induced by this w,
then a matchingM corresponds to a chain cover of cost equal to the total cost of thacovered
nodes. Hence nding a minimum cost chain cover is equivalent tanding the maximum cost of
a matching, solvable via the Hungarian Method.

2.3.2 Generalization to Theorem 1.2

The proof of Theoreml1.6 given in Section2.2 can also be extended to a new, algorithmic proof
of the more general Theorenl.2 Here we give only a brief sketch of this rather technical
argument, detailed in [/2, Section 4.4.2].

Unfortunately, Theorem 2.1 is not true in general for arbitrary crossing familyF in place
of O. The main reason is that the innocent-looking Clain®2.3 fails to hold: there might exist
set pairsM 6 N with M N ,M* N7*. Of course, in such a case one might argue that
N is super uous since if an edge set coveM , then it automatically coversN. Yet we cannot
simple leave all such pairdN from F as we may end up with a family of set pairs which is not
crossing.

A possible solution is the following. Let us call a pailN slim if no other pair M 2 F
with M = N , M* ( N* exists. (It is still possible that there is anM with M ( N
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M* = N*.)
We modify the de nition of stability so that H is stable if it is cross-free, each element &f
is slim, and instead of R.1), it satis es

L is either not slim, or crosses some element idf
wheneverL 20! H and9K 2H :L K:

i =1;:::;k is stable, it can be proved that a cover oK can be transformed to a cover oF.
ST-edge-connectivity augmentation by one can be tackled by inapproach.

It would be highly desirable to extend these methods for Theame 1.1, since it could give
a simpler alternative to the currently existing only combinaorial algorithm for directed con-
nectivity augmentation (the one in Chapter4). Moreover, it could be possibly extendable to a
polynomial time algorithm. (The algorithm in Chapter 4 is pseudopolynomial.) Unfortunately,
we could not nd such an extension so far. we do not even have a goioléa how skeletons in
S should be de ned.

2.4 Implementation via bipartite matching

In this section we present how the subroutine for constructing a sleton can be implemented
using bipartite matching theory. Given the k 1)-connected digraphD = (V;A), let us
construct the bipartite graph B = (V2V%H) as follows. With each nodev 2 V associate
nodesv®2 V°and v®°2 V®and an edgev%®2 H. With each edgeuv 2 V associate an edge
uv®2 H. ForasetX V, we denote byX?and X Pits images inV°and V% respectively.
The (k 1)-connectivity of G implies that B is (k 1)-elementary bipartite , that is, for each
16 X% VOeither (X9=VPrj(X9 j X9+ k 1. (See Sectiorl.1.2on k-elementary
bipartite graphs.) We say that X° VOistight if j( X9j=jX9+k 1and (X986 V2 Let
R denote the set of tight sets. Observe thak°2 R if and only if X 2 O!. In this context, we
say that an edgex%®covers the tight set X %if x92 X0 y%2 v ( X9 or equivalently, if
the edgexy covers the one-way paiiX .

Given a functionf : V°[ V%! N we call the setF  H an f -factor if de(x) = f (x) for
everyx 2 Vo[ V® Letf(Z)= ,,,f(X)forz VO v®

Claim 2.13. Consider a bipartite graphB = (V% V%H) and a functionf : V°[ V%! N so
that f (VO = f(V® andf(x)=1 or f(y)=1 for everyxy 2 H. An f -factor exists if and only
if f(X) f((X)) foreveryX V°

Proof. An easy consequence of Hall's theorem, replacing eacB V°[ V%by f (x) copies. The
condition f (x) =1 or f (y) =1 for every xy 2 H guarantees that at most one copy of the same
edge may be used. ]
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First we show how the maximal elements oR can be found; this in turn provides the
maximal elements ofO*. Let us consider nodesi®2 V0 v092 vV Pwith u%%°2 H. A tight set
X%2 R is called anu¢-set if u®2 X%and v®°2 ( X%. For an edgeu%®2 H, consider the
following f. Let f(u9) = f (v = k+21andforz2 (V° u9[ (V% V%, let f(z) =1. An
f -factor for this f is called ak-uv-factor . If B is a (k 1)-elementary bipartite graph, then
Claim 2.13implies the existence of a 1)-uv-factor. Let F,, denote one of them.

Claim 2.14. If there is a k-uv-factor, then there exists nau{-set.

Proof. AssumeXis au¢-set. AsX°2 R, j( X% =jX§+ k 1. Sinceu®2 X0 v®2 ( X9,
we havef (X9 = jX9§+ k, f(( X9) = jXY+ k 1, thus nok-uv-factor may exist. O

It is easy to see that any twou(-sets are dependent and the union and intersection of tvu-
sets areu¥-sets as well. Thus if the set oli¢-sets is nonempty, then it contains unique minimal
and maximal elements. In what follows we show how these can beridualgorithmically. For an
edge sef- H, we say that the pathU = XgyoX1Yy1 :::X¢Y; IS analternating path  for F from
Xotoy, if xi 2 VO y 2VPxyi2H Ffori=0;:::;t,andyixjs1 2 F fori =0;:::;t 1.
Under the same conditions we also say thatyyoX1ys @ :: X¢ IS an alternating path for F from xq
to X;.

Claim 2.15. (a) If there exists an alternating path forF,, from u®to v° then there exists no
u¢-set. (b) Assume there is no alternating path foF,, from u®to v let S; denote the set of
nodesz 2 V having an alternating path forF,, from u®to z° Then S? is the unique minimal

ug-set.(c) Assume no alternating path exists fof,, from u®to v% let S, denote the set of nodes
z 2 V having an alternating path forF,, from z°to v Then V° S is the unique maximal

uv-set.

Proof. (a) Let U be an alternating path for Fy, from u®to v®® Then F U is a k-uv-factor so
by Claim 2.14 no u¢-set exists. (b) LetZ°be an arbitrary u¢-set. For everyx®2 z° u°
( 29 contains a uniquey®with x%%92 F,,. The number ofy®2 V%with u%%2 F,, is exactly
k, and all of them are contained in (Z9. These arejz4 + k 1 dierent elements of (Z9,
and sinceZ°2 R, ( Z9 has no elements other than these. This easily implies tha@® contains
everyx°2 VOfor which there is an alternating path forF,, from u°to x° showingS? Z0 Itis
left to prove that S 2 R. From the de nition of S?, it follows that for every y°°2 ( SY?), there
exists anx®2 S? with x4%°2 F,, proving ( S?) = jS%+ k 1. The proof of (c) follows the
same lines. O

For the initialization of the algorithm, we determine the edje setsF,, by a single max- ow
computation for everyu®2 V° v02 v 442 H, By Claim 2.15 the maximal u¢-sets can
be found by a breadth- rst search. The maximal ones among thenoaespond to the maximal
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elements ofO?! (note that the maximal u¢-set might be contained in some otheky-set). We
will use the setsF,, also in the later steps of the algorithm.

Up to this point, all results will be applicable almost word for verd for undirected augmen-
tation in Section 3.5 The next part will also follow roughly the same lines, but therewill be
certain di erences according to the di erent notion of stability in the two cases.

To implement the basic step of the algorithm, consider a stable @ss-free systent which is
not a skeleton, a maximal elemenM 20! H andLg4, L, as de ned by (2.2). Our task is to
nd a K tting ( H; M) and minimal subject to this property. Let T be the set of the maximal
elements oflL ;.

Claim 2.16. T consists of pairwise tail-disjoint one-way pairs.

Proof. LetT;; T, 2 T . Asthey are maximal, they cannot be comparable, thus eithd, \ T, = ;
or T, \ T, = ;. The latter is excluded sincel;; T, M impliesT; \ T, M*. O

Let us constructB; = (V% V%H,) from B by adding some new edges as follows. For each
K 2 L,, add the edgex%2 H, for everyx 2 K ,y 2 K*. Furthermore, let x4%°2 H,
wheneverT 2T ,x2T ,y2V® T+,

Claim 2.17. LetL20' H ,L M. ThenL ts (H;M) if and only if L%is a tight set in
B;.

Proof. Clearly, L%is tight in B if and only if L°2 R and there is no new edga&%%2 H, H
with x°2 L%and y%%2 v (L9,

L ts (H;M) if it is independent from all elements oflL,, and for arbitrary T 2 T, either
T \L =;orT (L .Ifitsatisesthese properties, no new edge inl; H coversL? thus
L%is tight also in B;. For the other direction, if L is dependent from somé& 2 L ,, then there
existsx2 K \ L ,y2 K*\ L* with x3°2 H, coveringL® If for someT 2 T, T would cross
L, then by Claim2.3 L* T* 6 ;,thusthereexistx2 T \' L ,y2L* T* with x4%2 H,
coveringL. O

To nd an L as in LemmaZ2.8 we need to add some further edges B, to ensure that
L 20! H . (Note that the elements of T are all tight in B;.) Let Q M be an arbitrary
(not necessarily tight) set. LetZ(Q) denote the uniqgue minimalK satisfying the following
property:

K20 Q K ,andK ts(H;M): (2.3)

We will determine Z(Q) for di erent sets Q in order to nd an appropriate L. Z(Q) is well-
de ned sinceM itself satis es (2.3); and if K and K %satisfy (2.3), then K and K ®are dependent
and it is easy to see thaK \ K °also satis es @.3). The next claim gives an easy algorithm for
nding Z(Q) for a givenZ.
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Claim 2.18. Fix someu2 Q, v 2 M*. Let B, denote the graph obtained fronB; by adding
all edgesud®with y°2 ( Q9. Let S denote the set of nodez 2 V for which there exists an
alternating path for F,, from u®to z° Then Z(Q) = S.

Proof. As Mis an u¢-set in B,, applying Claim 2.15a) for B, instead of B, we get that B,
contains no alternating path forF,, from u®to v® By Claim 2.15b), S%is the unique minimal
u®-set in B,. The new edges inB, ensure that (S| Q) = ( S), thus Q S is an easy
consequence of Clain2.3. By Claim 2.17, S is the unique minimal set satisfying 2.3), thus
Z(Q)=S. O

Let W denote the union of the tails of the elements of . First, we shall nd a one-way pair
L, tting ( H;M)andL, W 6 ;. Letus compute the setZ(fug) for any u2 M W. By
Claim 2.18 this can be done by a single breadth- rst search. An arbitrary nmimal element of
the setfZ(fug):u2 M Wg is an appropriate choice fol ;.

Thus L, can be found byjM Wj = O(n) breadth- rst searches. Now eitherL; is itself
a minimal set tting ( H;M), or there exists anL, with L, W\ L,, also tting (H;M).
This is impossible if T L, holds for at most oneT 2 T, and thusL; is a minimal set tting
(H;M) in this case.

Assume nowT L4 holds for at least two dierent T 2 T . In order to obtain L, let us
computeZ(T; [ T, )forany Ti;T; 2T, T 8 T;, Ti;T;  L;. Choosing a minimal one among
these gives a minimaL, tting ( H;M). This can be done by performingO(n?) breadth- rst
searches.

As L, ts (H;M) and is minimal subject to this property,L := L, is an appropriate choice.

Complexity

In order to construct a skeleton, rst we needn? Max Flow computations for the maximal
members and the auxiliary graphs. The running time of adding member to a stable cross-free
system is dominated byO(n?) breadth rst searches. Thus ifs is an upper bound on the size of
a skeleton, then we can nd one irO(n°®+ sn?) time by using anO(n3) maximum ow algorithm
and an O(n?) breadth rst search algorithm. .
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Chapter 3

Undirected node-connectivity
augmentation

This chapter is devoted to the proof of Theoreni.37. As indicated in the introduction, both
the proof and the algorithm are closely related to those in Seoh 2 for directed connectivity
augmentation. In Section3.1, we de ne some basic concepts concerning relations of clumps
and families of clumps. A main di erence between the directednd undirected case is that the
clumps admit no natural partial order. Still, we will introduce the notion of nestedness, an
analogoue of comparability. Two clumps are said to be crossifghey are neither independent
nor nested. We will also be able to \uncross" such clumps, by refemg to meets and joins
of certain strict one-way pairs. Crossing and cross-free familiesd skeletons of clumps will
correspond naturally to those of strict one-way pairs. A new typef di culty is encountered
due to large clumps. Fortunately, it turns out that large clunps are nested with every other
clump they are dependent from.

Section 3.2 contains the proof of Theoreml.37, using an argument analogous to the one in
Section2.2 The algorithm for constructing a skeleton is discussed in Seati@.3, resembling the
one in Section2.1.1 Finally, in Section 3.4 we solve the minimum cost version for node-induced
cost functions, and discuss further possible generalizations aextensions as well.

3.1 Preliminaries

First we give a brief motivation of concepts related to clumpsln a (k  1)-connected graphG,
we may have set8 ( V with jBj =k 1,sothatV B hast 2 connected components. The
components oV B form a clump. Moreover, any partition of the components to ateast two
classes also forms a clump, since in the de nition, the pieces ai@ required to be connected. In
order to makeG k-connected, we need to add at least 1 edges between di erent components
of V. B. Fort = 2, an arbitrary edge between the two components su ces, howev the

47



situation is more complicated fort 3. In this case, the setB is often called ashredder in
the literature.

Foraclump X = (Xq;Xo;:::;Xy), let Ny =V Si Xi. X is calledbasic if all piecesX;
are connected. The clumpy is derived from the basic clumpX if each piece ofY is the union
of some pieces oK. By D(X) we mean the set of all clumps derived fronX , while D,(X) is
used for the set of small clumps derived from . Let C denote the set of all basic clumps. For
a setF C , D(F) denotes the union of the set® (X) with X 2 F . The clumps being in the
sameD (X) can easily be characterized (see e.gl9 50, 59)):

Claim 3.1. (i) Two clumps X and Y are derived from the same basic clump if and only if
Nx = Ny. (ii) If two basic clumps X andY have a piece in common, theixX =Y.

For a clump X and an edge seF, let F=X be the graph obtained from V; F) by deleting Nx
and shrinking the componentsX; to single nodes. Letc- (X ) denote the number of connected
components ofF=X. F covers X if F=X is connected, that is,cc(X) = 1. To cover X, we
need at leastjX] 1 edges ofF between di erent components ofX. If X is a small clump,
then F coversX if and only if F connectsX . We say that F covers (resp. connectsf  D(C)
if it covers (resp. connects) all clumps irH. Clearly, F is an augmenting edge set if and only
if it covers D (C). The following simple claim shows that in order to cover a sdt of clumps, it
su ces to connect every small clump derived from the members &f.

Claim 3.2. For an edge sef¥ ‘; andF C , the following three statements are equivalent:

(i) F coversF; (i) F coversD(F); and (iii) F connectsD,(F).

We have already de ned when two clumps are independent: if rexlge in \; connects both.
Two clumps aredependent , if they are not independent.

there existindices1l a tandl b hsothatY; ( X, foreveryi 6 bandX; ( Y, forevery
j 6 a. We call X, the dominant piece of X with respect to Y, and Y, the dominant piece
of Y w.r.t X. The following important lemma shows that a large basic clumpsiautomatically
nested with any other basic clump (see also iH]).

Lemma 3.3. AssumeX is a large basic clump, andr is an arbitrary basic clump. If X and
Y are dependent therX and Y are nested.

To prove this, rst we need two simple claims.

both small. If Xs ( Y,forsomel s t,1 b h,thenX andY are nested withY, being
the dominant piece ofY w.r.t X.
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X1

Figure 3.1: The nested clumpsX = (X 1;X2;X3) and Y = (Yy1;Y2; Ys; Ys) with dominant pieces X3
and Yj.

Proof. Consider an” 6 b. X5 Y, impliesd(Xs;Y-) =0, thus Y-\ Nx = ;. HenceY- X, for
somea 6 s follows either by Claim3.4 or by t = 2. We claim that this a is always the same
independently from the choice of. Indeed, assume that for somé® 2 f b; g, Yoo X with
a’g a.

The same argument applied with changing the role of and Y (by making use ofY-  X,)
shows that X, Y, for somej, giving Yo Y, a contradiction. X; Y, fori 6 a can be
proved by changing the role oKX andY again. ThusX andY are nested with dominant pieces
Xa and Y. H

Proof of Lemma3.3. The dependence implieX,\ Y; 6 ;, X,\ Y, 6 ; by possibly changing
the indices. Letx; = Ny \ Xij, ¥i = [Nx \ Yij, ng = jNx \ Nyj. Thenk 1 j N(X1\ Yj)j
No+ X1+ Y. Sincek 1= jNyj= ngt o y; this implies g6l yi xpandsimilarly g X yi.
The same argument forX,\ Yz gives o, Vi Xz and 5, Xi Yo

Thus we havex; = y; =0 for i 3. This givesX3\ Ny = ; and henceXs; Y, for somei
by Claim 3.4 The nestedness oK and Y follows by the previous claim. O

Beyond the close analogy between the argument of Chapt2and the present one, strict one-
way pairs will also be directly applied. We will simply use \onawvay pair" meaning strict one-way
pair in the rest of this chapter. For each small clumpX = (X3;X3), the two corresponding
one-way pairs K1; X;) and (X;; X,) are called theorientations of X . By the orientations of
a large clumpX we mean all orientations of the small clumps iD,(X). For a one-way pair
K = (K ;K%), its reverse isK = (K*;K ), and K denotes the corresponding small clump
(note that K = K).

The relation between covering in the directed and undirectesense is the following. If an
undirected edgeuv connects a small clumpX, then the directed edgeuv covers exactly one of
its two orientations (in the directed sense).
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Take two dependent small clumpsX = (X1;X3) and Y = (Yg;Y2). We say that their
orientations Lx and Ly are compatible if they are dependent one-way pairs. Clearly, any two
dependent one-way pairs admit compatible orientations, anélLx and Ly are compatible, then
so areLxy andLy. X andY are said to besimply dependent if for an orientation Ly of X,
there is exactly one compatible orientatiorl.y of Y, and strongly dependent if both possible
choices ofLy are compatible withLy . (Note that the de nition is indedepent of the choice
of the orientation Lx). X and Y are strongly dependent if and only ifX; \ Y; 6 ; for every
i=1;2,] =1;2. The following claim is easy to see.

AN ATIA

X1 X2

X2

2 WY,

@) (b)

Figure 3.2: Simply dependent one-way pairs (a), and strongly dependent imes (b).

Claim 3.6. Two small clumpsX andY are nested if and only if for some orientation& x and
Ky, Kx Ky.

We are ready to de ne uncrossing of basic clumps. By uncrossing thegkndent one-way
pairs K and L we mean replacing them by * L and K _ L (which coincide withK and L if K
and L are comparable). For dependent basic clumps and Y, we de ne aset ( X;Y ) consisting
of two or four pairwise nested clumps in the analogous senseXlfand Y are nested, then let
( X;Y)=1X;Yg. By Lemma3.3 this is always the case if one ok and Y is large. For the
small basic clumpsX and Y, consider some compatible orientationsyx andLy. If X and Y
are simply dependentthenlet (X;Y )= fLx * Ly;Lx _ Lyg. (Altough there are two possible
choices forLyx and Ly, the set ( X;Y ) will be the same.) If they are strongly dependent, then
Lx is also compatibleLy. Inthiscaselet ( X;Y)=fLyx " Ly;Lx _Ly;Lx ~Ly;Lx _Lvyo.
It is easy to see that the clumps in (X;Y ) are nested withX and Y and with each other in

both cases. We will need the following submodular-type propertcorresponding to Lemmea2.2

Claim 3.7. For dependent basic clumpX;Y , if an edgeuv connects a clump in( X;Y) then
it connects at least one oX andY.
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We say that two clumps arecrossing if they are dependent but not nested. Again by
Lemma 3.3, two basic clumps may be crossing only if both are small. A subsét C s
called crossing if for any two dependent clumpsX;Y 2F, ( X;Y) D(F). (The reason for
assuming containment inD (F ) instead of F is that ( X;Y ) might contain non-basic clumps.)
Note that Citself is crossing. For a crossing systei and a clumpK 2 F ,let F K denote
the set of clumps inF independent from or nested withK. Similarly, for a subsetKk F
F K denotes the set of clumps i+ not crossing any clump inK. An F C is cross-free if
it contains no crossing clumps, that is, any two dependent clumps F are nested. (Note that
a cross-free system is crossing as well.) A cross-fkeés called askeleton of F if it is maximal
cross-free inF, that is, F K = K. By Lemma 3.3 a skeleton ofC should contain every large
clump. Let us now prove the counterpart of Lemma.4:

Lemma 3.8. For a crossing systenF C andK 2F, F K is also a crossing system.

Proof. Let F°= F K. If K is large thenF°= F by Lemma3.3, thereforeK is assumed being
small in the sequel. Let us x an orientationLy of K. Take crossing basic clumpX;Y 2 F°
Again by Lemma3.3, if a clump in ( X;Y) is not basic, then it is automatically inD(F 9. We
consider all possible cases as follows.

() Both are nested withK . Choose orientationdx and Ly compatible with L (but not
necessarly with each other)(a) If Ly Lk Ly orLy Lk Lx,thenX andY are nested
by Claim 3.6. (b) Let Lx;Ly Lk. If Lx andLy are dependent, thenLx » Lv;Lx _ Ly
Lx. If Ly andLy are dependent, thenLx * Ly Lx andLx Lx _ Ly. These arguments
show (X;Y) D(F9. (c) Inthe case ofLx;Ly Lk, the claim follows analogously.

(1) Both X and Y are independent fromK. By Claim 3.7, all clumps in ( X;Y) are
independent fromK .

(I1) One of them, sayX is nested withK, and the other, Y is independent fromK . Let
Lx be an orientation of X compatible with Ly and Ly an orientation of Y compatible with
Ly . By symmetry, we may assuméy Lx. NowLyx * Ly Lk, and we show thatLyx Ly
is independent fromK . Ly being an arbitrary orientation compatible with Ly, these again
imply ( X;Y) D(F9. Ly and Lk are independent, butL, \ L, 6 ;,thusLy \ L} = ;,
hence the one-way pairkx Ly and Lk are independent. We also need to show thaty Ly
and Lk are independent. Indeed, their dependence would imply;, \ L, 6 ;, L, \ Ly 6 ;,

contradicting the independence oK and Y. ]
Finally, the sequenceK ;K»;:::; K- of clumps is called achain if they admit orientations
Ly;Lo;ii;Lowith Ly L, i L. fu2Ly,v2LY then the edgeuv connects all

members of the chain.
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3.2 The proof of Theorem 1.37

For a crossing systenk C , let (F) denote the minimum cardinality of an edge set covering
F. Let (F) denote the maximum ofdef () over groves consisting of a shrub and bushes of
clumps inD(F). First, we give the proof of the following slight generalizabn of Theorem1.37
based on two lemmas proved in the following subsections (cf. Tdrem 1.6).

Theorem 3.9. For a crossing systen C , (F)= (F).
The two lemmas are these:
Lemma 3.10. For a cross-free systent, (F)= (F).

Lemma 3.11. For a cross-free systent, if an edge set- coversF K, then there exists an
FOcoveringF with jFg = jFj, and furthermore d=o(Vv) = d (v) for everyv 2 V.

For the directed case in Chapteg, the claim analogous to Lemma&.10was straightforward
by Dilworth's theorem, while Lemma3.11is word-by-word the same as Theorer2.10 Also,
Theorem 3.9 derives from the lemmas the same way as Theorehb.

The following theorem may be seen as a reformulation of this qof, however, it will be
more convenient for the aim of the algorithm and to handle theninimum cost version for node
induced cost functions.

Theorem 3.12. For a crossing systemF C and a skeletonrK of F, (K) = (F). Fur-
thermore, if an edge sefF covers the skeletok of F, then there exists anF° coveringF with
jF9 = jFj and dro(v) = de (v) for everyv 2 V.

that F; is a crossing system as welF- = K sinceK is a skeleton. By Lemma3.10 K admits
a coverF with jF-j = (K) = (K). Applying Lemma 3.11 inductively for F; 1;K; and F;

fori = ;" 1;:::;1, we get a cover; | of F; ; with jF; 4j = jFj. Finally, Fq is a cover of
F = Fo, hence (F) | Foj = jFj = (K), implying the rst part of the theorem. The identity
of the degree sequences follows by the second part of LemBnbl ]

3.2.1 Covering cross-free systems

This section is devoted to the proof of Lemm&.1Q The analogous statement in the case of
directed connectivity augmentation simply follows by Dilweth' theorem, which is a well-known
consequence of the Kdnig-Hall theorem on the size of a maximunatohing in a bipartite graph.
In contrast, Lemma 3.10is deduced from Fleiner's theorem, which is proved via a redton to
the Berge-Tutte theorem on maximum matchings in general gphs.

We need the following notion to formulate Fleiner's theorem A triple P = (U; ;M) is
called asymmetric poset if (U; )is a nite poset and M a perfect matching onU with the
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property that u v and uu® w2 M impliesu® Vv° The edges oM will be called matches .
A subsetfuyvy;:ii;ukvwg M is called asymmetric chain ifu; u, _::: ug (and thus
Vi Vo i V). The symmetric chainsS;S,;:::;S cover Pif M = S

AsetL = fLy;L,:::;L-g of disjoint subsets ofM forms alegal subpartition if uv 2 L;,
ud°2 Lj, u  ulyieldsi :FJ' , gnd o symmetric chain of length three is contained in an;.

The value ofL isval(L) =, L1 .

Theorem 3.13 (Fleiner, [20])). Let P = (U; ;M) be a symmetric poset. The minimum number
of symmetric chains covering? is equal to the maximum value of a legal subpartition Bf.

Note that the max  min direction follows easily since a symmetric chain may contaiat
most two matches belonging to one class of a legal subpartitiomhis theorem gives a common
generalization of Dilworth's theorem and of the well-knowmin-max formula on the minimum
size edge cover of a graph (a theorem equivalent to the BergetfEe formula).

First we show that Lemma3.10is a straigthforward consequence ¥ contains only small
clumps. Consider the cross-free famillf of clumps, and letU be the set of all orientations of
one-way pairs inF . The matches inM consist of the two orientations of the same clump, while

is the usual partial order on one-way pairs. A symmetric chain c@sponds to a chain of
clumps. Since all clumps in a chain can be connected by a singllge, a symmetric chain cover
gives a cover ofF of the same size. On the other hand, a legal subpartition yieldsgaove with
a shrub and bushes consisting of the clumps corresponding to theeemay pairs inL;.

Let us now turn to the general case wher may contain large clumps as well. For an
arbitrary set A V,let A =V (A[] N(A). An edge setF semi-covers the clump
X = (Xyq;:::;Xy) if F contains at leastjX] 1 edges connecting, and furthermore each
clump (Xi;X;) is connected fori =1;:::;t. (Note that X; = 4, X;.) F semi-coversF if it
semi-covers everX 2 F . Although a semi-cover is not necessarly a cover, the followingnhma
shows that it can be transformed into a cover of the same size.

Lemma 3.14. If F is a semi-cover ofF, then there exists an edge séi covering F with
jFj = jHj and dy (v) = de (V) for everyv 2 V.

Proof. We are done ifF covers all clumps inF. Otherwise, consider a clumpX 2 F semi-
covered but not covered X is large, since semi-covered small clumps are automaticallyeced.
SinceX is connected by at leasiX ] 1 edges of, there is an edges = Xx;y; 2 F connectingX
with c=(X) = ¢ (X). Each (Xi; X;) is connected, hence we may consider an edqg/, 2 F
connectingX with X,y, being in a component ofF=X di erent from the one containing X1y;.
Let FO= F f Xuy1;X2Y20+ fX1Y2; X2y1g denote the ipping of X1y, and x,y,. Clearly, ceo(X) =
c-(X) 1. We show thatceo(Y) c=(Y) foreveryY 2F X, hence by a sequence of such
steps we nally arrive at anH coveringF .
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Indeed, assume:o(Y) > ce(Y) for someY 2 F . X andY are dependent since at least one
of X1y; and x,y, connects both. By Lemma3.3 X andY are nested; letX, and Y, denote their
dominant pieces. The nodes;y1; Xo; Y> lie in four di erent pieces of X and thus at least three
of them are contained inY,. Consequently,cco(Y) = c=(Y) yields a contradiction. ]

In what follows, we show how a semi-covdf of F can be found based on a reduction to

UX = ful;v ri=1;:::t0. LetU= ", UX. We say that the members oU* are of type
X . Let the matching M consist of the matchess* v ; such a match is called arX -match .

If X is small ¢ = 2), then uf = v§ and vy = u¥, thus jU*j = 2. If X is large, then
ju*j = 2t. In this case, letuf and vy be called thespecial one-way pairs w.r.t X. ufvy
is called aspecial match . Note that it matters here, which piece ofX is denoted by X,
(arbitrarily chosen though). Let the partial order °on U be de ned as follows. Ifx andy are
one-way pairs of dierent type, then letx C°y if and only if x y for the standard partial
order on one-way pairs. Ifx andy are both of type X for a large clumpX, then let x vy if
either x = uf,y = v*, orx = u*,y = v{ for somei > 1. In other words, C°is the same as
except that x and y are uncomparable whenevex and y are of the same typeX, and neither
of them is special.

Claim 3.15. P =(U; %M) is a symmetric poset.

Proof. The only nontrivial property to verify is the transitivity of % x %y andy °zimplies
x 9z. This follows by the transitivity of  unlessx and z are di erent one-way pairs of the
same typeX, and neither of them is special. ThuX is a large clump and by possibly changing
the indices, assume = u}, z = v¥. y could be of typeX only if it were special, excluded by
X =uxX 6 u} andz= v} 6 vi. Hencey is of a di erent type Y.

Assume rsty = uY for somei. Now X, Y, X;thus Ny \ Y, =;, giving by Claim 3.4
Y; X, for somej 6 3. Consequently, X, = Y;, a contradiction as it would lead toX =Y by
Claim 3.1 Next, assumey = v{'. X3 Y; X, gives a contradiction the same way. O

The following simple claim establishes the connection betweelependency of clumps and
comparability in P.

Claim 3.16. In a cross-free systenf, the clumpsX;Y 2 F are dependent if and only if for
arbitrary i;j, uj is comparable with eithe or v'.

with val(L) = t. Let us choosd. so that = is maximal, and subject to this, i‘=1 L; contains the
maximum number special matches. A symmetric chai; naturally corresponds to a chain of
the clumps (X;; X; ) for ujX vjX 2 Si. These can be covered by a single edge; hence a symmetric
chain cover corresponds to an edge detof the same size. A symmetric chain may contain both
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u v and ubvs forj 6 j%only if j =1 or j°= 1. Consequently,F is a semi-cover as there are
at leastjXj 1 dierent edges inF connectingX, and all (Xj; X;)'s are connected.

Itis left to show that L can be transformed to a grove withdef()= val(L). For a clump
X, let B(X) denote the set of indiceg with ujx vjX 2 . Li. Most e orts are needed to ensure
that the bushes consit of small clumps; allowing large clumps wiouenable a simpler argument.

Claim 3.17. For any clump X, the X -matches corresponding td (X ) are either all contained
in the sameL; or are all singletonL;'s. 12 B(X) always gives the rst alternative.

Proof. There is nothing to prove forjXj = 2, so let us assumgXj 3. AsL is chosen with
* maximal, if uXv* 2 L; with jL;j > 1, then there is anuy vy 2 L; with uy comparable with
either u or v*. If Y 6 X, then Claim 3.16 gives that uy is also comparable withu; or v%
for any j°2 B(X). If Y = X then eitherj =1 or h =1 follows, implying ujovjo 2 L; for every
j22 B(X). This argument also shows that 22 B(X) leads to the rst alternative. ]

Let (X) = i inthe rst alternative if L; is not a singleton, and (X) = 0 in the second
alternative. Let | denote the set of indices for whicl.; is a singleton. Take a clumpX with
(X)=1> 0 (and thusi 2 | ). Let us say that a pieceX; is a dominant piece of X, if
for someY 6 X with (Y) = i, X; is the dominant piece ofX w.rt. Y. Let U(X) denote
the set of the indices of the dominant pieces of; note that the setU(X) B(X) is possibly
nonempty.

Claim 3.18. If (X)=1i> 0,thenjB(X)] 2impliesjB(X)\ U(X)j=;.

Proof. First assumeB(X)\ U(X) 6 ; andjU(X)j 2. Consider aj 2 B(X)\ U(X) and a
j°2 UX) f jg, say, X; is the dominant piece ofX w.r.t. Y and X;o the one w.r.t. Y°with

(Y)= (Y9 =i. Itis easy to see thatl; contains a symmetric chain of lenght three consisting
of a'Y-match, uX v and aY “match.

Thus B(X)\ U(X) 6 ; impliesju(X)j = 1. Let U(X) = fjg. Assume again thatX; is the
dominant piece ofX w.rt. Y with (Y) = i. We claim that 1 2 B(X). Indeed, if 12 B(X)
andj 6 1, then a Y-match, uX v and v; u; would form a symmetric chain inL;. If j = 1,
then a'Y -match, u} v{ and v} uf forms a symmetric chain for arbitraryh 2 B(X) f 1g.

Let us replacel; by LP = L; f ufv g+ fufvyg. By Claim 3.16 any element ofL{ is
incomparable to any element of., for h & i. It is easy to verify that L? does not contain any
symmetric chain of length three given that_; did not contain any. This is a contradiction asL
was chosen containing the maximal possible number of special clags. ]

Let us construct the grove as follows. For anyX with (X) =0, BgX) 6 ;,let X 2D(X)
denote the clump consisting of pieceX; with i 2 B(X) and the piece 55y Xj. The latter
set is nonempty since 12 B(X) by Claim 3.17, thus jX] 1 = jB(X)j. De ne the shrub as
Bo=fX: (X)=0g. Fori2l,letB = f(X;;X;):u‘v} 2 Lig. The following easy claim
completes the proof.
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[ m
Claim 3.19. is a grove withdef (By) = jlj and def(B;) = ’LT‘ ifi2l.

Proof. Since the elements of di erentL;'s are pairwise incomparable, Clain8.16 implies that
clumps in di erent bushes are independent from each other arfdom those inBy. Assume an
edgeuv 2 \g covers three clumps in somB;. If these three clumps were derived from di erent
basic clumps, thenL; would contain a symmetric chain of length three. Thus we neea thave
two clumps derived from the same basic clumi : uv covers Kj;X;), (Xjo; X;0) and (Yn; Yy, )
for (X) = (Y) = i. This is also impossible since eitheX; or X;o would need to be the

dominant piece ofX w.r.t Y, a contradiction to Claim 3.18 ]

3.2.2 The proof of Lemma 3.11.

First we need the following lemmas.

Lemma 3.20. Assume that for three small clumpX = (X1;X2), Y =(Y1;Y2), Z =(2Z1;2Z5),
all four setsX 1\ Y1\ Z1, X1\ Yo\ Z,, X5\ Y1\ Zy, X5\ Yo\ Z; are nonempty. Then all of
X, Y and Z are derived from the same basic clump (and thus none of thenbasic itself).

Proof. Let X. = Nx, Y. = Ny, Z. = Nz. By A, for a sequence of three literals each 1,2 oc,
we mean the intersection of the corresponding sets. For examphe,,c = X1\ Yo\ Z..

The conditions mean that the setsAji1, A1z, Az, Az are nonempty. V..o (A [
N(A111)) 6 ; as there is no edge betweeA;;; and X,, thus jN(A111)] k 1asG s
(k  1)-connected. This implies

k 1 J Acll[ Alcl[ Allc[ Alcc[ Aclc[ A(:cl[ Acccj (31)

asN (A111) is a subset of the set on the RHS. Let us take the sum of these types méqualities
for all Aj11, A1, Ao12, Agpr. This gives 4k 1) S;+2S;, +4jA, WhereS; is the sum of
the cardinalities of the sets having exactly one in their indices, while S, is the same for two
C's.

On the other hand, X = jY¢ = jZj = k 1. Thisgives 3k 1) = S; +2S; + 3jAccd-
These together implyS; = S, =0, jJAcd = k 1. We are done by Claim3.1sinceNyx = Ny =
Nz = Accc O

Proof of Lemma3.11 Let F°= F K. If K is large thenF°= F by Lemma 3.3, thereforeK
will be assumed to be small with an orientatiorLg .

If F coversF °but not F, then by Claim 3.2 there exists a small clumpX 2 Do(F) D»(F9
not connected byF, thus X and K are crossing. Choos¥ with the orientation Ly compatible
with L so that Ly is minimal to these properties w.r.t.  (that is, there exists no other
uncovered X ° with orientation Lyxo compatible with Lx so that Lxo Lx.) ChooseY not
connected byF with Lx Ly, and Ly maximal in the analogous senseX( = Y is allowed).
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Lx " Lx andLy _ Lk are nested withLk and thus connected by edges,y;; Xoy, 2 F with
Xp2 Ly \ L,Y¥22 Ly \ Lg. AsX andY are not connectedy; 2 Ly Ly, x22 L, Ly
follows. Let F®= F f Xiy1;Xoyo0 + fX1Y2; Xoy2g denote the ipping of x1y: and X,y,. FO°
connectsX and Y, and we shall prove thatF ° connects all small clumps irD»(F ) connected by
F. Hence after a nite number of such operations all small clump#®iD,(F ) will be connected,
so by Claim 3.2, F will be covered.

For a contradiction, assume there is a small clumB connected byF but not by F% (S is
not necessarly basic.) No edge iR \ F°%may connectS, hence either exactly one ok.y; and
X2Y> connect it, or if both then x; and y, are in the same piece ang; and x, in the other piece
of S. In this latter case,K and S are strongly dependent.

(I) First, assume that only x;y; connectsS, and choose the orientatiorLs with x; 2 Lg,
y1 2 Ls. We claim that Ls and Ly are also dependent. Indeed, if they are independent,
then Lemma 2.5(i) is applicable forL, = L, L, = Ly, L3 = Ls, sinceLx * Ly and Lg are
dependent because&;y; connects both. This givex; 2 L, L, Lg, thatis, xoy; connects
S, a contradiction.

Hence we may consider the one-way pdirs _Ly. Ls _ Ly is strictly larger than Ly, as if
Ls Ly held, thenS would be connected byk,y,. By the maximal choice ofLy, Ls Ly is
connected by some edge 2 F. By Claim 3.7, f also connectsS or Y, implying f = Xyy;. This
is a contradiction asx; 2 Lg [ Ly andy; 2Lg\ L.

(I If x,y, is the only edge connecting, we may use the same argument by exchanging
and”, X and Y, \minimal" and \maximal" everywhere and applying Lemma 2.5(ii) instead of
().

(I11)  Finally, if both x;y; and x,y, coverS, let Ls be chosen withxy;y, 2 Lg, y1;X2 2 Lg.
The argument in (I) may be applied with the only di erence tha at the end f = Xxyy, is also
possible. This gives<; 2 L§ \ Lg, thus x, 2 L . Analogously, the argument in (I1) applies for
Ls, and we gety; 2 Ly \ Lg, thusy; 2 L.

Now the clumpsK, S and X satisfy the condition in Lemma3.20 witnessed by nodes
X1;X2;Y2;y1. This contradicts the assumption thatK was a basic clump. O

3.3 The Algorithm

As outlined in Section1.5, the algorithm will be a simple iterative application of a suboutine
determining the dual optimum (G). Theorem 3.12 shows that (G) = (K) for an arbitrary
skeletonK. Given a skeletonK, (K) can be determined based on Fleiner's theorem: Theo-
rem 3.13admits a (linear time) reduction to maximum matching in geneal graphs, as described
in Section3.3.2 As in Chapter 2, the naiv greedy approach fails due to the possibly exponen-
tial size of C. The solution will be again the notion of stability, however, gini cantly more
complicated than in Section2.1.1
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3.3.1 Constructing a skeleton

Let us rst introduce some new notation concerning pieces. If thsetB V is a piece of the
basic clump X, then let Bl denote X. Let Q be the set of all (connected) pieces of all basic
clumps, whereas); the set of all (not necessarly connected) pieces of all clumps.rBosubset
A Q , Al is the set of corresponding basic clumps (e.@! = O).

As for the directed case, now we de ne stability. A cross-free set of C s stable if it
ful lls the following:

U crosses some element bf wheneverU 2C H and 9K;K °2 H : K:;U:K °forms a chain.

The following simple claim will be used for handling chains o&hgth three.

Claim 3.21. For piecesB1;B,;B32 Q4,if () By B, Bsor(i) By ByandB; B,,
then the corresponding clumps!;Bl; Bl form a chain.

Clearly, H = ; is stable, and every skeleton is stable as well. L& Q denote the set
of the pieces minimal for inclusion. Based on the following d¢ta (an analogue of Claim2.7),
we will be able to determine when a stable cross-free system is a stal. The subroutine for
nding the elements of M will be given in Section3.5 among other technical details of the
algorithm.

Claim 3.22. The stable cross-free systetd C is a skeleton if and only ifM 1 H .

Proof. On the one hand, every skeleton should contaid !. Indeed, consider arM 2 M . M1
cannot cross anyX 2 C, as ( X;M 1) would contain a clump with a piece being a proper subset
of M.

On the other hand, assumeH is not a skeleton even thougtM ! H . Hence there exists
aclumpU = (Ug:::U) 2 C H , not crossing any element oH. Consider minimal pieces
M; U, M, U, Then MJ;U;Ml forms a chain by Claim 3.21(ii), contradicting the
stability. O

AssumeH is a stable cross-free system, but not a skeleton. In the followinge show how
H can be extended to a stable cross-free system larger by one. By tl@we claim, there is an
M2M with M 2C H . Let

L,:=fX 2H : X andM! are nested; L,:= fX 2H : X and M! are independeng (3.2)

Claim 3.23. If L, =;, thenH + M! is a stable cross-free system.

Proof. Indeed, assume that for som& 2 C H andK 2 H, H + U is cross-free, although
K;U; M1 forms a chain. NowK and M are dependent and thus nested, a contradiction. [
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In the sequel we assumé&, 6 ;. The key concept of the algorithm will be \tting": as
in the directed case, we shall de ne when a piecg 2 Q ts the pair (H;M). However, the
de nition is signi cantly more complicated, therefore we fomulate the main lemma in advance
(cf. Lemma2.8):

S
Lemma 3.24. Let C be a minimal member ofQ H tting (H;M). ThenH + C! is a stable
cross-free system.

There exists aC satisfying the conditions of this lemma, as according to the detion, the
pieces ofM! di erent from M (that is, the connected components ofl ) t ( H;M). Such aC
can be found using standard bipartite matching theory similayl as in Chapter2; the technical
details are postponed to Sectio.5.

The minimality of M implies that for any X 2 L ;, the dominant piece ofM! w.rt. X is
a connected component oM . One simple notion before giving the de nition of tting is the
following. For piecesB;C 2 Q, we say thatB supports CifB C M . B 2 Q supports
Y 2 Cif B supports some piece of ; X 2 C supportsB 2 Q if a piece ofX supportsB.

De nition 3.25. The pieceC 2 Q ts the pair (H; M) if
(@ Cl2C H;C M.
(b) There exists aW 2 L ; supporting C.

(c) Consider a clumpX 2 L ; with dominant piece X, w. r. t. M!, and another pieceX; with
i 6 a. TheneitherX; ( CorX;\ C=;,andif X\ C6 ; thenX;\ C = ;.

(d) Clis independent from everyX 2 L .
The proof of Lemma3.24is based on the following claim:

S
Claim 3.26. LetC 2 Q H, C M supported by somé&V 2 L ;. The following two
properties are equivalent: (i)C ts (H;M); (i) H + Cl is cross-free.

Proof. First we show that (i) implies (ii). C! is independent from all pairs inL,. Consider
an X 2 Li. C! and X cannot cross by Lemma3.3 wheneverX or Cl is large, thus let us
assume they both are small basic clump¥ = (X1;X;) with X, being the dominant piece of
X w.r.t. M1, If X and C! are dependent, thenX,;\ C 6 ; or X,\ C 6 ;. In the rst case, (c)
implies X; ( C hence nestedness follows by Clai®i5. So let us assumeX;\ C = ;. By the
dependencyX;\ C 6 ;, contradicting X,\ C 6 ; by the second part of (c).

Next, we show that (ii) implies (i). (a) and (b) are included ammg the conditions. For (c),
consider anX 2 L ; with dominant piece X, w.r.t. M and another pieceX;, i 6 a. Notice that
Xi M . If X and Cl are independent, thenX;\ C = ; as otherwise an edge betweex; \ C
and M would connect both. If they are dependent so that the dominargide ofX w.r.t. C!is
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di erent from X;, then X; ( C or X;\ C = ; follows. Finally, if the dominant side isX;, then
C cannot be the dominant side ofC! w.r.t. X (as it would imply M X, C), thus C ( X;.
Now W; Cl; X forms a chain by Claim3.21(i), a contradiction to the stability of H.

Assume nextX,\ C6 ; andX;\ C 6 ;. X and C! are again dependent and thus nested,
and as above, the dominant side oX cannot beX;. C cannot be the dominant side ofC! as
Xi  C would contradict X;\ C 6 ;. HenceC X,. We get a contradiction again because
of the chainW; Cl; X..

Finally for (d), assumeC! and X 2 L , are dependent.C cannot be the dominant piece of
C! w.rt. X as it would yield X 2 L ;. Consequently,X; C for a non-dominant pieceX; of
X w.r.t Cl, and thus by Claim 3.21(ii), W;C!; X forms a chain, a contradiction to stability. [

Proof of Lemma3.24. Using Claim 3.26 it is left to show that no chain Cl; U; K may exist with
K2H,U2C (H+Cl)sothatH + Cl+ U is cross-free. Indeed, if such a chain existed, then
Cl and K would be dependent and thus nested. LeE® be the dominant piece ofC! w.rt. K.
If C°6 C then by Claim 3.21(ii), W;C!;K is a chain, contradicting the stability of H. (W is
the clump supporting C ensured by (b).) S

If C%= C, then for some pieces); of U and K; of K, K; ( Uy ( C. NowU; 2 Q H,
Uy M andK supportsU;. By making use of Claim3.26 U; ts ( H; M), a contradiction to
the minimal choice ofC. O

3.3.2 Description of the Dual Oracle

To determine the value of (G), we rst construct a skeletonK as described above. FoK, we
apply the reduction to Theorem3.13as in Section3.2.1 As already mentioned, a minimal chain
decomposition along with maximal legal subpartition of a symntec posetP = (U; ;M) may
be found via a reduction to nding a maximum matching. For thesake of completeness and
also because it will be needed for the minimum cost version, we lime this reduction. De ne
the graph C = (U; H) with uv°2 H ifand only if u v andvv®2 M for somev 2 U.

It is easy to see that the setfmy;m,;:::;m-g M is a symmetric chain if and only if

alternating path. The transitivity of  ensures thatM [ H contains noM -alternating cycles.
Let N H be a matching inC. Then the components ofM [ N are M -alternating paths,
each containing exactly two nodes not covered by . Hence nding a maximum matching in
H is equivalent to nding a minimum chain cover inP. The running time of the most e cient
maximum matching algorithm for a graph onn; nodes withm; edges isO(p n,my) [69, Vol I,
p. 423].

Let us now give upper bounds ofKj and onjUj. Jordgn [49,50 showed that the size of
the optimal augmenting edge set is at most mak(G) 1, @ ) + % . Here b(G) is the
maximum size of a clump, while(G) is the maximum number of pairwise disjoint sets IQ.
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Sinceb(G) n (k 1), t(G) n, it follows that n is an upper bound on the size of an
augmenting edge set. In a skeletol, the set of clumps connected by an edgg forms a chain.
Since the size of a chain can also be bounded bywe may conclude ., (jKj 1) n?and
thus jKj  n2. Using the running time estimation in Section3.5, this gives a boundO(kn®) on
nding K.

In Section 3.2.1the minimum semi-cover ofK is reduced to a minimum symmetric chain
cover of a poseP = (U; ;M) with jUj = O(n?), since there are X j nodes inU corresponding
the clump jXj. Hence the running time of the matching algorithm may be bouretl by O(n®).
As indicated in the introduction, at most } calls of the Dual Oracle enable us to compute an
optimal augmentation. This gives a total running timeO(kn").

As in [3€], another algorithm can be constructed which calls the duakacle only once. First,

let us nd a skeletonK = fKy;:::;K-g with a cover F and a grove of K with def()= jFj.
Then we iteratively apply sequences of ipping operations a® Lemma 3.11for F; ; = C
fKq;:i Ky qgandK; fori =" 1;:::;1 resulting nally in a cover F°of Cwith jFj = jF.

For eachi it can be easily seen that aftetO(n?) ippings we get a cover ofF; 1, thus O(n%)
improving ipping su ce. The realization of a ipping step can be done using similar techniques
as in Section3.5. We omit this analysis as it is highly technical and we could ngyet a better
running time estimation as for the previous algorithm.

3.4 Further remarks

3.4.1 Node-induced cost functions

In this section, we show that the minimum cost version is also solvi#bfor node-induced cost
functions. ®: E'! R is anode-induced cost function if there exists ac:V ! R so that
cYuv) = c(u) + c(v) for every uv 2 E. By the second part of TheorenB.12 for a skeletonK
and a node-induced cost functior®, the minimum c®cost of a cover ofC is the same as that of
K. Hence it is enough to construct a subroutine for determining gaminimum cost (K) of a
cover ofK. A minimum cost augmenting edge set can be found by iterativelyalling this dual
oracle.

Furthermore, by Lemma3.14 (K) equals the minimum cost of a semi-cover &f. Finding a
minimum-cost semi-cover can be easily done based on the follogvimeighted version of Fleiner's
theorem, which reduces to maximum cost matching in generalaphs.

Given a symmetric posetP = (U; ;M) and a cost functionw : U! R, let us de ne the
cost of the symmetric chainS = fuyvy;:::;uvg M withuy 0 u,vy 0 v by
w(S) = w(u-) + w(vy). Our aim is now to nd a chain cover of minimum total cost.

Consider the reduction to the matching problem in Sectio3.3.2 For a matchingN H
of C, the components ofM [ N are M -alternating paths each corresponding to a symmetric
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chain. The alternating path corresponding to the chair§ is viu;v,u, :::v-u-, hence the cost
of the two nodes not covered byN equals the cost of the chain. Consequently, the cost of a
symmetric chain cover equals the total cost of the nodes not aed by N. Hence minimizing
the cost of a symmetric chain cover is equivalent to nding a mamum cost matching. Note
that here we need a maximum cost matching only for node inducembst functions, although
this can be found for arbitrary cost functions.

To nd a minimum cost semi-cover ofK, we construct the symmetric poseP = (U; %M)
as in Section3.2.1 For a one-way pairu = (u ;u*) 2 U, let w(u) = min ,,,+ c(x). We claim
that nding a minimum cost symmetric chain cover for thisw is equivalent to nding a minimum
cost semi-cover oK.

Indeed, there is a one-to-one correspondence between chaiossisting of clumps of the
form (X;; X; ) and the symmetric chains oU (with the restriction that a chain may not contain

Ly Lz ::: L-canbe covered by any edge betweén andL?, thus the minimum cost
of an edge covering it isv(L-) + w(L;) with w de ned as above. Hence a minimung-cost of a
semi-cover inK equals the minimumw-cost of a symmetric chain cover oP.

3.4.2 Degree sequences

What can we say about the degree sequences of the augmentingeesigis? It is well-known that
in a graph G with some cost function on the edges, the sets of nodes covered bsniaimum
cost matching form the bases of a matroid. A natural generaligan of matroid bases are base
polytopes (see e.g.6p, Vol Il, p. 767])).

For undirected edge-connectivity augmentation, the degeesequences of the augmenting edge
sets form a base polytope, and the same holds for the in- and owggitee sequences for directed
edge-connectivity augmentation (see e.g.2J|). This is also true in case of directed node-
connectivity augmentation B1]. Moreover, all these results can be generalized for node+ced
cost functions: the degree (resp. in- and out-degree) sequenoésninimum cost augmenting
edge sets form a base polytope. Hence a natural conjecture is thikowing:

Conjecture 3.27. Given a(k 1)-connected graphG and a node-induced cost function, the
degree sequences of minimum cost augmenting edge sets fotmase polytope.

This was essentially proved by Szalo proved in his master's this [70] for k = n 2. His
result holds even without the assumption that the graph isk  1)-connected, indicating that
the conjecture might hold for arbitrary graphs as well.
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3.4.3 Abstract generalizations

In this section, we discuss possible generalizations and extensad the above results. A nat-
ural question is whether it is possible to give a generalizatioof Theorem 1.37 for abstract
structures, in the sense as Theorerh.2 generalizes Theoreni.6 from strict one-way pairs in
a (k 1)-connected graph to arbitrary crossing systems of set pairs. leed, it would be pos-
sible to formulate such an abstract theorem for describing covegs of a systemsC of \basic
clumps”, where under basic clump we simply mean a subpartition @f set satisfying certain
properties. However, it is not easy to extract the abstract propé&es C needs to ful ll so that
the argument carry over. In particular, we need to ensure Clan 3.1, Lemma 3.3, Claims 3.4
and 3.5 Lemma3.20and Lemma2.5 (for set pairs arising from orientations of clumps). It may
be veri ed that whenever C satis es these, all other proofs carry over; for the algorithm @ also
need a good representation dZ.

Since the argument is already quite abstract and complicatednd we could not nd a short
and nice list of properties that ensure all these claims, we did nrmulate such an abstract
theorem in order to avoid the addition of a new level of compt@y. Furthermore, we believe
that there should be a relatively simple abstract generalizainh of Theorem1.37, which does not
rely on all claims listed above. For comparison, the argumeniwgn in Chapter 2 for proving
Theorem 1.6 strongly relies on properties of which hold only if F is a crossing family of strict
one-way pairs of ak 1)-connected digraph (e.g. Clain2.3, Lemma 2.5). Nevertheless, the
more general Theoreni.2is true for arbitrary crossing families of set pairs, and admits enuch
simpler proof. (Recall that in Section2.3.2we also gave an extension of the \skeleton-proof" of
Theorem 1.6 to that of Theorem 1.2 by introducing slim one-way pairs. Such an extension of
Theorem 1.37 might also be possible, however, we would prefer a simpler typeasfument.)

A natural application of such an abstract theorem would be ro@d connectivity augmenta-
tion. Given a graph or digraph with designated node, 2 V, itis called rooted k-connected if
there are at leastk internally disjoint (directed) paths betweenr, and any other node. Similarly,
a digraph isrooted k-edge-connected with root ry if there are at mostk 1 edge-disjoint
directed path fromrgy to any other node. One may ask the augmentation questions forated
connectivity as well. It turns out that for digraphs, the minimum cost versions of rootec-
connectivity and rootedk-edge-connectivity augmentation are both solvable in polymial time
(see Frank and Tardos 35 and Frank [29]): both problems can be formulated via matroid
intersection (although the reduction of the node-connectity version is far from trivial).

In contrast, for undirected graphs the minimum cost version ofaoted k-connectivity aug-
mentation is NP-complete: Hamiltonian cycle reduces to it evefor k = 2 and 0-1 costs. The
minimum cardinality version of augmenting rooted connectity by one was studied by Nutov
[68], who gave a an algorithm nding an augmenting edge set of sizeraost opt+min( opt; k)=2.

An important di erence between minimum cardinality directed and undirected rooted con-
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nectivity augmentation is that while in the directed case thee is an optimal augmenting edge
set consiting only of edges outgoing fromg, in the undirected case it may contain edges not
incident to ro. An example isV = frg;X;y;ag, E = froX;roy; xa; yag (a rectangle). Fork = 3,

F = fxy;roag is an optimal augmenting set, but there is no augmenting set ofza two of edges
incident to rg.

We believe that a min-max formula and a polynomial time algathm for nding an optimal
solution could be given by extending the method of this chapte However, it is not completely
straightforward how clumps should be de ned in this setting. Atthis point, we leave this
guestion open, since we believe that it will be an easy consequermt a later general abstract
theorem.

3.4.4 General connectivity augmentation

In what follows, we give an argument showing that there is no stigthforward way of generalizing

Theorem 1.37 for general connectivity augmentation. By "straightforwad”, we would mean a

relation analoguous to the one between Theores2and 1.1 in the rst one, the dual optimum

is the maximum number of pairwise independent members of a eging system of set pairs,
while in the latter one, we are interested the maximunp-sum over pairwise independent set
pairs. Hence a possible approach for general undirected conmatst augmentation would be

do not assumegNyj = k 1), and let p(X) be a lower bound on the number of edges needed
to cover X. There are multiple possible candidates fop(X ) and we do not commit to any of
them, but work only with the natural assumption that (?) p(X) = max(0;k j Nxj) whenever
jXj=2;and p(X) =0wheneverjNxj k. A natural conjecture is the following: the minimum
size of an augmenting edge set equals the maximum de ciency ajrave, where in the de nition

of de ciency, each termjXj 1 is replaced byp(X).

We show by an example that this conjecture fails even i is the only assumption onp(X).
Let G = (V; E) be the complement of the graph on Figur&@.3and letk =9. For anodez 2 V,
let Z, = (fzg;fzg ). The only basic clumps inG with [Nxj < 9 areZ,, Zy, Zy,, Zu,, Zv,, Zy,,
(fus; uz2g; fusg; fuag), (fvi;vag; fvag; fvag) and (fa;og; fb;dy). fuius; uaus; viva; vovs; ab; ad; bg
is an augmenting edge set of size 7, while a grove of value 6 is ¢time consisting of two bushes
By = fZu,;Zu,; Zus; Zu,; (Fag fus; uz;dg)g and Bx = £2,,; 2,5 Zy,; Zy,; (Fbg; fva; v2; cg) 9.

We show that neither an augmenting edge set of size 6, nor a grodevalue 7 exists. On the
one hand, assume an augmenting edge g$etexists with jFj = 6. Then F can be partitioned
into F = F, [ F, with jFyj = jF,) =3, F; coveringB; and F, overing B,. However, we need at
least two edges to coveZ, and two to coverZy,, and these can only be contained iff; and F,
respectively. Ifad 2 F1, then F; cannot contain any ofau; and au, as otherwise at least one of
Z,, and Z,, would remain uncovered. Hencad ZF;, and similarly bc2=F,. ab; cd2=F as they
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Figure 3.3: Example concerning general connectivity augmentation.

do not cover any ofB; and B,, thus (f a; ag; f b; dj) remains uncovered.

On the other hand, assume a grove of value 7 exists. We claim that should contain
(fa;og; fb; d), and two clumps of the form fag; A) and (fbg; B) with b2 A anda2 B. This is
clearly a contradiction as they cannot be simultaneously coained in a grove, since the edgab
connects all three of them. It can easily be checked that if weochot require a; og;fb; d) to
be covered, then the remaining clumps may all be covered by sgges. The same holds unless
we require all clumps of the form fag; A) with b2 A and all clumps of fbg;B) with a2 B to
be covered. Consequently, every grove of value 7 should contauch clumps.

3.5 Implementation via bipartite matching

In this section we present how the subroutine for constructing a sleton can be implemented
using bipartite matching theory. The argument follows the sam lines as the one in SectioB.4;
we adopt the terminology, notation and multiple fundament& claims proved there. Before
starting the reduction to bipartite graphs, let us prove a simp claim concerning pieces. This
is an analogue of Clain2.3

Claim 3.28. For a pieceY 2 Q; and an arbitrary setX V, if X Y ,thenX Y.

Proof. Indeed, assumeX is not a subset ofY, thus jX [ Y] > jYj. The condition gives
(XTY) =Y ,and hencejN(X [ Y)j < JN(Y)] = k 1, contradicting that G is (k 1)-
connected. O

Given the (k  1)-connected graphG = (V;E), let us construct the bipartite graph B =
(Ve VPH) as follows. With each nodev 2 V associate nodes® 2 V°and v®°2 V®and an
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edgevd%°2 H. With each edgeuv 2 E associate two edgest®u%%2 H. For a setX V,
we denote byX ©and X Pits images inV°and V% respectively. The k 1)-connectivity of G
implies that B is a (kK 1)-elementary bipartite graph. For a setX  V, X%is tight if and only
if X 2 Q. (Recall that in Section 2.4 we called a setX® VO tightif j( X% = jXJ+k 1
and (X9 6 Vv

First we need to nd the set M of minimal pieces. This is done by computing the edge
setF,, (the (k 1)-uv-factor) by a single max- ow computation for everyu;v 2 V, uv Z E.
By Claim 2.15 the minimal u¢-sets can be found by a breadth- rst search. The minimal ones
among these will give the elements d¥l .

Consider now a stable cross-frag which is not complete, a minimal elemen 2 M H
andL,, L, as dened by 3.2. If L, = ; then we are done by Clain3.23 hence in the sequel
we assumd._; 6 ;.

By Lemma 3.24 our task is to nd a minimal C tting ( H;M). Let T be the set of the
maximal ones among those pieces of the clumpslia which are subsets oM .

Claim 3.29. T consists of pairwise disjoint sets.

Proof. Consider clumpsX;Y 2 L, with piecesX;Y; 2 T. If X and Y are independent then
X1\ Y, = ; as otherwise an edge betweeX;\ Y; and M would connect both. If they are
dependent, then we show that the dominant sid&; of X w.r.t Y is di erent from X;. Indeed,
if X; = X4, then the dominant side ofY w.r.t. X should beY; 6 Y; as otherwiseM Y; would
follow. HenceY; ( X, a contradiction to the maximality of Y;. Similarly, the dominant side
of Y w.r.t. X may not beY;. HenceY; X ,thus X;\ Y;=;. O

Let us construct the bipartite graphB, = (V% V%H,) from B by adding some new edges as
follows. (1) For eachX 2 L ,, let x4%y%%°2 H, for every xy connectingX . (2) Let x4%2 H;
wheneverT 2T ,x2 Tandy 2 T[ N(T). (3) For eachX 2L ; with dominant piece X, w.r.t.
M1, let xX4%92 H;, for everyx 2 X4,y 2 X,.

S
Claim 3.30. LetC 2Q H,C M , supported by som&Vv 2H. C ts (H;M) if and
only if Clis tight in Bj.

Proof. C° VUistightin B if and only if it is tight in B and there is no edge ix%%2 H; H
with x92 C° y%2 v ( C9 (or equivalently, xy connects the clump C;C )).

AssumeC ts ( H;M). Property (d) forbids that any x%%2 H; H of the rst type cover
C° while (c) forbids any x4%of the second or third type to coverC’. For the other direction,
properties (a) and (b) follow by the conditions. For (d), ifC were dependent with som& 2 L ,,
then a new edge of the rst type would covelC® For (c), if C\ X; 6 ;,X; C 6 ; for some
X 2 L, with a pieceX; ( M , then consider aT 2 T with X; T. C T 6 ; as otherwise
W; C!; T would contradict stability. By Claim 3.28 C \ (T [ N(T)) 6 ;, hence a new edge of
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the second type covers€®. Finally, if X, is the dominant piece ofX w.r.t. M and X,\ C 6 ;,
Xi\ C 6 ;, then there is a new edge of the third type covering®. ]

To nda C asin LerSnma3.24, we need to add some further edges B;. Indeed, we need
to ensure thatC 2 Q H and furthermore that C is supported by someVN 2 L ;. Consider
now aW 2 L, with a pieceW; 2 T and a connected seQ with W; ( Q M . Let Z(Q)
denote the unique minimalX satisfying the following property:

X2Q;Q X,andX ts(H;M): (3.3)

We will determine Z(Q) for di erent sets Q in order to nd K. As in the directed case, it is
easy to see thaZ (Q) is well-de ned. The next claim gives an easy algorithm for wling Z(Q)
for a given Q.

Claim 3.31. Fix someu 2 Q, v2 M. Let B, denote the graph obtained fron8, by adding
all edgesudy®with y 2 Q[ N(Q). Let S denote the set of nodeg for which there exists an
alternating path for F,, from u®to z° Then Z(Q) = S.

Proof. As M is anu¥-set in B,, applying Claim 2.15a) for B, instead of B, we get that B,
contains no alternating path for F,, betweenu® and v®® By Claim 2.15b), S is the unique
minimal uv-piece inB,. ( S°[ Q% = ( SY thus Q[ N(Q) = S[ N(S) because of the new
edges inB,, hence by Claim3.28 Q S. By making use of Claim3.3Q S is the unique minimal
set satisfying 3.3), thus Z(Q) = S. ]

tting ( H; M) supported by W;. For eachq2 Ny \ M | let us computeZ(Q) for Q = W + q.
Let Cy denote a minimal set among these. & (Q) can be found by a single breadth- rst search,
thus we need at mosk 1 breadth- rst searches. We may compute such @y, for all possible
choices ofW, and a minimal among these gives a minimaC tting ( H;M). Therefore the
running time may be bounded by K 1)n breadth- rst searches since by Clain8.29 jTj n.
Somewhat surprisingly, this better compared to the directedase, where we needenf breadth
rst searches. The reason is that here we could take advantage dfet fact that all pieces in
a basic clump are connected and therefore consider orffy= W + qforg2 Nw \ M . In
contrast, the tail or a head of a one-way pair may contain a dicted cut and therefore we had
to examine a larger set ofQ's.

Complexity

To nd a skeleton system rst we needn? Max Flow computations to determine the minimal
pieces and the auxiliary graphs. The running time for extendg the stable cross-free system
by one member is dominated by 1)n breadth rst searches. Thus ifs is an upper bound
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on the size of a skeleton, then we can determine one@{n°® + skn®) running time by using an
O(n®) maximum ow algorithm and an O(n?) breadth rst search algorithm.
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Chapter 4

General directed node-connectivity
augmentation

The results in this chapter were published in74], a joint paper with Andias Bencair jr. We have
de ned posets with the strong interval property and formulatel Theorem1.40in Section1.5.2
Let us start with the proof of Claim 1.39

Proof of Claim 1.39. Property (i) of De nition 1.38 follows directly by the properties of set
union, intersection and containment. The relation betweemtervals and subfamilies de ned by
pairs of nodes is straightforward since the minimal element$ 8 are the set pairs of the form
(fug;V u) and the maximal ones are of the form\{ v;fvg). To prove Property (ii), consider
an edgexy with [m;M] = I,. (1.7) is a consequence of Lemm&2 [

We have already seen that Theoreni.1 follows from Theorem1.4Q Let us now show that
the reverse implication also holds and hence they are equivatle Given a poset f; ) with
the strong interval property, let us de ne a representative @ment’ (x) for every minimal or
maximal elementx. For a2 P, let us de ne the pair ( a)=(a ;a") so that

a =f"'(m):m a m2P minimalg; a" =f"'(M):M a; M 2P maximalg:

It is easy to show that the function is a homomorphism for _, » and . Let us dene
PAK) :=maxfp(a): ( a)= Kgwherep{K) =0 if there exists noa2 P with ( a)= K. It
is easy to verify that this is positively crossing supermodular. Hhee applying Theoreml.1 for
p® on the set pairs implies Theorent.4Q

Let us now show some basic properties of the tight elements.

Lemma 4.1. If x andy are two dependent tight elements with(x) > 0, p(y) > 0, then both
X _yandx” vy are tight.
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Proof. Let g(x) denote the number of intervals covering elemernt. By the strong interval
property all intervals that cover x _ y or x ™ y also coverx or y and if they cover both, then
they cover all four, henceg(x) + g(y) 9(x _y)+ g(x” y). The proof is complete by

gx_y)+ g(x™y) px_y)+ p(x"y)
p(x) + p(y) = g(x)+ aly) 9(x_y)+ g(x"y) (4.1)

implying equality everywhere. Here the rst inequality follovs since we have a cover; the second
is the de nition of crossing supermodularity; and the equalityfollows by the tightness ofx and
y. O

The following easy corollary will be used throughout the paper

Corollary 4.2. For a coverl, everyl 21 has a unique minimal and a unique maximal tight
element.

Lemma 4.3. If x andy are two dependent tight elements witp(x) > 0, p(y) > 0, and the
interval [m;M] 21 contains x, then it contains at least one ok _y and x ” y; or equivalently,
y Morm .

Proof. Recall that by the proof of Lemma4.1 we have equality everywhere in4.1); the last
inequality hence turns tog(x) + g(y) = g(x _y)+ g(x” y). By the strong interval property all
intervals that cover x _y or x ™ y also coverx or y and if they cover both, then they cover all
four. Hence the above equality implies the claim. ]

4.1 The algorithm

We give a brief overview of our algorithm for the 0{1 valued & (Theoreml.2) rst. The algo-

down-Reduce we maintain a tight elementu; 2 I; for each intervall; as a witness for the
necessity ofl; in the cover. As long as the set of witnesses are non-independent,Proce-
dure Pushdown we replace certainu; by smaller elements. By such steps we aim to arrive in
an independent system of witnesses. If withesses are indeed pairnusependent, they form
a dual solution with the same value as the primal cover solutiorthus showing both primal
and dual optimality. Otherwise in ProcedurePushdown the ProcedureReduce is called, a
procedure that exchanges interval endpoints so that we get amterval cover of size one less.
In order to handle weighted posets, technically we need to codsr multisets of intervals and

than once and the same may happen to the set of withesses. The nexhihea shows that if the
witnesses are pairwise independeas a weighted seinstead of a multiset, then the solution is
optimal.
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everyi;j , up and u; are either independent ow; = u;, then the elementd u; :::; u, g give a dual
optimal solution, and hencd is an optimal cover.

Proof. It su ces to show that if for a poset elementy there exists ani with y = u;, then there
exist exactly p(y) such intervals|; with y = u;. Sincey = u; is tight, there are exactly p(y)
intervals I; with y 2 |;. Consider such aru; now: u; and u; are either independent ow; = uj,
but the rst case is impossible since both of them are covered lby. Henceu; = u; for all p(y)
values ofj . O

Algorithm Pushdown-Reduce (1)
for j =1;::5r do
if 1; has no tight elementsthen
return reduced coverfl; :i=1;:5] 1) +1;:5r0
uj(l) maximal tight element of I
t 1
do
for j =1;::r do
u™  Pushdown (jit; 1)
t t+1

while existj such thatu® <uf*

j
return dual optimal solution ful"; ::;;u"g

ProcedurePushdown (j:t; | )
Uuf xmm X uj(t), x tightand 8i =1;:::;r, ui(t) may not pushx downg
if U=": then
t t;
return Reduce (j;t ;1)
else return the maximalx 2 U

4.1.1 The Pushdown step

Our Algorithm Pushdown-Reduce (see box) tries to push withesses down along their intervals
in iterations t = 1, 2, ... until they satisfy the requirements of Lemma4.4;, witnesses are
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Figure 4.1: Dierent cases whenu may pushv down. By Lemma 4.3 m; v, and there are three
possible cases: (ajn; 6 u M, (b) mj u6 Mj,and(c)m; u M,

superscripted by the iteration value {). Initial withesses uj(l) are maximum tight; their existence
follows by Corollary 4.2

Given two intervals |; = [m;; M;] and1; =[m;; M;] and two tight elementsu 2 |; andv 2 I,
we say thatu may push v down with respect to |; if u and v are dependent andv 6 M;.
In the case setU of ProcedurePushdown (see box) is nonempty we will pushv down, i.e.
replace it by the maximal element olU strictly below v. Notice that the de nition depends on
the choice of the intervall; with u 2 |;; it is possible thatv may pushu down with respect to
certain I; and not with others. In the following, when it is clear from thecontext, we will omit
mentioning |;. Di erent scenarios whenu may pushv down are shown in Figure4.l

In what follows we motivate which element replaces a given when v gets pushed down.

When selectinguj(“l) , our aim is to replaceuj“) by the maximal such tight elementx 2 |; which

satisesx  u{” and nou” may pushx down. As the motivation of pushingu{” down by u{"
we give the following claim as a relatively easy consequencd.efnma4.9, we omit the proof as
it is not used elsewhere. Iﬂi(t) may push uj(t) down, then for all subsequent®>t of the while
loop of Algorithm Pushdown-Reduce if the witnessesuj(to) and ui(to) are dependent then they
must be equal. This will be the main reason why all non-equal depdent pairs of witnesses
gradually disappear from the system.

While the above motivation considers the dual solution, namglit shows that the set of
witnesses will satisfy the optimality requirements, we may also \g@ a primal motivation of
pushingv down by u. If uis maximum tight in I;, then we may hope that by replacingr;; M;]
by [m;; M;] we still get a cover. In the examples of Figurd.1 this holds for cases (a) and (c).
In this cover v is contained in the new interval while it was not contained irthe old, thus it
may be replaced by a smaller witness.

However, this argument fails for case (b) since 2 [m;; M;] and the actual proof of correct-

ness will use a slightly more complicated argument. In the case iotreasing connectivity by
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one (see]), the only possible scenario was (a). This is the main reason whiye analysis is
signi cantly harder for the general case. While the argumentolr replacing n;; M;] by [m;; M;]
fails, we still pushv down and proceed with the algorithm. Then we use a backward agais
as in [F]; in the weighted case it turns out that, while this fails to hdd in general, if a particular
interval exchange is performed corresponding to a pushdown gtehen the exchange is valid
and in particular we haveu M;. We prove this later in Lemma4.12

The next properties of elements that one may push the other doware required both for
the de nition of the algorithm and later for the proof of correctness.

Lemma 4.5. If u;u®2 I; andv 2 I; are tight withu® u and u may pushv down, thenu® may
also pushv down.

Proof. We only have to show thatu® and v are dependent.v 6 M;, sinceu may pushv down.
Now by Lemma4.3 we havem; v. Hence the dependence af and v follows: a common
lower bound ism; and a common upper bound isi_ v. ]

Lemma 4.6. Supposeu 2 I;, v2 Ij, v°2 |, are tight elements ands and v° are dependent. If
u may pushv _ v®down, then it may also push eithev or v° down.

Proof. Sinceu may pushv _ v®down, we havev _ v°6 M;, hencem; v _ vPby Lemma4.3.
By the strong interval property eitherm; v orm; v°% By symmetry let us consider the
rst case; in this casev and u are also dependent since their common lower boundng and
their common upper bound isu _ (v_ V9. If v 6 M;, then u may pushv down. Suppose now
m; v M. Sinceu may pushv _ v®down, we havev _v°6 M; and thusv®6 M;. Then by
applying Lemma4.3for v, vPand [m;; M;] it follows that m;  v® henceu and v°are dependent.
Finally by v°6 M; we get that u may pushv® down. O

The actual change of a witnessi") is performed in ProcedurePushdown (see box). We

]
select all tight elementsx 2 1, X uj(t) into a setU that cannot be pushed down with elements
ui(t). If U is nonempty, we next show that it has a unigue maximal elementye use this element

as the new witnessuj(”l) .

Lemma 4.7. In Procedure Pushdown either U = ; or else it has a unique maximal element.

Proof. It su ces to show that if x;x°2 V, then so isx _ x°2 V. Obviously, x _ x%is tight and
m;  x_x° uj(t). Suppose now that somelim may pushx _ x°down. By Lemma4.6, ui(t) may

push eitherx or x° down, contradicting x;x°2 U. O

If we nd no dependent pair of withnesses such that one may push theéher down, then
we will show that the withnesses are pairwise independent or equahd thus the solution is
optimal. As long as we nd pairs such that one may push the other aen, in the main loop of
Algorithm Pushdown-Reduce we record a possible interval endpoint change by pushing one
witness lower in its interval; these changes are then unwound &a smaller cover as shown in
Section4.1.3
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4.1.2 Proof for termination without Reduce

We turn to the rst key step in proving the correctness: we show thaif the algorithm terminates

i(t) are pairwise independent or equal; in other words,

if none of them may be pushed down by another, then the solutios bptimal.

without calling ProcedureReduce , then u

Theorem 4.8. If the algorithm terminates without calling ProcedureReduce , then ui(t) and

() i ing (W — (O

u;* dependent impliesy;” = u;”.
The theorem is an immediate consequence of the next lemma. Taeseotice that if the
algorithm terminates without calling ProcedureReduce , then in a last iteration the while
condition of Algorithm Pushdown-Reduce fails. However then there are no pairs and |

such that u® may pushu® down.

(t2)

(t1) (ta)
i i

Lemma 4.9. Assume thatt; t,, and u;® and u

u"® down. Thenu(™®  uf”.

are dependent, ands; * may not push

This lemma is used not only for proving Theorend.8 but also in showing the correctness of
ProcedureReduce in Section4.1.3via the next immediate corollary.

(t+1)
i

(t+1)
i

Corollary 4.10. If uj(t) and u are dependent, theru

(t)
U,

In the proof of Lemma4.9 we need to characterize elements that cause witnegs move
below a certain tight elementy. Assume that for some tighty 2 I; and t we havey 6 uj(t).
Since uj(l) is maximal tight, we may select the uniquety, with y uj(t") but y 6 uj(“’”). In
step Pushdown (j;to; 1) we must have anu{® that may pushy down. We will use this in the

following special case:

V). Assume furthermore thaz 6 u"

]
may pushuj(t) _z down. In addition,

Lemma 4.11. Assume thatz is tight and dependent fromu

andz M;. Then there existsto <t andd such thatug")

ug") may also puste down.

(t)

Proof. We apply the above observations foy = u;” _ z 2 Ij. Sincey is tight, y uj(l). And

sincez 6 u”, we gety = u” . We selectto with y — u'® but y 6 u®™; then in
step Pushdown (j;to;1) we must have anug“’) that may pushy down.

(to)

For the second part of the claim observe that by Lemma4.6, u;”’ may push eitheruj(t) orz
(t 1)

down. The rst choice is impossible, since them; ~ could also pusmj(t) down by Lemma4.5,
andt 1 to. This latter contradicts the choice ofuj(t) as the maximum tight element that
may not be pushed down irPushdown (j;t  1;1). ]

_z6 u

Proof of Lemma4.9. u"®  M;, sinceuj(“)
(t2)

conditions of Lemma4.11hold with z = u;

may not pushu{'? down. If u{'® 6 u”, then the
andt = t;. Thus we have somé, <t andd such
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Figure 4.2: Procedure Reduce called with t = 1. The two upright intervals are the original ones
with their tight elements shaded. These two intervals will be replaced by the single bold

interval. The new interval contains all tight elements of the old ones sinceuj(? M;j, by

Lemma 4.12 Remember that the intervals need not to be disjoint.
that u{® may pushz = u"? down. But then u{? ® may also pushu{"?’ down by Lemma4.5.
This latter contradicts the choice ofui(tZ) as the maximum tight element that may not be pushed

down in Pushdown (i;t, 1;1). ]

4.1.3 The Reduce step

So far we have proved that iReduce is not called, then the initial primal solution is optimal and
the algorithm nds a dual optimum proof of this fact. Now we tum to the second scenario when
ProcedureReduce is called; in this case the solution is not optimal, since Procack Reduce
is called from ProcedurePushdown whenU = ;. This meansuj(t) 2 U and thus there exists
ani such thatu”’ may pushu® down.

ProcedureReduce is called when one witness disappears from the dual solution. tinis
case we unwind the steps to nd a cover of size one less in ProcedReduce based on interval
exchanges at certain pairs of tight poset elements.

To illustrate the idea of ProcedureReduce , rst we discuss the simplest cas¢ = 1; the
general case will then be reduced to this case by a special indanot We summarize Pro-
cedure Reduce-OneStep for this particular scenario with steps shown in Figuret.2 Since
t =1, wehavesomel j; ksuch that ProcedureReduce is called within ProcedurePush-
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ProcedureReduce-OneStep (j; I)
v I
g minimal tight element in [m;,; M;,]
j» minimum value 6 j; such that u™ may pushq down
return reduced coverf [mi;M;]:1 i 1i 6 jq;j20[f [m;,; Mj,]o.

down (j1;1;1). This means that

.

j1

U=fx:m;, x u xtightand8‘=1;:::;r;u§1) may not pushx downg

is empty. By Corollary 4.2 [m;,;Mj,] has a unique minimal tight elementq; sinceq 2 U, we
must have some = j, such that u® may pushq down. Given an ordering over the intervals,
the algorithm selectsj, as the minimal such™ and returns a reduced interval system

L[y My ] [my s M, T+ [my,; My, (4.2)

In the proof of caset =1 we use the following general lemma fdn = j;, " = j,, u= uj(?.

Lemma 4.12. Let q be the minimal tight element ofi,,. If u 2 |- may pushq down, then
u My. Furthermore for all tight v 2 1, we have thatu may pushv down with respect td -.

Proof. Suppose by contradiction thatu 6 M;. Sinceu and g are dependent, by Lemmat.3,
u”™q2 I,. Sinceqis the minimal tightin 1,, we haveq u” g, henceq u M-, contradicting
that u may push q down. For the second part of the claim, consider a tight element 2 |.
Elementsu and v are dependent, since common lower and upper bounds aré g and My,
respectively. Byq v andqg6 M- the requiredv 6 M- follows. ]

Lemma 4.13. If t =1, Procedure Reduce-OneStep (ji;!) returns an interval cover.

Proof. It suces to show that [ m;,; M;,] contains all tight elements of both in;,; M;,] and
[m;,; M;,]; furthermore there is no common tight element inr;, ; M;,] and [m;,; M;,]. In this
case we may replace the intervalsr, ; M;,] and [m;,; M;,] by [m;,; M;,] since if a tight element
is contained by exactly one ofrp;,; M;,] and [m;,; M;,] then it is contained by the new interval
and containment by both is excluded.

To prove, rst let x 2 [m;,;M;,] be tight; x u
Lemmad.12forh=j;, = j,u= uj(?, we getuj(?
as required.

Next let x 2 [m;,; M;,] be tight; g x for the minimal tight g of [m;,; M;,]. By Lemma4.3,
m;, q, thus we getm;, ¢ x M;, as required.

Finally assume that a common tight elemenk 2 [m;,; M;,]\ [m;,; M;,] exists; nowq X
M;,, contradicting the fact that uj(? may pushqg down. ]

(1) . . T
i, by maximality. When applying

- . 1
M;,. This impliesm;, x uj(z) M.,
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ProcedureReduce (j;t ;1)
v I
for t=1;::;1do
s t+1 t
g minimal tight element in [m;,; M;,]
js+1  minimum value 6 js such that u® may pushq down
mj, Mg,

return reduced covef[mi;Mi]:1 1 i 6 j;+10.

Our aim in ProcedureReduce (see box) is to repeatedly pick an intervalry;; M;.] and try

to nd another interval [ m;_,, ; M;_,, ] such that if we replacen; ; M;.] by [m;,, ; M;.], then after

js+1

the switch the minimum tight element of n;_,, ; M;,, ] increases. We ensure this by de ning

J s minimum value ~ 6 j¢ such that u® may pushq down,

whereq is the minimum tight element of [m;_; M;] after the interval changes and =t +1 s.
Applying Lemma 4.12for h = jg, " = js+1, U= uj(t)1 we getUj(?ﬂ M;,. Thus when replacing
[m;,; M;.] by [m;,,, ; Mj,], the tight elementsx in [m;_,, ; Mj,, ] with x uj(?+1 will no longer be
tight after the switch. The overall idea is seen in Figurel.3.

While the rst step of the procedure is well-de ned since we calProcedureReduce exactly
when the minimal tight g2 I; forj = j, is pushed down by certain otheu®" ?, the existence of
such an’ is by no means obvious for all the other iterations of the mailoop as switches among
the intervals could completely rearrange the set of the tightlements.

The existence of all further in ProcedureReduce as well as the correctness of the algorithm
is proved by \rewinding" the algorithm after the rst iterati on of ProcedureReduce and
showing that each step is repeated identical up to iteration 1. The intuition behind rewinding
is based on the resemblance of ProcedurReduce to an augmenting path algorithm. In this
terminology, instead of directly proving augmenting path poperties we use a special induction
by executing the main loop of the procedure step by step and afteach iteration rewinding the
main algorithm. In the analogy of network ow algorithms, this may correspond to analyzing
an augmenting path algorithm by choosing path edges starting ¢he source, changing the ow
along this edge to a pre ow, and at each step proving that the meaining path augments the
ow.

The key Theorem below will show, by induction on the valué oft at the termination of the
main loop of Algorithm Pushdown-Reduce , that the intermediate modi ed interval sets are
covers fort ;t  1;:::;1. Finally when applied fort = 1 we get that ProcedureReduce nds
an interval cover of size one less than before by Lemmal3 This completes the correctness
analysis of Procedur&keduce . Before stating the Theorem, we de ne the intermediate moded
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Figure 4.3: Procedure Reduce called with t = 2. The three upright intervals are the original ones
with their tight elements shaded. The original three intervals will be replaced by the two
bold intervals using the marked withesses. Note that the twonew intervals contain all
tight elements of the old ones. While the number of intervalscovering certain non-tight
elements & in the example) may decrease, we prove that they remain coved. Note that
the original intervals are not necessarly disjoint.

interval set | ®and show it is a cover.

Lemma 4.14. Let
19= 1 [my; My, ]+ [my,; My, ]: (4.3)

be the set of intervals after the rst iteration of ProcedureReduce . Then | °is a cover.

Proof. Sinceu® may push g down, g 6 M;j,, thus by Claim 4.3 m;, qand so nj,; Mj,]

j2

contains all tight elements of in;,; M;, ]. ]

Theorem 4.15. For t > 1, Algorithm Pushdown-Reduce performs the exact same steps
with inputs | and | © of Lemma4.14 until iteration t 1 whenReduce (jo;t  1;19 is called.
Hence compared td , the main loop of Algorithm Pushdown-Reduce terminates one step
earlier witht =t 1 when run with1 °

To prove Theorem4.15now we de ne elements that are no longer tight and elements af
become tight in the new cover:

Lemma 4.16. Let

Z, = fx tight in I andx not tight in | %;
Z, = fx not tight in | and x tight in 1 %:
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Then
Zy f x:x2[mj,;M;,];x6 mj,g (4.4)
Z, f x:x2[mj;M;j,];x6 mj,0: (4.5)
Hence the same elements are tight in, for | as in [m;,; M;,] for I ©

Proof. We get | ° from | by removing [m;,;M;,] and adding fn;,; M;,] instead. Hence the
elements ofZ; should be contained in the latter but not in the former, and simarly the
elements ofZ, should be in the former but not in the latter interval. O

Next we show that the algorithm proceeds identical fot and |1 °for t <t . The proof is
based on the fact that the key elements used in de ningi(t) do not belong toZ;, [ Z,.

Lemma 4.17. Let uiqt) denote elements selected by AlgorithPushdown-Reduce  with input
| 9 with the convention thatuqut) belongs to the modi ed intervall jol = [mj,; M;,]. Then for all

t<t , we haveu® = uV.

Proof. By inductionont t 1, we will showu™ = u®”. We prove the inductive hypothesis
in three steps: we show for =1;:::;r that

M u’ 22z,

(i) ul exists; and
iy u 2z,

The above three statements implyu” = u{") as follows. Fort = 1, the maximal tight elements
are identical fori 6 j; by (i) and (iii), since u‘(I ) tight in | implies uql) ( ) and we have the
opposite inequality when exchanging the role of the two elemts. Also uql) = u( ), since by
Lemma4.16 the tight elements ofl;, in | are the same as the tight elements dﬂ in 1% For
generalt by induction on the step of de ningu™, one can observe that element!" belongs to

the setU of ProcedurePushdown (i  1;t;1 9 and the same holds when exchanging the role of

u® and ul"’. Thus the two elements must be equal.

Now we prove (i{iii). First of all for i = j; the tight elements ofl;, in | are the same as
those ofl 2 in | °by Lemma4.16 yielding (i{iii). Hence we assumei 6 j; next.

Proof of (i). Assumeu® 2 Z;. By Lemma4.16 m;, u” M;, and m;, 6 u®.
Furthermore, sincem;,  uf!’  uf{™ M, we haveu"” and u"¥ dependent. Using
Corollary 4.10 u™  u{?, thus m;,  u{”, a contradiction.

Proof of (ii). We show that u™ exists andm; u® u. We proved above thatu®" 2 z,

and henceu() remains tight in | % This immediately gives the result fort = 1. And for t> 1
we use the consequence of the inductive hypothesis thaf.f D= u(It Y for all h. This yields
u® 2 U for Pushdown (i;t  1;19 that in turn implies that u'” exists andu®  u".
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Proof of (iii). Assumeu” 2 Z,. By Lemma4.16 m;, u® M, thus u!” and uf{™

are dependent. Observe furthermorﬂ(t Y is also tight in I © Hence by applying Lemma4.3
for 19 we get that eitheru;™  M; orm;  u™ . In both cases we derive a contradiction
with the de nition of u(t Y in ProcedurePushdown (j1;t; 1) by showing that certain u(t) may
pushu™ down.

Case I: u™  M;. By Lemma 4.1 we also getmj, 6 u’

, Which in turn implies

u™ 6 ul”, sincem;, u'"™. Becauseu"™ is tight in 1 °and u(“l) M;, we may apply
Lemma4 11for 1 u” and z = u{"™. By the Lemma there existsto <t and 1 d r such
that the element u(I °) may push u(t Y down. By induction u(® = ul", and by Lemma4.5,
u$ may also pushu(t Y down.

Case II: m, j(tlﬂ) and u'"™ 6 M;. As we have seen aboven; u uV. Thus
uﬁ”) and ui(t are dependent since their common lower and upper bounds arg and M;,,
respectively. Hence in this case we hawk= i: elementui may push uj(tl Y down. The proof
is complete. ]

We complete the proof of Theoren.15by the following lemma.

Lemma 4.18. When run with input |  Procedure Reduce is called in iteration t 1 with
j =]

Proof. By Lemma4.17, ProcedureReduce cannot be called forl °before iterationt 1. Two
things are left to prove: (i) initerationt 1, Reduce (h;t  1;1 9 is not called for anyh <j »;
and (i) Reduce (jo;t  1;1 9 is called.

To prove (i), assume by contradiction thatReduce (h;t  1;19 is called for someh < »,
or equivalently, U = ; in Procedure (h;t 1 I() We show that u(t) 2 Z,. Indeed, by
Lemmad4.17, uy Y = ul' P for all h. Since nouf * may pushu’’ down, this yields that if
u"? 2z, thenu"’ 2 U, contradicting the assumptionU = ;

By Lemma4.16 m;, ul'’ M, thus gqand u’’ are dependent. Element" ’ may not
push g down, because it would contradict the fact that = j, is minimal in a xed ordering of
the intervals so that u'' > may pushq down. This means thatqg M. In addition, q6 u{'’,
sincem;, qandm;, 6 u'’ by ul'’ 2 Z,. We can apply Lemma4.11for u{'’ and z = q,
which implies the existence of somg <t and1 d r so that u(“’) may pushq down. By
the second part of Lemmad.12 u(t") may also pushu(to Y down, a contradiction.

For (ii), suppose for a contradiction thatu’. ’ exists. Sinceu! ’ m;,, by Lemma4.16

ul) 2 Z,, henceul’ ) is also tight in | . We use again that by Lemma4.17 uj Y = ul' ¥
for all h. This yields u > 2 U for Pushdown (j»;t  1;1), implying u'’ (t ),
use of Lemma4.12 uqt ) ul’) My,

We claim that ujq2 P Z1, contradicting the fact that u' ’ is tightin 1° Asmj, ul’

J2
M;, and u ) is tight in I, all we need to show isnj, 6 u' ). Assumem;, u' ’; this implies

By making
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t t
mj, ujqz) M;,, thusq uj(z)

uj(t2 ) may not pushg down, contradicting the selection of , in ProcedureReduce (j;t ;1). O

asqis the minimal tight element of jm;,; M;,]in | . In this case

4.2 Application for directed connectivity augmentation

In this section we give a reformulation of the above generalgarithm which is applicable for the
problem of directed node connectivity augmentation. The ma di culty is that we typically
have an exponential size poset implicitly given as a set of (doted) cuts. We may either
select an appropriate poset representation or implement the gt of the algorithm with direct
reference to the underlying graph problem. We follow the sewt approach. We will show how
all non trival steps of the algorithm can be reduced to determing maximal tight elements in
certain interval covers, which can be implemented as a sequenaf BFS computations using
some initial ow computations.

The key step in implementing Procedurd?ushdown for the underlying graph problems is
the following reformulation of the main algorithm. We replae ProcedurePushdown by an
iterative method ProcedureAlternate-Pushdown (see box) that selects a strictly descending
sequence of tight elementgo >y, > ::: >y~ with yo = u{” andy- = u™ or terminates by
ProcedureReduce (j;t ;1). In the implementation for graph augmentation problems itis key
to notice that in a single iteration of ProcedureAlternate-Pushdown we only consider

elements that may be pushed down byi(t) for a single value of.

ProcedureAlternate-Pushdown  (j:t; |)
Yo u’ih 0
while existsi such that ui(t) may pushy, down do
U, f x:m; X vy, Xtight and ui(t) may not pushx downg
if U, =" then
t t;
return Reduce (j;t ;1)
else
Yh+1 maximal X 2 Uy;

h h+1
return yp
Lemma 4.19. Procedures Pushdown and Alternate-Pushdown return the same output.

Proof. It follows straightforward from Lemmad4.6that if U, 6 ;, then it has a uniqgue maximal
element, hencey, forh 1 is well de ned.
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If Procedure Alternate-Pushdown terminates by returningy-, theny- 2 U for U as in
ProcedurePushdown . Thusy- uj(t”). This shows that if ProcedurePushdown terminates
by calling ProcedureReduce , then so does Procedurélternate-Pushdown

Consider now the case whebd 6 ; in ProcedurePushdown . We show thaty uj(“l) for
eachh 0. By contradiction, choose the smallest with y, 6 u"™; thusy, 1 yn _ u"™
Yh. By the de nition of Uy 1, u may pushy, _u{'"? down for some. Using Lemma4.6again
it may push eithery, or uj(”l) down, both leading to contradiction. Now we can conclude that
if Procedure Alternate-Pushdown terminates by returning y,, then both yy uj(”l) and

yo  u™ hold, thus they are equal. O

To compute y,, consider the set of intervalslj; = | [m;;M;] + [m;; M;] with i as in
Procedure Alternate-Pushdown . While Jj; is not necessarily a cover of the entire poset,
the following lemmas still hold:

Lemma 4.20. All x 2 Uy, are tightin Jj; .

Proof. Notice x is either contained in both intervals fn;; M;] and [m;; M;] or in neither of them:

if mj X, thenx and ui(t) are dependent becausm; is a common lower andJi(t) __Yp @a common
(t)

upper bound. Hencex  M;, sinceu;” may not pushx down. O

Lemma 4.21. Supposeu” may pushy, down. The set of intervals ; covers all elements of
l;; furthermore yns1 = yn * Q, whereQ is the maximal tight element of; in Jj; .

Proof. For all x 2 I;, we havex 2 [m;;M;] if X 2 [m;; M;], hence the number of intervals
coveringx cannot be less inJj; thanin |, thus J;; covers all elements of;.

For the second part we rst show that if I; has any tight elements forJ; , then there is a
uniqgue maximal among them. We cannot apply Lemmd.1 directly since J;; is not a cover,
but the claim holds for anyx;y 2 I;, sincex, y, x _y andx” y are all covered byJ;;. Hence
the existence of the unique maximal tight element follows. Sie any element of; is covered in
Jji by at least as many intervals as il , Q is also tightin | .

Finally we let z = y, » Q and showz = yu.;. Notice that z is tight in | as it is an
intersection of two tight elements inl . Asyn.1  yn andyy is tight in J;; by Lemma4.2Q we
get Yh+1 Qand thusynss Y Q= 2z Forz vyn1 we have to prove thatui(t) may not
pushz down. Indeed, suppose that!” may pushz down. Thenm; z6 M;, hence byz Q
follows Q 2 [m;; M;]. As Q is tight in Jj;, this implies that Q 2 [m;;M;], thusz Q M;, a
contradiction. O

By the lemma, the basic step of Procedurélternate-Pushdown consists of computing
the maximum tight element of an interval for certain set of coering intervals. Furthermore,
at the beginning of the algorithm uj(l) is the maximum tight element ofl;. Now we turn our
attention to the implementation of the steps of the algorithmfor connectivity augmentation.
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We use the reduction of node connectivity augmentation to poseovering as Claim1.39 the
minimal elements correspond to set pairs having a singleton kand all the other nodes as
head; maximal elements are found by exchanging the role ofltaand heads. For each interval
I =[m;;M;] 21 we augment the graph by an edgs;t; with s; corresponding tom; and t;
corresponding toM; as in the above reduction. Ifl covers all poset elements imj;; M;], then
the minimum s;{t; cut in the augmented graph has value at least.

Algorithm Pushdown-Reduce (1) will rst be applied for a greedy coverl (for example,
including all possible intervals), and then subsequently for cevs of decreasing cardinality, until
we nally reach an optimal cover. We initialize Pushdown-Reduce (1) by computing jlj
maximum ows, one corresponding to each interval in . For interval [m;; M;] we compute a
maximum s;{t; ow. Since | is a cover, the maximum ow value is at leastk. If the s;{t;
ow value is more than k, then [m;; M;] contains no tight elements thus can be removed from
the cover and the iteration Pushdown-Reduce (I ) is nished. Otherwise uj(l) is the set pair
corresponding to the valuek cut with maximal tail that can be obtained by a breadth- rst
search fromt; on the graph obtainded from the standard auxiliary graph in tle Ford-Fulkerson

algorithm by reverting the edges.

Lemma 4.22. Consider the task of nding the maximum tight element of an farval I; =
[m;; M;] for certain set of intervalsJ;; (as for example in ProcedureAlternate-Pushdown )
that cover Ij. Using the maximums;{t; ow computed at the initialization for |;, this step
requires O(1) breadth- rst search (BFS) computations.

Proof. Consider the maximums;{t; ow computed at the initialization. We add an edges;t;
to the graph and remove the edgs;t;. If the ow contains the removed edge, then we remove
the single ow path containing it. We augment the resulting ow to a maximum ow by a
single BFS computation. By another BFS starting front; we either obtain the maximum tight
element or deduce that there are no tight elements and Prooe@® Reduce can be called. [

For implementing Reduce , we need to nd minimal tight elements of certain intervals ad a
sequence of changes in the interval cover by adding an intehand removing another. The rst
step can be performed by a BFS computation from the correspomdj s;; for the second step
we need to update the ows corresponding to the intervalstf;; M;] 2 | . For each nj; M;] in
iteration s, we consider the maximuns;{t; ow, add an edges;_,, t;, to the graph and remove
the edges; tj,. Again, if the ow contains the removed edge, then we remove ¢éhsingle ow
path containing it, an augment the ow by a BFS computation.

4.2.1 Running times

To estimate the running time we need bounds for the number oftervals j and the length of a
longest chain' in the poset. At the initialization of Pushdown-Reduce we performj max- ow
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computations; then the dominating steps are nding elementyy, in Procedure Alternate-
Pushdown . Since computing meets and intersections” of elements as well as checking
whetheru 2 |; may pushv down can be done irD(1) time, this step is dominated byO(1) BFS
computations by Lemma4.22

Between two calls to ProcedureReduce the total number of iterations in all calls to
Alternate-Pushdown that compute certainy, can be bounded by °, since in each step we
nd a strictly smaller element of certain interval. This totals to O(j ) BFS computations. For
an iteration of Reduce , we also have to dadO(j ) BFS computations. The total number of
calls to Algorithm Pushdown-Reduce is bounded byj since the number of intervals decreases
in each iteration. Hence we hav@®(j ?) maximum ow and O(j? ) BFS computations.

For the node-connectivity augmentation problem = O(n), and j = O(n?) since adding a
complete digraph surely gives ann( 1)-connected digraph. Thus by the above estimations the
running time is dominated by O(n®) BFS computations andO(n*) Max Flow Computations.
As a BFS can be computed in timeD(n?) and a Max Flow in time O(n?), the total running
time can be bounded byO(n’).

4.3 Further remarks

While we have outlined only the implementation of the algothm for directed connectivity aug-
mentation, it can be done similarly for other applications, fo example, ST-edge-connectivity
augmentation. The existence of a strongly polynomial, or evgmolynomial combinatorial al-
gorithm, however, remains open. This latter application daonstrates its importance as by
ST-edge-connectivity we may have arbitrarily large conneafity requirement k.

One may wonder of how strong the generalizational power of theterval covering prob-
lem. Two algorithmically equivalent problems, Dilworth's tain cover and bipartite matching,
are special cases of interval covers; our algorithm generadizthe standard augmenting path
matching algorithm. One may ask whether the network ow prol#@m as di erent algorithmic
generalization of matchings could also t into our framework We might also hope that ideas
such as capacity scaling, distance labeling and pre ows] [that give polynomial algorithms for
network ows can be used in the construction of a polynomial atgithm for the interval covering
problem.

Finally one may be interested in the e ciency of our algorithmfor the particular problems
that can be handled. Here particular implementations and gaboracle choices are needed.
We may want to reduce the number of mincut computations needeby polynomial size poset
representations. One might also be able to give improvementstime sense of the Hopcroft{Karp
matching algorithm [43].
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Chapter 5

Local edge-connectivity augmentation

5.1 Coverings without partition constrains

5.1.1 From degree-prescription to augmentation

As indicated in Section1.3, the augmentation Theorem1.15 can easily be derived from the
degree-prescribed Theorerh.17. We include the argument here, since it is a starting point to
similar deductions for the PCLECA problem. Only the SPSS-prmerty of p is used and hence
the deduction of Theoreml1.21from Theorem1.22will be essentially the same.

Consider an arbitrary minimal vectorm®: V | Z, satisfying (1.4). (That is, (1.4) gets
violated if we decreasen{v) by one for anyv 2 V with m{v) > 0.) Let m be the result of
the parity adjusting of m®. Theorem 1.15follows from Theorem1.17 by showing that for some
subpartition X of V, m{V) = p(X) and hencem(V) = 2 %p(X) :

In this context, a setX V is calledtight (with respect to m9 if mYX) = p(X). A node
v 2 V is positive if m{v) > 0. The minimality of m® means that each positivev is contained
in a tight set. Let X be a collection_of tight sets so that for every positive, there exists an
X 2 X with v2 X. ChooseX with ., jX] minimal. We claim that X is a subpartition of
V. This completes the proof as it impliesnqV) = p(X).

By the minimality, X may not contain X and Y with X Y. AssumeX;Y 2 X are
intersecting. (1.79 implies that X \ Y and X [ Y are also tight, while (L.7b) gives that X Y
andY X are tightand mYX \ Y)=0. Let us replaceX and¥Y by X [ Y inthe rst and by
X Y andY X inthe second case; both contradict the minimal choice of.

5.1.2 Covering symmetric positively skew supermodular funct ilons

We shall prove Theoreml.41in this section. We usually omit the indexF and use = F,
g= &, F = Fg etc. whenever clear from the context. The following is a weinown simple
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property of the degree functioh.

Claim 5.1. In a graph G = (V;E), the degree functiond satis es the following for anyX;Y
V:

dOX)+ d(Y) = d(X \ Y)+ d(X [ Y)+2d(X:;Y);
dX)+ d(Y)= d(X YY)+ d(Y X)+2d(X:Y)

Together with the SPSS-property ofp we get the following claim. (Recall the de nition
O (X) = p(X) de(X).)

Claim 5.2. For any X;Y V, with p(X);p(Y) > 0, at least one of the following inequalities
hold:

axX)+aqY) aoX\Y)+daX[Y) 2d(X;Y); (5.1a)
axX)+ a(Y) oX Y)+aY X) 20d:(X;Y) (5.1b)

When applying this claim, we usually omit checkingp(X); p(Y) > 0, but this will always be
easy to verify. An easy consequence is the following.

Clam 5.3. If q(X) = q(Y) = , then eitherg(X \ Y)=qX [ Y)= orqgX Y)-=
alY X)= . Inaddition, d=(X;Y) =0 inthe rstand d=(X;Y) =0 in the second alternative.
ConsequentlyF is a subpartition of V.

The next simple lemma describes the change in the valuesgpfwhen a ipping is performed.

Lemma 5.4. Consider a setZ V. By ipping (xy;uv), ¢ (Z) either remains unchanged or
it increases or decreases by 2. It decreases by 2 if and onljpath Z and V' Z span exactly
one of the two edgesy and uv. It inccreases by two if bothZ andV  Z span exactly one of
the two edgexv and yu.

We are now ready to prove Theorenil.41l For a contradiction, assume 2. jFj 2
follows by the symmetry ofp. Choose two setsX;Y 2 F, disjoint by Claim 5.3 (1.4) implies
the existence of two edgegy 2 I (X), uv 2 Ie(Y) (Ig(X) is the set of edgexy 2 F with
X;y 2 F). At this point, xy and uv are chosen arbitrarly; in the later part of the proof their
choice we will be further speci ed.

Let F; and F, be the result of ipping (xy;uv) and (xy;vu), respectively. We claim that
eitherF; F orF, F, leading to a contradiction.

Lits directed counterpart is Claim 6.8.
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Claim 5.5. There exists no seZ with q(Z) 1 crossing bothX and Y.

Proof. Assume for a contradiction that such a set exists. If51g held for X an Z, then
gxX\ 2)+ X[ Z2) 2 1. However,q(X \ Z) 1 by the minimal choice ofX and
henceq(X [ Z) = . Now Claim 5.3 yields a contradiction forX [ Z and Y. If (5.1b) held for
X and Z, then similarly, q(Z X)= and we get a contradiction forZ X andY. ]

We call a setZ V stable if it does not contain a subsetU Z with q(U) = . The
-minimal choice ofF implies that either ¢, > ¢ or ¢, = ¢ andjFg,j jF gj. This enables
us to derive an extremely useful structural property.

Lemma 5.6. For xy 2 I¢(X), uv 2 1:(Y), there exists a unique minimal stabl&vyu-sefZ,,

and a unique minimal stablexvyu-set Z,, with q(Zx) = a(Zy) = 2, Zy \ Zyy = ;.
Furthermore, either (a) q(Zx \ X) = q(Zw [ X) = 1, de(Zy; X)=0 or (b) g(Zyy X)=
gxX Zy)= 1, dr (Zw; X) = 0; analogous properties hold by changing the role %f and

Y and also that ofZ,, and Z,.

Proof. Lemma 5.4 and Claim 5.5 together imply g, F. Assume now g, = ¢ = but
IFrd JF F]. XY 2Fg,, hencejFg, F g] 2. This may only happen if there exist two
disjoint stable setsZ,, and Zy, with o(Zx) = a(Zyu) = 2, and Z,, is an xvyu-set while
Zy, is axXvyu-set. To see that a unique minimak,, can be choosen, assum& and ZO%are two
stable xvyu sets withg(Z) = q(Z9 = 2. Itsucestoshow q(Z\ 29 = 2. (5.1b) cannot
hold for Z and Z%as it would giveq(Z Z9= q(Z° Z)= |, contradicting the stability. Thus
(5.19 givesq(Z\ Z9+ q(Zz[ z9 2 4. Claim 5.5implies that both terms are at most
2, henceq(z \ 29 = 2. The rest of the claim follows similarly, using Clainb.2 for X
and Z,, . O

The same argument for ipping (xy;vu) instead of (xy;uv) shows the existence of the sets
Zyi; Zy With analogous properties. This is an abuse of notation as thetsg,, depends not
only on the nodesx and v but on the edgesxy and uv; however, this should always be clear
from the context. Claims5.2 and 5.5 imply:

Claim 5.7. At least one of the following alternatives hold:
(a) q(zxu \ va) = q(zxu [ va) = 1, dF (qu ; va) = 1’ Y qu va;
0) aZw Zw)= dZxw Zaw) = 1, @(qu ) =1, (Zaw Zw)\ X = ;.

There are analogue alternatives foZ,, and Zy,.

2By an xy-set we mean a set containing and not containing y. We also use this notation for multiple nodes,
for example, anxvyu-set containsx and v and does not containy and u.
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Lemma 5.8. There exist subsetXy X, Yo Y with g=(Xo) = = (Yo) = 1 and Xo; Yo
minimal subject to these properties. Furthermore, ifl is stable,q(T) = 1, Xo T and
Xo\ T are nonempty, thenX,[ T X. The same holds foiX, and X replaced byY, and Y.

Proof. By Lemmab5.6, either q(X \ Zy,) = lorq(X Zy)= 1, implying the existence
of X,. For the second part,T X, 6 ; by the minimality of Xg; (5.1b) cannot hold for X, and
T sinceq(Xo T) 2 also by the minimality andg(T  X,) 1 by the stability of T.
Thus (5.19 holds. Again, g(Xq\ T) 2 by the minimality of Xy and henceq(Xo[ T)
implying Xo[ T X. O

Since 1> 0, (1.9 enables us to choose the edgey;uv with the stronger property
Xy 2 1g(Xo), uv 2 I:(Yp). Take alternative (b) in Claim 5.7. Then Z,, Zy,, andZ,, Zy,
ful Il the conditions on T in Lemmab5.8for Y, giving that the nonempty setY Y, is contained
in both, a contradiction as these sets are disjoint. Thus alteative (a) holds for Z,,;Z4, and
similarly for Z,,;Z,,. Now Z,, \ Z,, and Z,, \ Zy, ful ll the conditions on T and hence both
contain X  Xp, a contradiction again (they are disjoint asZ,, and Z,, have already been
disjoint.) The proof of Theorem1.41is now complete.

5.1.3 New proof of Theorem 1.17

Forp(X)=(R(X) dg(X))*, we have the following slightly stronger version of Clairg.2, with
de+ e instead ofdg:

Claim 5.9. For any X;Y V with p(X);p(Y) > 0, at least one of the following inequalities
hold:

axX)+a(Y) aX\ Y)+aX[Y) 2de+r(X;Y); (5.2a)
X))+ a(Y) oX Y)+aqY X) 2der(X;Y) (5.2b)

Besides this, the only speci c property oR we use is
R(X[Y) maxtR(X);R(Y)g for any disjoint setsX;Y V; (5.3)

straightforward from the de nition of R.2 In fact, (5.3) will solely be used to prove Lemm&.10Q
To prove Theorem1.17, choose a -minimal m-prescribed edge-seF; ¢ 1 by Theo-
rem 1.41 We are done if ¢ =0, therefore the only remaining case isg = 1.
Let us adapt the notation of the proof of Theorenml.41 The argument of the proof fails for
= 1 since although X and Yy exist, 1 (Xg) or I (Yo) might be empty. Instead, we will use
the following connectivity property:

3Actually, this property is valid for arbitrary (not necessarly disjoint) setsX and Y. In fact, if we require it
for arbitrary sets, it will itself imply not only that R is skew-supermodular but also that it arises in the form
(1.2) from a connectivity requirement function r. On the other hand, given a function R which is symmetric,
skew-supermodular and satis es 5.3), it does not follow that R arises in the form (1.2).
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Lemma 5.10. If =1, then there exists no; & U ( X such thatdg(U;X U) =0 and
d-(U;X U) 1. The same holds fory .

Proof. Suppose, contrary to our claim, that such a sdfl existed. R(X) maxfR(U);R(X U)g
by (5.3. By symmetry, assumeR(X) R(U). Also, dg+r(U) de+r(X) do+r(X

U;V X))+ 1. By the minimal choice of X, qU) < q(X) = R(X) dg+e(X), implying
de+r (X  U;V X)=0, hencedsg(X U)=0. =1lyieldsR(X U) 1, contradicting the
assumption that there are no marginal sets. ]

In Claim 5.7, we can also writedg+ ¢ instead ofd: because of the stronger Clairb.9. Taking
alternative (a), the disjoint setsZ,, Z,, andZ,, Z,, coverY and the only edge connecting
them is uv, a contradiction to Lemmab5.10Q In alternative (b), xy is the only edge connecting
X\ (Zw\ Zyw)and X (Zy \ Zyu ), a contradiction again to Lemma5.1Q This completes the
proof of Theorem1.17.

5.1.4 New proof of Theorem 1.22

Assume nowp is symmetric and positively crossing supermodular. Thus for croegiX;Y with

p(X); p(Y) > 0, both (5.18 and (5.1b), and also both alternatives in Lemmé&b.6and Claim 5.7
hold. We assume that {.4) holds, but do not assume 1.6). Theorem 1.22is an immediate
consequence of the following:

Theorem 5.11. Let F be a -minimal m-prescribed edge set. Eitherr =0, or ¢ =1 and
the following hold:

(i) Fg forms a partition of V.
(i) dm(p) 1 jF gj+ jF].
(iif) There exists an edge seH coveringp with jHj = jFgj + jFj.

We will need the following slight generalization of Lemmad.20Q

S
Proof. Assume rst P is not a partition, that is, V itzl Xi 6 ;. By induction on jlj , we

| = f1;:::;tg. By the assSumption, the claim is true forjlj 2. Forsomez 21 f 1g,
let A= X[ X;andB = ,,, ,X;. Now A and B are crossing andp(A); p(B) > 0, hence
p(A)+ p(B) SD(A[ B)+ p(A\ B). The claim follows as the LHS is at least 2, whilg(A\ B) =1
andA[ B= ,, Xi.

We have proved that it:l Xi = V. The same argument is still applicable for every 21 (
f1;:::;tg. Using the symmetry ofp, we get that P is p-full. ]
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Proof of Theorem5.11 1 follows by Theoreml1.41;, from now on, assumer = 1. Let us
use the notation of the proof of Theorenl.41 let X;Y 2 Fg, xy 2 I1(X), uv 2 1£(Y), Zy,
Zyy, Zxu, Zyy @s in Lemmas.6.

Lemma 5.13. (i) For each edgexy 2 |¢(X), there exist a unigue maximaky-setD,, X
and a unigue maximaky-setD,, X with g(Dyy) = g(Dyx) = 0. Moreover,Dyy\ Dy =
;» Dxy [ Dyx = X. Analogous sets exists for edges Ip (Y).

(i) For xy 2 Ig(X) anduv 2 1(Y), we haveZy, = Dyx [ Dy.
(iif) For xy 2 Ig(X), the unique edge betweed,, and D, is xy. Furthermore, d:(X) =0.

(iv) For xy;x%°2 I (X), the setsDy, and Dyqpo are either disjoint or one contains the other
or their union is X.

Proof. (i) For an arbitrary uv 2 1(Y), consider the setZ,,. Both alternatives in Lemma5.6
hold and thus q(X \ Zy,) = o(X Zy) = 0. The existence of the uniqgue maximal set®,,
and Dy, easily follows by 6.18. Also, (5.18 would give a contradiction if Dy, \ Dyx 6 ;.
Dy [ Dyx = X follows by X  Z,, Dy, X\ Z,, Dy. We have equality for both because
of Dyy \ Dyx = ;.

(i) By the above argument, we already haveZ,, \ X = Dy, Z,, \ Y = Dy. Assume
for a contradiction that U = Z,, (X [ Y) 6 ;. From Lemmab5.6, we obtainq(Z,, X) =
d(Zxw Y)=0. These two sets are crossing sindd 6 ;. (5.13 gives 0 q(Zy«) + q(U) and
thus 1 q(U), a contradiction sinceZ,, is stable.

(i) Alternative (b) in Claim 5.7 gives the rst part. The second part follows from b.1b)
applied for X and each ofZ,,; Zx,; Zyy, and Zy, for an arbitrary uv 2 1¢(Y).

(iv) can be derived easily using%.18 and (5.1b) for the setsD,y; Dyy; Dxoo and Dyoo. [

These arguments work for all possible choices Xf, Y, xy and uv. This enables us to derive

The edges inlg (W,;) are between di erent classes ofV;, and I (W;) forms a spanning
tree T; if we contract the members ofW; to single nodes.

For an uv 2 I (W;), the setsD,, and D, are the unions of the members o#V; corre-
sponding to the connected components @i uv containing v and u, respectively.

S.
Let P = ,_, W;. We claim that for some choice oX; 2 P, P fulls the conditions in
Lemma 5.12 This immediately implies (i) and (ii) of the theorem. (iii) can be proved by
induction: for somei 6 j, choose an arbitraryx 2 W; and v 2 W;, increasem(x) and m(v) by
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1 and add the edgexv to F. Clearly, if jFgj > 2 then it decreases by 1, and ifF ] = 2 then
r reduces to 0.

Let X, correspond to a leak in T;; we may assumeX; = W{ = Dy for xy 2 1 (W;). Since
ad(Dyx) =0 and de (Dyx) = 1, it follows that p(X1) =1. We need to provep(X [ Wij) > 0 for
anyl i ,1 j s.

First, consider the casa > 1. If Wij corresponds to a leaf inl;, then Wij = D, for some
uv 2 1g(W;) and X [ Wij = Zy,. We are done sincey(Zy) = 1 anddr(Zxw) = 2. Next,
assume thatW! is not a leaf. Letuv 2 I (W) be one of the edges entering//. ThenD,, ) W, .
Let FO= fud/02 IF%)W); w2 W/ f vgg Clearly, Dyy = W/ [~ ,ojoppoDutvo :

Let A= Dy [  ,anroDune . This is the union of the setsZy,o for u%°2 F% Recall that
P(Dyy) = p(Zyy0) = 1 for each u¥%° As in the proof of Lemma5.12 the iterative application
of (1.79 for these sets givep(A) 1. Now (1.7b) for A and Z,, = Dyx [ Dy gives 2
P(A)+ p(Zy) PA Zy)+ p(Zyw A)=1+ p(Zy A), sinceA Z,, = Dy. We are done
sinceZ,, A= X;] Wij, the set we are interested in.

It remains to prove p(X | W{) >0for2 j s;. AssumeW, corresponds to a leaf inf,,
W1 = Dy,. Nowp(Xi[ W) =1, sinceXi[ WE= Z,,andp(W! [ W) 1 can be proved the
same way as above. Then 2 p(X1[ W)+ p(Wi[ W1)  p(W2H)+ p(X:i[ Wi [ W2) and hence
p(B) 1forB = Xq] W{[ W;. Note that p(W,) = 1, since q(W,) = 1, dr (W,) = 0. Applying
(1.7b) for B andW, we get2 p(B)+ p(W,) p(B  Wa)+ p(W, B)= p(X1[ W])+ p(Duw).
We are done sincg(D,,) = 1. ]

5.2 Basic results on partition-constrained local edge-con-
nectivity augmentation

5.2.1 Proof of Theorem 1.42

Let (F;' ) be anm-prescribed legal edge set. For edgeg; uv 2 F, the pair (xy; uv) is ippable
if Xy is anij -edge anduv is ani9 “edge withi 8 j% j 6 i% In this case, ipping (xy;uv) with
"Yxv;x) =0, Axvrv) =50 Qyusy) = Lt Qyu; u) = i%gives anotherm-prescribed legal edge
set (F%' 9. Notice that for two edgesxy;uv 2 F, at least one of ky;uv) and (xy;vu) is a
ippable pair.

Let us adapt the notation and results of Sectiorb.1 on covering SPSS-functions. Assume
r > 0. The symmetry ofp yields jFrj 2. By way of contradiction, assumgFgj 3. Let
X;Y andW be three di erent (and thus disjoint) members ofF. By (1.4), there exist ippable
edgesxy 2 Ig(X), uv 2 Ie(Y).

If (xy;uv) is ippable, then Lemma 5.6 remains also valid in the current context. Lemm&.8
is also applicable, as its proof used only the existence of a igble edge pair and the SPSS-
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property. We also need the following simple observation:

Claim 5.14. There exists no seZ with q(Z) 2 crossing all three sets<;Y and W.
Proof. By Claim 5.2, q(Z9 1 for either Z°= Z [ W or Z°= Z W. This contradicts
Claim 5.5 O

A di erent argument is given for 2and =1.

The case 2

For an edgexy 2 I (X), we say that the endnodey is heavy if there exists anxy-setD X
with (D) = 1. An endnode islight if it is not heavy. Heavy and light endnodes of edges
in I (Y) and in I (W) can be de ned in an analogous way.

Claim 5.15. If y is a heavy endnode of the edgyg 2 |- (X), then there exists a unique maximal

Xy-setDy,, X with q(Dyy) = 1. The analogous statement holds for edgeslip(Y) and in
e (W).

Proof. AssumeD and D%are two Xy-sets withD;D° X andq(D) = q(D9 = 1. We claim
that g(D[ D9 = 1, implying the existence of a uniqgue maximéaD,, . Indeed, if (5.2b) held
for D and D°thenq(D D% = q(D° D)= would follow, contradicting the fact that both
are subsets o . O

Lemma 5.16. For an edgexy 2 I (X), if the endnodex is light, theny is heavy. Furthermore,
if x is light and (xy;uv) is ippable for someuv 2 I¢(Y), then v is a heavy endnode ofiv.

Also, Z,,\ X =X Dy andq(Zyn X)= 1.

Proof. Consider an edgeuv 2 1:(Y) with (xy;uv) ippable. Alternative (a) in Lemma 5.6is
excluded sincex is light, henceq(Zy, X)= q(X Zy) = 1. NowD = X Z,, is an
xy-set with (D) = 1, implying that y is heavy. To see thatv is also heavy, apply Clainb.9
for z%= Z,, X andY. (5.2b) cannot hold forZ%and Y. Indeed,q(Z° Y) 1 because
ZVis stable, andg(Y Z9 1 by the minimality of Y. (5.2 yields g(Y \ Z29 = 1 and

hencev is heavy.

It is left to show that Z,, \ X = X D,,. On the one hand,X Z,, D,y by the
maximality of D,,. On the other hand, assume thaZ,, \ Dy, 6 ;. (5.28 cannot hold for Z,,
and D,y asds(Zx;Dyx) 1 and thus we would havey(Zy, \ Dyy)+ (Dyxy [ Zw) 2 1.
a contradiction. Hence b.2b) applies, givingq(Zx, Dyy) = 2, contradicting the minimal
choice ofZ,, . O

Fix Xo X be asin Lemmab.8.

Lemma 5.17. For every edgexy 2 1¢(Xy), exactly one of the two endnodes is heavy.
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Proof. According to the previous lemma, we only have to show that and y cannot be both
heavy. Indeed, assumB is anxy-set andD?is anxy-set with q(D) = q(D9 = 1,D;D° X,
and both of them are choosen minimal to these properties. If and D° are not disjoint, then
they are crossing. Now%.2b) would give thatD D%andD® D are smaller sets with the same
properties, while in the case of%.23, we have the contradictoryq(D [ D9+ g(D\ D% 2.
However, the second part of Lemm&.8 implies that X X, is a subset of bothD and D°
giving a contradiction. ]

Fix an xy 2 1¢(Xo) with heavy endnodey so that Dy, is maximal. LetA = X D,,. Again
by Lemma5.8 A Xy, and g(A) 2, sincex is the light endnode ofxy (and also by the
minimality of Xy).

Claim 5.18. 1£(A) = ;.

Proof. Indeed, assume that there exists an edgey® 2 1-(A) with heavy endnodey® and
consider the setsD,, and Dyao. None of them is contained in the other because gf 2 Dyy

and the maximal choice oD,,. If (5.2b) held, then q(Dy,y, Dyoo) = q(Dyxy  Dxopo) = 1,
a contradiction: by Lemma5.8 both must be subsets oiX,. In the case of .29, we have
O(Dxy \ Dxapo) = q(Dyy [ Dxoyo) = 1, sinceDyy [ Dyao X X% Now Dy, [ Doy is a larger
x%0 set, contradicting the maximality of Dyayo. O

Choose arbitrary edgesuv 2 1(Y), wz 2 I (W) so that (xy;uv) and (xy;wz) are both
ippable. Let Z = Z,, and Z°= Z,,. Claim 5.14impliesZ\ W = Z° Y = ; and thus
Zz 72%z° 78 ;.

Lemma 5.19. xy is the only edge inG + F incident to A.

Together with Claim 5.18 this will immediately lead to a contradiction. Indeed,m(A) =1
because of £ (A) = ;. Now dg(A) =0 and (1.4) give R(A) 1, henceA is a marginal set.

Proof. We already know by Lemmab.16that Z\ X = Z%\ X = Aandq(Z A)= qZ° A)=

1. We shall proveZ \ Z°= A. It suces to verify that Z\ (Z° A)= ;. Indeed, assume
they intersected. If (5.2 held forZ andZ°® A, thenq(zZ\ (Z° A))+ q(Z[ (Z° A) 2 3.
This is a contradiction since the rsttermis at most 1 by the stability of Z, while the second
is at most 3 by Claim 5.14 On the other hand, 6.2b) would giveq(Z (Z° A)) = 2,
a contradiction to the minimality of Z.

HenceA is the intersection of any two of the three setX, Z and Z°% (5.2b) holds for any
two of them, since 6.29 is excluded byq(A) 2andq(Z [ Z9 3. (5.2b) gives
de+r(Z;X) = dg+r(Z%X) =0, desr(Z; 29 =1, leading to the desired conclusion. O
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The case =1

We will again use the connectivity property Lemmab.10as in the proof of Theoreml.17. The
next claim can be proved similarly.

Claim 5.20. If =1 andZ is a stable set witlg(Z) = 1, then Z is connected inG + F.

Consider edgexy 2 1(X), uv 2 Ig(Y) and wz 2 I(W) so that (xy;uv) and (xy;wz)
are ippable. Let us investigate the three setX, Z = Z,, and Z°= Z,,, pairwise crossing by
Claim 5.14

If (5.2b) held for X and Z, thenq(X Z)= q(Z X)=0, ds+¢(X;Z) =0. As in the
proof of Lemmab.19 it can be seen thatZ%is disjoint from both Z X and X Z. We get
a contradiction to Claim 5.2Q sincedg:r(Z°\ X;Z° X) = 0. Consequently, 5.28 can be
applied, givingg(X [ Z)=0. Let A= X[ Z.

The same argument leads tg(B) =0 for B = X [ Z,,. Assume now §.28 holds for A and
B. ds+r(A;B) 1 because of the edgev; henceq(A\ B) = q(A[ B)=1and dg+r(A;B) =1
follows, giving Y A [ B. Since the setsZ,, and Zy, are disjoint, A\ B = X and thus
Y A B, giving a contradiction to Lemma5.10when applied forY, asuv is a cut edge ofY .

On the other hand, 6.2b) for A and B givesq(A B)= q(B A) =0, de:r(A;B) = 0.
Again, we can prove using the minimality oZ °and Claim 5.14that Z°is disjoint from both A B
andB A, and we get a contradiction again to Clainb.20because oflg. r (Z% X;Z° X)=0.

5.2.2 Approximating with an additive error I' max

In this section we shall prove Theorenil.43 The key is the following simple corollary of

there exists aQ-legal augmenting edge séi with jHj = %m(V) + . Given m, we can nd
such anH in polynomial time.

Proof. We may assume thatF is -minimal. The proof is by induction on ¢. If ¢ =0 then
H = F is aQ-legal augmenting edge set because of the compatibility. If > O, thenjFgj =2
by Theorem1.42. Let Fg = fX;Y g. (1.4) yields two di erent colours i andj among two nodes
x 2 X,v2Y with mi(x);m;(v) > 0. Let us increasem;(x) and m;(v) by one; let m°denote
the resulting degree-prescription (which is clearly legal)nal let F°= F + xv. Now ro= ¢ 1
and mPis also compatible withQ. Hence by induction, we have &-legal augmenting edge set
of size%mO(V) + po= %m(V) + ¢, which is the desired conclusion.
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From the algorithmic point of view, all we use from the extreme&hoice ofF is that there is
no improving ipping. This can be checked by a ow computatio for each pair of edges of,
and the set systenF¢ can also be determined via ow computations. ]

We do not estimate the running times as one can certainly gainlat by careful implemen-
tations; this is beyond the scope of this chapter. Let us now tarto the proof of Theorem1.43
We shall construct a legal degree-prescriptiom compatible with Q so that m(V) =2 o(G).
Then the theorem will follow by the previous lemma, sincen is a trivial upper bound on .

First, let us choose a minimalm? satisfying (1.4) as in Section5.1.1, regardless to the
partiion Q. Let m(v) = mYqv) if v 2 Q; and 0 otherwise. If (.8) holds for m% then we are
done: consider them we get fromm?° by parity adjusting. Clearly, m(V) = (G).

Otherwise, there is exactly ong with m>(V) > @ We need the following simple claim
(recall that a set X is called tight if mq{X) = p(X) and v 2 V is positive if mY{v) > 0.)

Claim 5.22. If m®is minimal, then for each positivev there exists a unique minimal tight set
X, containing v. If u2 X, v, then the followingm®also satis es (1.4): m%u) := mYu)+1,
m%v) .= mqv) 1, and m%z) := mYz) otherwise.

Consider now a positiver 2 Q;. If X, Q; & ; then by the above claim, we can modifyn®so
that ij(V) decreases by one. Let us iterate this procedure as long as plaissi Either we arrive
at an m° with ij(V) = @ and thus (1.8) is satis ed, or at a certain point, no more such
modi cation is possible. Henceij(V) > @ and X, Qj for every positivev 2 Q;. Using
the uncrossing argument as in Sectiob.1.1, we get a subpartitionX of Q; with p(X) = ij(V).
Afterwards, let us increasemYz) on an arbitrary nodez 2 V.. Q; by 2mX(V) m(V). The
resulting m is a legal degree-prescription witm(V) = ;(G), as required.

5.2.3 Hydrae and medusae

For a partition H, let Ry = maxz,4 R(Z). Our aim is now to nd a good characterization in
Y . Let =minfR(X );R(Y )g, =max fR(X );R(Y )g. Let G4 denote the graph on the

if R(Z;Z9 for Z;Z%2 H.

Theorem 5.23. H =X ;Y ;Cy;:::;Cgwith dg(Ci; Cj) =0 foreveryl i<j " forms a
hydra if and only if the following hold:Ry = , and there is a path inGy connectingvx and
vy . Furthermore, if <  then there is a uniqueC, with R(C,) = , and R(C;; C;) for
everyl i<j

Proof. Wlog. assumeR(X )=, R(Y )= . Letus show the necessity of the conditions rst.
Ry > means that for somei;j, Ry = R(C;; Cj) > . Now ( 1.58 cannot hold for X [ C; and
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X [ Cj. Next, assume there is no path irGy betweenvyx andvy . Let | denote the set of
those indicesi for which v, can be reached fronvx , and letJ = f1;:::;" . Then (1.59

cannot hold with equality forZ = X [ ( ,,, C)and 2°= X [ ( i21 Gj), sinceR(Z) <

R(Z%9= ,but R(Z\ Z9= and R(Z[ Z29=

In the case of < , assume rst R(C;;C;) > for somei 6 j. Now (1.5 cannot hold for
Z=Y [CandZ®=Y [ C. Indeed, itis easy to see thaR(Z[ Z9 maxfR(Z);R(Z9g, and
minfR(Z);R(Z%9g >R (Z\ Z9. Assume next that there are multiple indices with R(XS; C)=
. Let | andJ be the partition of such indices into two nonempty sets. FoZ = X [ ( ;,, Ci)
andZ°= X [ (" ,, C;j), we get a contradiction sinceR(Z) = R(Z9 = R(Z\ Z9 =, although
R(Z[ 29 < .

Su ciency is straightforward if = since the path inGy betweenvy andvy guarantees
RX [( 5, C)=RY [( i, Ci))= forarbitrary | f 1;:::; 0. Itis also easy to verify
the de nition for < using the path in Gy and the uniqueness ofC,. This is left to the
reader. O

In the rest of this section, we list some useful properties of hydraneeded for proving the
max  min direction of the conjectures and Theoren5.30 H = fX ;Y ;Cy;:::;Cg will
always denote a hydra with head andY . The following two lemmas can be proved by a
simple induction based on the properties in De nitionl.44

Lemma 5.24. For a subsetl f 1;:::;°g,
[ X
pX [ ( G)) p(X)= (p(X [ C) pX)),;
i21 i21
and the same holds foX substituted byY .
Let us x a colour h. We say that an edgexy 2 V2 is aordinary edge w.r.t. H and h, if

mp(x) > 0 and m;(y) > 0O, for somei 6 h and furthermore,x andy are in one of the following
three con gurations: (@) x2 X ,y2Y ;(b)x2Y ,y2 X ;or(c)x2 Ciandy2X [Y .

Lemma 5.25. (i) Let xy 2 V2 be a ordinary edge. Consider the grapB®= G + xy and the
degree-prescriptionm® with mp(x) = mp(x) 1, mXy) = mi(y) 1and m’(z) = m;(z)
otherwise. A tentacleC; is h-odd for G% m¢ p°if and only if it is h-odd for G; m; p.*

(i) HO=fX ;Y ;Ci[ Cy,C3;:::;Cgis also a hydra.

(i) HO=fX [ CyY ;Cy:::;Cgis also a hydra. Moreover, a tentacl€; is h-odd in HC if
and only if it is h-odd in H.

“Note that p is also dependent fromG.
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Unlike the previous two, the next lemma is not a direct consequee of the de nition,
however, follows easily from the structural characterizati Theorem5.23

Lemma 5.26. For any tentacleC;i, p(Ci[ X )+ p(Ci[ Y )= p(X )+ p(Y ).

An important consequence of this lemma is thaC; is h-odd if and only if p(Ci [ Y )
p(Y )+ my(C;) is odd, that is, X can be replaced byy in the de nition of h-odd tentacles.

In the next de nition we de ne the subclass of hydrae, which plgs a central role in the
proof of Theorem5.30

De nition 5.27. The partition H = fX ;Y ;Cy;:::;C.g forms amedusa in G with heads
X ;Y andtentacles C; if

(i) ds(Ci;Cj)=0foreveryl i<j ", and
(i) R(C) < =minfR(X );R(Y )gforatleast™ 1 dierentvaluesofi2fl;:::;°g.

Theorem5.23immediately implies that all medusae are hydrae. Indeed, R(C;) < holds
for every tentacleC;, then R(X ;Y )= = . If there is a single exceptional tentacl€,, then
either Gy contains the edgerx vy orthe path vx vc, vy . Notice that the underlying partition
of a C4-con guration forms a hydra, however, not a medusa.

a partiton of V. For1 i;j °,i 6 j, we say thatZ;Z is aseparating pair fori andj if
both sets are unions of some components if, furthermore, C; zZ\ z°% C/\ (Z[ 29 = ;,
X Z Z%ndY Z° Z.Forl t °,we say thatthe separating paiiZ, Z°is coherent
with tif either C; (Z\ Z%or C;\ (Z[ 29 = ;. (Note that Z and Z°is always coherent
with i andj.)

Lemma 5.28. Let H = fX ;Y ;Cy;:::;Cqg be a partition with ds(Ci;C;) = 0 for every
1 i<j ". H forms a medusa with headX andY if any only if forany 1  i;j;t
i 6 j, there exists a separating paiz, Z°for i andj coherent witht, so that (1.58) does not
hold for Z and Z°.

Proof. If H is a medusa, thenZ = X [ C; and Z°= Y [ C; is a separating pair fori and
anyj 6 i, coherent witht forany 1 t . For the other direction, let us use and as
before. We shall rst prove R(C;i;C;) < for any i 6 j. By way of contradiction, assume
Ry = R(Ci; ;) for somei 6 j. Then (1.53 clearly holds for any pairZ; Z° separatingi and
j. We also get a contradiction if there existed 6 j with R(C;) = R(Cj) = (and thus
R(C;X [ Y)=R(C:;X [ Y)=). Inthe case of = it already follows that H is a
medusa.
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If < then wlog. assume = R(X ;C,). By the argument above, there is a unique such
a. Let 9be the second largest connectivity value between di erent cdaes ofH ( 9. It
su ces to prove that °may occur only betweerlY and X or betweenY and C,.

Indeed, if °= R(C;i;Cj), we show that (1.5 holds for any pair Z; Z° separatingi and j,
coherentwitha. If C, Z\ Z%thenR(Z)+ R(Zz%9= + °R(zZ\ z9= and R(Z[ 2z9= °

If Ca\ (Z[ 29=;,thenR(Z)=R(Z[ 29 = and R(Z9 = R(Z\ 29 = 02 Finally, if
0= R(C;;X [ Y )fori & a, then we get a contradiction for any pairZ, Z° separatingi and
a. [

5.2.4 max min in Conjectures 1.45 and 1.46

max min in Conjecture 1.45is established by the following lemma:

Note that (1.4) is not being assumed.

Proof. The proof is by induction on m(V). First, we shall prove that if m 0O, then the
maximum value ofp is at least (G;r; O;H). (This maximum value equals ¢ for F = ;, the
unique m-prescribed legal edge-set.) For an-odd tentacleC;, p(X [ C;) p(X )is odd. Let
I =fi:p(X [ C) p(X )>0gandd =f1;:::;°g |.ByLemma5.26p(Y [C)) p(Y) O
for everyj 2 J. Furthermore, if C; is h-odd, then we have strong ine%uality here. The number of
suchindicesis atleasty j Ij. LetX = X [ ( ,, C)andY =Y [ ( ;,;Cj). ByLemma5.24
p(X) p(X ) jljandp(Y) p(Y ) hjlj. Y=V X andthusp(X)= p(Y). Therefore

WG M) = (nt PO+ Y ) (OO0 BY) = PO

proving the claim.

Next, assumem 6 ;, andletuv 2 F be an arbitrary edge. Leta= " (uv;u)andb=" (uv;v).
We apply induction for G°= G+ uv, F°= F uv and m° wherem©arises fromm by decreasing
ma(u) and my(v) by one. Let H°= H unlessu and v lie in dierent tentacles. If u 2 C;,
v 2 C; fori 6 j, then let us replace the tentacleC; and C; by C; [ C;. We shall prove

WGirmH) (G m%HOY. implying the claim.

It is a routine to check this for any possible con guration ofuv and H. For example, ifuv is
a ordinary edge w.r.t. toH and m, then we may apply Lemma5.25i). Let us now analyze the
least trivial case wheru 2 Cj, v 2 C; fori 6 j, and bothC; and C; areh-odd inH_, If h 2 f a; by
then C; [ C; is h-odd in H hence \, decreases by 1. However, the termn( Ci) m(V)
increases by one; all other terms are left unchanged. On thehet hand, if h 2f a; g, then
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S
Ci[ Cj is not h-odd in HY thus | decreases by two, bum,( C;) m(V) inreases also by
two. We leave it to the reader to verify the remaining cases. ]

We will also use this lemma for the max min direction of Conjecture1.46 Let F be an
arbitrary legal augmenting edge set. Sinc2 is anh-subpatrtition, F contains at leastp(Z ) edges
incident to the classes oZ . Let F;  F be an arbitrary subset of such edges witfF,j = p(Z);
let F, = F Fy. Clearly, ¢ | Fyj.

Let us de ne m as follows. Letm(v) = dg, (v) for v2 V, and let m;(v) = m(v) if v2 Q; and
m;(v) = 0 otherwise. In particular, (p(Z):Z 2Z;Z C;)= my(C;) for arbitrary tentacle
Ci, henceC; is h-odd if and only if it is h-toxic. Also, p(Z) = my( C,). These observations
yield

AG;H;Z)= w(G;r;m;H)+ %m(V):
Since%m(V) = jF4j, by Lemma5.29we obtain

NG H;Z)  f + jF4 j Foj+ jF4j = jFj:

5.3 Towards proving the conjectures

In this section, we shall prove Conjecturd..45in a special setting.

Theorem 5.30. Let (F;' ) be a -minimal m = (my; m,)-prescribed legal edge set as in Con-
jecture 1.45 If ¢ 2and Fg =V, then ¢ = (G;r;m). Moreover, there is a medusad
giving the optimum value.

As we have already seen (e.g. in Sectidn2.]), the cases =1 and 2 are of di erent
nature. We investigate here only the case 2. We already knowjF gj = 2 by Theorem 1.42
As before, letX and Y denote its two members. Hence the assumption of the theorem is
X[ Y = V. An important consequence is thag(Z) = impliesZ =X orZ =Y.

The proof relies on the results of Sectiob.2.1 So far, the only way of using the extreme
choice ofF has been that no improving ipping exists. Another operation wi also be needed
here. By hexa- ipping (Xxy;uv;wz) for three 12-edgexy;uv;wz 2 F, we mean replacingr
by FO= F f xy;uv;wzg+ fxv;uz;wyg, where the new edges are de ned as 12-edges. Actually,
this is a sequence of two ippings: ippingxy and uv rst, then ipping uy and zw, yet it is
easier to handle these two ippings together. The next simple lema describes the changes in
the values ofge by a hexa- ipping.

Lemma 5.31. Consider a setZ V. By hexa- ipping (Xxy;vu;zw), ¢ (Z) either remains
unchanged or it increases or decreases by 2. It increases bif and only if Z intersects the
setfx;y;u;v;w;zg in one of the following six sets or in the complement of onéx; vg, fu;zg,
fw;yg, fx;v;wg, fx;v;zg, fu;z;xg.
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We do not formulate the analogous characterization for the &ewith g (Z) decreasing since
we will not need it. Let us call a setZ with g:o(Z) = - (Z) + 2 an increasing set (w.r.t. the
hexa- ipping).

Consider the minimal setsX, X, Yo Y with g(Xo) = q(Yo) = 1 as in Lemmab.&,
and choose 12-edgey 2 1 (Xo), uv 2 1£(Yp). By Lemmab5.17, exactly one of the two endnodes
of xy is light; wlog. assume this isx. By Lemma5.16 the 2-coloured endnode of each edge in
I (Y) is heavy. This holds in particular foruv, and by changing the role ofX and Y we can
conclude that the 2-coloured endnode of all edgeslin(X) [ 1£(Y) is heavy.

Our aim is to construct a hydraH with 1(G;r; m;H) = . For this, further investigation
of the structure of the edge seF is needed. We start by formulating a sequence of lemmas
which together provide the construction; the proofs are postmed.

First, we extend the results of Sectiorb.2.1 and prove, in particular, that the 1-coloured
endnode of all edges ih= (X ) [ I£(Y) is light. For every 12-edgexy 2 I (X)[ Ie(Y), consider
the Xy-set D,y as in Claim5.15 Let A,y = X Dy if xy 2 Ig(X), and Ayy = Y Dy if
Xy 2 Ig(Y). Recall that a setZ V has been called stable if there exists nd  Z with
g(U) = . Accordingly, we call a setZ V steady, if it has no subsetU with g(U) 1.

In the next lemma, we prove, among other structural propert® that all sets A,, are steady
(in fact, we assert a slightly stronger property).

Lemma 5.32. (i) Let xy 2 I¢(X) be an arbitrary 12-edge. Therx is a light andy a heavy
endnode ofxy. The setA,, is steady, moreover, there exists no s& V with (Z) =
1L yZzZandZ\ A, 6 ;. For an arbitrary 12-edgeuv 2 | (Y), we haveZ,,\ X = Ay,

andg(Dw [ Axy) = 2.
(i) If wz 2 Ig(Axy) is an 12-edge, theh,,, Ay, o(Dyy [ Awz) = 2anddg+ e (Awz; Axy

(i) For 12-edgesxy;wz 2 1¢(X) we havedg: g (Ayy; Awz) = 0.

(iv) If wz2 F is an 12-edge withz 2 A,y, thenw 2 A,y.
Analogous statements hold when exchanging the roleXofand Y .

If the set systemsA® = fA,, 1 xy 2 Ig(X)gand B® = fA,, : xy 2 Ig(Y)g were laminar,
then we would already be ready to construct an optimal hydrad. Unfortunately, this is not
necessarly true, and thus these set systems are needed to be uncros3de uncrossing has
to be done very carefully as we shall keep the valuable structdrproperties asserted in the
previous lemma. This motivates the following de nitions.

AssumeU; T X are steady sets withg(X T)=qg(X U)= 1landT ( U. We say
that T is a descendant of U if q(T[ (X U))= 2,dg+e(T;U  T)=1andthereis a

SRecall from Section5.2.1 that this lemma is also valid in the context of the PCLECA problem.
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(unique) 12-edgewz 2 F from T to U T. For example, ifxy;wz 2 |¢(X) are 12-edges with
wz 2 1e(Ayy), then Lemma5.37ii) states that Ay, is a descendant of\,, .

We say that a set systemA® blocks the 12-edgexy 2 |:(X) if A° contains an xy-set.
Analogously, A°blocks the edge sefF® 1 (X) if it blocks each edge inF°

De nition 5.33. For a setF® 1:(X) of 12-edges and a set systed® of subsets ofX , we
say that A%is awitness system for F?if the following hold.

(a) ACis laminar, and for everyA 2 AC A is a steady setg(X A) = 1,de(A; X A)> 0.
(b) A%blocksF?®

(c) For each non-maximalA 2 A% let U 2 A° A be the smallest set containingh. Then A is
a descendant oUJ.

Descendants and witness systems for subsetslp{Y) can be de ned analogously. LetA°
and B° be arbitrary sets of subsets oK and Y, respectively. A°and B® are calledlinked if

gA[ (Y B))= 2 holds for everyA 2 A; B 2B: (5.4)

Lemma 5.34. There exist linked witness system&, B for I (X) and I (Y), respectively.

Figure 5.1:  lllustration of Lemma 5.34 The sets in X form a witness systemA and those inY
form B. The 1- and 2-endnodes of edges i are denoted by circles and rectangles,
respectively.
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Consider now the witness systemA and B as in the previous lemma. LetC* denote the
underlying subpartition of A, that is, C* contains the minimal members ofA, and for each
non-minimal memberA 2 A, let C* contain C = A fA%: A2 A A%( Ag. Let us say that
A is the corresponding member for Cin A. LetTxy = C' =  A,andX = X Ty.
Dene C', TY and Y the analogous way fromB. Let C= C* [C", and let us denote its

and tentaclesC;. Moreover, (G;r;m;H)= .

5.3.1 Proofs of the Lemmas

Proof of Lemma5.32 (i) Itis enough to prove thatA,, is a steady set. Indeed, IZ were a set
as in the conditions, thenZ\ Y = ; by Claim 5.5 AssumeZ \ D,, 6 ;; we claim that (5.28
cannot hold forZ and Dy, . Indeed, fromx 2 Z we would obtaing(Z [ Dyy)+ q(Z\ Dy) 2,
while if x 2 Z then q(Z [ Dyy) 1 gives a contradiction to the maximality ofD,,. On the
other hand, from (6.2b) we getU = Z D,, A, with q(U) = 1.

Assume nowXo Ay is a minimal set with q(Xo) = 1. Since 2, there exists
an 12-edgewz 2 1 (Xy). Let us choose this withD,,, maximal, or equivalently, A,,; minimal.
By Lemma 5.8, Ay, Xo. Choose a minimalY, Y with q(Yp) = 1, and letuv 2
= (Yo) be an arbitrary 12-edge. By Lemmab.17, w and u are light endnodes ofwz and uv,
respectively. Consider the hexa- ipping of Xy; uv;wz). This decreaseqy(X) and q(Y) by 2;
hence by the extreme choice df, there exists an increasing seZ with q(Z) 2. Let
T = fx;y;u;v;w;zg\ Z. By possibly complementingZ, we get that T is one of the six sets in
Lemmab5.31 AssumeZ is chosen minimal.

() Tisoneoffx;vg, fx;v;wgandfx;v;zg. If (5.29 heldfor X andZ, thenq(X[ Z) = 1.
This is a contradiction sinceu is the light endnode ofuv andV (X[ Z) Y is auv-set.
However, 6.2b) givesq(X Z)= 1, a contradiction to the maximality of Dy, since
X Z is anXy-set containing at least one ofv and z.

(I T=fu;zgorT = fu;z;xg. Sinceu is the light endnode ofuv, (5.28 cannot hold for Y
and Z, thus we may apply 6.2b), yieldingg(Z Y) = 1. This contradicts Lemma5.8
sincez2 Xo\ (Z Y)andy2 X (Xo[ (Z Y)).

() T = fw;yg. Let us consider the three setX,, Z and Z°= Z,,,. We use an argument
similar to the one in the proof of Lemmab.19 By the minimal choice ofA,,, Claim 5.18
is applicable, and thusl¢(A,;) = 0. We shall prove that (5.29 does not hold for any
two of the three setsX,, Z and Z° and the intersection of any two of them isA,,,. These
easily imply that A, is a marginal set. The proof is illustrated in Figure5.2
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Figure 5.2: lllustration of the proof of Lemma 5.3Zi) for T = fw;yg.

First, considerX, and Z°% By Lemma5.16 Z\ X = A,;; thisimpliesZ® X, = A,, and
y 2 Z° By the minimality of X, q(ZA X) 2; and by Claim5.5, q(Xo[ Z9 2,
hence 6.23 cannot hold for Z%and Xo. Next, we show that (.28 cannot hold for X
and Z either. q(Z \ Xy) 2 again by the minimal choice ofXy. If X 2 X, then
aiZ [ Xo) +1sinced:(Z;Xo) 1, yielding a contradiction. If x 2 X, then we get
aiZ [ Xo) = 1andZ [ X, is anXy-set, contradicting the maximality of Dy .

Finally, assume 6.2g were true forZ and Z°% We claim that g(Z \ Z9 2. This is
trivial by Claim 5.5if (Z\ Z9\ Y 6 ;. Onthe other hand, ifZ\ Z° X, then this follows
by Lemma5.8, sinceu 2 Xo\ (Z\ Z9andy 2 X (Xo[ (Z\ Z9). Consequently,

qw) = 2forW = Z[ Z%and x 2 W. (This follows sincex 2 W would imply
de(Z;29 1, yielding g(W) = .) A similar argument to the one above forX, and Z
shows that (6.28 cannot hold for X, and W. However, 6.2b) givesq(W  Xy) 1,

a contradiction to Claim 5.5sincev;y 2 W  X,. It may also be easily veri ed that A,
is the intersection of any two of the set,, Z and Z% we leave this to the reader.

For the rest, X \ Z,, = A,y follows by Lemma5.16 If D, and Zy, are crossing, then$%.2hb)
cannot hold forD, and Z,,, while (5.28 givesq(Dy [ Zx) = 2.

(i) We start by proving Ay, A,y, or equivalently, D,,, Dy,. AssumeD,, and D,, are
crossing Dy, D,y is excluded byz 2 D,,, Dyy). (5.2b) gives a contradiction, since part (i)
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implies g(Dw; Dyy) 2. (5.29 is also impossible, sinc®,, [ Dy, is awz-set, and thus
the maximality of D, implies g(Dxy [ Dwz) 2.

As in the proof of part (i), let us choose an 12-edgav 2 |- (Y); we already know that its
light endnode isu. Consider the hexa- ipping of ky; uv;wz). We get a setZ with q(Z) 2
and with six possible setsT as in the rst part. Case (I) is settled by an identical argument.
In the case (ll), the existence of the seZ Y with q(Z Y) = l,y22Z Y and
(Z Y)\ A, 6 ; gives a contradiction to part (i). Let us now turn to case (lII); assume again
Z is chosen minimal.

We claim that Z X. Indeed, ifZ and X were crossing andg.28 held, thenq(Z \ X)

3 by the minimality of Z, leading to contradiction. If (5.2b) held, thenq(X Z) 2
by part (i) and thus q(Z X) = , a contradiction again.

Consider the setz®= Z,,,. By part (i), Z°\ X = A,; Ay, thus Z°and Z are crossing.
We claim that (5.2b) must hold for Z and Z° For a contradiction, assume %.24 held for them.
Thenq(z\ 29 2 by part (i), and thus q(W) = 2 forw = Z[ ZO furthermore, x 2 Z°
(asx 2 Z°would give de(Z;29  1). (5.29 for X and W is impossible since it would give
v (X[ W)= 1, a contradiction as it is anuv-subset ofY, and u is the light endnode
of uv. On the other hand, 6.2b implies g(X W) = 1, a contradiction asx is the light
endnode ofxy.

For Z and Z° (5.2b) givesq(Z Z9 = q(z° 2Z) = 1, de+(Z;29 = 1. Part (i)
and the maximal choice ofDy, implies that Z Z° Dy, and Z\ Z°= A,;. This yields
de+r(Awz; Ay Awz) =1, as required. Also, 6.2b) cannot hold for Dy, and Z; henceq(D,y [
Z)= 2. The proof is complete sinc®,, [ Ay, = Dy [ Z.

(i) is a trivial consequence of Clain®.9 for D,, and D, and the steadiness oA,, and
AWZ-

(iv) For a contradiction, assume thatw 2 Dy, orw 2 Y. The rst case contradicts part (i):
although w is the light endnode ofwz, D,, is awz-set with g(Dy) = 1. Hencew 2 Y; let
uv 2 Ie(Y) be an arbitrary 12-edge, and consider the hexa- ippingx{/; uv;wz). There must
be an increasing seZ as in the proofs of (i) and (ii), and we examine the same cases-(I)I).
In each caseq(Z) = 2 asq(Z) = 1 is excluded by Claim5.5; let us chooseZ minimal.

() Z is a minimal (and stable)xvuy-set with q(Z) = 2 and thusZ = Z,,. By part (i),
Zyw \ X = Ay and hencez 2 Z. Consequently,w 2 Z. (5.2b) is impossible forZ and
Y becausex is a light endnode ofxy. (5.23 cannot hold either, sincedg.+¢(Z;Y) 1
because of the edgesz.

(I1) Since u is the light endnode ofuv, we getq(Z Y) = 1 by (5.2b). This contradicts
part (i) since Z Y intersectsA,y andy 2Z Y.
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(1) For X and Z, (5.29 is impossible sincedg+¢(X;Z) 1. On the other hand, 6.2b)
cannot hold either sincex is the light endnode ofxy.

O

Some prerequisites are needed to prove Lemmda34 W X is %alled awitness set

f%r X if there exists setsAy,y,;:::;Axy 2 AC (with 1) so that ', Ayy = W, and
L Ay Axy, 6 ; forj =2;:10 . AxyiiiiiiAxy is called aconstruction sequence

for W. Note that witness sets are exactly the node sets of connected sypérgraphs of the
hypergraph (X; Ag). Witness sets forY are de ned analogously.

Lemma 5.36. (i) Every witness setW for X is steady,q(X W) = 1 and dg (W; X
W) > 0.

(i) If wz2 1g(W), thenwz 2 I (Ay,y;) for some member of the construction sequence.

(i) If W and WP?are two witness sets foiX , then dg+ ¢ (W; W9 = 0. If A is a witness set for
X and B is a witness set forY, then they satisfy 6.4).

Proof. (i) Consider a construction sequence fal as in the de nition. If =1, then we are
done by Lemma5.3%i). Assume now > 1. By induction, W° = izllAXiyi is a steady set
with q(X W9 = 1. LetA= Ay, D =X A= Dyy. We may assume thatD

and X WO are crossing, as otherwis&/ = W°or W = A or we get a contradiction to the
stability of A and W% The stability also excludes §.2b) for X  W°%and D. (5.2 implies
gD[ X W% =D\ (X W9= 1,de+r (A;W9 =0. SinceX W=D\ (X W9,
it remains to prove the steadiness dfV.

Indeed, assume there is a s&éd W with g(U) = 1. AsWP%and A are steady, both
setsU\ (W® A)and U\ (A W9 are nonempty. 6.2b) cannot hold for U and D, since
gqu D) 2 by the stability of A. (5.29 impliesU[ D = X, dg+r(U;D) = 0. These,
together with dg+r (A; W9 =0 vyield x 2 A\ W%y 2 W% A, By the induction hypothesis,
Xy 2 1g(Axy) forsomei< . Then, by Lemma5.3qii), A Ay, W, a contradiction.

(i) follows by dg+ ¢ (A; W9 = 0 and the inductional hypothesis. The rst part of (i) is
immediate by Lemmab5.3Zjiii). For the second part, if A = A,, and B = A, for 12-edges
Xy 2 1£(X), uv 2 Ie(Y), then Lemma5.32i) proves (5.4). For larger witness sets, it can be
veri ed easily by induction as in part (i). ]

Let us now prove further useful properties of witness sets. Thexteclaim is straightforward
by the de nition of D,y .

Claim 5.37. If for an 12-edgexy 2 1¢(X), W is a witness set and also anxy-set, then
AXy W-
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Lemma 5.38. Let U, T and W be three witness sets foX. Assume thatT is a descendant of
U, and letwz 2 F be the unique 12-edge from to U T.

If T\W6 ; andzZ2W, thenU\ W T. Consequently,T [ W is a descendant of
U[ W.

@i) If T is also a descendant oV or T\ W = ;, thenT is a descendant ofJ [ W.

@) If W 2 Ay, thenT is always a descendant df [ W whenever the condition in part (i) is

not met.
Proof. (i) Consider the setsZ = T[ (X U)and D = X W. qZ) = 2asT is a
descendant ofU, and q(D) = 1 by Lemmab5.3qi). For Z and D, (5.2b) is impossible
because ofi(Zz D);q(D Z) 2,asZ D andD Z are nonempty subsets of the steady

setsW and U, respectively. (The nonemptiness follows since\ W Z D andz2D Z))
(5.29 yieldsq(D\ 2)+ (D[ Z) 2dg+e(D;Z) 2 3. The proofis illustrated in Figure5.3.

Figure 5.3: lllustration of the proof of Lemma 5.3§(i); the sets Z and D are vertically and horizontally
striped, respectively.

fgD[ Z)= ,thenD[ Z = X, or equivalently, U\ W T, as required. This is always
the case ifw 2 W as it impliesds+¢(D;Z) 1.

Let us assumeg(D [ Z) 1,andthusw2 T W andqg(D\ 2) 2. LetZ°=D\ Z
and D°= X T. Note that w 2 2% For Z%and D% (5.2b) is again impossible:Z°® D?°
and D® ZPare subsets of the steady sefs and U [ W, respectively. Thus 6.28 must hold.
ds+r(Z%D9 1 because of the edgez. Consequently,q(Z°\ DY+ (z°[ D% 2 1,a
contradiction as both are proper subsets of.

The last part follows since we have just provedU [ W) (T[ W) = U T. Since
de+r (U; W) = 0 by Lemma 5.3€ii), this also implies that wz is the only edge inG + F
betweenT [ W and (U[ W) (T[ W).
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(i) ConsiderthesetsT[ (X U)andT[ (X W)Iif T is also a descendant d#V; and

T[ (X U)and X W incaseoff\ W = ;. In both cases, 5.2b) is excluded by steadiness,
while (5.28 yieldsq(T[ (X (U[ W))) = 2. (Notice that q(T[ (X (U[ W))) lis
impossible sincew is the light endnode ofwz. (T [ (X (U\ W))) 2 similarly follows

in the rst case.) de+¢(T;(U[ W) T) =1is trivial in the rst case, whereas it follows by
Lemma 5.3€(iii) in the second case.

(i) Let W = A,y for somexy 2 I (X). Using part (ii), it remains to investigate the case
whenT\ W 6 ; andz 2 W. By Lemmab5.34iv), w2 W, whereas part (ii) of the same lemma
implies that A,,, is a descendant ofV. Furthermore, A,,;, T by Claim 5.37. Let us apply
part (i) for W;A,; and T in place ofU; T and W, respectively. We getW \ T = A, and that
T=T][ Ay isadescendant oV [ T. Now we may apply part (ii) for U, T and W[ T, leading
to the desired conclusion. O

Corollary 5.39. For any Ay, 2 A°, the set systemU = fAy, : wz 2 I¢(Ay)g is laminar.
Consequently, ifW is a witness set whose construction sequence consists o8 setU, then
W 2U.

Proof. Indeed, assumd& = A,,, and W = A0 are crossing sets wittwz; w’z°2 I e (Ayy), both
descendants ofJ = A,y. z2 W is impossible as Lemm&.3Ziv) and (ii) would imply T W,
and thus Lemmab.3§(i) is applicable, yieldingW T, a contradiction again. O

Instepi  2,letR = A° f A; :j<i g, thatis, the sets which have not yet been indexed.
Assume rst that there exists anA 2 R with A\ W, ; 6 ;. Let us choose such a\ minimal
for containment, and subject to this,jJA W, ij minimal. Let Aj = A, W; = W; ;[ A;. If

A\ W; ; = ; for every A 2 R, then let A; be an arbitrary minimal element of R and let
W = A;.

Notice that in this ordering, the connected components of thaypergraph (X; A°) will be
the maximal W;'s, and their building sequences are \continuous" subsets 1;:::; g

Proof of Lemma5.34 Let F; = fxy 2 Ig(X) : Ay = A for somej ig. Note that F =
I£(X). In what follows, we construct a witness systenf\; for F; consisting of witness sets,
providing a witness systemA for I (X). A witness system forlg(Y) can be constructed
similarly. Since both consist of withess sets, they are automatibalinked by Lemma 5.3§iii),
and thus the claim follows.

The members ofA; will be witness sets whose construction sequences contain onlg gets

such witness sets (in particular,W;.) Note that, by the indexing rule, W; ; will be the only
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maximal member ofA; ; intersecting A;. Let A; = fA;g. For somei 2, assume we have
already constructedA; ;.

M FANVW =; 0orW, ; A thenlet A; = A; [f Aijg. This clearly satis es the
conditions. Note that if W; ; A then Corollary 5.39implies that W; ; f Ag;:::;A; 1gand
thus all these sets are descendants Af.

(I1) Assume nextA; W, ;. If Aj 1 blocks the entire edge seF;, then let A; = A; ;.
Otherwise, there exists an 12-edgey 2 F; F; 1 not blocked by A; ; but only by A; = A,y.
We shall prove thatA; = A; 1 [f Ajg satis es the conditions.

Xy 2 Ig(W,; 1), hence by Lemma5.3§(ii), xy 2 I (Aj) for somej <i . By Lemma 5.37ii),
A; is a descendant of\;. The selection rule in steg impliesA;\ W, ;= ; andA; W; 16 ;.
We claim that W; = W,. Indeed, A; W;, and thus chosingA- with A~ W- ; 6 ; in step
] < <i contradicts the selection rule, a#A; W- ; = ;. On the other hand, forj < <i |,
eitherA-\' W, 1=; orA- W; 1= A; W, 4, as otherwise we would have had a better choice
in stepj. Together with Corollary 5.39 these guarantee the laminarity ofA;.

It is left to prove (c) in De ntion 5.33 Let C be the smallest member of; containing A;.
Clearly, C = A; [ W for some witness seW W, ;. Lemma5.3§ii) for U = A;, T = A;
and W gives that A; is a descendant oC. Next, assumeA; is the smallest set inA; containing
someT 2 A;. Again, Corollary 5.39ensures that this is only possible i = A- for some” <i,
and A- is a descendant oA\; by Lemma 5.3Jii).

(I11)  Finally, assumeA; and W, ; are crossing. For an 12-edgey 2 F, A; = A,y implies
y ZW,; ; as otherwise Lemm&.324iv) and (ii) would give A; W; ;. Consequently,xy is also
blocked byW; = W; ;[ A;. Let T A ; ; denote the set of the largest proper subsets @, ;.
Note that T forms a subpartition of W; ;, and according to (c) in De ntion 5.33 all members
of T are descendants o#V; ;. We distinguish three cases. In each of them, we assume that the
conditions of the previous case(s) are not met.

(IMa) There is an 12-edgevz 2 F; ; with w2 Aj\ W, ,z2 A; W, ;. By Claim 5.37,
Awz W, 1. The conditions in Lemmab.3§i) are met for A;; Ay, and W, ; in place ofU; T
and W, thus W; 1 = W, ;[ Au; is a descendant ofV;. Consequently,A; = A; 1[f Wigis an
appropriate choice.

(IMb) ThereisaB 2T with B\ A; 6 ; andz ZA;, wherewz 2 F; ; is the unique 12-edge
betweenB and W; ; B. The conditions in Lemma5.3§i) hold for W; ;;B and A;, hence
W, 1\ A; B and A;j[ B is a descendant of/;. This also implies that all sets inT B are
disjoint from A; and hence by Lemmd.3§ii), they are all descendants ofV;. As the condition
in (I11a) is not met, all edges inF; ; blocked byW; ; are also blocked by;, and those blocked
by B are also blocked byA; [ B. Now A; = (A; 1 T W; 1;Bg) [f W;;Aj[ Bgis a witness
system forF;.

(Illc) Otherwise, Lemmab.39(ii) yields that all members of T are descendants oW;.
Setting Ai =(A; 1 T W, 19)[f W,g satis es the conditions. O
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So far, we used only Claim1.18 on the skew supermodularity ofR. In the proof of
Lemma 5.35 we will however need the stronger Clainil.19 stating that if (1.59 or (1.5b)
does not hold, then the other holds with equality. Consequelyt (5.28 and (5.2b) have the
same property. This will be needed to prove the next claim.

S
Clgim 5.40. If Hy;:::;H are disjoint members ofA, then q(X o Hi) = and
a( -, H) < . The same hold forY and B.

Proof. We prove the two claims together by induction on . For = 1 these follow by
Lemma 5.3€i); assume we have already proved them for; 1 :; 1. Consider the sets
D=X ,_'HiandD°= X H . By induction, g(D) = +1 and q(D9 = 1. (5.2b)
cannot hold sinceD D°= ~,_'H;, D® D = H , and thus by inductiong(D D9 < +1
andq(D® D)< 1. Hence b.29 holds with equality. Nowqg(D [ D9 = asD[ D°= X,
yielding the rst part of the claim.

For the second part, letZ = ,_, H;. Assume for a contradiction thatg(Z)
Lemma5.3(i) and (iii) together imply d-(Z;D9 1. If (5.29 held for Z and D°then we get
a contradiction sinceq(Z [ D9 = andqg(Z\ DY < +1 bySthe induction hypothesis.
On the other hand, 6.2b) is also impossible sinc& D°%= X ., HiandD® Z=H.
qD® Z)< 1 and we have just proved in the rst partthatgq(Z D)= . [

Proof of Lemma5.35. We use Lemmab.28to verify that H is a medusa. Forany 1 i;j;t
i 6 j, we construct a separating paiZ; Z°for i andj coherent witht, so that (5.28 does not
hold for them, and ds(Z;Z9 = 0. Note that this also implies dz(Ci; C;) = 0 and hence the
conditions of the lemma are satis ed. LetA; A°and B be the corresponding members & or
B for Ci; C; and C;, respectively.

We start by showing the existence of a separating pair (regardlesst). (1) First, if C; 2 CX,
C,2C',thenletZz = X, z2°= A[ (Y AY. qZ)= andqZz9 = 2 sinceA and B
are linked. (5.28 would contradict the steadiness of\; in the case of 6.2b), dg+r(Z;Z9 =0
follows sinceq(z Z9%+ q(z° z) 2 2.

(I) Let us now assume thatC; and C; are both in C* or both in C'; wlog. considerC*.
(lla) If A and A®are disjoint, thenletZ = Y[ A,Z°= X A% q(Z)= q(z9 = 1 (notice
that Z =V (X A)), and the same argument works as in the rst case(llb) If A A° then
we may assume that is a descendant oA° (otherwise, we replace\ by the largest setAwith
A( A AY. Forz=A[ (X A%andz®= Y[ A we haveq(Z) = 2 andq(Z9 = 1.
(5.29 is impossible sinceg(Z \ 79 2 because oZ \ Z%°= A, andq(Z [ Z9 2 as
V.  (Z[ Z9 is a subset of the steady seA’ From (5.2b) we getds:r(Z;Z9 1. However,
we know that there exists an 12-edgavz 2 |- (A9 from A to A° A, henceds(Z;Z9 = 0.
(llc) The argument is the same for the cas&® A by changing the role ofA and A° and
complementing the setZ and Z% (Hence we seZ = (A A9 Y andz®= X A%
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We need a separating pair with the stronger property of being ositent with t. Let us
reconsidert the cases abovédl) In the construction above, A Z\ Z%and A°\ (Zz[ z9=;.
Hence ifB A, then any pair separatingi and j is automatically consistent witht. Also, if
A B, then a pair separatingt andj also separates and |, and is consitent witht. By similar
arguments, we are also done B Aor A° B. The remaining case is wheiB is disjoint
from both A andA® If B Z Z%°= X A, thenletZ=X B.IfB z° z=Y A°
then let Z = X [ B. In both cases,g(Z) = 1 and it can be veri ed easily thatZ;Z%is an
appropriate choice.

(lla) Again, the nontrivial cases is wherB is disjoint from both A and A% If B Y then
let 2= A[ (Y B) 2°=7z%ndifB X, thenletZ=Z andZ°= X (A[ B). Itis easy
to show that Z; Z%is a good pair in both cases, however, Clai.40is needed for the proof.

In the case(llb) , we have to investigateB Y andB X A% Let 2°= A[ (Y B)
in the rst while 2°= A[ B[ Y in the second case and = Z in both cases. It is left to
the reader to verify, using Claim5.4Q that Z; 2%is a good pair. (llc) can be again handled
similarly.

Having proved that H is a medusa, we shall verify (G;r; m;H) = . Let Ay and By
denote the set of the maximal components @& and B, respectively; letjAyj = sandjByj = t.
Furthermore, let F;  F be the set of ordinary edges w.r.tH and h = 1 (as de ned before
Lemma5.25. Let F, = F  Fy. Let G°= G+ F,, and let m®denote the \degree vector" ofF,,
that is, (1.9) holds for m%and (F5;" ).

Notice that 1 (X ) = IF(YS) = Ig(Cj) = ; for eachC; 2 C, and there are exists no 12-edge
xy2 Fwithx2 X [Y ,y2 C= Tx[ Ty. The edges iSrF2 are exactly those inF congecting
two tentacles inC* or two in C'. Therefore,m(V) my( O =m(X )+ m(Y )+ my( O =
de (X )+ de(Y )+ jF,). Hence we may rewrite 1(G;r; m; H) in the form

(G miH) = 2 (1 X )+ oY ) Fai):
The proof nishes by the following claim.
Claim 5.41. () X )= s, Y )= t.
(i) jCj= s+ t+ jF,.
(i) Every tentacle C; is 1-odd.

Proof. (i) is immediate by Claim5.4Q (ii) By Lemma 5.3jii), dr,(Tx;Ty) = 0. We claim
that jC*j = jAj = s+ jl,(Tx)j and analogously forC". Indeed, by (e) in De nition 5.33 there
is a unique 12-edge iff, betweenA®and A A°for eachA®°2 A A, with A being the smallest
set containing it. Hence there is a bijection betweehg,(Tx) and A A .

(i) By Lemma5.25 the set of 1-odd tentacles is the same fét; G; mand H% G% m°, where
HO= (X ;Y;C*). Notice also that p°= ¢,, where p° denotes the demand function foG®. For
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a tentacleC 2 C*, let A denote the corresponding member iA. Let T A denote the set of
largest sets contained iM; let jTj = a. For eachA°2 T, de.r (A% A A9 =1, and the unique
edge is an 12-edgry 2 F, with x 2 A% y 2 C. s

6, (Y)= 0 (Y)= andog (Y[ A)= 1. Leth = dr,(C; X A)andb, = de,( T; X A).
Note that if A 2 Ay, thenb, = b, =0, %nd if A2Ay thenb + b 1. él’husqcl(Y [ A)=

1+b+ b ByClam540 (Y[ ( T)) =S a, and thus o, (Y [ ( T%) = + b. By
the hydra property, p(Y [ A)+ p(Y)=p(Y[ ( T))+ p(Y[ C). Sinceds,( T;C)=0, it
follows that

[
N[O &(M™M=¢KIA [ T)=hb L

m9(C) = by and thus C is 1-odd forH® G% m° (recall p°= ¢,), and consequently, forH ; G; m.
(]

]

5.3.2 The augmentation problem

In this section, we brie y sketch how Conjecturel.46could be derived from Conjecturd.45 We
start by constructing a legal degree-prescriptiorm = (my; m;) compatible with the partition
Q = (Q1;Q2) as in Section5.2.2 This satises my(V) = m2(V) = o(G). Next, consider a

-minimal m-prescribed legal edge sdt. We are done if ¢ = 0. If ¢ > 0, then consider
an optimal hydra H = (X ;Y ;Cy;:::;C)and h 2 f1;2g with ¢ = 1(G;r;m;H) as in
Conjecture1.46 WIlog. assumeh = 1. Let v 2 C; with my(v) > 0; consider the minimum tight
set X, containing v as in Section5.2.2

If Xy, GCi\ Qq holds in all such cases, then we may uncross these sets as in Se@&iaril

Now P (p(Z2):222;Z Cj)= my(Cj) foreachl i . Consequently, the 1-odd tentacles
are the same as the 1-toxic tentacles, and henc§G;r; Z;H) = 1(G;r;m;H) + %m(V) =
F+ %m(V). Finally, Lemma 5.21yields an augmenting edge set of sizg(G;r; Z; H).

If Xy (Gi\ Q) 6 ; for somev 2 C;, my(v) > 0, then we may de ne another legal
degree-prescriptionm® and a -minimal m2prescribed legal edge seE®with o< (. We
do not elabourate this argument here: it needs structural pperties of -minimal legal edge
sets generalizing Lemm&.32 However, these results were proved only under the assumptions

r 2and Fg = V.
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5.4 Further remarks

Partition-constrained global edge-connectivity augmentati on

Let us brie y sketch how the ideas in Sectiorb.2.1can be extended to give a new and simpler
proof of Theorem1.23 More precisely, we work here with the degree-prescribed vensj which
we did not formulate in the thesis. Nevertheless, assume we have aaledegree-prescriptionm
so that (1.4) holds, and let us have a connectivity requirement k. Let F be a -minimal
m-prescribed edge set. We shall prove 1.

In the case of global connectivity requirements, both5(1g and (5.1b) hold for any crossing
X;Y with p(X); p(Y) > 0. Proving =1 is utterly simple. Indeed, assume 2. Consider
Xo as in Lemmab.8 and xy 2 Xg, uv 2 Y with (xy;uv) ippable. For X, and the stable set
Z,, (5.1b) yields a contradiction. If =1, we can exhibit a C4- or Cs-obstaclé by analyzing
a single hexa- ipping.

A similar argument, combined with the ideas of the proof of Therem 5.11in Section5.1.4
could be used to develop a simpler proof of the recent theoremBérrath, Grappe and Szigeti
[11] on partition-constrained coverings of positively crossing symetric supermodular functions.

Beyond Theorem 5.30

On the way from Theorem5.30towards Conjecturel.45 the rst step would be to leave the
assumptionX [ Y = V. Lemma5.32does not really use this assumption, and remains true
with minor modi cations. The di culty comes from the edges incidentto V. (X [ Y). One
might give a categorization of such edges, but there is esseritiave di erent types of them.
Each type can be characterized in a manner similar to Lemmds6 and 5.32 However, the
argument reaches an extreme level of complexity, far beyotikde patience of both the author
and any possible reader.

To handle edges incidentto/ (X [ Y), we also need a re nement of the partial order
%s follows:F® F if ro< g,0r po= g andjFgo < jFgj,0r o= ¢ andjFgoq = jFgj, but

ZZFFonj > ,or. )Z]. Thatis, we also want to maximizejXj + jY]j.

For ¢ =1, the situation is even worse. We needed completely di ererkind of arguments
for r =1and ¢ 2 already in the proof of Theoreml.42 For Conjecture 1.45 we would
apparently also need a new type of argument for this case, doing both length and complexity.

Once having proved Conjecturel.45 it can be probably easily extended to an arbitrary
number of partition classes. For the global connectivity versioTheorem 1.23 the main di -
culties already occur fort = 2. We also need some general version of tl@&-con guration, but

6C,4- and Cg-con gurations are for the augmentation problem, while the obstacles for the degree-mscribed
problem. Analogously, notice that we also use hydrae in two dierent senses, uh toxic tentacles for the
augmentation and odd ones in the degree-prescribed version.
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hopefully this is the only new kind of obstacle.

Minimum cost edge-connectivity augmentation problems

Although the minimum-cost version of local edge-connectivitaugmentation is NP-complete,
however, unlike the other basic connectivity augmentationmpblems, it admits a nice and strong
approximation. Jain [48 proved that for the natural LP-relaxation of the problem, abasic
feasible solution always has a component of value at least Rounding up such a value to 1,
adding this edge to the graph and iterating the method gives 2-approximation algorithm.

A natural question is: for which classes cost functions is local edge-connectvaugmentation
polynomially solvable?An example is - similarly to Chapters2 and 3 - the class of node-induced
cost functions, as it can be shown via standard polyhedral methedThe partition constrained
problem can also be interpreted in this framework: given thegptition Q, let c(uv) = 1 if u
and v lie in di erent classes ofQ and let c(uv) = 2 if u and v are contained in the same class.
It is clear that nding a minimum size Q-legal augmenting edge set is equivalent to nding a
minimum cost augmentation, hence the problem for this cost isiP for the global connectivity
case - and we conjecture that also for arbitrary requirements.

One might wonder if there is a solvable class containing both de-induced cost functions
and the partition-induced cost functions as above. For exangy a natural candidate is if we
have a di erent value w; for each partition classQ;, and the cost of edges between class@sand
Q; isw; + w;, while the cost of edges inside clasg; is 2w, + 2minjg; w;. (Or equivalently, we
want to nd a minimum cost Q-legal augmenting edge set with cost; + w; betweenQ; and Q; .
Notice that for this cost function, the cost remains unchangedyba Q-legal ipping.) We think
that this should not be much more di cult than the minimum card inality partition-constrained
problem.

Let us propose another, related question. Jain's iterative umding method is the only
known 2-approximation algorithm for the general minimum cst problem; combinatorial al-
gorithms (e.g. Williamson et. al. [g) have much worse approximation ratios. A possible
approach for constructing a combinatorial 2-approximatiorcould be the following (at least for
the uncapacitated case). Find an su ciently broad class of costuhctions K for which (i) the
minimum cost version is still solvable; (ii) arbitrary metric cet function can be 2-approximated
by a cost function inK (that is, for a cost functionc, we can nd ac®2 K with ¢® ¢ 2.
K being the node-induced cost functions does not meet this lattrequirement; however, there
might exist a broader class that works. (Nevertheless, partitiomduced cost functions should

’In these problems, we allow an arbitrary number of copies of the same edge in threugmenting set. In this
case, it may always be assumed that the cost function satis es the triangle inegglity. If capacities are also
imposed, the problem becomes NP-complete even in the minimum cardinality case (that j§f ¢ 1), as shown
by Jorcan [ 51]. Nevertheless, the approximation result of Jain also works with capacites.
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be rather excluded fromK: it would be desireable to nd a class where a relatively simple
algorithm yields an optimal solution.)
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Chapter 6

Constructive characterization of
(k; ")-edge-connected digraphs

This chapter is devoted to the proof of Theoreni.47, based on our joint paper $6] with Erika
Rerata Kowacs. In Section 6.1, the precise de nitions are given and some basic properties
are exhibited. We also give the proof of Theoreri.47 here based on the main technical tool
Theorem 6.1 This is a special case of the stronger Theoret7 that we prove in Section6.2
by using three basic lemmas. Among these, the rst is a general spiity o result proved in
Section6.3 while the proof of the other two lemmas is given in Sectio®.4. Finally, in Section 6.5
we describe the structure of locally admissible sets and present alynmomial algorithm for
nding a su cient locally admissible set F at a special nhodez. We also show an example of an
insu cient maximal globally admissible edge set.

6.1 Basic concepts and the proof of Theorem 1.47

We start with recalling some de nitions from Section1.5.4 Let D = (V;A) be a (; )-edge-
connected directed graph with rootrg 2 V. For X V,let (X)=kifrg2X and (X)="

if ro2 X. Anodev 2 V is calledspecial if (v) =k, (v) k 1. LetS denote the set of
special nodes$ 6 ; is not assumed). IfX S then we say thatX is a special set. Observe
that ro2Sas (rg) k. Foraz2 S, asubsetF of edges entering is locally admissible at

zif D F is(k; )-edge-connected iv. zandjFj k (z2). Alocally admissibleF will be
calledsucient ifjFj=k (z). Theorem1.47will be an easy consequence of the following.

Theorem 6.1. In a minimally (k; )-edge-connected digrapp = (V;A) there exists a special
nodez with a su cient locally admissible set atz.

Let us see how Theorenl.47follows from this.
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Proof of Theorem1.47. First let us show that the operations (i) and (ii) preserve K; *)-edge-
connectivity. This is straightforward in the case of (i). For i), let D°= (V + z; A9 denote the
digraph resulting from the (k; *)-edge-connected digrapld = (V; A) by applying (ii). For every
v2V 1o the k edge-disjoint paths fromry to v and the ~ edge-disjoint paths fromv to rg
in D naturally give the same number of paths irD® Thus the only problem could be if there
were too few paths fromrg to z or from z to ry.

In this case, by Menger's theorem we have a subs€t of V + z with ro 2 X, z 2 X, and
either (X) <k or (X) < . SinceD%is (k;)-edge-connected irV, the only possibility is
X = fzg. However, (z) = k and (z)  gives a contradiction.

For the other direction, if D is not minimally (k; )-edge-connected, then we can obtain
D from a smaller K; )-edge-connected graph by operation (i). Otherwise, Theare6.1 is
applicable. Consider the special node and the su cient locally admissible F. D F is (k; )-
edge-connected iV z and (z) = (2), satisfying the conditions of Theoreml.34 For the
digraph D°resulting by a complete splitting atz, operation (ii) can be applyied to getD. [

The locally admissible edge sets are characterized by the fellng claim. Let " (Z) and
out(z) denote the sets of edges entering and leaving the sét respectively. As beforez
sometimes stands for the seftZg.

Claim 6.2. F n(2) is locally admissible atz if and only if jFj Kk (z) and for each
;6 X (V, X 6 fzg,

A F(X) (X)) (6.1)

Proof. If F is locally admissible then forX 6 V  z, (6.1) is the necessary cut condition as
D F is (k; )-edge-connected iv z. If X =V zthenitis equivalentto o r(2) ,
which follows since (z) = 0. The converse direction follows by Menger's theorem. ]

It is easy to check in polynomial time whether a set of edges enteg z is locally admissible.
Furthermore these edge sets admit a nice structure: they form aatmoid. A consequence is
that a building sequence can be found in polynomial time for &()-edge-connected digraph
D. This will be discussed in Sectior6.5.

Given an arbitrary edge setF A, for a nodev 2 V we use the notationF, = F\ (V).
Let (X)= g(V S X;X),andlett(X)=minf ¢(V S X;v):v2 Xg. A vgiving
the minimum value in the de nition of t(X) is called aseed of X. Let T(X) = maxf g, (X):
v 2 X g, and av giving the maximum value is called asprout of X. Note that a set may have
multiple seeds and sprouts.
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De nition 6.3. In a digraph D = (V;A) with special nodesS V, we say thatF A'is
globally admissible if

(X) X)+ (X); ifX S6;;X(V, (6.2a)
(X) k+ T(X); if X is special,jXj 2 (6.2b)
(X) X)+ (X) t(X); for every; & X ( V; (6.2¢)
IFvj  k (v); for every special nodes and; (6.2d)

Fv="1; if vzS: (6.2€e)

Note that if X is not special, then all nodes inX S are seeds and(X) = 0, and thus
(6.29 implies (6.29. For a special setX, we have two conditions. On the right hand side of
(6.20, we consider only edges coming from non-special nodes, howgeret all such edges are
taken into account. The importance of 6.2b) is revealed by the following claim.

Claim 6.4. If F is globally admissible, then for each2 S, F, is locally admissible at.

Proof. We have to verify 6.1). If X is not special, then o ¢, (X) A F(X) (X) by
(6.29. If X is special andXj 2, then by (6.2b), A ¢, (X) X) TX) k. O

Claim 6.5. If F is globally admissible irD and F® F, then F%is also globally admissible in
D.

Proof. When removing an edge fronf, the right hand sides of 6.23, (6.2b) and (6.29 cannot
increase. u

F = ; is globally admissible if and only ifD is (k; )-edge-connected. By the above claim,
any digraph D that admits a globally admissibleF is automatically (k; )-edge-connected.

We say that a globally admissible seF is maximal if there is no edgeuv2 A F so that
F + uv is also globally admissible. A globally admissiblg is calledsu cient if (6.2d) holds
with equality for at least one special, otherwise it isinsu cient

Let us now introduce now the various types of tight sets. We say #t a setX is tight with
respect to the globally admissibld- if at least one of 6.23), (6.2b) or (6.29 holds with equality
for X. A tight set with X S 6 ; is callednormal tight . A special tight X with jXj 2s
called T-tight or -tight if it satis es (6.2b) or (6.2¢9 with equality, respectively. For a tight
X, ifro 2 X, then X is calledin-tight , and ifro 2 X, thenV X is calledout-tight . Note
that, somewhat confusingly, an out-tight set is not necessarilyight.

Claim 6.6. If F is insu cient globally admissible and foruv2 A F,v2 S, F + uv is not
globally admissible, theruv enters a tight setX satisfying one of the following: (a)X is a
normal tight set, or (b) X is a T-tight set with sproutv, or (c) X is -tight, u2V S andX
has a seed with t 6 v.
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Proof. By assumption,F + uv should violate one of 6.28), (6.2b) or (6.29. This cannot happen

if none of them holds with equality forF, since the right hand sides may increase by at most 1.

Thus uv must enter a tight set X. If X is T-tight and v is not a sprout ofv, then T(X) does

not increase by addinguv to F and thus (6.2b) will not be violated for X . Similarly, if X is
-tight and u 2 S, then (6.29 remains unchanged folF + uv. If u 2 S but the unique seed of

X isv, then for F + uv, both (X) and t(X) increase by 1. ]

Note that if F is insu cient maximal globally admissible, this claim appliesfor every edge
uv2A F,v2S.

We will prove a slight generalization of Theoren®.1 for the purpose of a special induction
argument. To formulte this, one more new notion is needed. Adapdally admissible edge seff
saturates the digraph D if every edgeuv 2 A F with v 2 S enters a normal tight set. We
are going to prove the following:

Theorem 6.7. Let Fq %Ut(ro) be an arbitrary globally admissible set of edgesin= (V;A)
so that Fo saturatesD. Then there exists a su cient globally admissibld&= with F Fq.

The (k; “)-edge-connectivity ofD is tacitly implied by the existence ofF,. However,D is not
assumed to be minimal subject to this property. Nevertheles§, = ; is a globally admissible
edge set saturatingD if and only if D is a minimally (k; *)-edge-connected digraph, and thus
Theorem 6.1 is a direct consequence of Theore®7. Unfortunately, it is not true that every
maximal globally admissibleF with F Fo is su cient, as shown by a counterexample in
Section6.5.

Let uv be an edge entering the tight seiX. If v 2 S and X and uv satisfy one of the
conditions in Claim 6.6 or v Z S and X is normal tight, then we say that X blocks uv.

We conclude this section with some elementary propositions.

Claim 6.8. If X;Y V, then

X)+ (Y)= (X\Y)+ (X[ Y)+dX;Y); and (6.3a)
X)+ (Y)= (X Y)+ (Y X)+ (X\VY) (X\VY)+dX;Y): (6.3b)

Claim 6.9. Forany X;Y V,

X)+ (Y)= X[Y)+ (X\Y); and (6.4a)
(X)+ (Y) X Y)+ (Y X): (6.4b)

Claim 6.10. Forany X V, (X) (X) = P vax ( (V) (v)).
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Claim 6.11. AssumekF is insu cient globally admissible, andZ 6 ; is special. Then (Z) <
A F(Z).

Broof. For eachv 2 Zp (V) (v) > jFyj, and thus by summing for allv 2 Z, (Z) (Z) =
wz( V) (v)> 7 ]F r(Z), hence the claim follows. O

Claim 6.12. For D = (U + u;A) with (u) = (u), let D, denote the result of an (arbitrary)
complete splitting atu. Then forany X ( U+ u, p,(X u) o (X).

Proof. If u 2 X, then the claim follows since splitting o a pair of edges incieint to u cannot
increase the degree of = X u. Inthecaseofu2 X, p,(X u) p(U X;u)+ p(U
X; X u)= p(X). ]

6.2 Proof of Theorem 6.7

The proof relies on three basic lemmas. First:

Lemma 6.13. Let Fy °ut(ry) be an insu cient globally admissible set of edges, andqu) =
(u) for somerg 6 u 2 V. There exists a complete splitting ati so thatF, is globally admissible
in the resulting digraph.

Lemma 6.14. AssumeF°is a globally admissible edge set aid is a tight set withjXj 2,
ro2X,jX Sj 1. Then for any maximal globally admissible  F% F is su cient.

Lemma 6.15. If F is maximal globally admissible witlhn 2 S + r( for eachuv 2 F, then F is
su cient.

The rst of these will be proved in Section6.3, while the last two in Section6.4. Let us now
turn to the proof of Theorem6.7. Consider a counterexampl® = (V;A) and Fq so that jVj is
minimal, and subject to this, jFoj is maximal. Consider a maximal globally admissiblé  F,.
By the assumption,F is insu cient.

Case |

Assume there is au 2 V with (u) = (u) = k. By Lemma6.13 there is a complete splitting
at u so that Fy is globally admissible in the resulting digraptD, = (V  u;A9:

Claim 6.16. F, saturatesD,,.

Proof. The set of special nodes is the santein D and D,,. Consider an edges = yz in D,
with z 2 S. Assume rst that e is an edge inD as well. There is a normal tight setX V
blocking ein D, sinceF, saturated D. Claim 6.12implies p, (X u) p(X). X uis also
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normal and as the subset oF, entering X u in Dy is the same as the subset iD entering
X, it follows that X u blocksein D,,.

If e= yzis a new edge, then take a seX that blocked uz in D. X is again a normal tight
set in D,. Note that y 2 X as otherwise the in-degree X would be smaller inD than in D
while the value of ¢,(X) does not change. HencX blocksein D,, completing the proof. [

As D, has less nodes tha, by the minimality of jV] there exists a special node and a
su cient locally admissible edge setF,, so that F°= F,, [ Fq is globally admissible. Note that
w is special inD as well.

From D, we can get toD by pinching the k splitted edges withu. By abuse of notation,
we will denote byF,, the edge set inD corresponding toF,, in D, in the sense that if an edge
xw 2 F,, has been divided byu, then we replacexw by uw in F,,. We will also useF°in this
sense inD. Unfortunately, it might happen that FCis not globally admissible inD. Consider
a globally admissibleF; maximal subject to the conditionF, F; F°with jF,j as large as
possible. IfF; = FC then F; is sucientas p(w)= p,(w). Otherwise, we are going to prove
that there is a tight set Z for F, with jZ Sj 1,jZ] 2 so Lemma6.14is applicable giving
a su cient globally admissible superset off;.

AssumeF,, F; 6 ;, and consider an edgew 2 F,, F;. By Claim 6.6, zw is blocked by
some tight setZ with respect to F;.

Clam 6.17. Z S|[f ug

Proof. Z =V uisimpossible asf, (u) < jF,j k “,andthus o g (V u)>". Assume
V. Z u6;andZ S u6 ;. As FYis admissible inD, and Z u is not special,
p,a0 Fo(Z U) (Z) follows. Claim 6.12implies p.a ro(Z) p,a0 po(Z u). However,
A H(Z)> A ro(Z2) (Z)aszw 2 F; F entersZ, showing that Z cannot be tight in D.
This implies the claim. O

Case |l

Assume the condition of Case | does not hold and there is an edge2 F with u2V S r,.
Let Dy =(V;A uv+rgv)and Fy = Fg+ rov.

Claim 6.18. F; is globally admissible irD; and saturates it. The set of tight sets is the same
in D and in D;.

Proof. If vZX orv 2 X andjfu;rog\ Xj 6 1 then no term is changed in the conditions §.23),
(6.2b) and (6.29. This is in fact always the case for§.2h). If u;v2 X, ro 2 X, then in (6.29
and (6.20, both sides increase by one, while ¥ 2 X, u 2 X, ro 2 X, both sides decrease by
one. (Note thatt(X) =0 in both casesasX S&6 ;.)
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This implies the admissibility and that the set of tight sets coiride in the two cases. Thus
if an edgeuv 2 A F with v Z S is blocked by a normal tight set forFq in D, then the same
set blocks it in D4, proving the saturation. ]

By the choice ofD and F, there is a su cient edge setF°® F;in Dy with jFOj =k p,(w)
for somew special node inD;. All nodes butu and ry have the same in- and out-degrees D
and D, and thusw is special inD unlessw = u and (w)= (w)= k. This is a contradiction
since we assumed that no such node exists.

Let F°= F% rqov+ uv. By the previous claim, it is straightforward to show that F ®is
globally admissible inD containing Fo.

Case llI.

For all edges inuv 2 F, u2 S+ ro. The conditions of Lemma6.15are satis ed, showing that
F is su cient.

6.3 Splitting o

Theorem 1.1 gave the minimum number of edges covering a positively crossisagpermodular
function on set pairs. What we are now interested in is an easiergislem, namely, coverings
of positively crossing supermodular set functions. The followintdpeorem of Frank can be seen
as a corollary of Theoreml.1 on the one hand, and as an abstract generalization of Mader's
splitting o theorem (Theorem 1.28 on the other hand.

Analogously as in Sectionl.3, we introduce the notion of degree prescribed edge sets in
directed graphs. For a ground seU, let us call the pair (m;; m,) a degree prescription if
m; and m, are two U ! Z, functions with m;(U) = my(U). We say that H is an (m;; m)-
prescribed edge set if 4 (v) = mj(v), n(V)= my(v) for everyv 2 U. The existence of such
an edge set is straightforward.

Theorem 6.19 (Frank, 1999 p4]). Let U be a ground-set with a degree-prescriptiofm;; m,).
Let p be a non-negative, integer valued positively crossing supedular set function onU with
p(;) = p(U) = 0. Then there exists an(m;; m,)-prescribed edge satl with

H(X) p(X) for everyX V (6.5)

and if and only if
m;(X) p(X) and (6.6)
me(U X) p(X) forevery X U: (6.7)
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Theorem 1.34is an easy consequence: consider a digraph= (U + z;A) which is (k;")-
edge-connected ifJ with root node ro 2 U. Let A°denote the set of edges induced dy. For
v2 U, letmg(v) = a(v;z) and mj(v) = a(z;Vv). Let p(;) = p(V)=0and let p(X)=( (X)

ao(X))* otherwise. It is easy to check that this function is positively mssing supermodular
and that the conditions of the theorem are met due to thel( ")-connectedness itJ. The edge
setH ensured by the theorem corresponds to the split edges.

Let us now present a generalization of this theorem. The onlyi drence will be that we
require a property slightly weaker than positively crossing supeodularity. This is still only
a special case of a theorem in the master thesis of T. Kialy5§, Theorem 2.8]. Our proof
follows the same lines as the proof given 33 for Theorem6.19 Whereas Theorem6.19 can
be derived from Theoreml.l, such a deduction does not seem to be possible in our case since
we have a skew supermodular-type property.

Theorem 6.20. Let U be a ground-set with a degree-prescriptiofm;; m,). Let p be a non-
negative, integer valued set function o with p(;) = p(U) = 0 satisfying the following property.
For crossing setsX;Y 2 U, with p(X);p(Y) > 0O, either

p(X)+ p(Y) p(X\ Y)+ p(X [ Y)or (6.8a)
p(X)+ p(Y)<p(X Y)+pY X)+mX\Y) mgX\Y): (6.8b)

Then there exists an(m;; my)-prescribed edge sel satisfying (6.5) if and only if (6.6) and
(6.7) hold.

Proof. Necessity is obvious ap(X) n (X) minfm;(X); mo(U  X)g. For su ciency,
assume for a contradiction that no suctH exists. For an (n;; m,)-prescribed edge seH, Let
o (X) = p(X) H(X) denote the violation of 6.5) for X and let 4 = maxx y g4 (X) denote
the maximum violation. Let Fy = fX U:g(X)= 4g the set of maximally violating
sets! As in Section1.3, assumeH is chosen so that  is as small as possible, and subject to
this, jFyj is as small as possible. A$(5) does not hold, y > 0, and thusp(X) > 0 for every
X 2 Fy. The next claim is a directed analogoue of Clair.3.

Claim 6.21. Let X;Y 2 Fy crossing. Then bothX \ Y and X [ Y belong toF .

Proof. If (6.8 holds for X andY then 2 4 = p(X) + p(Y) H(X) H(Y) pX[Y)+
pPX\VY) w(X[Y) w(X\Y) 2y, hence the claim follows. Assume nows(8b) holds.
Observe thatm;(X \ Y) mo(X\ Y)= x(X\VY) H(X\Y). Using this,

2y =pX)+p(Y) w(X) w(Y)<
<p(X  Y)+plY X)+(mi(X\VY) me(X\Y)) w(X) u(Y)
2+ a(X Y)+ w (Y X)+( w(XVY)  y(XV YY) w(X)  m(Y):

Lt is a dierence between the undirected and directed setting that in Section 1.3, F denoted the set of
maximally violating sets minimal for containment.
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Finally we get
HX)+ w(Y)< w(X Y)+ (Y X)+( w(XVY) (X \VY));
a contradiction to (6.3b). O

Let K be a minimal member off and L K be a maximal member. There is an edge
e= uv of H with u;v2 K and anf = xy with x;y 2 U L as otherwiseK or L would violate
(6.6) or (6.7). Let H®be the result of ipping the edgesxy and uv, that is, replacing them by
uy and xv.

Now Ho(X) H(X) 1foreveryX V and equality may hold only if X \f X;y;u;vgis
either f x;vg or fu;yg. This condition cannot hold for anX 2 F as it would imply that X and
K are crossing. Therefore,yo  y and here equality holds by the minimality of .

K 2Fpoas woK)= x(K)+1. So by the minimality of Fy, thereisanX 2Fyo F 4
with g4 (X)= 4 1. By symmetry we may assum& \f x;y;u;vg= fx;vg. p(X);p(K) > 0.
Again (6.89 gives a contradiction easily, and if §.8b) holds, then

2y 1=pX)+p(K) uw(X) w(K)<
<p(X K)+pK X)+m(X\ K) mgK\X) n(X) «(K)
2y 1+ 4y(X K)+ p(K X))+ y(X\VK) y(X\VK) w(X) w(K)

In the last equation we have used that by the minimal choice ¢ andK X 6 ;, (K X)
n 1. This is again a contradiction to ©.3b). O

We are in the position to derive Lemmab.13as an easy consequence.

Proof of Lemma®6.13 Let F = Fo. AsF oUt(ry), it follows that (X)= g(X)= g(s;X)
for every X . Observe that in this case we only have to guarante®.@qg as it implies both (6.2
and (6.2h).

Let U=V u, and letD°= (U;A9 denote the subgraph induced byJ.Let us de ne p(X)
the following way. p(;) := p(V) :=0, and for ; & X 6 V, let

pX)=( (X)  aX)+ (X) tX)"=( (X) a0 e(X) tX)*
Let mo(2) = p(z;u) and mj(z) = p(u;2z).
Claim 6.22. The conditions of Theorem6.20 are satis ed.

Using this claim Lemma6.13follows immediately. Let us split o the edges incident tou
according to the edge sef given by the theorem. Asu was not special, the edges iR are left
unchanged. LetD, = (U; A%+ H) denote the digraph after the splitting. We have to prove that
F is globally admissible inD,. Again it is enough to verify (6.29, which is a direct consequence

of w(X) p(X).
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Proof of Claim 6.22 Consider crossing setX;Y U with p(X);p(Y) > 0. Then t(X)
t(X [ Y); furthermore, if X has a seed inX \ Y, thent(X) = t(X \ Y) and the same holds
for exchangingX and Y. Consequently, iftX \ Y S6 ; or X \ Y is special but it contains a
seed ofX orY, thent(X)+ t(Y) t(X\ Y)+ t(X ][ Y)follows. In this case

p(X)+ p(Y)= (X)+ (Y) t(X) t(Y) acr(X) a0 r(Y)
XTY)+ (X\VY) tX[Y) t(X\Y)
po f(XLY) a0 ge(XVY)  p(X[Y)+ p(X\ YY),

and thus (6.89 holds. Assume nowX \ Y is special andX has aseek 2 X Y, Y has a seed
y2Y X.

p(X)+ p(Y)= (X)+ (Y) tX) t(Y) a0r(X) a0 r(Y)
X Y)+ (Y X) tX) t(Y)
rcr(X YY) a0 (Y X) (Ao k(XN YY) a0 g(XVY))

As F was insu cient, jFj < a(t)  a(t) in the original digraph D for everyt 2 X \ Y, which
implies jFj < ao(t) + mi(t)  ao(t) mo(t). This givesmo(t) mi(t) < a0 g(t) a0 £(1),
and thusmg(X\ Y) mi(X\Y)< a0 e(X\VY) a0 p(X\VY):Nowt(X)=t(X Y)and
t(Y) = t(Y X) because of the seeds andy, so we get

pX)+pY)< (X Y)+ (Y X) tX VY) t(Y X)
ao e(X YY) a0 (Y X)H(mMi(X VYY) me(X\Y))
pX  Y)+ p(Y X)+m(X\Y) my(X\ Y):
It is left to verify ( 6.6) and (6.7). Let X  U. As F was globally admissible irD, A (X)
(X) t(X). Now A ¢(X)=mj(X)+ a0 g(X), giving (6.6). On the other hand, o (X +
u) X+u) tX+u= (X)asuzS. o (X +u)=me(U X)+ a0 ¢(X)andthus
mo(U X) (X) a0 g(X), giving (6.7). [

]

6.4 Lemmas

In all claims and lemmas of this sectiond; is assumed to be an insu cient globally admissible
edge set, if not asserted explicitly otherwise.

Claim 6.23. Assume; & Z ( X ( V, X Z Sand p (Z;X Z)=;. Then (Z)<
X)  r(V XX Z)and A £(Z)< A £(X).
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Proof. For the rstpart, (X Z)< A (X Z)byClaim6.11asX Z is special. Then
(2)= X)+ X Z;Z) g(V XX Z) A r(V XX Z)< (X) r(V XX Z)
since (X Z;Z) A r(V X;X Z)= (X Z;Z) A (X 2) X Z) A (X 2)<
0 by the previous remark. The second part follows from thisusn (Z)+ (V X;X Z)
F(X). O

The next lemma describes strong connectivity properties of maus tight sets.

Lemma 6.24. (i) Assume X is an out-tight set. If for somezZz X, A (Z;X Z)=0,
then Z is out-tight and 2"-(Z) = " (X). (i) If X is normal in-tight, Z X, then
A £(Z;X Z)=0 implies thatX Z is also normal in-tight and I (X)= 10 (X 2Z).
@ii) If X is -tight, and u is a seed ofX, then there is an edgeiv2 A F with v 2 X. (iv) If
X is T-tight and v is a sprout of X, then there is an edgesv 2 A F withu 2 X.

Proof. (i) Ao r(X)= "and Ao g(Z) . Thusif o (Z;X Z)=0then all edgesinA F
leaving Z must leaveX as well, and this is what we wanted to prove.

(i) Assume rst X Z S6 ;. A r(X)=k, o (X Z) Kk, and the claim follows as
in the rst part.

Assume nowX Z is special. By Claim6.23 A £(Z) < a r(X) = Kk, a contradiction as
X was not special, and thus neither i&.

(i) (X)=k+ g(V X S;X wu). IfalledgesinX outgoing fromu are inF, then we can
use Claim6.23for Z = fug, andthusk = (u) <k+ g(V X S$;X u) ((V X;X u) Kk,
a contradiction.

(iv) (X)=k+T(X)=k+ g(V X;v). If all edges inX enteringv are in F, then
Claim 6.23can be applied forZ = X v. Thus k X Vv)<k+T(X) (Vv Xyv)=Kk,
a contradiction again. ]

Claim 6.25. Forsets;&2Z X,X Z S,if X hasaseedi2 Z thent(X) = t(2).

Proof. AsX Z S,foranyx2Z, ((V Z S;x)= g(V X S;x). uisthe node in
X minimizing (V X S;Xx), and thus the claim follows. ]

In the next lemma, we show some con gurations of tight sets whicinay not exist for an
insu cient globally admissible F.

Lemma 6.26. There exists noX V with the following properties:;jXj 2, X is in-tight and
(i) X S 6 ; and there is a subpartitionY = fYy;:::;Yygof X sothatX S [Y and
each; is out-tight and proper subset oK or (i) X is -tight and there is an out-tightY ( X
containing a seedu of X ; (iii) X is T-tight and there is an out-tightY ( X not containing a
sprout z of X ..
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Proof. (i) We may assume that there is no specia¥; as leaving such members frony the
conditions still hold. Thus A r(Y;) k for eachi and A g(Y;) = ~ as they are out-tight
sets. LetXy,= X [Y . As Xy is special, Claim6.11implies A r(Xo) A F(Xo) > r(Xo)
wheneverXo6 ;. Now A (X)= Kk, Ao ¢(X) 7, and thus
k ~ A r(X) A r(X)=
X
=(arXo) A X))+  (arM) A r(M) X+ mk )
i=1
a contradiction, since eitherXy 6 ; and thus the last inequality is strict, orm 2 as we did
not allow Y = fXg.
(i) Let u denote a seed oK as in the conditions.t(X) = t(Y) by Claim 6.25(X Y S
holds sinceX is special). (Y) = "+ g(Y) asY is out-tight. Claim 6.11gives (X YY)
(X Y)> (X Y). Similarly to the previous case,

k+ (X) t(X) = (X)) (X) X)= X Y) (X Y)+
+(Y) (Y)> e(X Y)+k+ (Y) t(Y) = e(Y):
Thisgives (Y) (X)+ (X) (Y)> (X Y). Using £(Y) F(X)+ g(Y;X Y)and
X)= (Y)+ g(V X S;X Y),onegetse(Y;X Y)+ g(V X S$X Y)> (X Y),

clearly a contradiction.
(iif) As in the previous two cases,

k+T(X) = e(X) (X)) X)= X Y) (X Y)+
+ (YY) (V)> (X Y)+k (V)
Thus e(Y) e(X)+ T(X)> (X Y). As e(Y) ©r(X)+ g(Y;X Y)and T(X) =
F(V  X;z),wehave (Y;X Y)+ g(V X;z)> g(X YY), acontradiction again. [
Claim 6.27. (a) If X \ Y is special, then (X)+ (Y)> (X Y)+ (Y X))+ gV
X;X\VY)+ (VY X\ Y):

(b) If Y isnormal tight,Y X S6;,ro2X\Y,then (Y) (Y X)+ g(V Y;X\Y).
Proof. (a) By (6.3b), it is enough to prove that ( (X \ Y) XNV Y)+dX;Y)> g(V
X;X\VY)+ (VY XVY). ByClaim 6.11 ¢(X\Y)< (X\Y) (X\Y)andobviously,

(VX Y;X\VY) d(X;Y). These together imply the claim.

(b) SinceY X is not special, (Y X) (Y X))+ (Y X)and (Y X)= (Y)
asro 2 X \ Y. Using these,

V)= (M+ (V)= ()+ (V Y;Y¥ X)+ g(V Y;X\Y)
(Y X)+ (Y X))+ g(V Y;X\Y) (Y X)+ g(V Y;X\Y):
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We are almost ready to prove Lemm&.14 The following lemma is slightly weaker, but will
easly imply it.

Lemma 6.28. If F%is globally admissible and there exists at least one spetight set, then
any maximal globally admissible sé& F9is su cient.

Proof. Let F be a maximal globally admissible set containing ®. Clearly, the tight sets for F
are also tight for F®. We show that if F is insu cient, then no special tight set may exist.

First we show that no T-tight set exists. Indeed, assum& is minimal T-tight; let z be a
sprout. By Lemma6.24(iv), there is an edgeuz 2 A F with u 2 X. By Claim 6.6, uz must
enter a tight set Y which is either normal orT-tight with sprout z. Case (c) is excluded since
u is special.

First assumeY is normal. If V Y X then we have a contradiction by Lemm&5.2§(iii)
asV Y is an out-tight set satisfying the conditions.Y X is impossible as it would give
Y S. Thus X andY are crossing.

(X)= k+T(X) (X Y)+ g(V X:X\Y) (6.9)

asz2 X\ Yand (X YY) (X Y) = k. Using both Claim 6.271b) and (a) we get a
contradiction unlessF is su cient.

If Y is aT-tight set, by the minimality of X, X and Y are crossing. §.9) holds again and
also (Y)=k+ T(Y) (Y X)+ g(V Y;X\Y)asz2 X\ Y isalso a sprout ofY. A
contradiction again.

Next, assumeX is minimal -tight, and let u be a seed. By Lemmd.24iii), we have a
uv2 A F with v 2 X blocked by a tight setY. We have seen already that nd -tight sets exist.
Neither may Y be -tight sinceu is special. ThusY should be normal. Againv 'Y X would
contradict Lemma 6.2€(ii) and Y X is impossible, and thusX and Y should be crossing.
Using Claim6.25for X andZ = X Y, t(X Y)= t(X). Thus

X)=k+ (X) tX)=k+ g(V S X;X) t(X Y)=
k+ ¢(V S XX Y) t(X Y)+ g(V S X;X\Y)
(X YY)+ (V XX\ YY)
Using again Claim6.27b) and (a) gives a contradiction. ]

Lemma 6.29. AssumeF is a maximal, insu cient globally admissible set of edges.f X and
Y are crossing tight sets, thelXX [ Y and X \ Y are tight as well. IfX or Y blocks an edge
uv2 A F,theneitherX [ Y or X\ Y blocksuv as well.

Proof. By Lemma 6.28 we know that both X and Y are normal tight. Assume rst that
(X\Y) S8 ;. Fom(6.39 and (6.48 we have:

A r(X)+ A r(Y)= (X)+ (V)= (X\VY)+ (X[Y)
AFXVY)+ A e (XTY) A F(X)+ A g(Y);
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implying that both X \ 'Y and X [ Y are tight and da ¢(X;Y ) = 0. The second part of the
claim follows as both of them are normal.

We show thatX\ Y Sisimpossible.X Y andY X are both non-special sets, and thus
Claim 6.271b) applies for Y and also forX by exchanging the role ofiX and Y. Claim 6.27a)
leads to a contradiction again. O

An easy consequence of Lemnt@a29is the following:

Claim 6.30. If F is maximal insu cient globally admissible anduv 2 A F, either there is a
unique minimal in-tight setB!", blockinguv or a unique minimal out-tight B blockinguv. If
u;v 2 X for an in- or out-tight set X, thenBI, X or B X.

Proof. By Lemma 6.29 for every edgeuv 2 A F there is a unique minimalB; and a unique
maximal B, in-tight set entered by uv. If ro 2 B, then B, is in-tight and thus B{R, = By, if
ro2 B; then B3 =V  B,. (Note that both sets may exist). The second part also follows by
Lemma6.29 O]

Now we are ready to prove Lemma6.14and 6.15

Proof of Lemma6.14. By Lemma 6.28 the only case left is ifX is normal tight with rq 2 X,
X S =1. Let X S = fug. If there is no edge inA F from uto X u, then by
Lemma6.24 X uis normal in-tight, a contradictionto X u S. Thus there exists an edge
uwv2 A Fwithv2X.LetY =B orY =B% asin Claim6.3Q Inthe rstcase Y S
contradicting that it is a tight set and every tight set is normd. In the second caseX and
Y = fYg satisfy the conditions of Lemma6.2€i), a contradiction again. ]

Proof of Lemma6.15. For a contradiction, assumeF is insu cient. Let K denote the set of
in-tight singletons andL the set of out-tight singletons.

Clam 6.31. K\ L=:.

Proof. Let u2 K \ L. Trivially, u & ro. As a singleton tight set cannot be special,(u) = k
and (u) k. However, the out-tightness off ug implies o ¢(u) = °, and thus g(u) > 0, a
contradiction. O

Claim 6.32. If an edgef = xy 2 A F is blocked by an in-tight set, therBj{;, = fyg. Ifitis
blocked by an out-tight set, ther(’;Jt = fxg.

Proof. Consider a minimal in-tight or out-tight set X for some edgd = xy 2 A F which is
not a singleton. By Lemma6.24(i) or (ii) and the minimality of X, X is strongly connected in
A F. We show that eitherX K or X L. Consider an edgaiv2 A F with u;v 2 X,
guaranteed by the strong connectivity. By Claim6.3Q either uv enters a minimal in-tight or
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leaves a minimal out-tight Y with Y X . By the minimal choice of X, Y is a singleton:
Y =fug2LorY =fvg2K. Thus eitherX\ K6 ; orX\ L 6 ;.

Assume rst X\ K 6 ; andletZ = X\ K. If X Z 6 ;, then by the strongly connectedness
thereisanedgaiv2 A F withu2 Z andv 2 X Z blocked by a minimal in- or out-tight set
Y. Again, Y is a singleton and eithery = fug2 L or Y = fvg 2 K. Both cases are impossible
sinceu2 X\ K,andv2 X K. Thus we may concludeX K.

Next, considerX \ L 6 ; andletZz =X\ L. If X Z 6 ;,thenanedgeuv2 A F with
u2 X Z,v2Z gives the contradiction as above. ThuX L follows.

X was either in- or out-tight. If X = BQ;,“ Is out-tight, then X L is excluded as it would
give B = fxg. Thus X K. AsK\ S=;, foreachu2 X, (u)=Kk, (u) k. Bythe
assumption that all edges inF have tail in S+ ro, (X) =0 and thus (X)= ". Now

X
k = X) X)= (@ (@ O
u2Xx
giving a contradiction.
If X = Bjj isin-tight, then X K is excluded since it would giveBy, = fyg. Thus X L.
X S 6 ; as all tight sets are normal by Lemmd.28 and thus the conditions of Lemmab.2§(i)
apply with Y being the partition of X into singletons. O

ro 2K impliesK 6 V. AlsoK 6 ; as by Claim6.32 all edges inA F leavingry should
enter members oK. As o ¢(V K) ", thereisanedgawv2 A F leavingK. This cannot
be blocked by neither an in-tight nor an out-tight singleton. ]

6.5 Further remarks

6.5.1 Matroid property of locally admissible sets

First, we describe the structure of the locally admissible edge sedt a given special node. We
prove

Theorem 6.33. The set systemM, = fF : F is locally admissible atzg is a matroid.

This together with Theorem 6.1 gives a straightforward way for nding a su cient locally
admissible edge set. By Theorerf.1, we know that special nodes exist and one of them has
a su cient locally admissible set. We check the special nodes olg-one, and at each special
node z we greedily choose a maximal locally admissible edge set. Notettltsis can be done
easily as we just need to take care of th&j )-edge-connectedness M z which can be checked
by ow computations. Theorem 6.33ensures that ifz admits a su cient global admissible edge
set, we can nd it this way.
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Proof of Theorem6.33. The only nontrivial property we have to check is that ifiFj < jFY and
both F;F%2 M, then there is an edgaiz 2 F® F so that F + uz is locally admissible as well.
For a contradiction, assume this does not hold.

A set X will now be calledtight at z for F if z2 X, X 6 fzg and it satis es (6.1) with
equality. (Actually this notion coincides with the tight sets containing z when we consideF as
a globally admissible set of edges). Note that singe§ k  (z) by de nition and jFj < jFY,
jFj is insu cient.

Claim 6.34. If X andY are crossing tight sets a for F then X \ 'Y and X [ Y are also
tight.

Proof. If X \ Y 6 fzg, then (6.1) also holds forX \ Y and X [ Y and thus the claim follows
by the submodularity of the function o . We show thatX \ Y = fzg is impossible. Indeed,
by (6.3b) we would have (X)+ (Y)= A e(X)+ a g(Y) A X  Y)+ Ao E(Y
X)* ar(@ ar@> A (X YY)+ ar(Y X) (X Y)+ (¥ X)asF was
insu cient, a contradiction to ( 6.4b). ]

Thus for each edgeauz 2 F° F there is a unique minimal tight setX,, at z for F entered
by uz. For dierent uz;wz 2 F° F, X, and X,, cannot be crossing a¥,, \ X, would
also be tight contradicting their minimality. Thus X, [ Xy, = V. Let T = fV Xy, :uz 2
FO Fg. T forms a subpartition of V  z so that for eachuz 2 F® F, u is contained in
some member off. ForeachY 2T, (Y)= (V Y)+ g(Y). As FCis locally admissible,

Fo(Y) (Y) (I;/ Y)= e(Y), aBd thus ro £(Y) F ro(Y). Summingup forally 2T
we getiF® Fj= ,,; ro e(Y) vor F ro(Y) j F  FY, contradicting jFj < jF§. O

6.5.2 Example of an insu cient maximal globally admissible s et

An example for an insu cient maximal globally admissible set is shan on the gure for
k=4, =2. D is minimally (4;2)-edge-connected. It contains two special nodesand t with
in-degree 4 and out-degree 2. Both of them have a su cient lotg admissible edge set: for
both u and t the two edges coming fromw are su cient locally admissible. However, if we
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considerF consisting of onevu and onwt edge (the thick edges)F is maximal as the following
sets block every edge entering and t: fug, ftg fwg are out-tight and fu;t;v;wg is in-tight.
However,F is insu cient.

The proof of the case = k 1 by Frank and Kialy [ 33 used an argument similar to the
proof of Lemma6.15 One might wonder why the much simpler argument cannot be appb
in the general case to prove that every maximal globally admisde set is su cient (which is,
in fact, false). A possible explanation is that Claim6.31 fails to hold unlessF satis es the
condition in Lemma6.15 in this example the singleton sef wg is both in- and out-tight.
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Abstract

The main subject of the thesis is connectivity augmentation: &would like to make a given graph
k-connected by adding a minimum number of new edges. There aoaif basic problems in this
eld, since one might consider both edge- and node-connectivaugmentation in both graphs
and digraphs. The thesis wishes to contribute to three out of tlse four problems: directed-
and undirected node-connectivity and undirected edge-coectivity augmentation. Although
directed edge-connectivity augmentation is not being corred, the last chapter is devoted to
a constructive characterization result related to directed dge-connectivity. Let us summarize
the main results of the thesis.

We present a min-max formula and a combinatorial polynomialnbe algorithm for aug-
menting undirected node-connectivity by oneThe complexity status of undirected node-
connectivity augmentation of arbitrary graphs is still open already the special case of
augmenting by one has attracted considerable attention. Th#rmula proved in Chap-
ter 3 was conjectured by Frank and Jorcan in 1994.

We present the rst combinatorial polynomial time algorithmfor directed node-connec-
tivity augmentation. For this problem, Frank and Jordan gave a min-max formula in
1995; however, it remained an open problem to develop a comdiorial algorithm. We
present two, completely di erent combinatorial algorithms. Chapter 2 contains one for
the special case of augmenting connectivity by one (a joint wiowith Andias Frank), and
Chapter 4 presents another for augmenting the connectivity of arbitngy digraphs (a joint
work with Andias Bencair Jr.). The latter result also gives a new, algorithmic proof of
the general theorem of Frank and Jorcan on covering positiyg crossing supermodular
functions on set pairs.

We establish a constructive characterization ¢k; “)-edge-connected digraphslhis result
of Chapter 6, a joint work with Erika Rerata Kowacs, settles a conjecture of Frank from
2003. The theorem gives a common generalization of a numbépeeviously known char-
acterizations, and naturally ts into the framework de ned by splitting o and orientation
theorems.

We present partial results concerning partition constraing undirected local edge-conn-
ectivity augmentation. In Chapter 5, we discuss some classical results concerning undi-
rected edge-connectivity augmentation in a uni ed framewd, based on the technique of
edge- ippings. For the partition constrained problem we forralate a conjecture and give

a partial proof.

Most results are based on the paper8§], [74], [73] and [56], except for Chapter5, which
contains unpublished results.






Osszefoglahs

Azertekezs © emaja az esszefuggdeg-neveks: egy adott gafot szeretrenk minimalis samu

el hozawetekvel k-szorosan esszefuggd\e tenni. Ez regy alaplerdest foglamagaban, mivelel-
es pontsszefuggdeg nevekse is felvetheth mind ianytott, mind ianytatlan gafokban. Az
ertekezsben ezen alapprobemak kezsl rarommal foglalkozunk: az ianytottes ianytatalan
pontsszeluggdseg, valamint az ianytatlan elesszefuggdseg neveksevel. lanytott elessze-
fuggdseg-neveksml ugyan nem esik s, viszont az utabd fejezetben ezzel az @sszefaggdeg-
fogalommal kapcsolatban adunk egy konstruktv karakteriacos erednmenyt. Az ertekezs ©
erednenyei a kevetkezjk.

Megadunk egy min-max formubtes egy kombinatorikus polomalis algoritmust az ia-

nytatlan ponwsszefaggdeg eggyel vab meveksere. Tetszpleges gafok ianytatlan pont-

esszefuggdseg-nevebenek bonyolultsaga nyitott lkerces; az eggyel vab neveks enmagaban
is sokat vizscalt tendlet. A harmadik eszben bizonytott formula Frankes Jorcan 1994-bjl
sarmasd sejese.

Megadjuk az els) kombinatorikus polinomalis algoritmst ianytott pon®sszefaggdeg-
neveesre. Erre a probemara Frankes Jordan 1995-ben adtak min-max formuht. Nyitott
maradt azonban a lerces: hogyan tahlhab meg egy optimalis megoldas kombinatorikus
algoritmus segtegvel. Az ertekezsben megadunk let teljesen kslenbezy) kombina-
torikus algoritmust. A nmasodik esz az esszefuggdseg eggygl vab nevebksnek speca-
lis esekt oldja meg algoritmikusan (Frank Andassal kezes eedneny), a negyedik esz
pedig azaltabnos probenmara ad algoritmust (if. Benc air Andiassal kezes eredneny).
Vabpban negaltabnosabb probemat oldunk meg: u j, algoritmikus bizonyast adunk
Frankes Jorchnaltabnos halmazparfecesi eteer e is.

Megadjuk a(k; )elsszefaggd gafok egy konstruktv karakteriaciopt. A hatodik eszben
bemutatott, Kovacs Erika Reraaval kezes eredneny F rank 2003-as sejest bizonytja be.
A etel ®bb koabbi karakteriaco kezesaltah  nostst adja,es ternmeszetesen illeszkedik
az eddig leemeesies ianyasi etelek rendszeebe.

Reszleges erednenyeket adunk a partcokoratos ianytatlan lolaliselPsszefuggdeg-neve-
esi probemara. Az etedik eszben ianytatlan elesszefuggdseg-ne ovekssel kapcsolatban
argyalunk rehany klasszikus erednmenyt egysges kereben, az ehtbillenesi technilat
haszralva. A partcokorbtos probenmaval kapcsolat ban megfogalmazunkes eszben be-
bizonytunk egy sejest.

Az erednenyek nagy esze aiq|, [74], [73 es [56] cikkekbdl sarmazik. Kietelt lepez az
eddik esz, amely nem publilalt erednenyeket tartalm az.
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