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Notation

Undirected graphs

G = ( V; E) An undirected graph G on node setV with edge setE.

G = ( S; T; E) A bipartite graph with colour classesS and T and edge setE.

V 2 The set of all edges on node setV.

dG(X ) The number of edges inG incident to node setX .

dG(X; Y ) The number of edges inG betweenX � Y and Y � X .

iG(X ) The number of edges with both endnodes inX .

dG(X; Y ) The number of edges inG betweenX \ Y and V � (X [ Y).

NG(X ) The set of neighbours of node setX .

X � = V � (X [ NG(X )) for node setX .

� G(X ) The set of neighbours ofX � S or X � T in a bipartite graph.

I G(X ) The set of edges inG with both endnodes inX .

� G(u; v) The minimum number of edge-disjoint paths between nodesu and v.

Directed graphs

D = ( V; A) A directed graph (shortly, digraph) on node setV with edge setA.
� V

2

�
The set of all (directed) edges on node setV.

� D (X )=�D (X ) The number of edges inD entering/leaving node setX .

� D (X; Y ) The number of directed edges inD from X � Y to Y � X .

dD (X; Y ) = � D (X; Y ) + � D (Y; X).

dD (X; Y ) = � D (X \ Y; V � (X [ Y)) + � D (V � (X [ Y); X \ Y).

Set pairs

K = ( K � ; K + ) A set pair (see Section1.1).

S = SV The set of all set pairs on node setV.

� F (K ) The number of edges in edge setF coveringK .

K � L K � � L � and K + � L+ .

K ^ L = ( K � \ L � ; K + [ L+ ) for dependent set pairsK and L.

K _ L = ( K � [ L � ; K + \ L+ ) for dependent set pairsK and L.

O = OD The set of one-way pairs in the digraphD.

O1 = O1
D The set of strict one-way pairs in the (k � 1)-connected digraphD.

s(K ) = jV � (K � [ K + )j.

iii



Miscellaneous

Z+ =R+ the set of nonnegative integer/real numbers.

x+ = maxf 0; xg, for a numberx 2 R.

f (Z ) =
P

z2 Z f (z) for a vector f : V ! R and a subsetZ � V .

X + v = X [ f vg for X � V , v 2 V.

X � v = X � f vg for X � V , v 2 V.

X intersectsY X \ Y; X � Y; Y � X are all nonempty forX; Y � V .

X crossesY X \ Y; X � Y; Y � X; V � (X [ Y) are all nonempty for X; Y � V.

X is an u�v-set For X � V, u 2 X and v =2 X ; used also for more than two nodes.

x � y x � y and x 6= y for a partial order � .
S

X =
S t

i =1 X i for a subpartition X = ( X 1; : : : ; X t ).

p(X ) =
P t

i =1 p(X i ) for p : 2V ! R and a subpartition X = ( X 1; : : : ; X t ).
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Chapter 1

Introduction

The �rst family of problems considered in the thesis is connectivity augmentation. Given a

graph and a positive integerk, we want to �nd a minimum number of edges whose addition

results in a k-node-connected ork-edge-connected digraph. Both edge- and node-connectivity

augmentation can be considered in both directed and undirected graphs, which raises four

di�erent questions, revealing essential di�erences both in terms of di�culty and of applicable

techniques. An important special case is augmenting connectivity by one, that is, when the

input graph is assumed to be already (k � 1)-edge- or node-connected.

A practical motivation is survivable network design. In a network (e.g computer or telecom-

munication network, electric power supply network), it is utterly important to maintain a path

between any two nodes.k-node- ork-edge-connectivity of a graph can be interpreted in terms

of security: the network remains connected even if arbitraryk � 1 nodes or edges are removed

due to attack or failure. In the connectivity augmentation problem, we want to increase the

security of an already existing network by adding new connections. From a practical point of

view, a minimum cost solution is more desireable: adding di�erent edges may have di�erent

costs, and we want to �nd a minimum cost augmenting edge set. Unfortunately, this problem

is NP-complete even in the simplest cases.

Somewhat surprisingly, the cardinality versions turned out tobe polynomial time solvable

in three of the four basic problems. Undirected edge-connectivity augmentation was solved

by Watanabe and Nakamura in 1987 [75], directed edge-connectivity by Frank in 1992 [23],

and directed node-connectivity by Frank and Jord�an in 1995[31]. The complexity of undi-

rected node-connectivity augmentation has been a longstanding open question in combinatorial

optimization.

For both undirected and directed edge-connectivity augmentation, relatively simple min-

max formulae hold. The dual optimum value is given by a partition of the nodes and can be

determined via an essentially greedy algorithm. The key technique here is splitting o�: Lov�asz'

theorem for undirected and Mader's theorem for directed graphs. In the case of undirected
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edge-connectivity, far-reaching generalizations are made possible by Mader's powerful splitting

o� theorem on preserving local edge-connectivity. Using this theorem, Frank solved local edge-

connectivity augmentation, the problem with possibly di�erent connectivity requirements for

any pair of nodes. Chapter5 contains new proofs to classical theorems in this �eld using the

technique of edge-
ippings. It also gives partial results towards a generalization, when new

edges may only be added between di�erent classes of a �xed partition of the nodes.

For directed node-connectivity augmentation, the dual optimum cannot be described simply

by partitions. The novel contribution of Frank and Jord�an [31] is the introduction of set pairs.

They presented a general abstract theorem (Theorem1.1) on covering positively crossing super-

modular functions on set pairs. The theorem is applicable, among other problems, to directed

node-connectivity augmentation. Also, the proof is based on the classical uncrossing technique

and it is astonishingly simple. They also gave a polynomial time algorithm for �nding an op-

timal solution. However, their algorithm strongly relied on the ellipsoid method, and thus the

question of �nding a purely combinatorial algorithm remained open. In Chapter2 we present

such an algorithm, a joint work with Andr�as Frank, for augmenting connectivity by one. As one

of the main results of the thesis, Chapter4 provides a completely di�erent type of combinatorial

algorithm for the general augmentation problem, a joint result with Andr�as Bencz�ur. It also

gives a new, algorithmic proof of Theorem1.1.

As already mentioned, the complexity status of undirected node-connectivity augmentation

is still open. In Chapter 3 we prove a min-max formula for the important special case of

augmenting connectivity by one, settling a conjecture of Frank and Jord�an from 1994. We also

give combinatorial algorithm for �nding an optimal solution.

The second main topic of the thesis is constructive characterization, a certain building

procedure for describing a class of graphs. A classical example isthe ear decomposition of

2-connected graphs. Constructive characterizations are alsoknown for higher connectivity,

for example, fork-edge-connected graphs and digraphs. These results are strongly related to

the �eld of connectivity augmentation, with splitting o� bei ng the most important method. In

Chapter 6, we give a constructive characterization of the so called (k; `)-edge-connected digraphs.

This is a joint work with Erika Ren�ata Kov�acs and proves a conjecture of Andr�as Frank. Our

result gives a common generalization of a number of previouslyknown characterizations, and

naturally �ts into the framework de�ned by splitting o� and or ientation theorems.

The rest of this chapter is organized as follows. In Sections1.1-1.4we exhibit the background

of our results. First, Section1.1 presents Theorem1.1 on covering positively crossing super-

modular functions along with its main applications. Section1.2 gives an overview of previous

connectivity augmentation algorithms. Section1.3 and Section1.4 are devoted to the �elds of

local edge-connectivity and constructive characterizations, respectively. There is a broad liter-

ature on each of these topics and we do not intend to give comprehensive overviews here, but
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restrict ourselves to concepts and theorems in direct connection to the results of the thesis.1

The core of the entire thesis is Section1.5, where we state the main results of each chapter,

sketch the main ideas of the proofs and point out the connections between di�erent chapters.

1.1 The Frank-Jord�an Theorem and node-connectivity

augmentation

Let us callK = ( K � ; K + ) a set pair if K � and K + are disjoint nonempty subsets of the ground

set V. K � is called thetail and K + the head of K . Let S denote the set of all set pairs. We

say that a (directed) edgexy 2 V 2 covers the pair K if x 2 K � , y 2 K + .2

Two set pairs K = ( K � ; K + ) and L = ( L � ; L+ ) are tail-disjoint if K � \ L � = ; , head-

disjoint if K + \ L+ = ; , and independent if they are either tail- or head-disjoint. This is

equivalent to the property that no edge inV 2 covers bothK and L. Two non-independent set

pairs are calleddependent . A set F of set pairs isindependent if its members are pairwise

independent.

A natural partial order on S can be de�ned as follows:K � L if K � � L � and K + � L+ .

The pairs K and L are comparable if K � L or L � K . Two dependent, but not comparable

pairs are calledcrossing .

For dependentK and L, let us de�ne the set pairsK ^ L = ( K � \ L � ; K + [ L+ ) and

K _ L = ( K � [ L � ; K + \ L+ ). For the partial order � , K ^ L is the unique greatest common

lower bound andK _ L the least common upper bound. Nevertheless, (S; � ) is not a lattice

sinceK _ L and K ^ L are de�ned only for dependent set pairs.

The non-negative integer valued functionp on S is calledpositively crossing supermod-

ular if

p(K ) + p(L) � p(K ^ L) + p(K _ L)

wheneverK; L 2 S, K and L are dependent andp(K ); p(L) > 0.

For a multiset F consisting of edges inV 2 and a set pairK 2 S, let � F (K ) denote the number

of edges inF coveringK . We say that the edge setF covers the function p if � F (K ) � p(K )

for every set pairK 2 S. Let � p denote the minimum size of an edge set coveringp, and let

� p = maxf
P

K 2F p(K ) : F independentg. � p � � p clearly holds, since an edge may cover at

most one member of an independent system. The following theoremstates that this in fact

holds with equality:

1We use several well-known results (e.g. Mengers's and Dilworth's theorems, the K}onig-Hall or Berge-Tutte

theorems) without references. For all such theorems we refer the reader to Schrijver's monography [69].
2By V 2 we denote the set of all directed edges on a ground setV , while

� V
2

�
stands for the set of all undirected

edges onV .
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Theorem 1.1 (Frank and Jord�an, 1995 [31]). Given a ground setV and a positively crossing

supermodular functionp on the set pairs,� p = � p.

Before turning to the applications, let us consider the important special case whenp takes

values only 0 and 1. LetS1 = f K 2 S : p(K ) = 1 g. The supermodularity ofp implies that if

K; L 2 S1 are dependent thenK ^ L; K _ L 2 S1. A family of set pairs satisfying this property

is calledcrossing . In fact, we may obtain every crossing family in this form. Given a crossing

family F , the function p de�ned by p(K ) = 1 if K 2 F and p(K ) = 0 if K =2 F is positively

crossing supermodular. This observation leads to the followingcorollary of Theorem1.1. For a

crossing familyF , let � (F ) denote the minimum number of edges coveringF , and let � (F ) be

the maximum number of pairwise independent members ofF .

Theorem 1.2. Given a crossing familyF of set pairs, � (F ) = � (F ).

Let us now exhibit some applications of Theorem1.1, starting with the most prominent one,

directed connectivity augmentation.

1.1.1 Directed connectivity augmentation

We commence by giving the precise de�nition ofk-edge- and node-connectivity. All directed and

undirected graphs in the thesis will be allowed to have parallel edges and loops. By edge set we

will always mean a multiset of edges, even if not mentioned explicitly. A directed graph is called

strongly connected if it contains a directed path between any two nodes. An undirected or

directed graph is calledk-node-connected or shortly, k-connected if the number of nodes is

at least k +1, and after the deletion of any subset of at mostk � 1 nodes, the remaining graph is

still connected if undirected, and strongly connected if directed. Analogously, an undirected or

directed graph is calledk-edge-connected , if after the deletion of any at mostk � 1 edges, the

remaining graph is still (strongly) connected. It is well-known, by versions of Menger's theorem,

that a graph or digraph isk-node-connected (respectively,k-edge-connected) if and only if there

are k internally node-disjoint (edge-disjoint) paths from each node to every other node (and the

graph has at leastk + 1 nodes in thek-node-connected case).

In the directed node-connectivity augmentation problem weare given a digraphD = ( V; A)

and a target valuek, and we want to add a minimum number of new edges toD to make it

k-connected. A set pairK 2 S is called aone-way pair if � D (K ) = 0, that is, there are no

edges inD coveringK . We denote byO = OD the set of one-way pairs. For a set pairK , let

us de�ne s(K ) := jV � (K � [ K + )j. The following simple claim shows that we may restrict our

attention to the one-way pairs:

Claim 1.3 ([31]). D is k-connected if and only ifs(K ) � k for every K 2 O .

4



Let us de�ne the function p as follows: p(K ) := ( k � s(K ))+ if K 2 O , and p(K ) := 0 if

K =2 O . It is easy to verify that p is positively crossing supermodular. By the previous claim,

D + F is k-connected if and only ifF coversp. Hence Theorem1.1 specializes to:

Theorem 1.4. For a digraph D = ( V; A), the minimum number of edges whose addition makes

D k-connected equals the maximum value of
P `

i =1 (k � s(K i )) over pairwise independent one-way

pairs K 1; : : : ; K ` .

Assume now that the digraphD is already (k � 1)-connected, implyings(K ) � k � 1 for all

one-way pairs. We call a one-way pairstrict if s(K ) = k � 1 and denote their set byO1 = O1
D .

The theorem simpli�es to the following form:

Theorem 1.5. For a (k � 1)-connected digraphD = ( V; A), the minimum number of edges

whose addition makesD k-connected equals the maximum number of pairwise independent strict

one-way pairs.

In Chapter 2, we will also use the following mild generalization of Theorem1.5. This is also

a simple consequence of Theorem1.2.

Theorem 1.6. For a (k � 1)-connected digraphD = ( V; A), let F � O 1
D be a crossing family

of strict one-way pairs. Then� (F ) = � (F ).

1.1.2 Other applications

Gy}ori's theorem

Perhaps the most astonishing applications of Theorem1.1 are Gy}ori's theorems on generators

of interval systems and on rectangle coverings. Let us start withthe �rst problem: let I be a

�nite set of closed intervals in [0; 1]. We say that the setB of closed intervalsgenerates I if

every interval in I is the union of some members ofB. (For example,I generates itself.) Given

I , we are interested in the minimum size of a set generating it. Foran I 2 I and an interior

point x 2 I , we say that (I; x ) is a represented interval. Two represented intervals (I; x ) and

(J; y) are calledindependent if I \ J does not contain bothx and y.

Theorem 1.7 (Gy}ori, 1984 [38]). The minimum size of a generator of a setI equals the

maximum number of pairwise independent represented intervals in I .

This was originally conjectured by Frank in the late seventies and proved by Gy}ori in 1984.

Gy}ori's original proof was quite sophisticated and the theorem did not show any relations to

other min-max theorems known by that time. Let us now derive this result from Theorem1.2.

It is clear that [0; 1] can be replaced by a pathP = f v1; e1; v2; e2; : : : ; et � 1; vtg with nodesvi and

edgesei . The intervals correspond to subpaths ofP. For a path I = f vh; eh; : : : ; ek� 1; vkg and
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an edgeei with h � i � k � 1, we may de�ne the set pairK I;e i = ( f vh; : : : ; vi g; f vi +1 ; : : : ; vkg).

Finding a system of generators is equivalent to covering the setpairs K I;e i for every possible

choice ofI and ei . It is easy to verify that these set pairs form a crossing system, and two pairs

K I;e i and K J;ej are independent if and only if (I; x ) and (J; y) are independent for any interior

points x 2 ei , y 2 ej . Theorem1.1 also easily implies an extension of Theorem1.7 for intervals

on a circuit instead of intervals in [0; 1]; this generalization could not be obtained from Gy}ori's

original proof.

The theorem has a nice application in combinatorial geometry. We say that a polygon in

the plane is rectilinear if all edges are vertical and horizontal lines. A rectilinearpolygon is

vertically convex if its intersection with every vertical line is an interval. For a rectilinear

polygon R, we say that H is a rectangle cover of R if H is a set of rectangles contained inR

whose union isR. A set P of points in R is called independent if no two points in P can be

covered by a rectangle contained inR.

Theorem 1.8. For a vertically convex rectilinear polygonR, the minimum size of a rectangle

cover ofR equals the maximum size of an independent point set inR.

K tt -free t-factors in bipartite graphs

Given an undirected graphG = ( V; E), a natural relaxation of the Hamiltonian cycle problem is

to �nd a C� k-free 2-matching, that is, a subgraph with maximum degree 2 containing no cycle

of length at most k. Cornu�ejols and Pulleyblank [14] showed this problem to be NP-complete

for k � 5. In his Ph.D. thesis [40], Hartvigsen proposed a solution for the casek = 3. The

casek = 4 is still open along with the other natural question of �nding a maximum C4-free

2-matching (possibly containing triangles). Only some partialresults are known so far (see [7]

and [8]).

However, theC4-free 2-matching problem turns out to be tractable under theassumption

that G is bipartite. This was solved by Hartvigsen [41, 42] and Kir�aly [ 53]. A generalization of

the problem to maximumK t;t -free t-matchings was given by Frank [27], who observed that this

can indeed be deduced from Theorem1.1.

Theorem 1.9 (Frank, 2003 [27]). The maximum size of aK t;t -free t-matching of a bipartite

graph G = ( S; T; E) equals

min
Z � S[ T

(tjZ j + i (V � Z ) � ct (Z )); (1.1)

wherect (Z ) denotes the number of connected components of(S [ T) � Z which areK t;t 's.

Let us de�ne a function p on set pairs onV = S [ T as follows. IfK � � S, K + � T, and G

spans a complete bipartite graph betweenK � and K + , then let p(K ) = ( jK � j + jK + j � 2t +1) +
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if jK � j; jK + j � 2, and p(K ) = ( jK � j + jK + j � t � 1)+ if jK � j = 1 or jK + j = 1. Let p(K ) = 0

in all other cases. It can be veri�ed that this function is positively crossing supermodular, and

if F is an edge set coveringp then E � F is a K t;t -free 2-matching. Moreover, a dual optimal

solution may be transformed to the form (1.1).

A generalization of this problem is if we do not exclude allK t;t subgraphs, but only a

certain subset of them is forbidden. The above reduction method fails to work, still, Makai [65]

generalized Theorem1.9 for this setting. To this end, he formulated and proved a nontrivial

generalization of Theorem1.1 - which is indeed the only nontrivial generalization known sofar.

However, this theorem and the other extensions of Theorem1.9 are beyond the scope of this

thesis.

There is an interesting connection between the matching problems above and undirected

connectivity augmentation. It is easy to see that fork = n � 2 (n = jV j), connectivity aug-

mentation is equivalent to �nding a maximum matching in the complement graph ofG. For

k = n � 3, the problem is equivalent to �nding a maximumC4-free 2-matching. However, for

k < n � 3 the problem corresponding to connectivity augmentation isnot K t;t -free t-matchings,

but t-matchings not containing any complete bipartite graphK a;b with a+ b= t +2. This latter

problem can also be solved in bipartite graphs using Theorem1.1.

k-elementary bipartite graphs

Let G = ( S; T; E) be a bipartite graph. It is well known by Hall's theorem that there exists

a matching coveringS if and only if jX j � j �( X )j holds for everyX � S, where �( X ) � T

denotes the set of neighbours ofX . G is calledelementary bipartite if either jSj = jTj = 1

and E consits of a single edge orjSj = jTj > 1 and the stronger propertyjX j + 1 � j �( X )j

holds for every; 6= X ( S. This is a well-studied class of graphs, see e.g. [61, Chapter 4].

As a generalization, fork 2 Z+ we say that the bipartite graph G = ( S; T; E) is k-

elementary (with respect to S) if jX j + k � j �( X )j or �( X ) = T for every ; 6= X � S.

(Note that jSj = jTj is not being assumed.) The following problem is an analogue of connec-

tivity augmentation. Given a bipartite graph G = ( S; T; E), add a minimum number of edges

betweenS and T to get a k-elementary bipartite graph. We say that the setX is legal if

; 6= X � S, �( X ) 6= T. Two legal setsX and Y are independent if either X \ Y = ; or

�( X [ Y) = T.

Theorem 1.10. For a bipartite graph G = ( S; T; E), the minimum number of edges between

S and T whose addition makesG elementary bipartite equals the maximum value of
P t

i =1 (k +

jX j � �( X )) over pairwise independent legal setsX 1; : : : ; X t .

This can easily be derived from Theorem1.1 by mapping each legal setX to the set pair

K X = ( X; T � �( X )) with p(K X ) = ( k + jX j � �( X ))+ and p(K ) = 0 for any other set pair
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K . Clearly, this function is positive crossing supermodular, andthe set pairsK X and K Y are

independent if and only if the legal setsX and Y are independent.

Connectivity augmentation may be easily reduced to this problem. Given the digraphD =

(V; A) with jV j � k + 1, construct a bipartite graph G = ( S; T; E) by associating two nodes

v0 2 S and v002 T and an edgev0v002 E with each v 2 V, and furthermore an edgeu0v002 E

with each edgeuv 2 A. This graph is k-elementary bipartite if and only if D is k-connected. A

similar reduction is possible in the other direction as well, assuming that jSj = jTj and that G

is 0-elementary (that is, it satis�es the Hall-condition). This correspondence will be useful for

the algorithmic aspects of augmenting directed connectivity by one in Chapter2 and even for

undirected connectivity augmentation in Chapter3.

Directed edge-connectivity augmentation

Augmenting directed edge-connectivity is considerably easier than node-connectivity, and was

solved in 1992 by Frank [23] via Mader's directed splitting o� theorem (Theorem 1.28). In

Section 1.3 we show that an analogous argument works out for undirected edge-connectivity

augmentation as well.

Let us now formulate the min-max formula and show how it can alsobe derived from

Theorem1.1.

Theorem 1.11 (Frank, 1992 [23]). Given a digraphD = ( V; A), the minimum number of edges

whose addition makesD k-edge-connected equals the maximum value of

maxf
`X

i =1

(k � � (X i )) ;
`X

i =1

(k � � (X i ))g;

over subpartitionsf X 1; : : : ; X `g.

De�ne a positively crossing supermodular functionp on S by giving nonzero values only to

set pairs corresponding to cuts, namely, letp(K ) = ( k � � (K + ))+ wheneverK � [ K + = V and

p(K ) = 0 otherwise. Coveringp is clearly equivalent tok-edge-connectivity augmentation. The

theorem follows by showing that the complex structure of pairwise independent set pairs breaks

down to the simple dual optimum in Theorem1.11, established by the next claim.

Claim 1.12. If any two among the setsX 1; : : : ; X ` � V are disjoint or co-disjoint, then either

they are all pairwise disjoint or all pairwise co-disjoint.(Two sets are called co-disjoint if their

union is V). �

In Section6.3we present Theorem6.19, a generalization of this theorem for positively cross-

ing supermodular set functions, derivable from Theorem1.1 (more precisely, from its degree-

prescribed version, which we do not discuss here).
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ST-edge-connectivity augmentation

Whereas Theorem1.11can also be obtained by the signi�cantly simpler splitting o� technique,

this does not hold for the following generalization of edge-connectivity augmentation. Let

D = ( V; A) be a digraph with two (not necessarly disjoint) setsS; T � V . D is called k-ST-

edge-connected if for any s 2 S and t 2 T � s, there are at leastk-edge-disjoint paths from

s to t. S = T = V gives k-edge-connectivity, whileS = f r0g, T = V � f r0g gives rooted

k-edge-connectivity.

The problem of adding a minimum number of edges toD to make it k-ST-edge-connected is

NP-complete already fork = 1. However, if adding new edges only betweenS and T is allowed,

the problem becomes polynomially solvable. De�nep on S to be positive only on set pairsK

with K � � S, K + � T. On such pairs, letp(K ) = max f (k � � (X ))+ : X \ T = K + ; S � X =

K � g. This is a positively crossing supermodular function, and its coverings coincide with the

augmenting edge sets consisting of edges fromS to T.

We may also give a min-max formula in terms of sets instead of set pairs. Let X be called

an ST-set if X \ T 6= ; , S � X 6= ; . Two ST-setsX and Y are calledindependent if either

X \ Y \ T = 0 or S � X [ Y.

Theorem 1.13. For a digraph D = ( V; A) with S; T � V , the minimum number of edges from

S to T whose addition makesD k-ST-edge-connected equals the maximum of
P `

i =1 (k � � (X i ))+

over pairwiseST-independentST-setsX 1; : : : ; X ` .

The reason why this problem is more complicated than edge-connectivity augmentation is

that the structure of ST-independence cannot be simpli�ed to partitions and co-partitions as

in Claim 1.12.

1.2 Previous algorithmic results on connectivity augmen-

tation

For k = 1, the notions of 1-edge- and 1-node-connectivity coincide, both giving connectedness

in the undirected and strongly connectedness in the directed case. Augmenting an undirected

graph to be connected is trivial (and even the minimum cost version is tractable via Kruskal's

algorithm). The casek = 1 for directed graphs was solved in 1976 by Eswaran and Tarjan [19].

As already mentioned, min-max formulae and polynomial time algorithms for optimal edge-

connectivity augmentation were developed by Watanabe and Nakamura in 1987 [75] for the

undirected and by Frank in 1992 [23] for the directed case; undirected edge-connectivity will be

discussed in Section1.3.

Concerning directed node-connectivity, even the casek = 2 has not been settled until the

result of Frank and Jord�an in 1995 [31]. The algorithm in their paper strongly relied on the
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ellipsoid method, thus �nding a combinatorial algorithm remained an open problem. The �rst

result towards this direction was given by Enni in 1999 [18], by nontrivially extending the

algorithm of Eswaran and Tarjan for 1-ST-edge-connectivity augmentation. For �xedk, Frank

and Jord�an themselves gave a combinatorial algorithm in 1999 [32] for directed connectivity

augmentation - that is, the running time is the product of a polynomial of n and an exponential

function of k.

For the 0-1 valued case (Theorem1.2), two completely di�erent and independent algorithms

were given in 2003 by Frank [26] and Bencz�ur [4]. However, Frank's algorithm was not directly

applicable for graph connectivity augmentation. Our jointresult with Frank presented in Chap-

ter 2 is an extension of this work. In contrast, the result of Chapter4 is the extension of the

algorithm of Bencz�ur.

As shown in the previous section, Gy}ori's theorem (Theorem1.7) is also a special case of

Theorem 1.1. Various polynomial time algorithms were given by Franzblau and Kleitman in

1986 [37], by Lubiw in 1990 [62] , by Knuth in 1996 [55], by Frank in 1999 [25] and by Bencz�ur,

Kir�aly and F•orster in 1999 [ 5]. Some fundamental ideas of [26] (and thus of Chapter2) derive

from [25].

For undirected connectivity augmentation, the situation isradically di�erent. The complex-

ity of the general problem is still unknown; even augmenting by one has been open for a long

time. This problem is settled in Chapter3 of this thesis. In the same paper [19], Eswaran and

Tarjan also gave an algorithm for augmenting a graph to be 2-connected. Watanabe and Naka-

mura solved the casek = 3 in 1993 [76] while k = 4 was done by Hsu in 2000 [44]. Other solved

special cases includek = n � 2; n � 3: As mentioned in Section1.1.2, connectivity augmentation

for k = n � 2 for the graphG is equivalent to �nding a maximum matching in the complement

graph of G. Similarly, augmentation by one fork = n � 3 is equivalent to �nding a maximum

square-free 2-matching in a subcubic graph, solved recently byB�erczi and Kobayashi [7].

The best previously known result is due to Jackson and Jord�an from 2005 [47]. They gave

a polynomial time algorithm for �nding an optimal augmentation for any �xed k. The running

time is bounded byO(n5 + f (k)n3), where f (k) is an exponential function ofk. They proved

even stronger results for some special classes of graphs: for example, the running time of the

algorithm is a polynomial ofn if the minimum degree is at least 2k � 2. An analogous result is

by Liberman and Nutov [59]. They gave a polynomial time algorithm for increasing connectivity

by one under the assumption that there exists a setZ � V with jZ j = k � 1 so that G � Z

has at leastk connected components. (It can be decided in polynomial time whether a graph

contains such a set, see Cheriyan and Thurimella [13].)

It is straightforward to give a 2-approximation for connectivity augmentation by replacing

each edge by two oppositely directed egdes and using that directed node-connectivity can be

augmented optimally. For augmenting connectivity by one, Jord�an [49, 50] gave an algorithm
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�nding an augmenting edge set larger than the optimum by at most
�

k� 2
2

�
. Jackson and

Jord�an [46] extended this result for general connecitivity augmentation with an additive term ofl
k(k� 1)+4

2

m
. A slightly weaker, similar result was established also by Ishii andNagamochi [45].

(The running times of these algorithms can be bounded by polynomials ofn.)

1.3 Undirected edge-connectivity augmentation

The min-max formula on undirected edge-connectivity augmentation is the following.

Theorem 1.14 (Watanabe and Nakamura, 1987 [75]). For a graphG = ( V; E) and a connectiv-

ity requirement k � 2, the minimum number of edges whose addition makesG k-edge-connected

equals the maximum of
l

1
2

P `
i =1 (k � d(X i ))

m
over subpartitionsX 1; : : : ; X ` of V.

In contrast with the other basic augmentation problems, here wecan also cope withlocal

edge-connectivity augmentation , that is, we may have a di�erent connectivity requirement

for each pair of nodes:r (u; v) = r (v; u) for the nodesu; v 2 V. Global edge-connectivity

augmentation will refer to the the caser � k for somek 2 Z+ .

For an undirected graphG = ( V; E), let � (u; v) = � G(u; v) denote the maximum number of

edge-disjoint paths betweenu and v. By Menger's theorem, it is well-known that� G(u; v) =

minf dG(X ) : X � V; u 2 X; v =2 X g. Given a function r : V � V ! Z+ , we say thatG = ( V; E)

is r -edge-connected if � (u; v) � r (u; v) for any u; v 2 V.

F is called anaugmenting edge set (for G with respect to r ) if G+ F is r -edge-connected.

This can be equivalently formulated in terms of cuts: letR(; ) = R(V) = 0,

R(X ) := max f r (u; v) : u 2 X; v =2 X g if ; 6= X ( V; (1.2)

and let p(X ) := ( R(X ) � dG(X ))+ . Then G + F is r -edge-connected if and only if

dF (X ) � p(X ) for every X � V: (1.3)

For an arbitrary set function p, we say that the edge setF covers p if (1.3) holds. Frank's

following theorem gives a min-max formula on the minimum sizeof an augmenting edge set.

For a partition X = f X 1; : : : ; X `g, let p(X ) =
P `

i =1 p(X i ). A set C � V is called amarginal

set, if R(C) � 1 and d(C) = 0.

Theorem 1.15 (Frank, 1992 [23]). Assume we are given a graphG = ( V; E) and the requirement

function r so that G contains no marginal sets. Then the minimum number of edges whose

addition makesG r -edge-connected equals the maximum value of
�

1
2p(X )

�
over subpartitionsX

of V.
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The max � min direction is clear since we need to add at leastp(X i ) = ( R(X i ) � d(X i ))+

new edges for each classX i of X and a new edge may cover at most twoX i 's. Actually, Frank's

original theorem is slightly stronger by excluding only marginal components instead of marginal

sets. A connected componentC � V is called amarginal component if R(C) � 1, and

p(U) = 0 for any U ( C. However, this original version can be easily derived from Theorem 1.15.

Also, all subsequent theorems where marginal sets are excluded can be strengthened to exclude

only marginal components; we stick to marginal sets for the sake of minor simpli�cations in

some proofs. The condition excluding marginal sets or components is necessary since a graph

G = ( V;; ) with r � 1 needs at leastjV j � 1 new edges, although the dual optimum is
l

jV j
2

m
.

Nevertheless, even the most general case without any restriction on r can be deduced from

Frank's original theorem (and thus from Theorem1.15), see in [23].

The nontrivial direction is proved via Mader's splitting o� t heorem, an extremely powerful

tool for edge-connectivity problems. Bysplitting o� edgese = xz and f = zy we mean the

operation of deletinge and f and adding the new edgexy (literally the same de�nition is used

for digraphs as well, see in Section1.4). We say that a splitting o� is admissible if for any

two nodesu; v 2 V � z, the local edge-connectivity value� (u; v) does not decrease. The pair of

edgesxz; zy is splittable if splitting o� xz and zy is admissible.

Theorem 1.16 (Mader, 1978 [63]). Let G = ( V + z; E) be a graph withd(z) 6= 3 so that there

is no cut edge incident toz. Then there exist a splittable pair of edges incident toz.

Based on this theorem, Theorem1.15can be deduced via the following intermediate theorem.

A V ! Z+ function m is called adegree-prescription if m(V) even. For a degree-prescription

m, an edge setF is called m-prescribed if dF (v) = m(v) for every v 2 V. Clearly, such an

edge set always exists.

Theorem 1.17 ([23]). Assume we are given a graphG = ( V; E) containing no marginal sets,

a requirement functionr and a degree-prescriptionm. Then there exists anm-prescribed edge

set F so that G + F is r -edge-connected if and only if

m(X ) � p(X ) 8X � V: (1.4)

This can be proved by adding a new nodez to the graph G, and connecting it to each node

v by m(v) parallel edges. The resulting graph isr -edge-connected inV and has no cut edges

incident to z, hence the iterative application of the splitting o� theoremyields the desiredF .

By parity adjusting of a function m : V ! Z+ we mean the following operation: ifm(V)

is odd then we increasem(v) by one for an arbitrary v 2 V. The following can be proved using

the uncrossing technique (see the detailed argument in Section5.1.1). If we take an arbitrary m

which is a minimal one satisfying (1.4), and furthermore we apply parity adjusting onm, then

m(V) will be twice the maximum value in Theorem1.15. The key property of R we use both

in the proof of Theorem1.16and in the uncrossing method is that it isskew supermodular :
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Claim 1.18 ([66],[23]). For any two subsetsX; Y � V, at least one of the following two in-

equalities hold:

R(X ) + R(Y) � R(X [ Y) + R(X \ Y) (1.5a)

R(X ) + R(Y) � R(X � Y) + R(Y � X ) (1.5b)

This easily implies that the functionp is also positively skew supermodular, that is, at least

one of the two inequalities hold forp in place ofR for any setsX; Y with p(X ); p(Y) > 0. For

the function R, an even stronger property can also be easily veri�ed:

Claim 1.19. If one of (1.5a) and (1.5b) does not hold, then the other is true with equality.

For global edge-connectivity augmentation, Theorem1.16 was preceded by Lov�asz' global

splitting o� theorem preserving k-edge-connectivity [60], and Theorem1.14 was proved based

on this theorem. The splitting o� technique is also important in context of directed edge-

connectivity, discussed in Section1.4.

Positively crossing supermodular functions

One might wonder if Theorem1.15extends to a general covering theorem for arbitrary functions

p satisfying certain properties. Unfortunately, the symmetry andpositively skew-supermodu-

larity are not enough by themselves: a special case of this problem, local edge-connectivity

augmentation of hypergraphs is NP-complete, see [54].

An abstract extension of Theorem1.14 on global edge-connectivity augmentation was for-

mulated by Bencz�ur and Frank in 1999 [6], by replacingk � d(X ) with a certain type of function

p(X ). Let p : 2V ! Z+ be an arbitrary symmetric and positively crossing supermodular func-

tion, that is, p(X ) = p(V � X ) for any X � V and

p(X ) + p(Y) � p(X [ Y) + p(X \ Y)

holds wheneverp(X ); p(Y) > 0 and X and Y are crossing (X \ Y, X � Y and Y � X are all

nonempty sets andX [ Y 6= V). Note that this also implies

p(X ) + p(Y) � p(X � Y) + p(Y � X )

if p(X ); p(Y) > 0. Theorem1.14 does not remain true by simply replacingk � d(X ) by p(X )

and using the subpartition bound max
�

1
2p(X )

�
. In fact, a new type of obstacle should also

be taken into account. Let us call a partitionP = f X 1; : : : ; X tg of the node setV p-full if

p(
S

i 2 I X i ) > 0 holds for any nonempty subsetI ( f 1; 2; : : : ; tg. Clearly, at least t � 1 edges are

needed to cover such ap. The maximum cardinality of ap-full partition is called the dimension

of p and is denoted by dim(p). While the de�nition contains exponentially many conditions,

the following simple lemma shows thatp-fullness can be veri�ed e�ectively:
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Lemma 1.20 ([6]). Assume that forP = f X 1; : : : ; X tg, p(X 1) = 1 and p(X 1 [ X i ) � 1 for any

i > 0. Then P is p-full.

The theorem is as follows:

Theorem 1.21 (Bencz�ur and Frank, 1999 [6]). Let p : 2V ! Z+ be a symmetric positively

crossing supermodular function. Then the minimum cardinality of an edge setF covering p is

equal to

maxf dim(p) � 1; max
�

1
2

p(X )
�

g;

where the second maximum ranges over subpartitionsX of V.

An important application of this theorem is global edge-connectivity augmentation of hy-

pergraphs, solved by Bang-Jensen and Jackson in 1999 [3]. Recall that Theorem1.15 on local

edge-connectivity augmentation was a conseqence of the degree-prescribed Theorem1.17. Sim-

ilarly, Theorem 1.21 is an easy consequence of the degree-prescribed version.

Theorem 1.22 ([6]). Let us be given a symmetric positively crossing supermodularfunction

p : 2V ! Z+ and a degree-prescriptionm. There exists anm-prescribed edge setF covering p

if and only if (1.4) holds and furthermore

m(V) � dim(p) � 1: (1.6)

A directed counterpart of this theorem is Theorem6.19. The symmetry of p is not required

in that case, and also no obstacle similar top-full partitions occur.

Partition-constrained problems

The central problem investigated in Chapter5 is partition-constrained local edge-connec-

tivity augmentation (PCLECA) . Given a partition Q = ( Q1; : : : ; Qt ) of V , an edge is called

Q-legal if its endnodes lie in di�erent classes ofQ. Given a requirement functionr and a

partition Q, we want to �nd a minimum cardinality set F consiting of Q-legal edges so that

G + F is r -edge-connected.

For global edge-connectivity (r � k � 2) this problem was solved by Bang-Jensen, Gabow,

Jord�an and Szigeti [2]. Given a graphG = ( V; E), a partition Q of the nodes and a connectivity

requirement k � 2, let OPTk
Q denote the minimum number ofQ-legal edges whose addition

makesG k-edge-connected. Clearly, the problem is equivalent to covering the function p(X ) =

(k � d(X ))+ by a minimum number ofQ-legal edges.

A natural lower bound on this is the one in Theorem1.14, namely, � (G) = max
�

1
2p(X )

�

over subpartitionsX of V. For a similar bound for each 1� j � t, let us callX a j -subpartition,

if X is a subpartition of Qj . Let � j (G) = max p(X ) over j -subpartitions X . Let 	 Q (G) denote

the maximum of � (G) and � j (G) for j = 1; : : : ; t. The theorem is the following.
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Theorem 1.23 ([2]). Given an undirected graphG = ( V; E), a partition Q of the nodes and

a connectivity requirementk � 2, OPTk
Q = 	 Q (G) if k is even, or k is odd andG contains

neither a C4 nor a C6-con�guration. Otherwise, OPTk
Q = 	 Q (G) + 1 .

We de�ne only C4-con�gurations here as we will not needC6-con�gurations in the sequel.

For subpartitions Z and W, we say thatZ is a re�nement of W if each class ofZ is a subset

of some class ofW.

Let f A1; A2; C1; C2g be a partition of V, and for some 1� h � t, let Z be a h-partition

which is a re�nement off C1; C2g. These form aC4-con�guration if they ful�l the following: (i)

p(Z ) = 	 Q (G); (ii) dG(C1; C2) = dG(A1; A2) = 0, and (iii) p(Cj ) =
P

f p(Z ) : Z 2 Z ; Z � Cj g

for j = 1; 2.

Let us see an example: considerG = ( V; E) on the node setV = f a1; c1; a2; c2g and edge

set E = f a1c1; c1a2; a2c2; c2a1g (a square). LetQ = ( f a1; a2g; f c1; c2g) and k = 3. At least three

new Q-legal-edges are needed for the augmentation, while 	Q (G) = 2.

Similarly to the previous theorems, this one was also proved using splitting o� techniques,

and a degree-prescribed variation can also be formulated. Theproof starts by adding a new

node z and an edge setH incident to z with jH j = 	 Q (G). (By choosing this edge set, the

partition Q should also be taken into account). A pair of edgesxz and yz is calledQ-legal if

x and y lie in di�erent classes ofQ. As long as possible, we split o�Q-legal admissible pairs of

edges incident toz. If all edges incident toz can be removed in such pairs then we have found

an optimal Q-legal augmentation. If not, then either we are able to achieve a complete splitting

after undoing one of the previously performed splitting o� operations, or the existence of aC4-

or C6-con�guration can be veri�ed.

In Chapter 5, we give new proofs of Theorems1.17 and 1.21 using edge-
ippings instead

of splitting o�. Furthermore, partial results are presented towards the generalization of Theo-

rem 1.23 to local edge-connectivity augmentation. A common generalization of Theorems1.21

and 1.23 was given by Bern�ath, Grappe and Szigeti [11]. A detailed discussion of these topics

among plenty of new extensions can be found in the recent thesisof Bern�ath [ 9].

1.4 Constructive characterizations

By a constructive characterization of a graph propertyP we mean a set of operations preserving

property P, so that each graph with propertyP can be obtained by a sequence of such operations

starting from a small set of basic instances. Such characterizations are often useful for proving

further properties of graphs with propertyP. The following ear decompositions of 2-connected

and 2-edge-connected graphs are among the �rst examples of constructive characterizations.

Proposition 1.24. (i) [ 77] An undirected graph is2-connected if and only if it can be built

up from a circuit by iteratively adding new paths whose endpoints are distinct old nodes.
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(ii) [ 60, Problem 6.28] An undirected graph is2-edge-connected if and only if it can be built up

from a single node by iteratively adding new paths whose endpoints are (possibly coincident)

existing nodes.

In this section, we focus on results related to higher edge-connectivity. Although the ear

decompositions above are almost identical for node- and edge-connectivity, very little is known

on characterizingk-node-connected graphs: there are di�erent constructive characterizations

for k = 3, but none for k � 4. A survey on constructive characterizations in combinatorial

optimization can be found in [57].

An immediate application of Proposition1.24(ii) is the following. Given an undirected graph

G, we want to �nd a strongly connected orientation ofG. A trivial necessary condition is that

G should be 2-edge-connected. Using the characterization, su�ciency is also straightforward:

when adding a path, let us orient all its edges in the same direction. We will see orientation

results for higher edge-connectivity as well and their relation to constructive characterizations.

For 2k-edge-connected graphs, Lov�asz proved the following.

Theorem 1.25 (Lov�asz, 1976 [60, Problem 6.52]). An undirected graph is2k-edge-connected

if and only if it can be obtained from a single node by iteratively applying the following two

operations:

(i) add a new edge (possibly a loop),

(ii) subdivide k existing edges and identify the subdividing nodes.

It is easy to see the equivalence between the casek = 1 and the ear decomposition in

Proposition 1.24(ii). Mader gave a similar characterization for 2k + 1-edge-connected graphs

[63]. As for the k = 1 case, Theorem1.25 immediately implies the weak version of Nash-

Williams' orientation theorem:

Theorem 1.26 (Nash-Williams, 1960 [66]). An undirected graph has ak-edge-connected orien-

tation if and only if it is 2k-edge-connected.

A directed counterpart of Theorem1.25 is due to Mader:

Theorem 1.27 (Mader, 1982 [64]). A directed graph isk-edge-connected if and only if it can

be obtained from a single node by iteratively applying the following two operations:

(i) add a new edge (possibly a loop),

(ii) subdivide k existing edges and identify the subdividing nodes with a single nodez.

In this theorem and in Theorem1.25 as well, operation (ii) is calledpinching k edges

with z. By pinching 0 edges we mean the addition of a node. Note that using Theorem1.26,

Theorem1.25can easily be derived from Theorem1.27.
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In the proof of Theorem1.27, an intrinsic tool is another deep theorem of Mader on directed

splitting o�. Similarly to undirected graphs, in a digraph G = ( V; A), splitting o� edgese = xz

and f = zy means the operation of deletinge and f and adding the new edgexy. If � (z) = � (z),

a complete splitting at z is a sequence of splitting o� operations of all edges incident to z

and �nally removing z. We say that a digraphD = ( U + z; A) is k-edge-connected in U if

there arek-edge-disjoint directed paths between any two nodes inU.

Theorem 1.28 (Mader, 1982 [64]). Let D = ( U + z; A) be a digraph which isk-edge-connected

in U and � (z) = � (z). Then there exists a complete splitting atz resulting in a k-edge-connected

digraph.

From Theorem1.27one may also derive the constructive characterization of rooted k-edge-

connected digraphs (see e.g. [24]). A digraph D = ( V; A) is called rooted k-edge-connected

if for a node r0 2 V, there arek-edge-disjoint paths fromr0 to every node inV � r0. Clearly,

this is equivalent to � (X ) � k for every X � V � r0.

Theorem 1.29. A directed graphD = ( V; A) is rooted k-edge-connected with a rootr0 2 V if

and only if it can be obtained from the single noder0 by iteratively applying the following two

operations.

(i) add a new edge (possibly a loop),

(ii) pinch 0 � j � k � 1 edges with a new nodez and addk � j new edges with headz.

From this theorem, one may easily derive Edmonds' classical theorem on disjoint arbores-

cences:

Theorem 1.30 (Edmonds, 1973 [17]). A directed graphD = ( V; A) contains k edge disjoint

spanning arborescences with rootr0 2 V if and only if it is rooted k-edge-connected with rootr0.

Similarly to Theorem 1.26, rooted k-edge-connectivity of digraphs also has an undirected

counterpart. An undirected graph is calledk-partition-connected if for any partition of the

node set into t � 2 classes,there are at leastk(t � 1) edges between di�erent classes of the

partition. Note that this is a property stronger than k-edge-connectivity.

Theorem 1.31 (Frank, 1980 [22]). An undirected graph G = ( V; E) has a rootedk-edge-

connected orientation with a rootr0 2 V if and only if it is k-partition-connected.

From this orientation theorem and Edmonds' theorem we can easily obtain Tutte's theorem:

Theorem 1.32 (Tutte, 1961 [71]). An undirected graph containsk edge-disjoint spanning trees

if and only if it is k-partition-connected.

We can also derive the following characterization from Theorems 1.29and 1.31:
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Theorem 1.33. An undirected graph isk-partition-connected if and only if it can be obtained

from a single node by iteratively applying the following two operations.

(i) add a new edge,

(ii) pinch 0 � j � k � 1 edges with a new nodez and addk � j new edges incident toz.

(k; `)-edge-connectivity is a natural common generalization ofk-edge-connectivity and root-

ed k-edge-connectivity of digraphs. We say thatD = ( V; A) is (k; `)-edge-connected for

some integers 0� ` � k and a root noder0 2 V, if for each nodev 6= r0, there exist k

edge-disjoint paths fromr0 to v and ` edge-disjoint paths fromv to r0. Note that (k; k)-edge-

connectivity coincides withk-edge-connectivity, while (k; 0)-edge-connectivity means rootedk-

edge-connectivity. Theorem1.28can also be extended to (k; `)-edge-connectivity. We say that

the digraph D = ( U + z; A) is (k; `)-edge-connected in U for a root noder0 2 U, if for every

node v 2 U � r0 there arek-edge-disjoint paths fromr0 to v and ` edge-disjoint paths fromv

to r0 in D.

Theorem 1.34 (Frank, 1999 [24]). Let D = ( U + z; A) be a digraph(k; `)-edge-connected inU

and � (z) = � (z). Then there exists a complete splitting atz resulting in a (k; `)-edge-connected

graph.

Let us mention that this is still only a special case of Theorem6.19, which can also be

derived from Theorem1.1. The analogous concept for undirected graphs is the following. An

undirected graph is called (k; `)-partition connected if for any partition of the nodes intot � 2

classes, there are at leastk(t � 1) + ` edges connecting distinct classes. The link between these

concepts is the following generalization of Theorem1.31.

Theorem 1.35 (Frank, 1980 [22]). For integers 0 � ` � k, an undirected graphG has a

(k; `)-edge-connected orientation if and only ifG is (k; `)-partition connected.

Hence a natural problem arising is the constructive characterization of (k; `)-edge-connected

graphs, solved in Theorem1.47of this thesis. Based on Theorem1.35, this will immediately give

a constructive characterization of (k; `)-parition-connected graphs. Besides̀ = 0 and ` = k,

the following special cases of Theorem1.47were known beforehand.̀ = 1 was shown by Frank

and Szeg}o [34], and the casè = k � 1 was proved by Frank and Kir�aly [33]. Let us exhibit a

nice application of the latter case.

An important open question is the following. Given an undirected graph G = ( V; E) and

a subset of nodesT � V, we call an orientation ofG T-odd if the nodes with odd in-degree

are exactly those inT. The question is: for a given node setT, decide whether there exists a

strongly connectedT-odd orientation. A trivial necessary condition is that jTj + jE j should be

even, but no necessary and su�cient condition is known. However,we may ask whether there
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is a strongly connectedT-odd orientation for everyT � V with jTj + jE j even. This question

can be answered not only for strongly connectedness but for higher connectivity as well:

Theorem 1.36 (Frank and Kir�aly, 2002 [33]). For an undirected graphG = ( V; E), the following

three properties are equivalent:

(1) G has ak-edge-connectedT-odd orientation for everyT � V with jTj + jE j even.

(2) G is (k + 1; k)-partition connected.

(3) G can be built up from a single node by a sequence of (i) adding new edges, and (ii)

pinching k existing edges with a new nodez and adding a new edge from an existing node

to z.

At �rst sight it is neither clear if property (1) is in NP, nor if it is in co-NP. Property (2)

gives a co-NP certi�cate: given a de�cient partition, it is easy to construct aT not admitting a

k-edge-connectedT-odd orientation. On the other hand, (3) gives an NP-certi�cate: using the

construction sequence, it is easy to �nd a goodT-odd orientation for any T with jTj + jE j odd.

This application has motivated the investigation of (k; k � 1)-partition-connected graphs.

19



20



1.5 Overview of the main results

Chapters2 and3 are devoted to the directed and undirected connectivity augmentation problems

are closely related and we outline them side-by-side. Afterwards, the subsequent three chapters

will be discussed separately.

1.5.1 Augmenting directed and undirected connectivity by one

For directed connectivity augmentation by one, the size of anoptimal augmenting edge set is

given in Theorem1.5. Let us now give a min-max formula for undirected connectivity aug-

mentation by one, which was conjectured by Frank and Jord�an[30] in 1994. The basic object

analogous to strict one-way pairs will be clumps, a notion corresponding to tight node cuts.

In the (k � 1)-connected graphG = ( V; E), a subpartition X = ( X 1; : : : ; X t ) of V with t � 2

is called aclump if jV �
S

X i j = k � 1 and d(X i ; X j ) = 0 for any i 6= j . The setsX i are

called the pieces of X while jX j denotest, the number of pieces. Ift = 2 then X is a small

clump , while for t � 3 it is a large clump . (The set V �
S

X i is often calledseparator in

the literature, and shredder if t � 3.) An edgeuv 2
� V

2

�
connects X if u and v lie in di�erent

pieces ofX . Two clumps are said to beindependent if there is no edgeuv 2
� V

2

�
connecting

both.

A bush B is a set of pairwise distinct small clumps, so that each edge in
� V

2

�
connects at

most two of them. A shrub is a set consisting of pairwise independent (possibly large) clumps.

For a bushB let def (B) =
l

jBj
2

m
, and for a shrubS let def (S) =

P
K 2S (jK j � 1).

A grove is a set consisting of some (possibly zero) bushes and one (possibly empty) shrub, so

that the clumps belonging to di�erent bushes are independent, and a clump belonging to a bush

is independent from all clumps belonging to the shrub. For a grove � consisting of the shrub

B0 and bushesB1; : : : ;B` , let def (�) =
P

i def (Bi ). For a (k � 1)-connected graphG = ( V; E),

let � (G) denote the minimum number of edges whose addition makesG k-connected, and let

� (G) denote the maximum value ofdef (�) over all groves �.

Theorem 1.37. For a (k � 1)-connected graphG = ( V; E) with jV j � k + 1, � (G) = � (G).

The theorem is illustrated in Figure1.1. Both Chapters 2 and 3 contain algorithms using

a dual oracle. Assume we are given a subroutine for determining the optimum value � = �

along an optimal dual structure. Based on this, the following simple algorithm gives a primal

optimal solution. For an undirected graphG = ( V; E), let J =
� V

2

�
� E denote the edge set of

the complement graph ofG. Let us start with computing � (G). In each step, choose ane 2 J ,

and removee from J . If � (G + e) = � (G) � 1, then add the edgee to G, otherwise keep the

sameG. The same algorithm works for a directed graphD = ( V; A), starting with J = V 2 � A.

Note that Theorem 1.37(in the directed case, Theorem1.5) ensures the existence of an edgee

with � (G + e) = � (G) � 1.
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a1

a2

a3a4

a5

b1

b2

b3b4

b5

VA VB

Figure 1.1: Let G be the graph in the �gure with the addition of a complete bipar tite graph be-

tween VA and VB and let k = 8. G is 7-connected, and it can be made 8-connected by

the addition of the edge set f a1a3; a2a4; a3a5; b3b4; b4b5g. Two clumps (f a1g; f a3; a4g)

and (f b3g; f b4g; f b5g) are shown on the �gure. A grove � with def (�) = 5 con-

sists of the shrub B0 and the bush B1 with B0 = f (f b3g; f b4g; f b5g)g, and B1 =

f (f a1g; f a3; a4g); (f a2g; f a4; a5g); (f a3g; f a5; a1g); (f a4g; f a1; a2g); (f a5g; f a2; a3g)g.

For strict one-way pairs, we have already de�ned the notion of independence and crossing

families; these can be naturally extended to clumps. A major di�erence is that no natural partial

order may be de�ned on clumps, however, nestedness can be introduced as a notion analogous

to comparability. In both cases, a cross-free system is a special class of crossing families of pairs

(resp. clumps) so that any two members are either independent orcomparable (resp. nested).

A key notion is skeleton: a cross-free system maximal for containement.

Theorems2.1 and 3.12state that the maximum dual value over the members of a skeletonis

the same as over all strict one-way pairs (resp. clumps). Once having a skeleton, we will be able

to determine the dual optimum value relatively easily. In thedirected case, Dilworth's theorem

on the maximum size of an antichain in a poset gives the dual optimum. For the undirected case,

instead of Dilworth's theorem we use Fleiner's theorem [20] on covering symmetric posets by

symmetric chains. This may be seen as a common generalization ofDilworth's theorem and the

Berge-Tutte theorem on the maximum size of a matching in a graph. While Dilworth's theorem

can be derived from the K}onig-Hall theorem on �nding a maximum matching in bipartite graphs,

Fleiner's theorem may be itself deduced from the Berge-Tuttetheorem. The relation between

directed and undirected connectivity augmentation is somewhat analogous, concerning both the

complexity of the min-max formulae and the di�culty of the pr oofs.

Two proofs will be presented for Theorem2.1. In Section2.1 we give a simple, direct proof,

while Section2.2 contains a more complicated one. In the latter one, we start from an edge

set F covering all strict one-way pairs in a given skeleton. By
ipping two edgesxy; uv 2 F
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mean replacingF by F 0 = F � f xy; uvg + f xv; uyg. (We use this de�nition both in directed

and undirected graphs.) We prove that by a sequence of such operations we can arrive fromF

to a covering of all strict one-way pairs, that is, an augmentingedge set forD. The advantage

of this latter proof is fourfold. First, it gives a proof not only for Theorem 2.1 but also for

Theorem 1.5. Second, it enables us to construct an algorithm that calls the dual oracle only

once. Third, it extends to node-induced cost functions as well. Finally, the greatest advantage

is that the argument carries over with only minor changes to the undirected case.

In contrast to the astonishingly simple original proof of Theorem 1.1 and the direct proof of

Theorem2.1 in Section2.1, the only method known so far for proving Theorems1.37and 3.12

is the adaptation of the argument of Section2.2. However, I strongly believe that developing

simpler proofs should be possible. In fact, Theorems1.37 should be seen as a starting point

rather then a �nal achievement in the area. I insist that it should be generalizable not only

for general connectivity augmentation, but it should also admit a general abstract form anal-

ogous to Theorem1.1. This generalization should include, among others, rooted connectivity

augmentation andK tt -free t-matchings (see [8]).

The main algorithmic task for the dual oracle is constructing askeleton. Although any

maximal cross-free system of strict one-way pairs (resp. clumps) suits, it is not trivial to �nd

one since the number of strict one-way pairs and clumps may be exponentially large. To tackle

this problem, the notion of stability of cross-free systems is de�ned in both cases. For stable

cross-free systems, it will be fairly easy to determine whether they are skeletons, and if not, we

will be able to extend them preserving stability. Although the structural properties are quite

analogous, the argument in the undirected case will be signi�cantly more complicated.

1.5.2 General connectivity augmentation

The approach in Chapter4 for directed connectivity augmentation is completely di�erent from

the one in Chapter 2. This result is an extension of the previous work of Bencz�ur [4] on

augmenting directed connectivity by one. The present result is applicable not only to directed

connectivity augmentation, but gives a new, algorithmic proof of Theorem1.1 (similarly, the

result in [4] also worked for the more general Theorem1.2).

Dilworth's theorem plays an important role in Chapter 2 since it is used for determining

the maximum number of pairwise independent strict one-way pairs in a skeleton. Although not

applied directly, it serves as a starting point and motivationfor the current approach. We give

a more general algorithm that resembles the version of Dilworth's algorithm described in [21].

The main theorem (Theorem1.40) is an equivalent reformulation of Theorem1.1 in terms of

posets, for the problem of covering a certain type of weighted poset by a minimum number of

intervals.

De�nition 1.38. Consider a poset (P; � ). We say that for a minimal elementm and a maximal
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elementM , the setf z : m � z � M g is the interval [m; M ]. Let x; y 2 P be calleddependent

if there exists an interval [m; M ] with x; y 2 [m; M ]; otherwise they are calledindependent .

We say that (P; � ) satis�es the strong interval property if the following hold:

(i) For all dependent x; y 2 P the operationsx _ y = min f z : z � x; z � yg and x ^ y =

maxf z : z � x; z � yg are uniquely de�ned.

(ii) For every interval [m; M ],

x ^ y 2 [m; M ] implies x 2 [m; M ] or y 2 [m; M ];

and the same holds withx ^ y replaced byx _ y.

The notion of a positively crossing supermodular function p on such a poset is anal-

ogous to the one on set pairs: for all dependentx and y with p(x) > 0 and p(y) > 0 we

require

p(x) + p(y) � p(x ^ y) + p(x _ y):

Consider a multiset of intervalsI . We say that I covers the function p or I is a cover of p if

for every x, at least p(x) intervals in I contain x. An element v is calledtight if contained in

exactly p(x) intervals in I .

Given the notion of the cover problem for a poset with the stronginterval property, we next

show its equivalence to Theorem1.1. We start with describing the correspondence between set

pairs and poset elements as illustrated in Fig.1.2. Property (ii) in the de�nition can be seen as

the abstraction of the simple Lemma2.2 for set pairs.

Figure 1.2: The correspondence between set pairs and poset elements. The four pairs on the left side

can be covered by one edge, and the corresponding four elements are contained in one

interval.

Claim 1.39. The poset of set pairs(S; � ) with the operations^ ; _ satisfy De�nition 1.38. The

set of intervals of this poset isf I uv : uv 2 V 2g, whereI uv = f K 2 S : uv coversK g.
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Let us now formulate our theorem, which is an analogoue of Theorem 1.1 for posets.

Theorem 1.40. For a poset(P; � ) with the strong interval property and a positively crossing

supermodular functionp, the minimum number of intervals coveringp is equal to the maximum

of the sum ofp values of pairwise independent elements ofP.

Using Claim 1.39, this theorem implies Theorem1.1. We will show that the reverse is also

true: this theorem can also be derived from Theorem1.1.

Our algorithm uses a primal-dual scheme for �nding covers of the poset. For an initial

(possibly greedy) cover the algorithm searches for witnesses forthe necessity of each element

in the cover. If any two (weighted) witnesses are independent,the solution is optimal. As long

as this is not the case, the witnesses are gradually exchanged bysmaller ones. Each witness

change de�nes an appropriate change in the solution; these changes are �nally unwound in a

shortest path manner to obtain a solution of size one less.

The algorithm itself is not very complicated (yet far from simple); however, the proof of cor-

rectness is technically quite involved. When applying it to concerete problems such as directed

connectivity augmentation, we have to be careful since the size of the poset is typically exponen-

tial. The basic steps of the algorithm involve operations as �nding the (unique) maximal tight

element of an interval in a certain cover. In Section4.2 we show that for directed connectivity

augmentation, such oracle calls can be implemented via maximum 
ow computations.

The algorithm is pseudopolynomial as the size of the initial cover depends on the maximum

value of p, and the size of the cover is increased by only one in each step. Ofcourse, for

connectivity augmentation this does not matter as the maximum value ofp is at mostk � j V j� 1;

however, forST-edge-connectivity augmentation,p may take arbitrarly large values.3 Hence

developing a strongly polynomial or at least a polynomial timealgorithm is still an important

challenge.

1.5.3 Local edge-connectivtiy augmentation

Chapter 5 commences with new proofs of Theorems1.17and 1.22. Then we turn to the problem

of partition-constrained local edge-connectivity augmentation (PCLECA). First, an approxi-

mation algorithm is presented for �nding an augmenting edge set of Q-legal edges of size at

most the optimum plus rmax , the largest connectivity requirement. Then, for the bipartite case

(that is, if Q consists of two classes) we formulate a conjecture on the minimum size of aQ-

legal augmenting edge set. We only give a partial proof of thisconjecture, already extremely

complicated. The completion of the proof and the extension toarbitrary number of partition

classes is left for future research.
3Recall that the de�nition of k-node-connectivity also imposedk � j V j � 1; no similar restrictions exist for

edge-connectivity and thus we may have an arbitrary requirementk independently from jV j.
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To our best knowledge, all undirected edge-connectivity augmentatition results discussed

in Section 1.3 among their extensions (see e.g. the thesis of Bern�ath [9]) were proved via

splitting o� techniques. We break this tradition by applying t he alternative technique of edge-


ippings. Consider a covering problem of a set functionp and a degree-prescriptionm. Vaguely

speaking, we want to �nd anm-prescribed edge-setF coveringp \as much as possible". For an

m-prescribed edge setF , let us de�ne the function

qF (X ) = p(X ) � dF (X ):

Let � F = maxX � V qF (X ). Note that F coversp if and only if � F = 0. We will be interested in

m-prescribed edge sets minimizing� F . Let

FF := f X � V j qF (X ) = � F and 8U ( X : qF (U) < � F g

Let us de�ne a partial order � on the m-prescribed edge sets:F 0 � F if � F 0 < � F , or � F 0 = � F

and jF F 0j < jF F j. We are going to focus on� -minimal m-prescribed edge sets. What we really

use is the local optimality of such anF : with a small elementary change, we cannot get anF 0

from F with F 0 � F .

Recall that for two edgesxy; uv 2 F , by 
ipping (xy; uv) we mean replacingF by F 0 =

F � f xy; uvg + f xv; uyg. In most proofs, it will be enough to assert that from a givenF , we

cannot get anF 0 � F by a single 
ipping. Consequently, a local search algorithm canbe applied

for �nding an optimal solution, given that we have oracles fordetermining the values� F and

jF F j.

It turns out that for Theorems 1.17and 1.22, a quite weak property of the demand function

p almost su�ces. p is calledsymmetric positively skew supemodular (abbreviated SPSS)

if p is a nonnegative integer-valued function on the ground setV; p(X ) = p(V � X ) for every

V � X , and for every pair X; Y � V with p(X ); p(Y) > 0, at least one of the following

inequalities hold:

p(X ) + p(Y) � p(X \ Y) + p(X [ Y); (1.7a)

p(X ) + p(Y) � p(X � Y) + p(Y � X ) (1.7b)

One basic example of such a function isp(X ) = ( R(X ) � d(X ))+ for R(X ) de�ned by a local

edge-connectivity requirement, while the other example isa symmetric and positively crossing

supermodular function. Although covering an arbitrary SPSS-function is NP-complete (see

[54]), it is easy to �nd an edge set almost coveringp. Namely, we prove the following.

Theorem 1.41. Let p be an SPSS-function andm a degree-prescription so that (1.4) holds.

For a � -minimal m-prescribed edge setF , � F � 1 holds, or equivalently,dF (X ) � p(X ) � 1 for

every X � V.
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Therefore, in both Theorems1.17 and 1.22 it will be enough to focus on the case� = 1.

For this, stronger properties of the particular functionp are needed. Theorem1.41 is a folkore

result, appearing in the thesis of Cosh [15], in the papers of Nutov [67] and Bern�ath and Kir�aly

[12].

Edge-
ipping is a classical technique for degree-prescribed problems: see for example, Ha-

kimi's paper [39] from 1962 or Edmonds' result [16] from 1964. For digraphs, Frank and Z.

Kir�aly [ 33] applied a similar technique to give a new proof of Theorem6.19, a generalization of

Theorem1.28on directed splitting o�.

For Theorem 1.17, we do not claim that edge-
ipping leads to a much easier proof. For

Theorem 1.22, the two proofs known by the author are the original one by Bencz�ur and Frank

[6], and a recent, signi�cantly simpler one by Bern�ath [10]. Let us take a degree-prescriptionm

satisfying (1.4) and add a new nodez connected to each nodev by m(v) parallel edges. In the

case of Theorem1.17, an arbitrary sequence of legal splittings was feasible, however, this does

not apply for Theorem1.22. Bencz�ur and Frank show the existence of \good" pair of splittable

edges, nevertheless, tremendous technical e�ort is required to �nd such a pair. If we cannot

remove all edges incident toz this way, then a p-full partition can be exhibited, showing that

(1.6) did not hold originally. On the contrary, Bern�ath proceeds by splitting arbitrary feasible

pairs of edges as long as possible. The drawback of this method is that we are not �nished in

the case when no complete splitting exists. It needs to be checkedwhether we can obtain a

better situation by undoing a previous splitting o�, similarly to the method of Bang-Jensen et

al. [2] as sketched after Theorem1.23.

In contrast, our proof of Theorem1.22is quite analogous to that of Theorem1.17. Consider

a degree-prescriptionm satisfying (1.4) and choose anm-prescribed edge setF so that we

cannot get anF 0 with F 0 � F by performing a single edge 
ipping. In both cases, such anF is

optimal: in Theorem 1.17we can deduce� = 0 while in Theorem 1.22� � 1, and if � = 1 then

(1.6) does not hold. The proof of� � 1 is provided by the same Theorem1.41 in both cases.

My main motivation for applying edge-
ippings in the context of undirected covering prob-

lems was the hope that it could be more suitable for the PCLECA problem. Splitting o� with

the aforementioned technique of undoing splittings is also a natural way to attack this problem,

and I also started this way. The main di�culty is that, in contra st to global edge-connectivity,

undoing a single splitting o� is insu�cient. I conjecture that u ndoing two should be enough;

however, at a certain point the analysis becomes severely complicated. I think that edge-
ipping

is more appropriate to tackle this problem. Unfortunately, Icould neither complete the proof

with this method, however, I think that the partial results might be of some value.

For both augmentation Theorems1.15 and 1.21, we had the degree-prescribed versions

Theorems1.17 and 1.22. Let us now formulate the degree-prescribed version of the PCLECA

problem. For some integert � 2, let us be given degree sequencesm1; : : : ; mt : V ! Z+ , and let
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m =
P t

i =1 mi . ~m = ( m1; : : : ; mt ) is called alegal degree-prescription if m(V) is even and

mi (V) �
m(V)

2
for i = 1; : : : ; t: (1.8)

The integers f 1; : : : ; tg will be called colours . Notice that for t = 2, ( 1.8) is equivalent to

m1(V) = m2(V) = 1
2m(V). Consider a pair (F; ' ) consisting of an edge setF equipped with a

mapping ' . This maps the endondes of the edges inF to the set of colours so that forxy 2 F ,

' (xy; x) 6= ' (xy; y). An edgexy 2 F with ' (xy; x) = i and ' (xy; y) = j is called anij -edge.4

(F; ' ) is is called an~m-prescribed legal edge set 5 if

jf xy : ' (xy; x) = igj = mi (x) for x 2 V; i = 1; : : : ; t: (1.9)

It can be seen easily that if~m is a legal degree-prescription, then there exists an~m-prescribed

legal edge set. Edge-
ippings can be naturally de�ned with taking the mapping ' also into

account. The di�erence is that for xy; uv 2 F , 
ipping ( xy; uv) is possible only if ' (xy; x) 6=

' (uv; v), ' (xy; y) 6= ' (uv; u). Nevertheless, at least one of (xy; uv) and (xy; vu) can be 
ipped.

Given a partition Q = f Q1; : : : ; Qtg and a degree-prescriptionm : V ! Z+ , we may de�ne

mi (v) = m(v) if v 2 Qi and mi (v) = 0 otherwise. (Note that this is not always a legal degree-

prescription as (1.8) is not necessarly satis�ed.) The model above is slightly more general since

we allow mi (v) = mj (v) > 0 for i 6= j . We advise the reader to keep this example in mind in

the sequel; note that here' is uniquely de�ned by the partition Q.

Given the connectivity requirement functionr , we are interested in coverings of the function

p(X ) = ( R(X ) � d(X ))+ by ~m-prescribed legal edge sets. (1.4) is a necessary, but not su�cient

condition. For a legal degree-prescription~m satisfying (1.4), we will be interested in minimizing

� F over ~m-prescribed legal edge sets. The �rst, relatively simple result weprove in Section5.2.1

is the following.

Theorem 1.42. Given r and a legal degree-prescription~m satisfying (1.4), consider an ~m-

prescribed� -minimal F . If � F > 0 then jF F j = 2.

This theorem will enable us to construct a simple approximation algorithm for the PCLECA

problem in Section5.2.2with an additive term rmax .

Theorem 1.43. Assume we are given a graphG = ( V; E), a partition Q of the nodes and a

connectivity requirementr so that G contains no marginal sets. Then the minimum number of

Q-legal edges whose addition makesG r -edge-connected is at most	 Q (G) + rmax .

4Denoting the same edge byxy or yx has di�erent meanings, as the one is anij -edge while the other a

ji -edge. Fort = 2, we could also representF by directed edges.
5We will often omit ' and refer only to F as an ~m-prescribed legal edge set. Nevertheless,' is always tacitly

included. For example, we speak ofij -edges inF .
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Recently, a weaker version of this theorem was also proved by Lau and Yung [58] (for two

partition classes and 2rmax .)

For t = 2, we formulate conjectures on the optimum value of� F in the degree-prescribed

problem and on the minimum size of aQ-legal augmenting edge set in the augmentation problem.

The dual structure is given by the next sophisticated de�nition.

De�nition 1.44. Consider a partition H = f X � ; Y � ; C1; C2; : : : ; C`g of V. We say that H forms

a hydra with heads X � ; Y � and tentacles Ci if

(i) dG(Ci ; Cj ) = 0 for every 1 � i < j � `; and

(ii) For any two disjoint index sets ; 6= I; J � f 1; : : : ; `g, (1.5a) holds with equality for

X � [ (
S

i 2 I Ci ) and X � [ (
S

j 2 J Cj ), and also forY � [ (
S

i 2 I Ci ) and Y � [ (
S

j 2 J Cj ).

Similarly to p-full partitions, although the de�nition contains exponentially many conditions,

Theorem5.23will give an equivalent characterization in terms of the values ofr between di�erent

classes ofH . This also yields an e�cient method to decide whether a partition forms a hydra.

Given a requirement functionr , a legal degree-prescription~m = ( m1; m2; : : : ; mt ) and 1 �

h � t, we call a tentacleCi h-odd if p(Ci [ X � ) � p(X � ) + mh(Ci ) is odd.6 Let � h denote the

number of h-odd tentacles. Let us de�ne

� h(G; r; ~m; H) =
1
2

�
� h + p(X � ) + p(Y � ) � m(V) + mh(

[
Ci )

�
:

Let

� (G; r; ~m) = max f 0;
t

max
h=1

� h(G; r; ~m; H) : H is a hydrag

The conjecture on the degree-prescribed version of the PCLECAproblem is as follows.

Conjecture 1.45. Let us be given a graphG = ( V; E) with a connectivity requirement function

r so that G contains no marginal sets. If~m = ( m1; m2) is a legal degree-prescription satisfying

(1.4) and (F; ' ) is a � -minimal ~m-prescribed legal edge sets, then� F = � (G; r; ~m).

The corresponding conjecture for the augmentation problem is as follows. LetQ = f Q1; Q2g

be the partition constraint. Let H = ( X � ; Y � ; C1; C2; : : : ; C`g be a hydra, and forh 2 f 1; 2g, let

Z be anh-subpartition which is a re�nement of f C1; : : : ; C`g. (Recall that by an h-subpartition

we mean a subpartition ofQh.) The tentacle Ci is calledh-toxic if

p(Ci [ X � ) � p(X � ) +
X

(p(Z ) : Z 2 Z ; Z � Ci )

is odd. Let � 0
h denote the number ofh-toxic tentacles. Let us de�ne

� 0
h(G; r; Z ; H ) =

1
2

(� 0
h + p(X � ) + p(Y � ) + p(Z )) :

6In Lemma 5.26 we shall prove that p(Ci [ X � ) � p(X � ) = � (p(Ci [ Y � ) � p(Y � )), thus the role of X � and

Y � is interchangeable.
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c1 c2 c3 c4 c5 c6

x y

Figure 1.3: Let r (x; y) = 8 and r (u; v) = 3 for any other pair. Let Q1 = f x; yg and Q2 = f c1; : : : ; c6g

be the partition classes. We have a hydraH with X � = f xg, Y � = f yg, Ci = f ci g

for i = 1 ; : : : ; 6. Consider the degree-prescriptionm1(x) = m1(y) = 3, m2(ci ) = 1 for

i = 1 ; : : : ; 6 and mj (u) = 0 otherwise. All components Ci are 2-odd,p(X � ) = p(Y � ) = 2

and thus � 2(G; r; ~m; H) = 2. For the augmentation version, take the 2-subpartition Z

consisting of the singletonsf ci g. Then all Ci -s are 2-toxic, and� 0
2(G; r; Z ; H ) = 8.

Let � 0(G; r; Q) denote the maximum of� 0
h(G; r; Z ; H ) over all choices ofh, H and Z as above.

Recall that 	 Q (G) was de�ned in Section1.3as the maximum of� (G) and � j (G) for j = 1; : : : ; t.

Conjecture 1.46. Let us be given a graphG = ( V; E) with a connectivity requirement function

r so thatG contains no marginal sets and furthermore a partitionQ = f Q1; Q2g of V. Then the

minimum size of aQ-legal augmenting edge set equals the maximum of	 Q (G) and � 0(G; r; Q).

C4-con�gurations are special hydra-bounds: consider a partition (A1; A2; C1; C2) of V and

a h-partition Z forming a C4-con�guration, Then H = ( X � ; Y � ; C1; C2) forms a hydra for

X � = A1, Y � = A2 with both C1 and C2 being h-toxic; from the properties in the de�nition it

follows that � 0
h(G; r; H ; Z ) = 	 Q (G) + 1.

It is already nontrivial that � (G; r; ~m) and � 0(G; r; Q) are lower bounds on the optimum

values: this will be proved in Section5.2.4. In Section 5.3, we prove Theorem5.30, a special

case of Conjecture1.45under the assumptions that for the optimalF , � F � 2 and
S

FF = V.

The proof is quite technical. First, we extract structural properties from the assumption that

we cannot get a betterF 0 from F by performing a 
ipping or a \hexa-
ipping", a sequence of

two edge 
ippings. This results in a set system containing a set \blocking" the edges ofF in

a certain sense. Afterwards, a complicated uncrossing method is applied to transform this set

system into a laminar one, yielding an optimal hydra.

We think that this method should be extendable for proving Conjecture 1.45, however, the

extreme level of complexity and the time and space limitations have forbidden us to give a

complete proof. Finally, in Section5.3.2, we sketch how Conjecture1.46could be derived from

Conjecture1.45. Also, we think that the conjectures could easily be extended toarbitrary num-

ber of partition classes, by adding another type of lower bound generalizingC6-con�gurations.

In the global connectivity version [2], the main di�culties are already contained in the case
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t = 2; we believe that the situation here should be similar.

1.5.4 Characterization of (k; `)-edge-connected digraphs

The main result of this chapter is the following constructive characterization of (k; `)-edge-

connected digraphs, conjectured by Andr�as Frank ([34], Conjecture 5.6. and [28], Conjecture

5.1):

Theorem 1.47. For 0 � ` � k � 1, a directed graph is(k; `)-edge-connected with rootr0 2 V

if and only if it can be built up from the single noder0 by the following two operations.

(i) add a new edge,

(ii) for some i with ` � i � k � 1, pinch i existing edges with a new nodez, and addk � i

new edges enteringz and leaving existing nodes.

We get the following corollary using Theorem1.35:

Theorem 1.48. For 0 � ` � k � 1, an undirected graph is(k; `)-partition-connected if and only

if it can be built up from a single node by the following two operations.

(i) add a new edge,

(ii) for some i with ` � i � k � 1, pinch i existing edges with a new nodez, and addk � i

new edges betweenz and some existing nodes.

In Theorem 1.47, it is straightforward that all graphs constructed by operations (i) and (ii)

are (k; `)-edge-connected, the nontrivial part is the opposite direction. Removing an edge is the

reverse of operation (i), hence we may focus our attention to minimally ( k; `)-edge-connected

digraphs in the sense that removing any edge would destroy (k; `)-edge-connectivity.

Let us sketch a proof of Theorem1.27, which is a starting point of our argument (and

corresponds to the special casek = `). If a digraph is not minimally k-edge-connected, we can

leave an edge as the reverse of operation of step (i) and continue by induction. For minimally

k-edge-connected digraphs, the existence of a nodez having both in- and out-degreek can be

proved. Then Mader's directed splitting theorem (Theorem1.28) can be used since the reverse

of operation (ii) is exactly a complete splitting at a nodez with � (z) = � (z). The case` = 0

(Theorem 1.29) can also be proved using an easy consequence of Theorem1.28.

However, for the cases̀ = 1 and ` = k � 1 of Theorem1.47 we already need the stronger

splitting result Theorem 1.34. The argument is also signi�cantly more complicated for the

following reason. For̀ = k and ` = 0, it was enough to �nd a node satisfying certain conditions

on the in- and outdegrees, and one could always perform a complete splitting at such a node.
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However, for ` = 1 and ` = k � 1 the conditions on the degrees do not su�ce and a more

thorough analysis of the structure of minimally (k; `)-edge-connected graphs is needed.

Let us now sketch the proof for̀ = k � 1 by Frank and Kir�aly [ 33]. Consider a minimally

(k; k � 1)-edge-connected graph. A necessary condition for the reverse of operation (ii) to be

applicable at nodez is � (z) = k and � (z) = k � 1. We call such nodesspecial . If for a special

nodez we manage to �nd an edgeuz so that D � uz is (k; k � 1)-edge-connected inU = V � z,

then Theorem1.34 may be used forD 0 = ( U + z; A � uz), giving a (k; k � 1)-edge-connected

graph D 00on U. Then we can getD from D 00by applying step (ii) with pinching those k � 1

edges withz which were resulted by the splitting o� and �nally adding the edgeuz.

However, not every special nodez admits an edgeuz as above (and it is already nontrivial

to prove that a special node exists). We use an indirect argument:assume that every edge

xy 2 A satis�es one of the following conditions. Ify is special, then we assume thatD � xy is

not (k; k � 1)-edge-connected inV � y. If y is not special, we use thatD is minimally (k; k � 1)-

edge-connected, and thusD � xy is not (k; k � 1)-edge-connected. One can de�ne a notion of

tight sets so that each edge will be \blocked" by a tight set. Thenthe uncrossing method may

be used for these tight sets to derive a �nal contradiction.

The proof of Theorem1.47is motivated by this argument, but for general̀ , severe di�culties

arise. Starting from a minimally (k; `)-edge-connected digraph, we call a nodez special if

` � � (z) � k � 1 and � (z) = k. This means that according to its in- and out-degree, it might be

the result of operation (ii) in Theorem1.47. We say that a subsetF of edges entering a special

nodez is locally admissible at z if G � F is (k; `)-edge-connected inV � z and jF j � k � � (z).

F is called su�cient at z if jF j = k � � (z). Once a su�cient locally admissible F is found,

Theorem1.34may be applied toG � F and z and the proof �nishes as for̀ = k � 1.

Thus our aim is to �nd a special nodez and a su�cient locally admissible setF at z. It is easy

to characterize the maximal size of a locally admissible set for agiven specialz, however, this

size may be strictly smaller thank � � (z). The main di�culty is handling the locally admissible

sets belonging to di�erent special nodes together. The notionof globally admissible edge

sets in De�nition 6.3 is introduced for this purpose. For a globally admissible edge set F and

an arbitrary special nodez, the subsetFz � F of edges enteringz is locally admissible atz.

However, the converse is not true in the sense that the union of locally admissible edge sets

belonging to di�erent special nodes will not necessarily be globally admissible. We say that a

globally admissible edge setF is su�cient if for some specialz, Fz is su�cient; otherwise it is

called insu�cient . What we prove is the existence of a su�cient globally admissibleedge set.

Unfortunately, it is not true that every maximal globally admissible set is su�cient, as it will

be shown by an example in Section6.5.

Among other methods, splitting o� techniques will be used also in the proof of the existence of

a su�cient globally admissible set. However, even Theorem1.34turns out to be too weak for our
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goals. Actually, Theorem1.34 is a special case of Theorem6.19on covering positively crossing

supermodular functions by a digraph. Theorem6.20 is a further generalization presented in

Section 6.3. It enables us to use a splitting operation preserving a property stronger than

(k; `)-edge-connectivity. The proof relies on edge 
ippings, usedin an analogous manner as in

Chapter 5 for undirected graphs.

The way we handle tight sets also di�ers from the standard uncrossing methods. A set is

called tight with respect to a globally admissible setF if the inequality concerning this set

in the de�nition of global admissibility holds with equality. As in the proof for ` = k � 1, for

a maximal F there is a tight set \blocking" each edge inE � F . However, it is not possible

to apply the uncrossing method to arbitrary tight sets for an arbitrary globally admissible F .

The intersection and union of two tight sets will be tight only under the assumption that F

is maximal and insu�cient. It turns out interestingly that und er this assumption, some basic

types of tight sets do not occur at all. This will be discussed in Section 6.4.

Contributions

Chapter 2 is based on a joint paper with Andr�as Frank [36], and Chapter 3 is based on the

technical report [73]. The result of Chapter4 is a joint work with Andr�as Bencz�ur in [ 74], while

that of Chapter 6 is co-authored by Erika Ren�ata Kov�acs [56]. Chapter 5 contains unpublished

material by the author.

Connections between the chapters

Local edge-conn. aug.

Chap. 5

parity

Undir. node-conn. aug. by 1

Chap. 3

method
po

se
ts

Dilworth's theorem Chap. 4

General dir. node-conn. aug.

Chap. 2

Dir. node-conn. aug. by 1

splitting off

edge flippings

Chap. 6

Const. char. for (k,l)-edge-conn.

Figure 1.4: The hypergraph of interconnections.

At this point, the reader might have arrived to the conclusionthat the thesis is rather a
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compilation of scarcely related results with the author's person being the only common denom-

inator. While we cannot completely refute such an opinion by exhibiting one common motif of

the entire thesis, we tried to summarize some less transparent interconnections in Figure1.4.

The most intimate relationship is indubitably the one betweenChapters 2 and 3 on aug-

menting node-connectivity by one. We could adapt the main thoughts and structural elements

of the proof of the directed case to the undirected case, albeitthe min-max formulae being

considerably di�erent. In contrast, although Chapters2 and 4 tackle the same problem, the

methods do not have much in common. Nevertheless, we should mention Dilworth's theorem,

which is applied in Chapter2 directly and serves as a motivation for Chapter4. As a connec-

tion between Chapters3 and 4, we may exhibit the underlying poset structures. It is of key

importance in both cases that we investigate the abstract poset properties of clumps and set

pairs, respectively.

The occurence of splitting o� techniques in both Chapters5 and 6 is quite natural: it is

a fundamental and e�cient method in edge-connectivity problems. Another method, edge-


ipping is applied in various contexts in all but Chapter 4. On the one hand, it can be used as

an alternative of splitting o�: for example, in Chapter 5 we present new proofs of Theorems1.17

and 1.22using edge-
ipping and we apply this technique for the PCLECAproblem as well. The

general directed covering result Theorem6.20 is also proved via edge-
ipping. On the other

hand, in the completely di�erent context of directed and undirected connectivity augmentation,

the transformation of a cover of skeleton to a cover of all strictone-way pairs (resp. clumps)

also relies on edge-
ippings.

Chapters3 and 5 share a somewhat odd common feature: parity is involved in both. It was

known beforehand, that undirected node-connectivity augmentation has to do with parity, since

it generalizes maximum matching. However, the emergence of parity might be surprising in the

context of edge-connectivity. In Conjectures1.45 and 1.46 there are certain odd components,

resembling those in the Berge-Tutte formula. To the extent of my knowledge, parity has not been

involved in such a way in previous edge-connectivity results. More interestingly, we conjecture

that the optimum value described by these formulae can be foundby a local search algorithm.
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Chapter 2

Augmenting directed node-connectivity

by one

In this chapter, we give an alternative proof and a combinatorial algorithm for Theorem 1.5,

based on [36], a joint paper with Andr�as Frank. We will assume throughout the chapter that

the digraph D = ( V; A) is (k � 1)-connected. LetO1 = O1
D denote the set of strict one-way

pairs. Since we are now interested in strict one-way pairs only,we omit \strict" and use only

\one-way pair" for the members ofO1. Some de�nitions and lemmas are formulated for set

pairs; these are valid in the most general setting.

Let us start with some new notion. We have already introduced crossing families of set

pairs in Section1.1. A family F � S is calledcross-free if any two members ofF are either

independent or comparable. Note that, somewhat confusingly, every cross-free family is crossing.

For a set pair K 2 F , let F � K denote the members ofF not crossingK . Similarly, for a

subsetK � F let F � K denote the set of set pairs inF crossing no element ofK. Let us call

a cross-free subsetF � O 1 a skeleton if O1 � F = F . Equivalently, F is a maximal cross-free

subset ofO1.

In Section 2.1, we give the description of the Dual Oracle, a subroutine for determining

� (O1). In Section 2.1.2 we analyze the oracle and the �rst algorithm, which relies on this

oracle. In Section2.2, we give a new proof for Theorem1.6, and sketch a second algorithm.

For this algorithm, we present only the main ideas, and omit thetechnical details which can be

done similarly as for the �rst algorithm.

2.1 The Dual Oracle

The following theorem is the essence of the Dual Oracle.

Theorem 2.1. For a skeletonK � O 1 the maximum number of pairwise independent one-way

pairs is equal inK and O1, that is, � (K) = � (O1) = � (D).
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Clearly, � (K) � � (O1) for every K � O 1. The advantage of a cross-free system is that we

can easily determine the maximum number of pairwise independent one-way pairs. This is due

to the fact that whenever it contains two dependent one-way pairs, they are comparable. Thus

considering the partially ordered set (K; � ) an antichain consists of pairwise independent pairs.

A maximum antichain in a poset can be easily found by an algorithm for Dilworth's theorem

stating the equality of the size of a minimum chain cover and a maximum antichain (see e.g. [69,

Vol A., pp. 217-236]). In order to prove Theorem2.1, we need some elementary propositions.

Lemma 2.2. Let M; N 2 S be two dependent set pairs. If an edgexy 2 V 2 coversM ^ N or

M _ N , then it covers at least one ofM and N . If it covers both M ^ N and M _ N , then it

covers bothM and N . �

Claim 2.3. Let M; N 2 O 1. M � � N � implies M � N , and M + � N + implies M � N .

Proof. For the �rst part, assume that M 6� N , meaning that M + 6� N + . Although M and

N are not necessarly dependent (M + \ N + 6= ; is not assumed), we may consider the set pair

L = ( M � ; M + [ N + ). This is a one-way pair, and sinceD is (k � 1)-connected,s(L) � k � 1.

However,M is a strict one-way pair, and sinceM + [ N + ) M + , we gets(L) < s (M ) = k � 1,

a contradiction. The second part follows similarly.

Lemma 2.4. For a crossing familyF and for any K 2 O 1, the subfamilyF � K is crossing.

Proof. Let F 0 = F � K and let M and N be two crossing members ofF 0. We have to prove

that neither M _ N nor M ^ N crossesK .

First assume thatK is comparable with bothM and N . It is not possible that M � K � N

or N � K � M as M and N are not comparable. Therefore eitherK � M; N or K � M; N .

In the �rst case, K is smaller than bothM ^ N and M _ N , while in the second case it is larger

than both.

Second, assume thatK is independent from bothM and N . We claim that both M ^ N

and M _ N are independent fromK . Indeed, if an edgexy 2 V 2 covered bothK and M ^ N

or M _ N , then by Lemma2.2, it would also coverM or N , a contradiction.

In the third caseK is independent from one ofM and N , say fromM , and comparable with

the other, N . If K � N , then K and M can only be tail-disjoint, sinceM + \ N + 6= ; and

K + � N + . Now M ^ N is also tail-disjoint from K , and K � M _ N . Similarly, if K � N , then

K and M should be head-disjoint, thusM _ N is head-disjoint fromK , while K � M ^ N .

Lemma 2.5. (i) Let L1, L2, L3 be one-way pairs withL1 and L2 dependent,L1 ^ L2 and L3

also dependent, butL2 and L3 independent. ThenL+
3 \ (L+

1 � L+
2 ) 6= ; and L �

1 � L �
2 � L �

3 . (ii)

Let L1, L2, L3 be one-way pairs withL1 and L2 dependent,L1 _ L2 and L3 also dependent, but

L2 and L3 independent. ThenL �
3 \ (L �

1 � L �
2 ) 6= ; and L+

1 � L+
2 � L+

3 .
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Proof. (i) The dependence ofL1 ^ L2 and L3 implies L �
2 \ L �

3 6= ; , so L2 and L3 can only be

independent if L+
2 \ L+

3 = ; . The �rst part follows since L+
3 \ (L+

1 [ L+
2 ) 6= ; because of the

dependence ofL1 ^ L2 and L3. For the second part, consider the pairN = ( L1 ^ L2) _ L3.

N + = ( L+
1 [ L+

2 ) \ L+
3 = L+

1 \ L+
3 , henceN + � L+

1 . By Claim 2.3, N � � L �
1 , implying the

claim. (ii) follows the same way, by exchanging the role of thetails and heads.

Now we are ready to prove Theorem2.1. The proof is based on the following lemma:

Lemma 2.6. For a crossing systemF and K 2 F we have� (F ) = � (F � K ).

First we show how Theorem2.1 follows from Lemma2.6. Let K = f K 1; : : : ; K `g. First

apply Lemma 2.6 for O1 and K 1, then in the i th step for O1 � f K 1; : : : K i � 1g and K i . Note

that O1 � f K 1; : : : K i � 1g is a crossing system by applying inductively Lemma2.4. Thus we have

� (O1) = � (O1 � K 1) = : : : = � (O1 � K ), hence Theorem2.1 follows by O1 � K = K.

Proof of Lemma2.6. Trivially, � (F � K ) � � (F ). Consider a maximum independent subset

L of F which has the most common members withF � K . For a contradiction, suppose that

L \ (F � K ) < � (F ), and choose an elementT 2 L � (F � K ). By de�nition, T crossesK . We

claim that either (L n f Tg) [ f T ^ K g or (L n f Tg) [ f T _ K g is independent. This leads to

contradiction, since the new system intersectsF � K in a strictly larger subset thanL does.

Suppose that neither (L n f Tg) [ f T ^ K g nor (L n f Tg) [ f T _ K g is independent. Then

there is an elementM 2 L n f Tg dependent fromT ^ K , and an other elementM 0 2 L n f Tg

dependent fromT _ K . If M = M 0, then M is clearly dependent fromL, a contradiction.

Assume nowM 6= M 0. The conditions of Lemma2.5(i) hold for L1 = K , L2 = T and

L3 = M , and the conditions of (ii) hold for L1 = K , L2 = T and L3 = M 0. We claim that M

and M 0 are dependent. Indeed,K � � L � contains an element ofM � \ M 0� , while K + � L+

contains an element ofM + \ M 0+ .

2.1.1 Constructing a skeleton

A straightforward approach to construct a skeleton ofO1 would be a greedy method, that it,

choose one-way pairs arbitrarly, as long as they do not cross any of the previously selected ones.

The di�culty arises from the fact that it is not clear how to dec ide whether a given cross-free

system is a skeleton or not. (Note that the size ofO1 may be exponentially large.) To overcome

this di�culty, we work with special kind of cross-free systems. Letus call a cross-free system

H � O 1 stable if it ful�lls the following property:

L crosses some element ofH wheneverL 2 O 1 � H and 9K 2 H : L � K: (2.1)

This means that if H has an element larger thanL, then L cannot be added toH . Given

a stable system, the following claim provides a straightforwardway to decide whether it is a

skeleton.
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Claim 2.7. A stable cross-free system is a skeleton if and only if it contains all the maximal

members ofO1.

Proof. On the one hand, any skeleton should contain all the maximal one-way pairs in O1 since

a maximal one-way pair cannot cross any other set. On the other hand, for a contradiction,

suppose that a stable systemH contains all the maximal members, yet it is not a skeleton.

Choose anL =2 H with H [ f Lg cross-free. There is a maximal elementK 2 O 1 with L � K .

By our assumption,K 2 H , contradicting the de�nition of stability.

Assume we are given a stable cross-free systemH which is not a skeleton. In the following,

we investigate how a setK 2 O 1 � H can be found with the property that H [ f K g is stable

as well. AsH is not a skeleton, there is a maximal elementM with M 2 O 1 � H . Let

L 1 := f K 2 H : K � M g; L 2 := f K 2 H : K 6� M g (2.2)

We say that a one-way pairL �ts the pair (H ; M ) if (a) L 2 O 1 � H; L � M ; (b) L is

independent from all members ofL 2 and (c) either K � L or K � \ L � = ; for every K 2 L 1.

Lemma 2.8. If L is a minimal member ofO1 � H �tting (H ; M ), then H + L is a stable

cross-free system.

This is a straightforward consequence of the following claim.

Claim 2.9. Let L 2 O 1 � H , L � M . The following two properties are equivalent: (i)L �ts

(H ; M ); (ii) H + L is cross-free.

Proof. (i) ) (ii) is straightforward. For the other direction we have to verify (b) and (c) of the

above de�nition. By (2.1), either K � L or L and K are independent for everyK 2 H . Assume

now K � L for someK 2 L 2. In this caseK � L � M , contradicting the de�nition of L 2.

For (c) we needK � \ L � = ; if K and L are independent for someK 2 L 1. This follows by

K; L � M , thus K + \ L+ � M + .

Observe that M itself �ts ( H ; M ) ensuring the existence of a one-way pairL satisfying the

conditions of Lemma2.8. So K = L is an appropriate choice. Such anL can be found using

bipartite matching theory. The description of this subroutine is quite technical and rather

standard, therefore it is postponed to Section2.4.

2.1.2 Description of the Dual Oracle

Given the above subroutine for constructing a skeleton, we havethe following oracle to determine

the value � (D) = � (O1) in a (k � 1)-connected digraph onn nodes: we construct a skeleton,

then we apply Dilworth's theorem. (It is well-known that computing a maximum antichain
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and a minimum chain-decomposition of a partially ordered set can be reduced to a maximum

matching computation in a bipartite graph.) The size of the maximum antichain will give the

value � (D).

A trivial upper bound on the size of the optimal augmenting edge set { and by Theorem1.5,

also on the number of pairwise independent sets { isn2. A better bound can be given by

Corollary 4.7 in [31]: there is an augmenting edge set consisting of pairwise node-disjoint circuits

and paths, hence the optimum value is at mostn. A chain can also have at mostn elements,

thus the cardinality of a skeleton is at mosts = n2.

As shown in the Section2.4, if s is an upper bound on the size of a skeleton, then it can

be constructed in timeO(n5 + sn4) = O(n6). Finding a maximum antichain in a poset of size

O(s) can be reduced to �nding a maximum matching in a bipartite graph on O(s) nodes and

O(s2) edges. Using the Hopcroft-Karp algorithm [69, Vol A., p. 264] this can be done inO(s2:5)

running time. This gives O(n5) for s = n2, so the total running time of the Dual Oracle is

O(n6).

As already indicated in the Introduction, the Dual Oracle maybe used to compute the

optimal augmentation. For this, we need to call the Dual Oracle at most n2 times, thus the

total complexity is O(n8). (For comparison, the running time of the algorithm in Chapter 4 is

O(n7) for the same problem.)

However, the correctness of the present approach does rely on Theorem1.5. In the next

section we use a more direct approach for �nding the optimal augmentation.

2.2 Algorithmic Proof of Theorem 1.6

In this section we give a proof of Theorem1.6and sketch another algorithm, which uses the Dual

Oracle only once. After a skeletonK is determined, an augmenting set ofK can be transformed

to an augmenting set of the entireO1. More precisely, we will prove the following:

Theorem 2.10. For a crossing systemF and a one-way pairK 2 F , if an edge setF covers

F � K , then there exists anF 0 covering F with jF 0j = jF j, and furthermore � F 0(v) = � F (v),

� F 0(v) = � F (v) for every v 2 V.

We begin with the de�nition of the elementary augmenting step. Consider a crossing family

F � O 1 and F � V 2. An edgeuv 2 V 2 � F is bad (with respect to F and F ) if there exists an

L 2 F covered byuv, but not covered byF . Let W(F ) = WF (F ) denote the set of bad edges.

Consider an augmenting edge setF of F 0 := F � K . For two edgesx1y1; x2y2 2 F , by


ipping (x1y1; x2y2), we mean replacingF by F 0 = ( F � f x1y1; x2y2g) [ f x1y2; x2y1g. A


ipping is called improving if F 0 augments a strictly larger subset ofF than F does. Note

that this is equivalent to requiring that W(F 0) ( W(F ). Since the total number of edges isn2,

we obtain that after at most n2 improving 
ippings the resulting subset of edges must augment
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the whole F . The following lemma, which is the heart of the proof of Theorem 1.6 and the

algorithm, asserts the existence of an improving 
ipping.

Lemma 2.11. Let F � O 1 be a crossing family. LetK be a member ofF and F an augmenting

edge set ofF 0 := F � K . If F does not augmentF , then there is an improving 
ipping.

Proof. Let us choose two (not necessarily distinct) membersX and Y of F that are not covered

by F so that X � Y, X is minimal (in the sense thatX 0 is covered byF for everyX 0 2 F ; X 0 �

X ), while Y is maximal in an analogous sense.

SinceF does not coverX and Y, we haveX; Y 2 F � F 0, that is, both X and Y cross

K . ThereforeX ^ K � X and Y _ K � Y. By the minimality of X , X ^ K is covered byF ,

that is, there is an edgex1y1 2 F covering X ^ K . SinceF does not coverX , we must have

x1 2 X � \ K � and y1 2 K + � X + . Analogously, there is an edgex2y2 2 F coveringY _ K for

which x2 2 K � � Y � ; y2 2 Y + \ K + .

Let F 0 be the edge set resulting by 
ipping (x1y1; x2y2). We are going to show that this


ipping is improving. Since X is covered byF 0 but not covered by F , we only have to show

that every member ofF covered byF is covered byF 0, as well.

Suppose indirectly that there is a memberM of F which is covered byF but not by F 0.

In particular, no element ofF � f x1y1; x2y2g coversM . It is not possible that both x1y1 and

x2y2 cover M since then bothx1y2 and x2y1 would also coverM , that is, F 0 would coverM .

Therefore there is exactly one element inF coveringM and this only element is eitherx1y1 or

x2y2. Let us assume �rst that M is covered byx1y1.

Claim 2.12. Y and M are dependent.

Proof. For a contradiction, suppose thatY and M are independent.K ^ Y and M are dependent

as x1y1 covers both. Thus we can apply Lemma2.5(i) with L1 = K; L 2 = Y; L3 = M giving

K � � Y � � M � . This is contradiction sincex2 2 K � � Y � and x2 =2 M � as x2y1 does not

cover M .

By the above claim we know thatY _ M 2 F . The assumption that M is not covered

by x1y2 gives y2 2 Y + � M + , thus M 6� Y, implying Y [ M � Y. By the maximality of Y,

Y _ M is covered by an elementxy of F and xy is di�erent from both x1y2 and x2y1 since

y1; y2 =2 (M _ Y)+ . By Lemma 2.2, xy covers eitherM or Y. However,xy 2 F 0 \ F and hence

xy covers neitherM nor Y, a contradiction.

The case whenM is covered only byx2y2 also leads to contradiction by a similar argument

using Lemma2.5(ii).

Proof of Theorem1.6. � � � is straightforward. The proof of � � � is by induction on jFj . If

F is cross-free, applying Dilworth's theorem to the partially ordered set (F ; � ), we obtain that

there is a maximum subfamilyI of F consisting of pairwise incomparable members and thatF
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can be decomposed into
 := jIj chains. SinceF is assumed to be cross-free, the members of

I are pairwise independent. Furthermore, it is easy to see that the chain-decomposition ofF s

corresponds to a setF of 
 edges coveringF . Hence we obtained the required coveringF of F

and independent subfamilyI of F for which jF j = jIj .

Assume nowF contains crossing one-way pairsK and K 0. Let F 0 = F � K , a crossing

system by Lemma2.4. As K 0 =2 F 0, we may apply the inductive statement forF 0 giving an

edge setF covering F 0 among jF j pairwise independent one-way pairs. The proof is �nished

using Lemma3.11.

2.2.1 Description of the Algorithm

Our next goal is to transform the inductive proof above into analgorithm, that constructs an

independent subsetI of O1 and an covering edge setF of O1 so that jIj = jF j. It consists of

two phases.

In Phase 1 our algorithm uses the Dual Oracle. It determines a skeletonK = f K 1; : : : ; K `g,

and by Dilworth's theorem it �nds a maximum antichain along with a minimum chain-decom-

position. The chain-decomposition ofK corresponds to a subsetF 0of edges coveringK for which

jF 0j = jIj . The antichain I will be output by the whole algorithm as a maximum cardinality

independent subset ofO1.

Phase 2 will terminate by outputting a covering of O1 of cardinality jIj . Let F0 = O1

and F j := O1 � f K 1; : : : ; K j g for eachj = 1; : : : ; `. From Phase 1, we haveF ` = K covered.

By Lemma 2.11, when applied toF ` � 1; F ` ; K ` in place ofF ; F 0; K , respectively, we can �nd an

improving 
ipping and obtain a revised coveringF 00of F ` which covers a strictly larger subset

of F ` � 1 as F 0 does. Since the number of bad edges is at mostn2 and an improving 
ipping

reduces this number, after at mostn2 improving 
ippings the resulting covering ofF ` will cover

F ` � 1. Then we can iterate this step withF ` � 2; F ` � 1; K ` � 1, : : :, F0; F1; K 1, and �nally we get a

coverF 0 of O1 = F 0. F 0 will be the output of the algorithm as a minimal augmenting edge set

of D.

We have outlined the steps of the algorithm and proved its validity. Phase 1 can be preformed

as described in Section2.1.1. For the realization of Phase 2, we can use similar techniques.

However, we omit this analysis. Our reason for this is that the analysis is quite technical, and

we could not improve on the running time bound of the Dual Algorithm.
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2.3 Further remarks

2.3.1 Node-induced cost functions

The cost funtion c : A ! R is callednode-induced if there exists two cost functionsc� ; c+ :

V ! R so that c(uv) = c� (u)+ c+ (v) for each edgeuv 2 A. Given a node-induced cost function

c, a cover of a skeletonK can be extended to a cover ofO1 of the same cost by Theorem2.10.

Therefore the only task left is to determine a minimum cost cover of a skeleton.

Finding a minimum cardinality cover of a skeleton was an application of Dilworth's theorem.

As already mentioned, this can be deduced to �nding a maximum matching in a bipartite graph.

Analogously, we show that �nding a minimum cost cover (for node-induced costs) goes back to

�nding a maximum cost matching in a bipartite graph by using thestandard reduction.

For the poset (K; � ), construct a bipartite graph G = ( A; B ; E) so that to each element

K 2 K we have corresponding nodesk0 2 A, k002 B, and if K � L then k0l002 E. Given

a matching M , a chain cover of sizen � j M j can be obtained as follows. Starting from an

uncovered nodek0
1 2 A, if k00

1 is uncovered byM , then let the singleton chainf K 1g correspond

to k0
1. Otherwise, letk0

2 be the node so thatk00
1k0

2 2 M , and de�ne ki +1 so that if k00
i is covered by

M , then k00
i k00

i +1 2 M . This de�nes a chainK 1 � K 2 � : : : � K ` , and these chains are pairwise

disjoint if starting for di�erent uncovered members ofM .

Given the cost functionsc� and c+ on V, de�ne w(k0) = min v2 K � c� (v) and w(k00) =

minv2 K + c+ (v). Observe that minimum cost of an edge covering the chain constructed above

is exactly w(k0
1) + w(k00

` ). Therefore, if we consider the cost function onE induced by this w,

then a matchingM corresponds to a chain cover of cost equal to the total cost of theuncovered

nodes. Hence �nding a minimum cost chain cover is equivalent to �nding the maximum cost of

a matching, solvable via the Hungarian Method.

2.3.2 Generalization to Theorem 1.2

The proof of Theorem1.6 given in Section2.2 can also be extended to a new, algorithmic proof

of the more general Theorem1.2. Here we give only a brief sketch of this rather technical

argument, detailed in [72, Section 4.4.2].

Unfortunately, Theorem 2.1 is not true in general for arbitrary crossing familyF in place

of O1. The main reason is that the innocent-looking Claim2.3 fails to hold: there might exist

set pairsM 6= N with M � � N � , M + � N + . Of course, in such a case one might argue that

N is super
uous since if an edge set coversM , then it automatically covers N . Yet we cannot

simple leave all such pairsN from F as we may end up with a family of set pairs which is not

crossing.

A possible solution is the following. Let us call a pairN slim if no other pair M 2 F

with M � = N � , M + ( N + exists. (It is still possible that there is anM with M � ( N � ,
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M + = N + .)

We modify the de�nition of stability so that H is stable if it is cross-free, each element ofH

is slim, and instead of (2.1), it satis�es

L is either not slim, or crosses some element ofH

wheneverL 2 O 1 � H and 9K 2 H : L � K:

Given a stableK = f K 1; : : : ; K `g maximal for containment, so that each setf K 1; : : : ; K i g,

i = 1; : : : ; k is stable, it can be proved that a cover ofK can be transformed to a cover ofF .

ST-edge-connectivity augmentation by one can be tackled by this approach.

It would be highly desirable to extend these methods for Theorem 1.1, since it could give

a simpler alternative to the currently existing only combinatorial algorithm for directed con-

nectivity augmentation (the one in Chapter4). Moreover, it could be possibly extendable to a

polynomial time algorithm. (The algorithm in Chapter 4 is pseudopolynomial.) Unfortunately,

we could not �nd such an extension so far: we do not even have a goodidea how skeletons in

S should be de�ned.

2.4 Implementation via bipartite matching

In this section we present how the subroutine for constructing a skeleton can be implemented

using bipartite matching theory. Given the (k � 1)-connected digraphD = ( V; A), let us

construct the bipartite graph B = ( V 0; V 00; H ) as follows. With each nodev 2 V associate

nodesv0 2 V 0 and v002 V 00and an edgev0v002 H . With each edgeuv 2 V associate an edge

u0v002 H . For a set X � V , we denote byX 0 and X 00its images inV 0 and V 00, respectively.

The (k � 1)-connectivity of G implies that B is (k � 1)-elementary bipartite , that is, for each

; 6= X 0 � V 0, either �( X 0) = V 00or j�( X 0)j � j X 0j + k � 1. (See Section1.1.2on k-elementary

bipartite graphs.) We say that X 0 � V 0 is tight if j�( X 0)j = jX 0j + k � 1 and �( X 0) 6= V 00. Let

R denote the set of tight sets. Observe thatX 0 2 R if and only if X 2 O 1. In this context, we

say that an edgex0y00covers the tight set X 0 if x0 2 X 0, y002 V 00� �( X 0), or equivalently, if

the edgexy covers the one-way pairX .

Given a function f : V 0 [ V 00! N we call the setF � H an f -factor if dF (x) = f (x) for

every x 2 V 0 [ V 00. Let f (Z ) =
P

x2 Z f (x) for Z � V 0 [ V 00.

Claim 2.13. Consider a bipartite graphB = ( V 0; V 00; H ) and a function f : V 0 [ V 00! N so

that f (V 0) = f (V 00) and f (x) = 1 or f (y) = 1 for every xy 2 H . An f -factor exists if and only

if f (X ) � f (�( X )) for every X � V 0.

Proof. An easy consequence of Hall's theorem, replacing eachx 2 V 0[ V 00by f (x) copies. The

condition f (x) = 1 or f (y) = 1 for every xy 2 H guarantees that at most one copy of the same

edge may be used.
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First we show how the maximal elements ofR can be found; this in turn provides the

maximal elements ofO1. Let us consider nodesu0 2 V 0, v002 V 00with u0v00 =2 H . A tight set

X 0 2 R is called anuv̂-set if u0 2 X 0 and v00 =2 �( X 00). For an edgeu0v00 =2 H , consider the

following f . Let f (u0) = f (v00) = k + 1 and for z 2 (V 0 � u0) [ (V 00� v00), let f (z) = 1. An

f -factor for this f is called ak-uv-factor . If B is a (k � 1)-elementary bipartite graph, then

Claim 2.13 implies the existence of a (k � 1)-uv-factor. Let Fuv denote one of them.

Claim 2.14. If there is a k-uv-factor, then there exists nouv̂-set.

Proof. AssumeX 0 is a uv̂-set. As X 0 2 R , j�( X 0)j = jX 0j + k � 1. Sinceu0 2 X 0, v00=2 �( X 0),

we havef (X 0) = jX 0j + k, f (�( X 0)) = jX 0j + k � 1, thus no k-uv-factor may exist.

It is easy to see that any twouv̂-sets are dependent and the union and intersection of twouv̂-

sets areuv̂-sets as well. Thus if the set ofuv̂-sets is nonempty, then it contains unique minimal

and maximal elements. In what follows we show how these can be found algorithmically. For an

edge setF � H , we say that the pathU = x0y0x1y1 : : : xtyt is an alternating path for F from

x0 to yt , if x i 2 V 0, yi 2 V 00, x i yi 2 H � F for i = 0; : : : ; t, and yi x i +1 2 F for i = 0; : : : ; t � 1.

Under the same conditions we also say thatx0y0x1y1 : : : xt is an alternating path for F from x0

to x t .

Claim 2.15. (a) If there exists an alternating path forFuv from u0 to v00, then there exists no

uv̂-set. (b) Assume there is no alternating path forFuv from u0 to v00; let S1 denote the set of

nodesz 2 V having an alternating path forFuv from u0 to z0. Then S0
1 is the unique minimal

uv̂-set.(c) Assume no alternating path exists forFuv from u0 to v00; let S2 denote the set of nodes

z 2 V having an alternating path forFuv from z0 to v00. Then V 0 � S0
2 is the unique maximal

uv̂-set.

Proof. (a) Let U be an alternating path for Fuv from u0 to v00. Then F � U is a k-uv-factor so

by Claim 2.14, no uv̂-set exists. (b) Let Z 0 be an arbitrary uv̂-set. For everyx0 2 Z 0 � u0,

�( Z 0) contains a uniquey00with x0y002 Fuv . The number ofy002 V 00with u0y002 Fuv is exactly

k, and all of them are contained in �(Z 0). These arejZ 0j + k � 1 di�erent elements of �( Z 0),

and sinceZ 0 2 R , �( Z 0) has no elements other than these. This easily implies thatZ 0 contains

everyx0 2 V 0 for which there is an alternating path forFuv from u0 to x0, showingS0
1 � Z 0. It is

left to prove that S0
1 2 R . From the de�nition of S0

1, it follows that for every y002 �( S0
1), there

exists anx0 2 S0
1 with x0y002 Fuv , proving �( S0

1) = jS0
1j + k � 1. The proof of (c) follows the

same lines.

For the initialization of the algorithm, we determine the edge setsFuv by a single max-
ow

computation for every u0 2 V 0, v002 V 00, u0v00 =2 H . By Claim 2.15, the maximal uv̂-sets can

be found by a breadth-�rst search. The maximal ones among them correspond to the maximal
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elements ofO1 (note that the maximal uv̂-set might be contained in some otherxŷ-set). We

will use the setsFuv also in the later steps of the algorithm.

Up to this point, all results will be applicable almost word for word for undirected augmen-

tation in Section 3.5. The next part will also follow roughly the same lines, but therewill be

certain di�erences according to the di�erent notion of stability in the two cases.

To implement the basic step of the algorithm, consider a stable cross-free systemH which is

not a skeleton, a maximal elementM 2 O 1 � H and L 1, L 2 as de�ned by (2.2). Our task is to

�nd a K �tting ( H ; M ) and minimal subject to this property. Let T be the set of the maximal

elements ofL 1.

Claim 2.16. T consists of pairwise tail-disjoint one-way pairs.

Proof. Let T1; T2 2 T . As they are maximal, they cannot be comparable, thus eitherT �
1 \ T �

2 = ;

or T+
1 \ T+

2 = ; . The latter is excluded sinceT1; T2 � M implies T+
1 \ T+

2 � M + .

Let us construct B1 = ( V 0; V 00; H1) from B by adding some new edges as follows. For each

K 2 L 2, add the edgex0y00 2 H1 for every x 2 K � , y 2 K + . Furthermore, let x0y00 2 H1

wheneverT 2 T , x 2 T � , y 2 V 00� T+ .

Claim 2.17. Let L 2 O 1 � H , L � M . Then L �ts (H ; M ) if and only if L0 is a tight set in

B1.

Proof. Clearly, L0 is tight in B1 if and only if L0 2 R and there is no new edgex0y002 H1 � H

with x0 2 L0 and y002 V 00� �( L0).

L �ts ( H ; M ) if it is independent from all elements ofL 2, and for arbitrary T 2 T , either

T � \ L � = ; or T � ( L � . If it satis�es these properties, no new edge inH1 � H coversL0, thus

L0 is tight also in B1. For the other direction, if L is dependent from someK 2 L 2, then there

existsx 2 K � \ L � , y 2 K + \ L+ with x0y002 H1 coveringL0. If for someT 2 T , T would cross

L, then by Claim 2.3, L+ � T+ 6= ; , thus there existx 2 T � \ L � , y 2 L+ � T+ with x0y002 H1

coveringL.

To �nd an L as in Lemma2.8, we need to add some further edges toB1 to ensure that

L 2 O 1 � H . (Note that the elements ofT are all tight in B1.) Let Q � M � be an arbitrary

(not necessarily tight) set. Let Z (Q) denote the unique minimalK satisfying the following

property:

K 2 O 1; Q� � K � , and K �ts ( H ; M ): (2.3)

We will determine Z(Q) for di�erent sets Q in order to �nd an appropriate L. Z (Q) is well-

de�ned sinceM itself satis�es (2.3); and if K and K 0 satisfy (2.3), then K and K 0 are dependent

and it is easy to see thatK \ K 0 also satis�es (2.3). The next claim gives an easy algorithm for

�nding Z(Q) for a given Z .
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Claim 2.18. Fix someu 2 Q, v 2 M + . Let B2 denote the graph obtained fromB1 by adding

all edgesu0y00with y002 �( Q0). Let S denote the set of nodesz 2 V for which there exists an

alternating path for Fuv from u0 to z0. Then Z(Q) = S.

Proof. As M 0 is an uv̂-set in B2, applying Claim 2.15(a) for B2 instead of B , we get that B2

contains no alternating path forFuv from u0 to v00. By Claim 2.15(b), S0 is the unique minimal

uv̂-set in B2. The new edges inB2 ensure that �( S [ Q) = �( S), thus Q � S is an easy

consequence of Claim2.3. By Claim 2.17, S is the unique minimal set satisfying (2.3), thus

Z(Q) = S.

Let W denote the union of the tails of the elements ofT . First, we shall �nd a one-way pair

L1 �tting ( H ; M ) and L �
1 � W 6= ; . Let us compute the setZ (f ug) for any u 2 M � � W. By

Claim 2.18, this can be done by a single breadth-�rst search. An arbitrary minimal element of

the set f Z (f ug) : u 2 M � � Wg is an appropriate choice forL1.

Thus L1 can be found byjM � � Wj = O(n) breadth-�rst searches. Now eitherL1 is itself

a minimal set �tting ( H ; M ), or there exists anL2 with L �
2 � W \ L �

1 , also �tting ( H ; M ).

This is impossible ifT � L1 holds for at most oneT 2 T , and thus L1 is a minimal set �tting

(H ; M ) in this case.

Assume nowT � L1 holds for at least two di�erent T 2 T . In order to obtain L2, let us

compute Z(T �
i [ T �

j ) for any Ti ; Tj 2 T , Ti 6= Tj , Ti ; Tj � L1. Choosing a minimal one among

these gives a minimalL2 �tting ( H ; M ). This can be done by performingO(n2) breadth-�rst

searches.

As L2 �ts ( H ; M ) and is minimal subject to this property, L := L2 is an appropriate choice.

Complexity

In order to construct a skeleton, �rst we needn2 Max Flow computations for the maximal

members and the auxiliary graphs. The running time of adding amember to a stable cross-free

system is dominated byO(n2) breadth �rst searches. Thus ifs is an upper bound on the size of

a skeleton, then we can �nd one inO(n5 + sn4) time by using anO(n3) maximum 
ow algorithm

and an O(n2) breadth �rst search algorithm. .
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Chapter 3

Undirected node-connectivity

augmentation

This chapter is devoted to the proof of Theorem1.37. As indicated in the introduction, both

the proof and the algorithm are closely related to those in Section 2 for directed connectivity

augmentation. In Section3.1, we de�ne some basic concepts concerning relations of clumps

and families of clumps. A main di�erence between the directedand undirected case is that the

clumps admit no natural partial order. Still, we will introduce the notion of nestedness, an

analogoue of comparability. Two clumps are said to be crossing if they are neither independent

nor nested. We will also be able to \uncross" such clumps, by referring to meets and joins

of certain strict one-way pairs. Crossing and cross-free familiesand skeletons of clumps will

correspond naturally to those of strict one-way pairs. A new typeof di�culty is encountered

due to large clumps. Fortunately, it turns out that large clumps are nested with every other

clump they are dependent from.

Section3.2 contains the proof of Theorem1.37, using an argument analogous to the one in

Section2.2. The algorithm for constructing a skeleton is discussed in Section 3.3, resembling the

one in Section2.1.1. Finally, in Section 3.4 we solve the minimum cost version for node-induced

cost functions, and discuss further possible generalizations andextensions as well.

3.1 Preliminaries

First we give a brief motivation of concepts related to clumps.In a (k � 1)-connected graphG,

we may have setsB ( V with jB j = k � 1, so that V � B hast � 2 connected components. The

components ofV � B form a clump. Moreover, any partition of the components to atleast two

classes also forms a clump, since in the de�nition, the pieces arenot required to be connected. In

order to makeG k-connected, we need to add at leastt � 1 edges between di�erent components

of V � B . For t = 2, an arbitrary edge between the two components su�ces, however the
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situation is more complicated fort � 3. In this case, the setB is often called ashredder in

the literature.

For a clump X = ( X 1; X 2; : : : ; X t ), let NX = V �
S

i X i . X is calledbasic if all piecesX i

are connected. The clumpY is derived from the basic clumpX if each piece ofY is the union

of some pieces ofX . By D(X ) we mean the set of all clumps derived fromX , while D2(X ) is

used for the set of small clumps derived fromX . Let C denote the set of all basic clumps. For

a set F � C , D(F ) denotes the union of the setsD(X ) with X 2 F . The clumps being in the

sameD(X ) can easily be characterized (see e.g. [49, 50, 59]):

Claim 3.1. (i) Two clumps X and Y are derived from the same basic clump if and only if

NX = NY . (ii) If two basic clumps X and Y have a piece in common, thenX = Y. �

For a clumpX and an edge setF , let F=X be the graph obtained from (V; F) by deleting NX

and shrinking the componentsX i to single nodes. LetcF (X ) denote the number of connected

components ofF=X . F covers X if F=X is connected, that is,cF (X ) = 1. To cover X , we

need at leastjX j � 1 edges ofF between di�erent components ofX . If X is a small clump,

then F coversX if and only if F connectsX . We say that F covers (resp. connects)H � D(C)

if it covers (resp. connects) all clumps inH . Clearly, F is an augmenting edge set if and only

if it covers D(C). The following simple claim shows that in order to cover a setF of clumps, it

su�ces to connect every small clump derived from the members ofF .

Claim 3.2. For an edge setF �
� V

2

�
and F � C , the following three statements are equivalent:

(i) F coversF ; (ii) F coversD(F ); and (iii) F connectsD2(F ). �

We have already de�ned when two clumps are independent: if noedge in
� V

2

�
connects both.

Two clumps aredependent , if they are not independent.

We say that two clumpsX = ( X 1; : : : ; X t ) and Y = ( Y1; : : : ; Yh) are nested if X = Y or

there exist indices 1� a � t and 1 � b � h so that Yi ( X a for everyi 6= band X j ( Yb for every

j 6= a. We call X a the dominant piece of X with respect to Y, and Yb the dominant piece

of Y w.r.t X . The following important lemma shows that a large basic clump is automatically

nested with any other basic clump (see also in [59]).

Lemma 3.3. AssumeX is a large basic clump, andY is an arbitrary basic clump. If X and

Y are dependent thenX and Y are nested.

To prove this, �rst we need two simple claims.

Claim 3.4. For the basic clumpsX = ( X 1; : : : ; X t ) and Y = ( Y1; : : : ; Yh), X i \ NY = ; implies

X i � Yj for some1 � j � h. �

Claim 3.5. Let X = ( X 1; : : : ; X t ) and Y = ( Y1; : : : ; Yh) be two di�erent clumps both basic or

both small. If X s ( Yb for some1 � s � t, 1 � b � h, then X and Y are nested withYb being

the dominant piece ofY w.r.t X .
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X 1

X 2

X 3

Y1

Y2

Y3

Y4

Figure 3.1: The nested clumpsX = ( X 1; X 2; X 3) and Y = ( Y1; Y2; Y3; Y4) with dominant pieces X 1

and Y1.

Proof. Consider an` 6= b. X s � Yb implies d(X s; Ỳ ) = 0, thus Y` \ NX = ; . HenceY` � X a for

somea 6= s follows either by Claim 3.4 or by t = 2. We claim that this a is always the same

independently from the choice of̀ . Indeed, assume that for somè0 =2 f b; `g, Y`0 � X a0 with

a0 6= a.

The same argument applied with changing the role ofX and Y (by making use ofY` � X a)

shows that X a0 � Yj for somej , giving Y`0 � Yj , a contradiction. X i � Yb for i 6= a can be

proved by changing the role ofX and Y again. ThusX and Y are nested with dominant pieces

X a and Yb.

Proof of Lemma3.3. The dependence impliesX 1 \ Y1 6= ; , X 2 \ Y2 6= ; by possibly changing

the indices. Letx i = jNY \ X i j, yi = jNX \ Yi j, n0 = jNX \ NY j. Then k � 1 � j N (X 1 \ Y1)j �

n0+ x1+ y1. Sincek� 1 = jNY j = n0+
P

i yi this implies
P

i 6=1 yi � x1 and similarly
P

i 6=1 x i � y1.

The same argument forX 2 \ Y2 gives
P

i 6=2 yi � x2 and
P

i 6=2 x i � y2.

Thus we havex i = yi = 0 for i � 3. This givesX 3 \ NY = ; and henceX 3 � Yi for somei

by Claim 3.4. The nestedness ofX and Y follows by the previous claim.

Beyond the close analogy between the argument of Chapter2 and the present one, strict one-

way pairs will also be directly applied. We will simply use \one-way pair" meaning strict one-way

pair in the rest of this chapter. For each small clumpX = ( X 1; X 2), the two corresponding

one-way pairs (X 1; X 2) and (X 2; X 1) are called theorientations of X . By the orientations of

a large clumpX we mean all orientations of the small clumps inD2(X ). For a one-way pair

K = ( K � ; K + ), its reverse is
 �
K = ( K + ; K � ), and K denotes the corresponding small clump

(note that K =
 �
K ).

The relation between covering in the directed and undirected sense is the following. If an

undirected edgeuv connects a small clumpX , then the directed edgeuv covers exactly one of

its two orientations (in the directed sense).
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Take two dependent small clumpsX = ( X 1; X 2) and Y = ( Y1; Y2). We say that their

orientations LX and LY are compatible if they are dependent one-way pairs. Clearly, any two

dependent one-way pairs admit compatible orientations, andif LX and LY are compatible, then

so are
 �
LX and

 �
LY . X and Y are said to besimply dependent if for an orientation LX of X ,

there is exactly one compatible orientationLY of Y, and strongly dependent if both possible

choices ofLY are compatible with LX . (Note that the de�nition is indedepent of the choice

of the orientation LX ). X and Y are strongly dependent if and only ifX i \ Yj 6= ; for every

i = 1; 2, j = 1; 2. The following claim is easy to see.

Y1

X 1

Y1

X 1 X 2

Y2

X 2

Y2

(a) (b)

Figure 3.2: Simply dependent one-way pairs (a), and strongly dependent ones (b).

Claim 3.6. Two small clumpsX and Y are nested if and only if for some orientationsK X and

K Y , K X � K Y . �

We are ready to de�ne uncrossing of basic clumps. By uncrossing the dependent one-way

pairs K and L we mean replacing them byK ^ L and K _ L (which coincide with K and L if K

and L are comparable). For dependent basic clumpsX and Y, we de�ne a set �( X; Y ) consisting

of two or four pairwise nested clumps in the analogous sense. IfX and Y are nested, then let

�( X; Y ) = f X; Y g. By Lemma 3.3, this is always the case if one ofX and Y is large. For the

small basic clumpsX and Y, consider some compatible orientationsLX and LY . If X and Y

are simply dependent then let �(X; Y ) = f LX ^ LY ; LX _ LY g. (Altough there are two possible

choices forLX and LY , the set �( X; Y ) will be the same.) If they are strongly dependent, then

LX is also compatible
 �
LY . In this case let �( X; Y ) = f LX ^ LY ; LX _ LY ; LX ^

 �
LY ; LX _

 �
LY g.

It is easy to see that the clumps in �(X; Y ) are nested withX and Y and with each other in

both cases. We will need the following submodular-type property, corresponding to Lemma2.2:

Claim 3.7. For dependent basic clumpsX; Y , if an edgeuv connects a clump in�( X; Y ) then

it connects at least one ofX and Y. �
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We say that two clumps arecrossing if they are dependent but not nested. Again by

Lemma 3.3, two basic clumps may be crossing only if both are small. A subsetF � C is

called crossing if for any two dependent clumpsX; Y 2 F , �( X; Y ) � D(F ). (The reason for

assuming containment inD(F ) instead of F is that �( X; Y ) might contain non-basic clumps.)

Note that C itself is crossing. For a crossing systemF and a clumpK 2 F , let F � K denote

the set of clumps inF independent from or nested withK . Similarly, for a subsetK � F ,

F � K denotes the set of clumps inF not crossing any clump inK. An F � C is cross-free if

it contains no crossing clumps, that is, any two dependent clumpsin F are nested. (Note that

a cross-free system is crossing as well.) A cross-freeK is called askeleton of F if it is maximal

cross-free inF , that is, F � K = K. By Lemma 3.3, a skeleton ofC should contain every large

clump. Let us now prove the counterpart of Lemma2.4:

Lemma 3.8. For a crossing systemF � C and K 2 F , F � K is also a crossing system.

Proof. Let F 0 = F � K . If K is large thenF 0 = F by Lemma3.3, thereforeK is assumed being

small in the sequel. Let us �x an orientationLK of K . Take crossing basic clumpsX; Y 2 F 0.

Again by Lemma3.3, if a clump in �( X; Y ) is not basic, then it is automatically in D(F 0). We

consider all possible cases as follows.

(I) Both are nested withK . Choose orientationsLX and LY compatible with LK (but not

necessarly with each other).(a) If LX � LK � LY or LY � LK � LX , then X and Y are nested

by Claim 3.6. (b) Let LX ; LY � LK . If LX and LY are dependent, thenLX ^ LY ; LX _ LY �

LK . If LX and
 �
LY are dependent, thenLX ^

 �
LY � LK and

 �
LK � LX _

 �
LY . These arguments

show �( X; Y ) � D(F 0). (c) In the case ofLX ; LY � LK , the claim follows analogously.

(II) Both X and Y are independent fromK . By Claim 3.7, all clumps in �( X; Y ) are

independent fromK .

(III) One of them, sayX is nested withK , and the other, Y is independent fromK . Let

LX be an orientation of X compatible with LK and LY an orientation of Y compatible with

LX . By symmetry, we may assumeLX � LK . Now LX ^ LY � LK , and we show thatLX _ LY

is independent fromK . LY being an arbitrary orientation compatible with LX , these again

imply �( X; Y ) � D(F 0). LY and LK are independent, butL �
K \ L �

Y 6= ; , thus L+
K \ L+

Y = ; ,

hence the one-way pairsLX _ LY and LK are independent. We also need to show that
 �����
LX _ LY

and LK are independent. Indeed, their dependence would implyL+
Y \ L �

K 6= ; , L �
Y \ L+

K 6= ; ,

contradicting the independence ofK and Y.

Finally, the sequenceK 1; K 2; : : : ; K ` of clumps is called achain if they admit orientations

L1; L2; : : : ; L ` with L1 � L2 � : : : � L ` . If u 2 L �
1 , v 2 L+

` then the edgeuv connects all

members of the chain.
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3.2 The proof of Theorem 1.37

For a crossing systemF � C , let � (F ) denote the minimum cardinality of an edge set covering

F . Let � (F ) denote the maximum ofdef (�) over groves consisting of a shrub and bushes of

clumps in D(F ). First, we give the proof of the following slight generalization of Theorem1.37

based on two lemmas proved in the following subsections (cf. Theorem 1.6).

Theorem 3.9. For a crossing systemF � C , � (F ) = � (F ).

The two lemmas are these:

Lemma 3.10. For a cross-free systemF , � (F ) = � (F ).

Lemma 3.11. For a cross-free systemF , if an edge setF coversF � K , then there exists an

F 0 coveringF with jF 0j = jF j, and furthermore dF 0(v) = dF (v) for every v 2 V.

For the directed case in Chapter2, the claim analogous to Lemma3.10was straightforward

by Dilworth's theorem, while Lemma3.11 is word-by-word the same as Theorem2.10. Also,

Theorem3.9 derives from the lemmas the same way as Theorem1.6.

The following theorem may be seen as a reformulation of this proof, however, it will be

more convenient for the aim of the algorithm and to handle theminimum cost version for node

induced cost functions.

Theorem 3.12. For a crossing systemF � C and a skeletonK of F , � (K) = � (F ). Fur-

thermore, if an edge setF covers the skeletonK of F , then there exists anF 0 coveringF with

jF 0j = jF j and dF 0(v) = dF (v) for every v 2 V.

Proof. Let K = f K 1; : : : ; K `g. For i = 1; : : : ; `, let F i = F � f K 1; : : : ; K i g. Lemma 3.8 implies

that F i is a crossing system as well.F ` = K sinceK is a skeleton. By Lemma3.10, K admits

a cover F` with jF` j = � (K) = � (K). Applying Lemma 3.11 inductively for F i � 1; K i and Fi

for i = `; ` � 1; : : : ; 1, we get a coverFi � 1 of F i � 1 with jFi � 1j = jF` j. Finally, F0 is a cover of

F = F0, hence� (F ) � j F0j = jF` j = � (K), implying the �rst part of the theorem. The identity

of the degree sequences follows by the second part of Lemma3.11.

3.2.1 Covering cross-free systems

This section is devoted to the proof of Lemma3.10. The analogous statement in the case of

directed connectivity augmentation simply follows by Dilworth' theorem, which is a well-known

consequence of the K}onig-Hall theorem on the size of a maximum matching in a bipartite graph.

In contrast, Lemma 3.10 is deduced from Fleiner's theorem, which is proved via a reduction to

the Berge-Tutte theorem on maximum matchings in general graphs.

We need the following notion to formulate Fleiner's theorem. A triple P = ( U; � ; M ) is

called asymmetric poset if (U; � ) is a �nite poset and M a perfect matching onU with the
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property that u � v and uu0; vv0 2 M implies u0 � v0. The edges ofM will be called matches .

A subset f u1v1; : : : ; ukvkg � M is called asymmetric chain if u1 � u2 � : : : � uk (and thus

v1 � v2 � : : : � vk). The symmetric chainsS1; S2; : : : ; St cover P if M =
S

Si .

A set L = f L1; L2 : : : ; L `g of disjoint subsets ofM forms a legal subpartition if uv 2 L i ,

u0v0 2 L j , u � u0 yields i = j , and no symmetric chain of length three is contained in anyL i .

The value ofL is val(L ) =
P

i

l
jL i j

2

m
.

Theorem 3.13 (Fleiner, [20]). Let P = ( U; � ; M ) be a symmetric poset. The minimum number

of symmetric chains coveringP is equal to the maximum value of a legal subpartition ofP.

Note that the max � min direction follows easily since a symmetric chain may contain at

most two matches belonging to one class of a legal subpartition.This theorem gives a common

generalization of Dilworth's theorem and of the well-knownmin-max formula on the minimum

size edge cover of a graph (a theorem equivalent to the Berge-Tutte formula).

First we show that Lemma3.10 is a straigthforward consequence ifF contains only small

clumps. Consider the cross-free familyF of clumps, and letU be the set of all orientations of

one-way pairs inF . The matches inM consist of the two orientations of the same clump, while

� is the usual partial order on one-way pairs. A symmetric chain corresponds to a chain of

clumps. Since all clumps in a chain can be connected by a single edge, a symmetric chain cover

gives a cover ofF of the same size. On the other hand, a legal subpartition yields agrove with

a shrub and bushes consisting of the clumps corresponding to the one-way pairs inL i .

Let us now turn to the general case whenF may contain large clumps as well. For an

arbitrary set A � V , let A � = V � (A [ N (A)). An edge set F semi-covers the clump

X = ( X 1; : : : ; X t ) if F contains at least jX j � 1 edges connectingX , and furthermore each

clump (X i ; X �
i ) is connected fori = 1; : : : ; t. (Note that X �

i =
S

j 6= i X j .) F semi-coversF if it

semi-covers everyX 2 F . Although a semi-cover is not necessarly a cover, the following lemma

shows that it can be transformed into a cover of the same size.

Lemma 3.14. If F is a semi-cover ofF , then there exists an edge setH covering F with

jF j = jH j and dH (v) = dF (v) for every v 2 V.

Proof. We are done ifF covers all clumps inF . Otherwise, consider a clumpX 2 F semi-

covered but not covered.X is large, since semi-covered small clumps are automatically covered.

SinceX is connected by at leastjX j � 1 edges ofF , there is an edgee = x1y1 2 F connectingX

with cF (X ) = cF � e(X ). Each (X i ; X �
i ) is connected, hence we may consider an edgex2y2 2 F

connectingX with x2y2 being in a component ofF=X di�erent from the one containing x1y1.

Let F 0 = F � f x1y1; x2y2g+ f x1y2; x2y1g denote the 
ipping of x1y1 and x2y2. Clearly, cF 0(X ) =

cF (X ) � 1. We show that cF 0(Y) � cF (Y) for every Y 2 F � X , hence by a sequence of such

steps we �nally arrive at an H coveringF .
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Indeed, assumecF 0(Y) > cF (Y) for someY 2 F . X and Y are dependent since at least one

of x1y1 and x2y2 connects both. By Lemma3.3, X and Y are nested; letX a and Yb denote their

dominant pieces. The nodesx1; y1; x2; y2 lie in four di�erent pieces of X and thus at least three

of them are contained inYb. Consequently,cF 0(Y) = cF (Y) yields a contradiction.

In what follows, we show how a semi-coverF of F can be found based on a reduction to

Fleiner's theorem. For a basic clumpX = ( X 1; : : : ; X t ), let uX
i = ( X i ; X �

i ), vX
i = ( X �

i ; X i ) and

UX = f uX
i ; vX

i : i = 1; : : : ; tg. Let U =
S

X 2F UX . We say that the members ofUX are of type

X . Let the matching M consist of the matchesuX
i vX

i ; such a match is called anX -match .

If X is small (t = 2), then uX
1 = vX

2 and vX
1 = uX

2 , thus jUX j = 2. If X is large, then

jUX j = 2t. In this case, letuX
1 and vX

1 be called thespecial one-way pairs w.r.t X . uX
1 vX

1

is called a special match . Note that it matters here, which piece ofX is denoted by X 1

(arbitrarily chosen though). Let the partial order � 0 on U be de�ned as follows. Ifx and y are

one-way pairs of di�erent type, then let x � 0 y if and only if x � y for the standard partial

order � on one-way pairs. Ifx and y are both of typeX for a large clumpX , then let x � y if

either x = uX
1 , y = vX

i , or x = uX
i , y = vX

1 for somei > 1. In other words, � 0 is the same as�

except that x and y are uncomparable wheneverx and y are of the same typeX , and neither

of them is special.

Claim 3.15. P = ( U; � 0; M ) is a symmetric poset.

Proof. The only nontrivial property to verify is the transitivity of � 0: x � 0 y and y � 0 z implies

x � 0 z. This follows by the transitivity of � unlessx and z are di�erent one-way pairs of the

same typeX , and neither of them is special. ThusX is a large clump and by possibly changing

the indices, assumex = uX
2 , z = vX

3 . y could be of typeX only if it were special, excluded by

x = uX
2 6� uX

1 and z = vX
3 6� vX

1 . Hencey is of a di�erent type Y.

Assume �rst y = uY
i for somei . Now X 2 � Yi � X �

3 thus NX \ Yi = ; , giving by Claim 3.4

Yi � X j for somej 6= 3. Consequently,X 2 = Yi , a contradiction as it would lead toX = Y by

Claim 3.1. Next, assumey = vY
i . X 3 � Yi � X �

2 gives a contradiction the same way.

The following simple claim establishes the connection betweendependency of clumps and

comparability in P.

Claim 3.16. In a cross-free systemF , the clumpsX; Y 2 F are dependent if and only if for

arbitrary i; j , uX
i is comparable with eitheruY

j or vY
j . �

Consider a symmetric chain coverS1; : : : ; St and a legal subpartitionL = f L1; L2; : : : ; L `g

with val(L ) = t. Let us chooseL so that ` is maximal, and subject to this,
S `

i =1 L i contains the

maximum number special matches. A symmetric chainSi naturally corresponds to a chain of

the clumps (X j ; X �
j ) for uX

j vX
j 2 Si . These can be covered by a single edge; hence a symmetric

chain cover corresponds to an edge setF of the same size. A symmetric chain may contain both
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uX
j vX

j and uX
j 0vX

j 0 for j 6= j 0 only if j = 1 or j 0 = 1. Consequently,F is a semi-cover as there are

at least jX j � 1 di�erent edges inF connectingX , and all (X j ; X �
j )'s are connected.

It is left to show that L can be transformed to a grove � with def (�) = val(L ). For a clump

X , let B (X ) denote the set of indicesj with uX
j vX

j 2
S

i L i . Most e�orts are needed to ensure

that the bushes consit of small clumps; allowing large clumps would enable a simpler argument.

Claim 3.17. For any clump X , the X -matches corresponding toB(X ) are either all contained

in the sameL i or are all singletonL i 's. 1 2 B(X ) always gives the �rst alternative.

Proof. There is nothing to prove forjX j = 2, so let us assumejX j � 3. As L is chosen with

` maximal, if uX
j vX

j 2 L i with jL i j > 1, then there is anuY
h vY

h 2 L i with uY
h comparable with

either uX
j or vX

j . If Y 6= X , then Claim 3.16 gives that uY
h is also comparable withuX

j 0 or vX
j 0

for any j 0 2 B(X ). If Y = X then either j = 1 or h = 1 follows, implying uj 0vj 0 2 L i for every

j 0 2 B(X ). This argument also shows that 12 B(X ) leads to the �rst alternative.

Let � (X ) = i in the �rst alternative if L i is not a singleton, and� (X ) = 0 in the second

alternative. Let I denote the set of indices for whichL i is a singleton. Take a clumpX with

� (X ) = i > 0 (and thus i =2 I ). Let us say that a pieceX j is a dominant piece of X , if

for someY 6= X with � (Y) = i , X j is the dominant piece ofX w.r.t. Y . Let U(X ) denote

the set of the indices of the dominant pieces ofX ; note that the set U(X ) � B (X ) is possibly

nonempty.

Claim 3.18. If � (X ) = i > 0, then jB(X )j � 2 implies jB (X ) \ U(X )j = ; .

Proof. First assumeB(X ) \ U(X ) 6= ; and jU(X )j � 2. Consider aj 2 B(X ) \ U(X ) and a

j 0 2 U(X ) � f j g, say, X j is the dominant piece ofX w.r.t. Y and X j 0 the one w.r.t. Y 0 with

� (Y) = � (Y 0) = i . It is easy to see thatL i contains a symmetric chain of lenght three consisting

of a Y-match, uX
j vX

j and a Y 0-match.

Thus B(X ) \ U(X ) 6= ; implies jU(X )j = 1. Let U(X ) = f j g. Assume again thatX j is the

dominant piece ofX w.r.t. Y with � (Y) = i . We claim that 1 =2 B(X ). Indeed, if 1 2 B(X )

and j 6= 1, then a Y-match, uX
j vX

j and vX
1 uX

1 would form a symmetric chain inL i . If j = 1,

then a Y-match, uX
1 vX

1 and vX
h uX

h forms a symmetric chain for arbitraryh 2 B(X ) � f 1g.

Let us replaceL i by L0
i = L i � f uX

j vX
j g + f uX

1 vX
1 g. By Claim 3.16, any element ofL0

i is

incomparable to any element ofLh for h 6= i . It is easy to verify that L0
i does not contain any

symmetric chain of length three given thatL i did not contain any. This is a contradiction asL

was chosen containing the maximal possible number of special matches.

Let us construct the grove � as follows. For anyX with � (X ) = 0, B(X ) 6= ; , let ~X 2 D(X )

denote the clump consisting of piecesX i with i 2 B(X ) and the piece
S

j =2 B (X ) X j . The latter

set is nonempty since 1=2 B(X ) by Claim 3.17, thus j ~X j � 1 = jB(X )j. De�ne the shrub as

B0 = f ~X : � (X ) = 0 g. For i =2 I , let Bi = f (X j ; X �
j ) : uX

j vX
j 2 L i g. The following easy claim

completes the proof.
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Claim 3.19. � is a grove withdef (B0) = jIj and def (Bi ) =
l

jL i j
2

m
if i =2 I .

Proof. Since the elements of di�erentL i 's are pairwise incomparable, Claim3.16 implies that

clumps in di�erent bushes are independent from each other andfrom those in B0. Assume an

edgeuv 2
� V

2

�
covers three clumps in someBi . If these three clumps were derived from di�erent

basic clumps, thenL i would contain a symmetric chain of length three. Thus we need to have

two clumps derived from the same basic clumpX : uv covers (X j ; X �
j ), (X j 0; X �

j 0) and (Yh; Y �
h )

for � (X ) = � (Y) = i . This is also impossible since eitherX j or X j 0 would need to be the

dominant piece ofX w.r.t Y , a contradiction to Claim 3.18.

3.2.2 The proof of Lemma 3.11.

First we need the following lemmas.

Lemma 3.20. Assume that for three small clumpsX = ( X 1; X 2), Y = ( Y1; Y2), Z = ( Z1; Z2),

all four setsX 1 \ Y1 \ Z1, X 1 \ Y2 \ Z2, X 2 \ Y1 \ Z2, X 2 \ Y2 \ Z1 are nonempty. Then all of

X , Y and Z are derived from the same basic clump (and thus none of them isbasic itself ).

Proof. Let X c = NX , Yc = NY , Zc = NZ . By As for a sequences of three literals each 1,2 orc,

we mean the intersection of the corresponding sets. For example,A12c = X 1 \ Y2 \ Zc.

The conditions mean that the setsA111, A122, A212, A221 are nonempty. V � (A111 [

N (A111)) 6= ; as there is no edge betweenA111 and X 2, thus jN (A111)j � k � 1 as G is

(k � 1)-connected. This implies

k � 1 � j Ac11 [ A1c1 [ A11c [ A1cc [ Ac1c [ Acc1 [ Acccj (3.1)

asN (A111) is a subset of the set on the RHS. Let us take the sum of these types of inequalities

for all A111, A122, A212, A221. This gives 4(k � 1) � S1 + 2S2 + 4jAcccj, whereS1 is the sum of

the cardinalities of the sets having exactly onec in their indices, while S2 is the same for two

c's.

On the other hand, jX cj = jYcj = jZcj = k � 1. This gives 3(k � 1) = S1 + 2S2 + 3jAcccj.

These together implyS1 = S2 = 0, jAcccj = k � 1. We are done by Claim3.1 sinceNX = NY =

NZ = Accc.

Proof of Lemma3.11. Let F 0 = F � K . If K is large thenF 0 = F by Lemma 3.3, thereforeK

will be assumed to be small with an orientationLK .

If F coversF 0 but not F , then by Claim 3.2 there exists a small clumpX 2 D2(F ) � D2(F 0)

not connected byF , thus X and K are crossing. ChooseX with the orientation LX compatible

with LK so that LX is minimal to these properties w.r.t. � (that is, there exists no other

uncoveredX 0 with orientation LX 0 compatible with LK so that LX 0 � LX .) ChooseY not

connected byF with LX � LY , and LY maximal in the analogous sense (X = Y is allowed).
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LX ^ LK and LY _ LK are nested withLK and thus connected by edgesx1y1; x2y2 2 F with

x1 2 L �
X \ L �

K , y2 2 L+
Y \ L+

K . As X and Y are not connected,y1 2 L+
K � L+

X , x2 2 L �
K � L �

Y

follows. Let F 0 = F � f x1y1; x2y2g + f x1y2; x2y1g denote the 
ipping of x1y1 and x2y2. F 0

connectsX and Y, and we shall prove thatF 0 connects all small clumps inD2(F ) connected by

F . Hence after a �nite number of such operations all small clumps in D2(F ) will be connected,

so by Claim 3.2, F will be covered.

For a contradiction, assume there is a small clumpS connected byF but not by F 0. (S is

not necessarly basic.) No edge inF \ F 0 may connectS, hence either exactly one ofx1y1 and

x2y2 connect it, or if both then x1 and y2 are in the same piece andy1 and x2 in the other piece

of S. In this latter case, K and S are strongly dependent.

(I) First, assume that only x1y1 connectsS, and choose the orientationLS with x1 2 L �
S ,

y1 2 L+
S . We claim that LS and LY are also dependent. Indeed, if they are independent,

then Lemma 2.5(i) is applicable for L1 = LK , L2 = LY , L3 = LS, sinceLK ^ LY and LS are

dependent becausex1y1 connects both. This givesx2 2 L �
K � L �

Y � L �
S , that is, x2y1 connects

S, a contradiction.

Hence we may consider the one-way pairLS _ LY . LS _ LY is strictly larger than LY , as if

LS � LY held, then S would be connected byx1y2. By the maximal choice ofLY , LS _ LY is

connected by some edgef 2 F . By Claim 3.7, f also connectsS or Y, implying f = x1y1. This

is a contradiction asx1 2 L �
S [ L �

Y and y1 =2 L+
S \ L+

Y .

(II) If x2y2 is the only edge connectingS, we may use the same argument by exchanging_

and ^ , X and Y, \minimal" and \maximal" everywhere and applying Lemma 2.5(ii) instead of

(i).

(III) Finally, if both x1y1 and x2y2 coverS, let LS be chosen withx1; y2 2 L �
S , y1; x2 2 L+

S .

The argument in (I) may be applied with the only di�erence that at the end f = x2y2 is also

possible. This givesx2 2 L+
Y \ L+

S , thus x2 2 L+
X . Analogously, the argument in (II) applies for

 �
LS, and we gety1 2 L �

X \ L+
S , thus y1 2 L �

X .

Now the clumps K , S and X satisfy the condition in Lemma 3.20, witnessed by nodes

x1; x2; y2; y1. This contradicts the assumption thatK was a basic clump.

3.3 The Algorithm

As outlined in Section1.5, the algorithm will be a simple iterative application of a subroutine

determining the dual optimum � (G). Theorem 3.12 shows that � (G) = � (K) for an arbitrary

skeletonK. Given a skeletonK, � (K) can be determined based on Fleiner's theorem: Theo-

rem 3.13admits a (linear time) reduction to maximum matching in general graphs, as described

in Section 3.3.2. As in Chapter 2, the naiv greedy approach fails due to the possibly exponen-

tial size of C. The solution will be again the notion of stability, however, signi�cantly more

complicated than in Section2.1.1.
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3.3.1 Constructing a skeleton

Let us �rst introduce some new notation concerning pieces. If the setB � V is a piece of the

basic clumpX , then let B ] denote X . Let Q be the set of all (connected) pieces of all basic

clumps, whereasQ1 the set of all (not necessarly connected) pieces of all clumps. For a subset

A � Q , A ] is the set of corresponding basic clumps (e.g.Q] = C).

As for the directed case, now we de�ne stability. A cross-free set ofH � C is stable if it

ful�lls the following:

U crosses some element ofH wheneverU 2 C � H and 9K; K 0 2 H : K; U; K 0 forms a chain.

The following simple claim will be used for handling chains of length three.

Claim 3.21. For piecesB1; B2; B3 2 Q 1, if (i) B1 � B2 � B3 or (ii) B1 � B2 and B3 � B �
2,

then the corresponding clumpsB ]
1; B ]

2; B ]
3 form a chain. �

Clearly, H = ; is stable, and every skeleton is stable as well. LetM � Q denote the set

of the pieces minimal for inclusion. Based on the following claim (an analogue of Claim2.7),

we will be able to determine when a stable cross-free system is a skeleton. The subroutine for

�nding the elements of M will be given in Section3.5 among other technical details of the

algorithm.

Claim 3.22. The stable cross-free systemH � C is a skeleton if and only ifM ] � H .

Proof. On the one hand, every skeleton should containM ] . Indeed, consider anM 2 M . M ]

cannot cross anyX 2 C, as �( X; M ] ) would contain a clump with a piece being a proper subset

of M .

On the other hand, assumeH is not a skeleton even thoughM ] � H . Hence there exists

a clump U = ( U1; : : : Ut ) 2 C � H , not crossing any element ofH . Consider minimal pieces

M 1 � U1, M 2 � U2. Then M ]
1; U; M ]

2 forms a chain by Claim 3.21(ii), contradicting the

stability.

AssumeH is a stable cross-free system, but not a skeleton. In the following,we show how

H can be extended to a stable cross-free system larger by one. By the above claim, there is an

M 2 M with M ] 2 C � H . Let

L 1 := f X 2 H : X and M ] are nestedg; L 2 := f X 2 H : X and M ] are independentg (3.2)

Claim 3.23. If L 1 = ; , then H + M ] is a stable cross-free system.

Proof. Indeed, assume that for someU 2 C � H and K 2 H , H + U is cross-free, although

K; U; M ] forms a chain. NowK and M are dependent and thus nested, a contradiction.
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In the sequel we assumeL 1 6= ; . The key concept of the algorithm will be \�tting": as

in the directed case, we shall de�ne when a pieceZ 2 Q �ts the pair (H ; M ). However, the

de�nition is signi�cantly more complicated, therefore we formulate the main lemma in advance

(cf. Lemma 2.8):

Lemma 3.24. Let C be a minimal member ofQ �
S

H �tting (H ; M ). Then H + C] is a stable

cross-free system.

There exists aC satisfying the conditions of this lemma, as according to the de�nition, the

pieces ofM ] di�erent from M (that is, the connected components ofM � ) �t ( H ; M ). Such aC

can be found using standard bipartite matching theory similarly as in Chapter2; the technical

details are postponed to Section3.5.

The minimality of M implies that for any X 2 L 1, the dominant piece ofM ] w.r.t. X is

a connected component ofM � . One simple notion before giving the de�nition of �tting is the

following. For piecesB; C 2 Q , we say that B supports C if B � C � M � . B 2 Q supports

Y 2 C if B supports some piece ofY; X 2 C supports B 2 Q if a piece ofX supports B .

De�nition 3.25. The pieceC 2 Q �ts the pair (H ; M ) if

(a) C] 2 C � H ; C � M � .

(b) There exists aW 2 L 1 supporting C.

(c) Consider a clumpX 2 L 1 with dominant piece X a w. r. t. M ] , and another pieceX i with

i 6= a. Then either X i ( C or X i \ C = ; , and if X a \ C 6= ; then X i \ C � = ; .

(d) C] is independent from everyX 2 L 2.

The proof of Lemma3.24 is based on the following claim:

Claim 3.26. Let C 2 Q �
S

H, C � M � supported by someW 2 L 1. The following two

properties are equivalent: (i)C �ts (H ; M ); (ii) H + C] is cross-free.

Proof. First we show that (i) implies (ii). C] is independent from all pairs inL 2. Consider

an X 2 L 1. C] and X cannot cross by Lemma3.3 wheneverX or C] is large, thus let us

assume they both are small basic clumps,X = ( X 1; X 2) with X 2 being the dominant piece of

X w.r.t. M ] . If X and C] are dependent, thenX 1 \ C 6= ; or X 2 \ C 6= ; . In the �rst case, (c)

implies X 1 ( C hence nestedness follows by Claim3.5. So let us assumeX 1 \ C = ; . By the

dependency,X 1 \ C � 6= ; , contradicting X 2 \ C 6= ; by the second part of (c).

Next, we show that (ii) implies (i). (a) and (b) are included among the conditions. For (c),

consider anX 2 L 1 with dominant pieceX a w.r.t. M and another pieceX i , i 6= a. Notice that

X i � M � . If X and C] are independent, thenX i \ C = ; as otherwise an edge betweenX i \ C

and M would connect both. If they are dependent so that the dominantside ofX w.r.t. C] is
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di�erent from X i , then X i ( C or X i \ C = ; follows. Finally, if the dominant side isX i , then

C cannot be the dominant side ofC] w.r.t. X (as it would imply M � X a � C), thus C ( X i .

Now W; C] ; X forms a chain by Claim3.21(i), a contradiction to the stability of H .

Assume nextX a \ C 6= ; and X i \ C � 6= ; . X and C] are again dependent and thus nested,

and as above, the dominant side ofX cannot beX i . C cannot be the dominant side ofC] as

X i � C would contradict X i \ C � 6= ; . HenceC � X �
i . We get a contradiction again because

of the chain W; C] ; X .

Finally for (d), assumeC] and X 2 L 2 are dependent.C cannot be the dominant piece of

C] w.r.t. X as it would yield X 2 L 1. Consequently,X i � C � for a non-dominant pieceX i of

X w.r.t C] , and thus by Claim 3.21(ii), W; C] ; X forms a chain, a contradiction to stability.

Proof of Lemma3.24. Using Claim3.26, it is left to show that no chain C] ; U; K may exist with

K 2 H , U 2 C � (H + C] ) so that H + C] + U is cross-free. Indeed, if such a chain existed, then

C] and K would be dependent and thus nested. LetC0 be the dominant piece ofC] w.r.t. K .

If C0 6= C then by Claim 3.21(ii), W; C] ; K is a chain, contradicting the stability of H . (W is

the clump supporting C ensured by (b).)

If C0 = C, then for some piecesU1 of U and K 1 of K , K 1 ( U1 ( C. Now U1 2 Q �
S

H,

U1 � M � and K supports U1. By making use of Claim3.26, U1 �ts ( H ; M ), a contradiction to

the minimal choice ofC.

3.3.2 Description of the Dual Oracle

To determine the value of� (G), we �rst construct a skeleton K as described above. ForK, we

apply the reduction to Theorem3.13as in Section3.2.1. As already mentioned, a minimal chain

decomposition along with maximal legal subpartition of a symmetric poset P = ( U; � ; M ) may

be found via a reduction to �nding a maximum matching. For thesake of completeness and

also because it will be needed for the minimum cost version, we include this reduction. De�ne

the graph C = ( U; H) with uv0 2 H if and only if u � v and vv0 2 M for somev 2 U.

It is easy to see that the setf m1; m2; : : : ; m`g � M is a symmetric chain if and only if

there exists edgese1; : : : ; è � 1 2 H such that m1e1m2e2 : : : mk� 1ek� 1mk is a path, called anM -

alternating path. The transitivity of � ensures thatM [ H contains noM -alternating cycles.

Let N � H be a matching in C. Then the components ofM [ N are M -alternating paths,

each containing exactly two nodes not covered byN . Hence �nding a maximum matching in

H is equivalent to �nding a minimum chain cover inP. The running time of the most e�cient

maximum matching algorithm for a graph onn1 nodes with m1 edges isO(
p

n1m1) [69, Vol I,

p. 423].

Let us now give upper bounds onjKj and on jUj. Jord�an [49, 50] showed that the size of

the optimal augmenting edge set is at most max(b(G) � 1;
l

t (G)
2

m
) +

�
k� 2

2

�
. Here b(G) is the

maximum size of a clump, whilet(G) is the maximum number of pairwise disjoint sets inQ.
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Since b(G) � n � (k � 1), t(G) � n, it follows that n is an upper bound on the size of an

augmenting edge set. In a skeletonK, the set of clumps connected by an edgexy forms a chain.

Since the size of a chain can also be bounded byn, we may conclude
P

X 2K (jK j � 1) � n2 and

thus jKj � n2. Using the running time estimation in Section3.5, this gives a boundO(kn5) on

�nding K.

In Section 3.2.1 the minimum semi-cover ofK is reduced to a minimum symmetric chain

cover of a posetP = ( U; � ; M ) with jUj = O(n2), since there are 2jX j nodes inU corresponding

the clump jX j. Hence the running time of the matching algorithm may be bounded by O(n5).

As indicated in the introduction, at most
� n

2

�
calls of the Dual Oracle enable us to compute an

optimal augmentation. This gives a total running timeO(kn7).

As in [36], another algorithm can be constructed which calls the dual oracle only once. First,

let us �nd a skeleton K = f K 1; : : : ; K `g with a cover F and a grove � of K with def (�) = jF j.

Then we iteratively apply sequences of 
ipping operations asin Lemma 3.11 for F i � 1 = C �

f K 1; : : : ; K i � 1g and K i for i = `; ` � 1; : : : ; 1 resulting �nally in a cover F 0 of C with jF j = jF 0j.

For each i it can be easily seen that afterO(n2) 
ippings we get a cover ofF i � 1, thus O(n4)

improving 
ipping su�ce. The realization of a 
ipping step can be done using similar techniques

as in Section3.5. We omit this analysis as it is highly technical and we could not get a better

running time estimation as for the previous algorithm.

3.4 Further remarks

3.4.1 Node-induced cost functions

In this section, we show that the minimum cost version is also solvable for node-induced cost

functions. c0 : E ! R is a node-induced cost function if there exists ac : V ! R so that

c0(uv) = c(u) + c(v) for every uv 2 E. By the second part of Theorem3.12, for a skeletonK

and a node-induced cost functionc0, the minimum c0-cost of a cover ofC is the same as that of

K. Hence it is enough to construct a subroutine for determining the minimum cost� c0(K) of a

cover ofK. A minimum cost augmenting edge set can be found by iterativelycalling this dual

oracle.

Furthermore, by Lemma3.14, � c0(K) equals the minimum cost of a semi-cover ofK. Finding a

minimum-cost semi-cover can be easily done based on the following weighted version of Fleiner's

theorem, which reduces to maximum cost matching in general graphs.

Given a symmetric posetP = ( U; � ; M ) and a cost functionw : U ! R, let us de�ne the

cost of the symmetric chainS = f u1v1; : : : ; u`v`g � M with u1 � : : : � u` , v1 � : : : � v` by

w(S) = w(u` ) + w(v1). Our aim is now to �nd a chain cover of minimum total cost.

Consider the reduction to the matching problem in Section3.3.2. For a matching N � H

of C, the components ofM [ N are M -alternating paths each corresponding to a symmetric
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chain. The alternating path corresponding to the chainS is v1u1v2u2 : : : v`u` , hence the cost

of the two nodes not covered byN equals the cost of the chain. Consequently, the cost of a

symmetric chain cover equals the total cost of the nodes not covered by N . Hence minimizing

the cost of a symmetric chain cover is equivalent to �nding a maximum cost matching. Note

that here we need a maximum cost matching only for node inducedcost functions, although

this can be found for arbitrary cost functions.

To �nd a minimum cost semi-cover ofK, we construct the symmetric posetP = ( U; � 0; M )

as in Section3.2.1. For a one-way pairu = ( u� ; u+ ) 2 U, let w(u) = min x2 u+ c(x). We claim

that �nding a minimum cost symmetric chain cover for thisw is equivalent to �nding a minimum

cost semi-cover ofK.

Indeed, there is a one-to-one correspondence between chainsconsisting of clumps of the

form (X i ; X �
i ) and the symmetric chains ofU (with the restriction that a chain may not contain

both (X i ; X �
i ), (X j ; X �

j ) for i; j > 1). A chain K 1; K 2; : : : ; K ` of clumps with orientations

L1 � L2 � : : : � L ` can be covered by any edge betweenL �
1 and L+

` , thus the minimum cost

of an edge covering it isw(L ` ) + w(
 �
L1) with w de�ned as above. Hence a minimumc-cost of a

semi-cover inK equals the minimumw-cost of a symmetric chain cover ofP.

3.4.2 Degree sequences

What can we say about the degree sequences of the augmenting edge sets? It is well-known that

in a graph G with some cost function on the edges, the sets of nodes covered by aminimum

cost matching form the bases of a matroid. A natural generalization of matroid bases are base

polytopes (see e.g. [69, Vol II, p. 767]).

For undirected edge-connectivity augmentation, the degree sequences of the augmenting edge

sets form a base polytope, and the same holds for the in- and out-degree sequences for directed

edge-connectivity augmentation (see e.g. [23]). This is also true in case of directed node-

connectivity augmentation [31]. Moreover, all these results can be generalized for node-induced

cost functions: the degree (resp. in- and out-degree) sequencesof minimum cost augmenting

edge sets form a base polytope. Hence a natural conjecture is thefollowing:

Conjecture 3.27. Given a (k � 1)-connected graphG and a node-induced cost function, the

degree sequences of minimum cost augmenting edge sets form abase polytope.

This was essentially proved by Szab�o proved in his master's thesis [70] for k = n � 2. His

result holds even without the assumption that the graph is (k � 1)-connected, indicating that

the conjecture might hold for arbitrary graphs as well.
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3.4.3 Abstract generalizations

In this section, we discuss possible generalizations and extension of the above results. A nat-

ural question is whether it is possible to give a generalizationof Theorem 1.37 for abstract

structures, in the sense as Theorem1.2 generalizes Theorem1.6 from strict one-way pairs in

a (k � 1)-connected graph to arbitrary crossing systems of set pairs. Indeed, it would be pos-

sible to formulate such an abstract theorem for describing coverings of a systemsC of \basic

clumps", where under basic clump we simply mean a subpartition ofa set satisfying certain

properties. However, it is not easy to extract the abstract properties C needs to ful�ll so that

the argument carry over. In particular, we need to ensure Claim 3.1, Lemma 3.3, Claims 3.4

and 3.5, Lemma3.20and Lemma2.5 (for set pairs arising from orientations of clumps). It may

be veri�ed that wheneverC satis�es these, all other proofs carry over; for the algorithm we also

need a good representation ofC.

Since the argument is already quite abstract and complicated, and we could not �nd a short

and nice list of properties that ensure all these claims, we did not formulate such an abstract

theorem in order to avoid the addition of a new level of complexity. Furthermore, we believe

that there should be a relatively simple abstract generalization of Theorem1.37, which does not

rely on all claims listed above. For comparison, the argument given in Chapter 2 for proving

Theorem1.6 strongly relies on properties ofF which hold only if F is a crossing family of strict

one-way pairs of a (k � 1)-connected digraph (e.g. Claim2.3, Lemma 2.5). Nevertheless, the

more general Theorem1.2 is true for arbitrary crossing families of set pairs, and admits amuch

simpler proof. (Recall that in Section2.3.2we also gave an extension of the \skeleton-proof" of

Theorem 1.6 to that of Theorem 1.2 by introducing slim one-way pairs. Such an extension of

Theorem1.37might also be possible, however, we would prefer a simpler type ofargument.)

A natural application of such an abstract theorem would be rooted connectivity augmenta-

tion. Given a graph or digraph with designated noder0 2 V, it is called rooted k-connected if

there are at leastk internally disjoint (directed) paths betweenr0 and any other node. Similarly,

a digraph is rooted k-edge-connected with root r0 if there are at most k � 1 edge-disjoint

directed path from r0 to any other node. One may ask the augmentation questions for rooted

connectivity as well. It turns out that for digraphs, the minimum cost versions of rootedk-

connectivity and rootedk-edge-connectivity augmentation are both solvable in polynomial time

(see Frank and Tardos [35] and Frank [29]): both problems can be formulated via matroid

intersection (although the reduction of the node-connectivity version is far from trivial).

In contrast, for undirected graphs the minimum cost version of rooted k-connectivity aug-

mentation is NP-complete: Hamiltonian cycle reduces to it even for k = 2 and 0-1 costs. The

minimum cardinality version of augmenting rooted connectivity by one was studied by Nutov

[68], who gave a an algorithm �nding an augmenting edge set of size at most opt+min( opt; k)=2.

An important di�erence between minimum cardinality directed and undirected rooted con-
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nectivity augmentation is that while in the directed case there is an optimal augmenting edge

set consiting only of edges outgoing fromr0, in the undirected case it may contain edges not

incident to r0. An example isV = f r0; x; y; ag, E = f r0x; r 0y; xa; yag (a rectangle). Fork = 3,

F = f xy; r 0ag is an optimal augmenting set, but there is no augmenting set of size two of edges

incident to r0.

We believe that a min-max formula and a polynomial time algorithm for �nding an optimal

solution could be given by extending the method of this chapter. However, it is not completely

straightforward how clumps should be de�ned in this setting. Atthis point, we leave this

question open, since we believe that it will be an easy consequence of a later general abstract

theorem.

3.4.4 General connectivity augmentation

In what follows, we give an argument showing that there is no straigthforward way of generalizing

Theorem 1.37 for general connectivity augmentation. By "straightforward", we would mean a

relation analoguous to the one between Theorems1.2and 1.1: in the �rst one, the dual optimum

is the maximum number of pairwise independent members of a crossing system of set pairs,

while in the latter one, we are interested the maximump-sum over pairwise independent set

pairs. Hence a possible approach for general undirected connectivity augmentation would be

the following. Let a clump be a subpartitionX = ( X 1; : : : ; X ` ) of V with d(X i ; X j ) = 0 (we

do not assumejNX j = k � 1), and let p(X ) be a lower bound on the number of edges needed

to cover X . There are multiple possible candidates forp(X ) and we do not commit to any of

them, but work only with the natural assumption that (?) p(X ) = max(0 ; k � j NX j) whenever

jX j = 2; and p(X ) = 0 whenever jNX j � k. A natural conjecture is the following: the minimum

size of an augmenting edge set equals the maximum de�ciency of agrove, where in the de�nition

of de�ciency, each termjX j � 1 is replaced byp(X ).

We show by an example that this conjecture fails even if (?) is the only assumption onp(X ).

Let G = ( V; E) be the complement of the graph on Figure3.3 and let k = 9. For a nodez 2 V,

let Zz = ( f zg; f zg� ). The only basic clumps inG with jNX j < 9 areZa, Zb, Zu1 , Zu2 , Zv1 , Zv2 ,

(f u1; u2g; f u3g; f u4g), (f v1; v2g; f v3g; f v4g) and (f a; cg; f b; dg). f u1u4; u2u3; v1v4; v2v3; ab; ad; bcg

is an augmenting edge set of size 7, while a grove of value 6 is theone consisting of two bushes

B1 = f Zu1 ; Zu2 ; Zu3 ; Zu4 ; (f ag; f u1; u2; dg)g and B2 = f Zv1 ; Zv2 ; Zv3 ; Zv4 ; (f bg; f v1; v2; cg)g.

We show that neither an augmenting edge set of size 6, nor a grove of value 7 exists. On the

one hand, assume an augmenting edge setF exists with jF j = 6. Then F can be partitioned

into F = F1 [ F2 with jF1j = jF2j = 3, F1 coveringB1 and F2 overing B2. However, we need at

least two edges to coverZa and two to coverZb, and these can only be contained inF1 and F2,

respectively. If ad 2 F1, then F1 cannot contain any ofau1 and au2 as otherwise at least one of

Zu3 and Zu4 would remain uncovered. Hencead =2 F1, and similarly bc =2 F2. ab; cd =2 F as they
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Figure 3.3: Example concerning general connectivity augmentation.

do not cover any ofB1 and B2, thus (f a; cg; f b; dg) remains uncovered.

On the other hand, assume a grove of value 7 exists. We claim that itshould contain

(f a; cg; f b; dg), and two clumps of the form (f ag; A) and (f bg; B) with b2 A and a 2 B. This is

clearly a contradiction as they cannot be simultaneously contained in a grove, since the edgeab

connects all three of them. It can easily be checked that if we do not require (f a; cg; f b; dg) to

be covered, then the remaining clumps may all be covered by sixedges. The same holds unless

we require all clumps of the form (f ag; A) with b2 A and all clumps of (f bg; B) with a 2 B to

be covered. Consequently, every grove of value 7 should contain such clumps.

3.5 Implementation via bipartite matching

In this section we present how the subroutine for constructing a skeleton can be implemented

using bipartite matching theory. The argument follows the same lines as the one in Section2.4;

we adopt the terminology, notation and multiple fundamental claims proved there. Before

starting the reduction to bipartite graphs, let us prove a simple claim concerning pieces. This

is an analogue of Claim2.3.

Claim 3.28. For a pieceY 2 Q 1 and an arbitrary setX � V , if X � � Y � , then X � Y.

Proof. Indeed, assumeX is not a subset ofY, thus jX [ Y j > jY j. The condition gives

(X [ Y)� = Y � , and hencejN (X [ Y)j < jN (Y)j = k � 1, contradicting that G is (k � 1)-

connected.

Given the (k � 1)-connected graphG = ( V; E), let us construct the bipartite graph B =

(V 0; V 00; H ) as follows. With each nodev 2 V associate nodesv0 2 V 0 and v002 V 00and an
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edgev0v002 H . With each edgeuv 2 E associate two edgesv0u00; u0v002 H . For a set X � V ,

we denote byX 0 and X 00its images inV 0 and V 00, respectively. The (k � 1)-connectivity of G

implies that B is a (k � 1)-elementary bipartite graph. For a setX � V , X 0 is tight if and only

if X 2 Q 1. (Recall that in Section 2.4 we called a setX 0 � V 0 tight if j�( X 0) = jX 0j + k � 1

and �( X 0) 6= V 00.)

First we need to �nd the set M of minimal pieces. This is done by computing the edge

set Fuv (the (k � 1)-uv-factor) by a single max-
ow computation for everyu; v 2 V, uv =2 E.

By Claim 2.15, the minimal uv̂-sets can be found by a breadth-�rst search. The minimal ones

among these will give the elements ofM .

Consider now a stable cross-freeH which is not complete, a minimal elementM 2 M�
S

H

and L 1, L 2 as de�ned by (3.2). If L 1 = ; then we are done by Claim3.23, hence in the sequel

we assumeL 1 6= ; .

By Lemma 3.24, our task is to �nd a minimal C �tting ( H ; M ). Let T be the set of the

maximal ones among those pieces of the clumps inL 1 which are subsets ofM � .

Claim 3.29. T consists of pairwise disjoint sets.

Proof. Consider clumpsX; Y 2 L 1 with piecesX 1; Y1 2 T . If X and Y are independent then

X 1 \ Y1 = ; as otherwise an edge betweenX 1 \ Y1 and M would connect both. If they are

dependent, then we show that the dominant sideX i of X w.r.t Y is di�erent from X 1. Indeed,

if X i = X 1, then the dominant side ofY w.r.t. X should beYj 6= Y1 as otherwiseM � Y1 would

follow. HenceY1 ( X 1, a contradiction to the maximality of Y1. Similarly, the dominant side

of Y w.r.t. X may not be Y1. HenceY1 � X � , thus X 1 \ Y1 = ; .

Let us construct the bipartite graphB1 = ( V 0; V 00; H1) from B by adding some new edges as

follows. (1) For eachX 2 L 2, let x0y00; y0x002 H1 for every xy connectingX . (2) Let x0y002 H1

wheneverT 2 T , x 2 T and y 2 T [ N (T). (3) For eachX 2 L 1 with dominant pieceX a w.r.t.

M ] , let x0y002 H1 for every x 2 X a, y 2 X �
a .

Claim 3.30. Let C 2 Q �
S

H, C � M � , supported by someW 2 H . C �ts (H ; M ) if and

only if C0 is tight in B1.

Proof. C0 � V 0 is tight in B1 if and only if it is tight in B and there is no edge inx0y002 H1 � H

with x0 2 C0, y0 2 V 00� �( C0) (or equivalently, xy connects the clump (C; C� )).

AssumeC �ts ( H ; M ). Property (d) forbids that any x0y002 H1 � H of the �rst type cover

C0, while (c) forbids any x0y00of the second or third type to coverC0. For the other direction,

properties (a) and (b) follow by the conditions. For (d), ifC were dependent with someX 2 L 2,

then a new edge of the �rst type would coverC0. For (c), if C \ X i 6= ; , X i � C 6= ; for some

X 2 L 1 with a piece X i ( M � , then consider aT 2 T with X i � T. C � T 6= ; as otherwise

W; C] ; T ] would contradict stability. By Claim 3.28, C � \ (T [ N (T)) 6= ; , hence a new edge of
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the second type coverssC0. Finally, if X a is the dominant piece ofX w.r.t. M ] and X a \ C 6= ; ,

X i \ C � 6= ; , then there is a new edge of the third type coveringC0.

To �nd a C as in Lemma3.24, we need to add some further edges toB1. Indeed, we need

to ensure that C 2 Q �
S

H and furthermore that C is supported by someW 2 L 1. Consider

now a W 2 L 1 with a piece W1 2 T and a connected setQ with W1 ( Q � M � . Let Z (Q)

denote the unique minimalX satisfying the following property:

X 2 Q ; Q � X , and X �ts ( H ; M ): (3.3)

We will determine Z(Q) for di�erent sets Q in order to �nd K . As in the directed case, it is

easy to see thatZ (Q) is well-de�ned. The next claim gives an easy algorithm for �nding Z(Q)

for a givenQ.

Claim 3.31. Fix some u 2 Q, v 2 M . Let B2 denote the graph obtained fromB2 by adding

all edgesu0y00with y 2 Q [ N (Q). Let S denote the set of nodesz for which there exists an

alternating path for Fuv from u0 to z0. Then Z(Q) = S.

Proof. As M � is an uv̂-set in B2, applying Claim 2.15(a) for B2 instead of B , we get that B2

contains no alternating path for Fuv betweenu0 and v00. By Claim 2.15(b), S is the unique

minimal uv-piece in B2. �( S0 [ Q0) = �( S0) thus Q [ N (Q) = S [ N (S) because of the new

edges inB2, hence by Claim3.28, Q � S. By making use of Claim3.30, S is the unique minimal

set satisfying (3.3), thus Z(Q) = S.

Consider now a clumpW = ( W1; W2; : : : ; Wh) 2 L 1 with W1 2 T . We want to �nd a ZW

�tting ( H ; M ) supported by W1. For eachq 2 NW \ M � , let us computeZ(Q) for Q = W + q.

Let CW denote a minimal set among these. AZ(Q) can be found by a single breadth-�rst search,

thus we need at mostk � 1 breadth-�rst searches. We may compute such aCW for all possible

choices ofW, and a minimal among these gives a minimalC �tting ( H ; M ). Therefore the

running time may be bounded by (k � 1)n breadth-�rst searches since by Claim3.29, jT j � n.

Somewhat surprisingly, this better compared to the directed case, where we neededn2 breadth

�rst searches. The reason is that here we could take advantage of the fact that all pieces in

a basic clump are connected and therefore consider onlyQ = W + q for q 2 NW \ M � . In

contrast, the tail or a head of a one-way pair may contain a directed cut and therefore we had

to examine a larger set ofQ's.

Complexity

To �nd a skeleton system �rst we needn2 Max Flow computations to determine the minimal

pieces and the auxiliary graphs. The running time for extending the stable cross-free system

by one member is dominated by (k � 1)n breadth �rst searches. Thus ifs is an upper bound
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on the size of a skeleton, then we can determine one inO(n5 + skn3) running time by using an

O(n3) maximum 
ow algorithm and an O(n2) breadth �rst search algorithm.
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Chapter 4

General directed node-connectivity

augmentation

The results in this chapter were published in [74], a joint paper with Andr�as Bencz�ur jr. We have

de�ned posets with the strong interval property and formulated Theorem1.40in Section1.5.2.

Let us start with the proof of Claim 1.39.

Proof of Claim 1.39. Property (i) of De�nition 1.38 follows directly by the properties of set

union, intersection and containment. The relation between intervals and subfamilies de�ned by

pairs of nodes is straightforward since the minimal elements of S are the set pairs of the form

(f ug; V � u) and the maximal ones are of the form (V � v; f vg). To prove Property (ii), consider

an edgexy with [m; M ] = I xy . (1.7) is a consequence of Lemma2.2.

We have already seen that Theorem1.1 follows from Theorem1.40. Let us now show that

the reverse implication also holds and hence they are equivalent. Given a poset (P; � ) with

the strong interval property, let us de�ne a representative element ' (x) for every minimal or

maximal elementx. For a 2 P , let us de�ne the pair 	( a) = ( a� ; a+ ) so that

a� = f ' (m) : m � a; m 2 P minimalg; a+ = f ' (M ) : M � a; M 2 P maximalg:

It is easy to show that the function 	 is a homomorphism for _, ^ and � . Let us de�ne

p0(K ) := max f p(a) : 	( a) = K g wherep0(K ) = 0 if there exists no a 2 P with 	( a) = K . It

is easy to verify that this is positively crossing supermodular. Hence applying Theorem1.1 for

p0 on the set pairs implies Theorem1.40.

Let us now show some basic properties of the tight elements.

Lemma 4.1. If x and y are two dependent tight elements withp(x) > 0, p(y) > 0, then both

x _ y and x ^ y are tight.
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Proof. Let g(x) denote the number of intervals covering elementx. By the strong interval

property all intervals that cover x _ y or x ^ y also coverx or y and if they cover both, then

they cover all four, henceg(x) + g(y) � g(x _ y) + g(x ^ y). The proof is complete by

g(x _ y) + g(x ^ y) � p(x _ y) + p(x ^ y) �

� p(x) + p(y) = g(x) + g(y) � g(x _ y) + g(x ^ y) (4.1)

implying equality everywhere. Here the �rst inequality follows since we have a cover; the second

is the de�nition of crossing supermodularity; and the equalityfollows by the tightness ofx and

y.

The following easy corollary will be used throughout the paper:

Corollary 4.2. For a cover I , every I 2 I has a unique minimal and a unique maximal tight

element.

Lemma 4.3. If x and y are two dependent tight elements withp(x) > 0, p(y) > 0, and the

interval [m; M ] 2 I contains x, then it contains at least one ofx _ y and x ^ y; or equivalently,

y � M or m � y.

Proof. Recall that by the proof of Lemma4.1 we have equality everywhere in (4.1); the last

inequality hence turns tog(x) + g(y) = g(x _ y) + g(x ^ y). By the strong interval property all

intervals that cover x _ y or x ^ y also coverx or y and if they cover both, then they cover all

four. Hence the above equality implies the claim.

4.1 The algorithm

We give a brief overview of our algorithm for the 0{1 valued case (Theorem1.2) �rst. The algo-

rithm starts out with a (possible greedy) interval coverI = f I 1; : : : ; I r g. In Algorithm Push-

down-Reduce we maintain a tight element ui 2 I i for each interval I i as a witness for the

necessity ofI i in the cover. As long as the set of witnesses are non-independent,in Proce-

dure Pushdown we replace certainui by smaller elements. By such steps we aim to arrive in

an independent system of witnesses. If witnesses are indeed pairwiseindependent, they form

a dual solution with the same value as the primal cover solution,thus showing both primal

and dual optimality. Otherwise in ProcedurePushdown the ProcedureReduce is called, a

procedure that exchanges interval endpoints so that we get aninterval cover of size one less.

In order to handle weighted posets, technically we need to consider multisets of intervals and

witnesses in our algorithm. We assumeI = f I 1; : : : ; I r g may contain the same interval more

than once and the same may happen to the set of witnesses. The next lemma shows that if the

witnesses are pairwise independentas a weighted setinstead of a multiset, then the solution is

optimal.
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Lemma 4.4. Consider a coverI = f I 1; : : : ; I r g and a tight elementui 2 I i for every i . If for

every i; j , ui and uj are either independent orui = uj , then the elementsf u1; :::; ur g give a dual

optimal solution, and henceI is an optimal cover.

Proof. It su�ces to show that if for a poset element y there exists ani with y = ui , then there

exist exactly p(y) such intervals I j with y = uj . Sincey = ui is tight, there are exactly p(y)

intervals I j with y 2 I j . Consider such anuj now: ui and uj are either independent orui = uj ,

but the �rst case is impossible since both of them are covered byI j . Henceuj = ui for all p(y)

values ofj .

Algorithm Pushdown-Reduce (I )

for j = 1; :::; r do

if I j has no tight elementsthen

return reduced coverf I i : i = 1; :::; j � 1; j + 1; :::; rg

u(1)
j  maximal tight element of I j

t  1

do

for j = 1; :::; r do

u(t+1)
j  Pushdown (j; t; I )

t  t + 1

while exist j such that u(t )
j < u (t � 1)

j

return dual optimal solution f u(t )
1 ; :::; u(t )

r g

ProcedurePushdown (j; t; I )

U  f x : mj � x � u(t )
j , x tight and 8i = 1; : : : ; r , u(t )

i may not pushx downg

if U = ; then

t �  t;

return Reduce (j; t � ; I )

else return the maximal x 2 U

4.1.1 The Pushdown step

Our Algorithm Pushdown-Reduce (see box) tries to push witnesses down along their intervals

in iterations t = 1, 2, . . . until they satisfy the requirements of Lemma4.4; witnesses are
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Figure 4.1: Di�erent cases when u may push v down. By Lemma 4.3 mi � v, and there are three

possible cases: (a)mj 6� u � M j , (b) mj � u 6� M j , and (c) mj � u � M j

superscripted by the iteration value (t). Initial witnessesu(1)
j are maximum tight; their existence

follows by Corollary 4.2.

Given two intervals I i = [ mi ; M i ] and I j = [ mj ; M j ] and two tight elementsu 2 I i and v 2 I j ,

we say that u may push v down with respect to I i if u and v are dependent andv 6� M i .

In the case setU of ProcedurePushdown (see box) is nonempty we will pushv down, i.e.

replace it by the maximal element ofU strictly below v. Notice that the de�nition depends on

the choice of the intervalI i with u 2 I i ; it is possible that v may pushu down with respect to

certain I i and not with others. In the following, when it is clear from thecontext, we will omit

mentioning I i . Di�erent scenarios whenu may pushv down are shown in Figure4.1.

In what follows we motivate which element replaces a givenv when v gets pushed down.

When selectingu(t+1)
j , our aim is to replaceu(t )

j by the maximal such tight elementx 2 I j which

satis�es x � u(t )
j and no u(t )

i may pushx down. As the motivation of pushingu(t )
j down by u(t )

i

we give the following claim as a relatively easy consequence ofLemma4.9; we omit the proof as

it is not used elsewhere. Ifu(t )
i may pushu(t )

j down, then for all subsequentt0 > t of the while

loop of Algorithm Pushdown-Reduce if the witnessesu(t0)
j and u(t0)

i are dependent then they

must be equal. This will be the main reason why all non-equal dependent pairs of witnesses

gradually disappear from the system.

While the above motivation considers the dual solution, namely it shows that the set of

witnesses will satisfy the optimality requirements, we may also give a primal motivation of

pushingv down by u. If u is maximum tight in I i , then we may hope that by replacing [mi ; M i ]

by [mi ; M j ] we still get a cover. In the examples of Figure4.1 this holds for cases (a) and (c).

In this cover v is contained in the new interval while it was not contained inthe old, thus it

may be replaced by a smaller witness.

However, this argument fails for case (b) sinceu =2 [mi ; M j ] and the actual proof of correct-

ness will use a slightly more complicated argument. In the case ofincreasing connectivity by
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one (see [4]), the only possible scenario was (a). This is the main reason whythe analysis is

signi�cantly harder for the general case. While the argument for replacing [mi ; M i ] by [mi ; M j ]

fails, we still push v down and proceed with the algorithm. Then we use a backward analysis

as in [4]; in the weighted case it turns out that, while this fails to hold in general, if a particular

interval exchange is performed corresponding to a pushdown step, then the exchange is valid

and in particular we haveu � M j . We prove this later in Lemma4.12.

The next properties of elements that one may push the other down are required both for

the de�nition of the algorithm and later for the proof of correctness.

Lemma 4.5. If u; u0 2 I i and v 2 I j are tight with u0 � u and u may pushv down, thenu0 may

also pushv down.

Proof. We only have to show thatu0 and v are dependent.v 6� M i , sinceu may pushv down.

Now by Lemma 4.3 we havemi � v. Hence the dependence ofu0 and v follows: a common

lower bound ismi and a common upper bound isu _ v.

Lemma 4.6. Supposeu 2 I i , v 2 I j , v0 2 I h are tight elements andv and v0 are dependent. If

u may pushv _ v0 down, then it may also push eitherv or v0 down.

Proof. Sinceu may pushv _ v0 down, we havev _ v0 6� M i , hencemi � v _ v0 by Lemma 4.3.

By the strong interval property either mi � v or mi � v0. By symmetry let us consider the

�rst case; in this casev and u are also dependent since their common lower bound ismi and

their common upper bound isu _ (v _ v0). If v 6� M i , then u may pushv down. Suppose now

mi � v � M i . Sinceu may pushv _ v0 down, we havev _ v0 6� M i and thus v0 6� M i . Then by

applying Lemma4.3 for v, v0 and [mi ; M i ] it follows that mi � v0, henceu and v0 are dependent.

Finally by v0 6� M i we get that u may pushv0 down.

The actual change of a witnessu(t )
j is performed in ProcedurePushdown (see box). We

select all tight elementsx 2 I j , x � u(t )
j into a set U that cannot be pushed down with elements

u(t )
i . If U is nonempty, we next show that it has a unique maximal element;we use this element

as the new witnessu(t+1)
j .

Lemma 4.7. In Procedure Pushdown either U = ; or else it has a unique maximal element.

Proof. It su�ces to show that if x; x0 2 V, then so isx _ x0 2 V. Obviously, x _ x0 is tight and

mj � x _ x0 � u(t )
j . Suppose now that someu(t )

i may pushx _ x0 down. By Lemma4.6, u(t )
i may

push eitherx or x0 down, contradicting x; x0 2 U.

If we �nd no dependent pair of witnesses such that one may push the other down, then

we will show that the witnesses are pairwise independent or equaland thus the solution is

optimal. As long as we �nd pairs such that one may push the other down, in the main loop of

Algorithm Pushdown-Reduce we record a possible interval endpoint change by pushing one

witness lower in its interval; these changes are then unwound to a smaller cover as shown in

Section4.1.3.
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4.1.2 Proof for termination without Reduce

We turn to the �rst key step in proving the correctness: we show thatif the algorithm terminates

without calling ProcedureReduce , then u(t )
i are pairwise independent or equal; in other words,

if none of them may be pushed down by another, then the solution is optimal.

Theorem 4.8. If the algorithm terminates without calling ProcedureReduce , then u(t )
i and

u(t )
j dependent impliesu(t )

i = u(t )
j .

The theorem is an immediate consequence of the next lemma. To see, notice that if the

algorithm terminates without calling ProcedureReduce , then in a last iteration the while

condition of Algorithm Pushdown-Reduce fails. However then there are no pairsi and j

such that u(t )
i may pushu(t )

j down.

Lemma 4.9. Assume thatt1 � t2, and u(t2 )
i and u(t1 )

j are dependent, andu(t1 )
j may not push

u(t2 )
i down. Thenu(t2 )

i � u(t1 )
j .

This lemma is used not only for proving Theorem4.8 but also in showing the correctness of

ProcedureReduce in Section4.1.3via the next immediate corollary.

Corollary 4.10. If u(t )
j and u(t+1)

i are dependent, thenu(t+1)
i � u(t )

j .

In the proof of Lemma 4.9 we need to characterize elements that cause witnessuj move

below a certain tight elementy. Assume that for some tighty 2 I j and t we havey 6� u(t )
j .

Since u(1)
j is maximal tight, we may select the uniquet0 with y � u(t0 )

j but y 6� u(t0+1)
j . In

step Pushdown (j; t 0; I ) we must have anu(t0 )
d that may push y down. We will use this in the

following special case:

Lemma 4.11. Assume thatz is tight and dependent fromu(t )
j . Assume furthermore thatz 6� u(t )

j

and z � M j . Then there existst0 < t and d such thatu(t0 )
d may pushu(t )

j _ z down. In addition,

u(t0 )
d may also pushz down.

Proof. We apply the above observations fory = u(t )
j _ z 2 I j . Sincey is tight, y � u(1)

j . And

sincez 6� u(t )
j , we get y = u(t )

j _ z 6� u(t )
j . We selectt0 with y � u(t0 )

j but y 6� u(t0+1)
j ; then in

step Pushdown (j; t 0; I ) we must have anu(t0 )
d that may push y down.

For the second part of the claim observe that by Lemma4.6, u(t0 )
d may push eitheru(t )

j or z

down. The �rst choice is impossible, since thenu(t � 1)
d could also pushu(t )

j down by Lemma4.5,

and t � 1 � t0. This latter contradicts the choice ofu(t )
j as the maximum tight element that

may not be pushed down inPushdown (j; t � 1; I ).

Proof of Lemma4.9. u(t2 )
i � M j , sinceu(t1 )

j may not push u(t2 )
i down. If u(t2 )

i 6� u(t1 )
j , then the

conditions of Lemma4.11hold with z = u(t2 )
i and t = t1. Thus we have somet0 < t 1 and d such
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Figure 4.2: Procedure Reduce called with t � = 1. The two upright intervals are the original ones

with their tight elements shaded. These two intervals will be replaced by the single bold

interval. The new interval contains all tight elements of th e old ones sinceu(1)
j 2

� M j 1 by

Lemma 4.12. Remember that the intervals need not to be disjoint.

that u(t0 )
d may pushz = u(t2 )

i down. But then u(t2 � 1)
d may also pushu(t2 )

i down by Lemma4.5.

This latter contradicts the choice ofu(t2 )
i as the maximum tight element that may not be pushed

down in Pushdown (i; t 2 � 1; I ).

4.1.3 The Reduce step

So far we have proved that ifReduce is not called, then the initial primal solution is optimal and

the algorithm �nds a dual optimum proof of this fact. Now we turn to the second scenario when

ProcedureReduce is called; in this case the solution is not optimal, since Procedure Reduce

is called from ProcedurePushdown when U = ; . This meansu(t )
j =2 U and thus there exists

an i such that u(t )
i may pushu(t )

j down.

ProcedureReduce is called when one witness disappears from the dual solution. Inthis

case we unwind the steps to �nd a cover of size one less in ProcedureReduce based on interval

exchanges at certain pairs of tight poset elements.

To illustrate the idea of ProcedureReduce , �rst we discuss the simplest caset � = 1; the

general case will then be reduced to this case by a special induction. We summarize Pro-

cedureReduce-OneStep for this particular scenario with steps shown in Figure4.2. Since

t � = 1, we have some 1� j 1 � k such that ProcedureReduce is called within ProcedurePush-
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ProcedureReduce-OneStep (j; I )

j 1  j ;

q  minimal tight element in [mj 1 ; M j 1 ]

j 2  minimum value ` 6= j 1 such that u(1)
` may pushq down

return reduced coverf [mi ; M i ] : 1 � i � r; i 6= j 1; j 2g [ f [mj 2 ; M j 1 ]g.

down (j 1; 1; I ). This means that

U = f x : mj 1 � x � u(1)
j 1

; x tight and 8` = 1; : : : ; r; u (1)
` may not pushx downg

is empty. By Corollary 4.2, [mj 1 ; M j 1 ] has a unique minimal tight elementq; sinceq =2 U, we

must have somè = j 2 such that u(1)
` may pushq down. Given an ordering over the intervals,

the algorithm selectsj 2 as the minimal such` and returns a reduced interval system

I � [mj 1 ; M j 1 ] � [mj 2 ; M j 2 ] + [ mj 2 ; M j 1 ]: (4.2)

In the proof of caset � = 1 we use the following general lemma forh = j 1, ` = j 2, u = u(1)
j 2

.

Lemma 4.12. Let q be the minimal tight element ofI h. If u 2 I ` may pushq down, then

u � M h. Furthermore for all tight v 2 I h we have thatu may pushv down with respect toI ` .

Proof. Suppose by contradiction thatu 6� M h. Sinceu and q are dependent, by Lemma4.3,

u^ q 2 I h. Sinceq is the minimal tight in I h, we haveq � u^ q, henceq � u � M ` , contradicting

that u may push q down. For the second part of the claim, consider a tight elementv 2 I h.

Elements u and v are dependent, since common lower and upper bounds areu ^ q and M h,

respectively. Byq � v and q 6� M ` the requiredv 6� M ` follows.

Lemma 4.13. If t � = 1, ProcedureReduce-OneStep (j 1; I ) returns an interval cover.

Proof. It su�ces to show that [ mj 2 ; M j 1 ] contains all tight elements of both [mj 1 ; M j 1 ] and

[mj 2 ; M j 2 ]; furthermore there is no common tight element in [mj 1 ; M j 1 ] and [mj 2 ; M j 2 ]. In this

case we may replace the intervals [mj 1 ; M j 1 ] and [mj 2 ; M j 2 ] by [mj 2 ; M j 1 ] since if a tight element

is contained by exactly one of [mj 1 ; M j 1 ] and [mj 2 ; M j 2 ] then it is contained by the new interval

and containment by both is excluded.

To prove, �rst let x 2 [mj 2 ; M j 2 ] be tight; x � u(1)
j 2

by maximality. When applying

Lemma 4.12for h = j 1, ` = j 2, u = u(1)
j 2

, we getu(1)
j 2

� M j 1 . This implies mj 2 � x � u(1)
j 2

� M j 1 ,

as required.

Next let x 2 [mj 1 ; M j 1 ] be tight; q � x for the minimal tight q of [mj 1 ; M j 1 ]. By Lemma 4.3,

mj 2 � q, thus we getmj 2 � q � x � M j 1 as required.

Finally assume that a common tight elementx 2 [mj 1 ; M j 1 ] \ [mj 2 ; M j 2 ] exists; nowq � x �

M j 2 , contradicting the fact that u(1)
j 2

may pushq down.
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ProcedureReduce (j; t � ; I )

j 1  j ;

for t = t � ; :::; 1 do

s  t � + 1 � t

q  minimal tight element in [mj s ; M j s ]

j s+1  minimum value ` 6= j s such that u(t )
` may pushq down

mj s  mj s+1

return reduced coverf [mi ; M i ] : 1 � i � r; i 6= j t � +1 g.

Our aim in ProcedureReduce (see box) is to repeatedly pick an interval [mj s ; M j s ] and try

to �nd another interval [ mj s+1 ; M j s+1 ] such that if we replace [mj s ; M j s ] by [mj s+1 ; M j s ], then after

the switch the minimum tight element of [mj s+1 ; M j s+1 ] increases. We ensure this by de�ning

j s+1  minimum value ` 6= j s such that u(t )
` may pushq down,

whereq is the minimum tight element of [mj s ; M j s ] after the interval changes andt = t � + 1 � s.

Applying Lemma 4.12 for h = j s, ` = j s+1 , u = u(t )
j s+1

we getu(t )
j s+1

� M j s . Thus when replacing

[mj s ; M j s ] by [mj s+1 ; M j s ], the tight elementsx in [mj s+1 ; M j s+1 ] with x � u(t )
j s+1

will no longer be

tight after the switch. The overall idea is seen in Figure4.3.

While the �rst step of the procedure is well-de�ned since we callProcedureReduce exactly

when the minimal tight q 2 I j for j = j 1 is pushed down by certain otheru(t � )
` , the existence of

such an` is by no means obvious for all the other iterations of the mainloop as switches among

the intervals could completely rearrange the set of the tightelements.

The existence of all further̀ in ProcedureReduce as well as the correctness of the algorithm

is proved by \rewinding" the algorithm after the �rst iterati on of ProcedureReduce and

showing that each step is repeated identical up to iterationt � � 1. The intuition behind rewinding

is based on the resemblance of ProcedureReduce to an augmenting path algorithm. In this

terminology, instead of directly proving augmenting path properties we use a special induction

by executing the main loop of the procedure step by step and after each iteration rewinding the

main algorithm. In the analogy of network 
ow algorithms, this may correspond to analyzing

an augmenting path algorithm by choosing path edges starting at the source, changing the 
ow

along this edge to a pre
ow, and at each step proving that the remaining path augments the


ow.

The key Theorem below will show, by induction on the valuet � of t at the termination of the

main loop of Algorithm Pushdown-Reduce , that the intermediate modi�ed interval sets are

covers fort � ; t � � 1; : : : ; 1. Finally when applied fort � = 1 we get that ProcedureReduce �nds

an interval cover of size one less than before by Lemma4.13. This completes the correctness

analysis of ProcedureReduce . Before stating the Theorem, we de�ne the intermediate modi�ed
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Figure 4.3: ProcedureReduce called with t � = 2. The three upright intervals are the original ones

with their tight elements shaded. The original three intervals will be replaced by the two

bold intervals using the marked witnesses. Note that the twonew intervals contain all

tight elements of the old ones. While the number of intervalscovering certain non-tight

elements (x in the example) may decrease, we prove that they remain covered. Note that

the original intervals are not necessarly disjoint.

interval set I 0 and show it is a cover.

Lemma 4.14. Let

I 0 = I � [mj 1 ; M j 1 ] + [ mj 2 ; M j 1 ]: (4.3)

be the set of intervals after the �rst iteration of ProcedureReduce . Then I 0 is a cover.

Proof. Sinceu(1)
j 2

may push q down, q 6� M j 2 , thus by Claim 4.3, mj 2 � q and so [mj 2 ; M j 1 ]

contains all tight elements of [mj 1 ; M j 1 ].

Theorem 4.15. For t � > 1, Algorithm Pushdown-Reduce performs the exact same steps

with inputs I and I 0 of Lemma4.14 until iteration t � � 1 whenReduce (j 2; t � � 1; I 0) is called.

Hence compared toI , the main loop of Algorithm Pushdown-Reduce terminates one step

earlier with t = t � � 1 when run with I 0.

To prove Theorem4.15 now we de�ne elements that are no longer tight and elements that

become tight in the new cover:

Lemma 4.16. Let

Z1 = f x tight in I and x not tight in I 0g;

Z2 = f x not tight in I and x tight in I 0g:
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Then

Z1 � f x : x 2 [mj 2 ; M j 1 ]; x 6� mj 1 g (4.4)

Z2 � f x : x 2 [mj 1 ; M j 1 ]; x 6� mj 2 g: (4.5)

Hence the same elements are tight inI j 1 for I as in [mj 2 ; M j 1 ] for I 0.

Proof. We get I 0 from I by removing [mj 1 ; M j 1 ] and adding [mj 2 ; M j 1 ] instead. Hence the

elements ofZ1 should be contained in the latter but not in the former, and similarly the

elements ofZ2 should be in the former but not in the latter interval.

Next we show that the algorithm proceeds identical forI and I 0 for t < t � . The proof is

based on the fact that the key elements used in de�ningu(t )
i do not belong toZ1 [ Z2.

Lemma 4.17. Let u0(t )
i denote elements selected by AlgorithmPushdown-Reduce with input

I 0 with the convention thatu0(t )
j 1

belongs to the modi�ed intervalI 0
j 1

= [ mj 2 ; M j 1 ]. Then for all

t < t � , we haveu(t )
i = u0(t )

i .

Proof. By induction on t � t � � 1, we will showu0(t )
i = u(t )

i . We prove the inductive hypothesis

in three steps: we show fori = 1; : : : ; r that

(i) u(t )
i =2 Z1;

(ii) u0(t )
i exists; and

(iii) u0(t )
i =2 Z2

The above three statements implyu0(t )
i = u(t )

i as follows. Fort = 1, the maximal tight elements

are identical for i 6= j 1 by (i) and (iii), since u0(1)
i tight in I implies u0(1)

i � u(1)
i and we have the

opposite inequality when exchanging the role of the two elements. Also u0(1)
j 1

= u(1)
j 1

, since by

Lemma 4.16, the tight elements ofI j 1 in I are the same as the tight elements ofI 0
j 1

in I 0. For

generalt by induction on the step of de�ning u0(t )
i , one can observe that elementu(t )

i belongs to

the setU of ProcedurePushdown (i � 1; t; I 0) and the same holds when exchanging the role of

u0(t )
i and u(t )

i . Thus the two elements must be equal.

Now we prove (i{iii). First of all for i = j 1 the tight elements of I j 1 in I are the same as

those ofI 0
j 1

in I 0 by Lemma 4.16, yielding (i{iii). Hence we assumei 6= j 1 next.

Proof of (i). Assume u(t )
i 2 Z1. By Lemma 4.16, mj 2 � u(t )

i � M j 1 and mj 1 6� u(t )
i .

Furthermore, sincemj 2 � u(t � )
j 1

� u(t+1)
j 1

� M j 1 we have u(t )
i and u(t+1)

j 1
dependent. Using

Corollary 4.10, u(t+1)
j 1

� u(t )
i , thus mj 1 � u(t )

i , a contradiction.

Proof of (ii). We show that u0(t )
i exists andmi � u(t )

i � u0(t )
i . We proved above thatu(t )

i =2 Z1

and henceu(t )
i remains tight in I 0. This immediately gives the result fort = 1. And for t > 1

we use the consequence of the inductive hypothesis thatu(t � 1)
h = u0(t � 1)

h for all h. This yields

u(t )
i 2 U for Pushdown (i; t � 1; I 0) that in turn implies that u0(t )

i exists andu(t )
i � u0(t )

i .
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Proof of (iii). Assume u0(t )
i 2 Z2. By Lemma 4.16, mj 1 � u0(t )

i � M j 1 , thus u0(t )
i and u(t+1)

j 1

are dependent. Observe furthermoreu(t+1)
j 1

is also tight in I 0. Hence by applying Lemma4.3

for I 0, we get that either u(t+1)
j 1

� M i or mi � u(t+1)
j 1

. In both cases we derive a contradiction

with the de�nition of u(t+1)
j 1

in ProcedurePushdown (j 1; t; I ) by showing that certain u(t )
d may

push u(t+1)
j 1

down.

Case I: u(t+1)
j 1

� M i . By Lemma 4.16, we also getmj 2 6� u0(t )
i , which in turn implies

u(t+1)
j 1

6� u0(t )
i , sincemj 2 � u(t+1)

j 1
. Becauseu(t+1)

j 1
is tight in I 0 and u(t+1)

j 1
� M i , we may apply

Lemma 4.11 for I 0, u0(t )
i and z = u(t+1)

j 1
. By the Lemma there existst0 < t and 1 � d � r such

that the element u0(t0 )
d may push u(t+1)

j 1
down. By induction u(t0 )

d = u0(t0 )
d , and by Lemma4.5,

u(t )
d may also pushu(t+1)

j 1
down.

Case II: mi � u(t+1)
j 1

and u(t+1)
j 1

6� M i . As we have seen above,mi � u(t )
i � u0(t )

i . Thus

u(t+1)
j 1

and u(t )
i are dependent since their common lower and upper bounds aremi and M j 1 ,

respectively. Hence in this case we haved = i : elementu(t )
i may pushu(t+1)

j 1
down. The proof

is complete.

We complete the proof of Theorem4.15by the following lemma.

Lemma 4.18. When run with input I 0, Procedure Reduce is called in iteration t � � 1 with

j = j 2.

Proof. By Lemma 4.17, ProcedureReduce cannot be called forI 0 before iteration t � � 1. Two

things are left to prove: (i) in iteration t � � 1, Reduce (h; t � � 1; I 0) is not called for anyh < j 2;

and (ii) Reduce (j 2; t � � 1; I 0) is called.

To prove (i), assume by contradiction thatReduce (h; t � � 1; I 0) is called for someh < j 2,

or equivalently, U = ; in Procedure (h; t � � 1; I 0). We show that u(t � )
h 2 Z1. Indeed, by

Lemma 4.17, u(t � � 1)
h = u0(t � � 1)

h for all h. Since nou(t � � 1)
h may pushu(t � )

j 2
down, this yields that if

u(t � )
h =2 Z1, then u(t � )

h 2 U, contradicting the assumptionU = ; .

By Lemma 4.16, mj 2 � u(t � )
h � M j 1 , thus q and u(t � )

h are dependent. Elementu(t � )
h may not

push q down, because it would contradict the fact that̀ = j 2 is minimal in a �xed ordering of

the intervals so that u(t � )
` may push q down. This means thatq � M h. In addition, q 6� u(t � )

h ,

sincemj 1 � q and mj 1 6� u(t � )
h by u(t � )

h 2 Z1. We can apply Lemma4.11 for u(t � )
h and z = q,

which implies the existence of somet0 < t � and 1 � d � r so that u(t0 )
d may pushq down. By

the second part of Lemma4.12, u(t0 )
d may also pushu(t0+1)

j 1
down, a contradiction.

For (ii), suppose for a contradiction that u0(t � )
j 2

exists. Sinceu0(t � )
j 2

� mj 2 , by Lemma 4.16,

u0(t � )
j 2

=2 Z2, henceu0(t � )
j 2

is also tight in I . We use again that by Lemma4.17, u(t � � 1)
h = u0(t � � 1)

h

for all h. This yields u0(t � )
j 2

2 U for Pushdown (j 2; t � � 1; I ), implying u0(t � )
j 2

� u(t � )
j 2

. By making

use of Lemma4.12, u0(t � )
j 2

� u(t � )
j 2

� M j 1 .

We claim that u0(t � )
j 2

2 Z1, contradicting the fact that u0(t � )
j 2

is tight in I 0. As mj 2 � u0(t � )
j 2

�

M j 1 and u0(t � )
j 2

is tight in I , all we need to show ismj 1 6� u0(t � )
j 2

. Assumemj 1 � u0(t � )
j 2

; this implies

80



mj 1 � u0(t � )
j 2

� M j 1 , thus q � u(t � )
j 2

asq is the minimal tight element of [mj 1 ; M j 1 ] in I . In this case

u(t � )
j 2

may not pushq down, contradicting the selection ofj 2 in ProcedureReduce (j; t � ; I ).

4.2 Application for directed connectivity augmentation

In this section we give a reformulation of the above general algorithm which is applicable for the

problem of directed node connectivity augmentation. The main di�culty is that we typically

have an exponential size poset implicitly given as a set of (directed) cuts. We may either

select an appropriate poset representation or implement the steps of the algorithm with direct

reference to the underlying graph problem. We follow the second approach. We will show how

all non trival steps of the algorithm can be reduced to determining maximal tight elements in

certain interval covers, which can be implemented as a sequence of BFS computations using

some initial 
ow computations.

The key step in implementing ProcedurePushdown for the underlying graph problems is

the following reformulation of the main algorithm. We replace ProcedurePushdown by an

iterative method ProcedureAlternate-Pushdown (see box) that selects a strictly descending

sequence of tight elementsy0 > y 1 > : : : > y ` with y0 = u(t )
j and y` = u(t+1)

j or terminates by

ProcedureReduce (j; t � ; I ). In the implementation for graph augmentation problems itis key

to notice that in a single iteration of ProcedureAlternate-Pushdown we only consider

elements that may be pushed down byu(t )
i for a single value ofi .

ProcedureAlternate-Pushdown (j; t; I )

y0  u(t )
j ; h  0;

while exists i such that u(t )
i may pushyh down do

Uh  f x : mj � x � yh, x tight and u(t )
i may not pushx downg

if Uh = ; then

t �  t;

return Reduce (j; t � ; I )

else

yh+1  maximal x 2 Uh;

h  h + 1

return yh

Lemma 4.19. Procedures Pushdown and Alternate-Pushdown return the same output.

Proof. It follows straightforward from Lemma 4.6 that if Uh 6= ; , then it has a unique maximal

element, henceyh for h � 1 is well de�ned.
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If Procedure Alternate-Pushdown terminates by returning y` , then y` 2 U for U as in

ProcedurePushdown . Thus y` � u(t+1)
j . This shows that if ProcedurePushdown terminates

by calling ProcedureReduce , then so does ProcedureAlternate-Pushdown .

Consider now the case whenU 6= ; in ProcedurePushdown . We show that yh � u(t+1)
j for

eachh � 0. By contradiction, choose the smallesth with yh 6� u(t+1)
j ; thus yh� 1 � yh _ u(t+1)

j �

yh. By the de�nition of Uh� 1, u(t )
i may pushyh _ u(t+1)

j down for somei . Using Lemma4.6 again

it may push either yh or u(t+1)
j down, both leading to contradiction. Now we can conclude that

if Procedure Alternate-Pushdown terminates by returning yh, then both yh � u(t+1)
j and

yh � u(t+1)
j hold, thus they are equal.

To compute yh, consider the set of intervalsJ j;i = I � [mi ; M i ] + [ mi ; M j ] with i as in

ProcedureAlternate-Pushdown . While J j;i is not necessarily a cover of the entire poset,

the following lemmas still hold:

Lemma 4.20. All x 2 Uh are tight in J j;i .

Proof. Notice x is either contained in both intervals [mi ; M i ] and [mi ; M j ] or in neither of them:

if mi � x, then x and u(t )
i are dependent becausemi is a common lower andu(t )

i _ yh a common

upper bound. Hencex � M i , sinceu(t )
i may not pushx down.

Lemma 4.21. Supposeu(t )
i may pushyh down. The set of intervalsJ j;i covers all elements of

I j ; furthermore yh+1 = yh ^ Q, whereQ is the maximal tight element ofI j in J j;i .

Proof. For all x 2 I j , we havex 2 [mi ; M j ] if x 2 [mi ; M i ], hence the number of intervals

coveringx cannot be less inJ j;i than in I , thus J j;i covers all elements ofI j .

For the second part we �rst show that if I j has any tight elements forJ j;i , then there is a

unique maximal among them. We cannot apply Lemma4.1 directly since J j;i is not a cover,

but the claim holds for anyx; y 2 I i , sincex, y, x _ y and x ^ y are all covered byJ j;i . Hence

the existence of the unique maximal tight element follows. Since any element ofI i is covered in

J j;i by at least as many intervals as inI , Q is also tight in I .

Finally we let z = yh ^ Q and show z = yh+1 . Notice that z is tight in I as it is an

intersection of two tight elements inI . As yh+1 � yh and yh is tight in J j;i by Lemma 4.20, we

get yh+1 � Q and thus yh+1 � yh ^ Q = z. For z � yh+1 we have to prove thatu(t )
i may not

push z down. Indeed, suppose thatu(t )
i may pushz down. Then mi � z 6� M i , hence byz � Q

follows Q 2 [mi ; M j ]. As Q is tight in J j;i , this implies that Q 2 [mi ; M i ], thus z � Q � M i , a

contradiction.

By the lemma, the basic step of ProcedureAlternate-Pushdown consists of computing

the maximum tight element of an interval for certain set of covering intervals. Furthermore,

at the beginning of the algorithmu(1)
j is the maximum tight element of I j . Now we turn our

attention to the implementation of the steps of the algorithmfor connectivity augmentation.
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We use the reduction of node connectivity augmentation to poset covering as Claim1.39: the

minimal elements correspond to set pairs having a singleton tail and all the other nodes as

head; maximal elements are found by exchanging the role of tails and heads. For each interval

I = [ mi ; M i ] 2 I we augment the graph by an edgesi t i with si corresponding tomi and t i

corresponding toM i as in the above reduction. IfI covers all poset elements in [mi ; M i ], then

the minimum si { t i cut in the augmented graph has value at leastk.

Algorithm Pushdown-Reduce (I ) will �rst be applied for a greedy coverI (for example,

including all possible intervals), and then subsequently for covers of decreasing cardinality, until

we �nally reach an optimal cover. We initialize Pushdown-Reduce (I ) by computing jIj

maximum 
ows, one corresponding to each interval inI . For interval [mj ; M j ] we compute a

maximum sj { t j 
ow. Since I is a cover, the maximum 
ow value is at leastk. If the sj { t j


ow value is more than k, then [mj ; M j ] contains no tight elements thus can be removed from

the cover and the iterationPushdown-Reduce (I ) is �nished. Otherwise u(1)
j is the set pair

corresponding to the valuek cut with maximal tail that can be obtained by a breadth-�rst

search fromt j on the graph obtainded from the standard auxiliary graph in the Ford-Fulkerson

algorithm by reverting the edges.

Lemma 4.22. Consider the task of �nding the maximum tight element of an interval I j =

[mj ; M j ] for certain set of intervalsJ j;i (as for example in ProcedureAlternate-Pushdown )

that cover I j . Using the maximumsj { t j 
ow computed at the initialization for I j , this step

requiresO(1) breadth-�rst search (BFS) computations.

Proof. Consider the maximumsj { t j 
ow computed at the initialization. We add an edgesi t j

to the graph and remove the edgesi t i . If the 
ow contains the removed edge, then we remove

the single 
ow path containing it. We augment the resulting 
ow to a maximum 
ow by a

single BFS computation. By another BFS starting fromt j we either obtain the maximum tight

element or deduce that there are no tight elements and Procedure Reduce can be called.

For implementing Reduce , we need to �nd minimal tight elements of certain intervals and a

sequence of changes in the interval cover by adding an interval and removing another. The �rst

step can be performed by a BFS computation from the corresponding si ; for the second step

we need to update the 
ows corresponding to the intervals [mj ; M j ] 2 I . For each [mj ; M j ] in

iteration s, we consider the maximumsj { t j 
ow, add an edgesj s+1 t j s to the graph and remove

the edgesj s t j s . Again, if the 
ow contains the removed edge, then we remove the single 
ow

path containing it, an augment the 
ow by a BFS computation.

4.2.1 Running times

To estimate the running time we need bounds for the number of intervals j and the length of a

longest chaiǹ in the poset. At the initialization of Pushdown-Reduce we performj max-
ow
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computations; then the dominating steps are �nding elementsyh in Procedure Alternate-

Pushdown . Since computing meets_ and intersections^ of elements as well as checking

whether u 2 I i may pushv down can be done inO(1) time, this step is dominated byO(1) BFS

computations by Lemma4.22.

Between two calls to ProcedureReduce the total number of iterations in all calls to

Alternate-Pushdown that compute certain yh can be bounded byj � `, since in each step we

�nd a strictly smaller element of certain interval. This totals to O(j � `) BFS computations. For

an iteration of Reduce , we also have to doO(j � `) BFS computations. The total number of

calls to Algorithm Pushdown-Reduce is bounded byj since the number of intervals decreases

in each iteration. Hence we haveO(j 2) maximum 
ow and O(j 2 � `) BFS computations.

For the node-connectivity augmentation problem̀ = O(n), and j = O(n2) since adding a

complete digraph surely gives an (n � 1)-connected digraph. Thus by the above estimations the

running time is dominated by O(n5) BFS computations andO(n4) Max Flow Computations.

As a BFS can be computed in timeO(n2) and a Max Flow in time O(n3), the total running

time can be bounded byO(n7).

4.3 Further remarks

While we have outlined only the implementation of the algorithm for directed connectivity aug-

mentation, it can be done similarly for other applications, for example, ST-edge-connectivity

augmentation. The existence of a strongly polynomial, or evenpolynomial combinatorial al-

gorithm, however, remains open. This latter application demonstrates its importance as by

ST-edge-connectivity we may have arbitrarily large connectivity requirement k.

One may wonder of how strong the generalizational power of theinterval covering prob-

lem. Two algorithmically equivalent problems, Dilworth's chain cover and bipartite matching,

are special cases of interval covers; our algorithm generalizes the standard augmenting path

matching algorithm. One may ask whether the network 
ow problem as di�erent algorithmic

generalization of matchings could also �t into our framework. We might also hope that ideas

such as capacity scaling, distance labeling and pre
ows [1] that give polynomial algorithms for

network 
ows can be used in the construction of a polynomial algorithm for the interval covering

problem.

Finally one may be interested in the e�ciency of our algorithmfor the particular problems

that can be handled. Here particular implementations and good oracle choices are needed.

We may want to reduce the number of mincut computations needed by polynomial size poset

representations. One might also be able to give improvements inthe sense of the Hopcroft{Karp

matching algorithm [43].

84



Chapter 5

Local edge-connectivity augmentation

5.1 Coverings without partition constrains

5.1.1 From degree-prescription to augmentation

As indicated in Section1.3, the augmentation Theorem1.15 can easily be derived from the

degree-prescribed Theorem1.17. We include the argument here, since it is a starting point to

similar deductions for the PCLECA problem. Only the SPSS-property of p is used and hence

the deduction of Theorem1.21 from Theorem1.22will be essentially the same.

Consider an arbitrary minimal vector m0 : V ! Z+ satisfying (1.4). (That is, ( 1.4) gets

violated if we decreasem0(v) by one for any v 2 V with m0(v) > 0.) Let m be the result of

the parity adjusting of m0. Theorem1.15 follows from Theorem1.17by showing that for some

subpartition X of V, m0(V) = p(X ) and hencem(V) = 2
�

1
2p(X )

�
.

In this context, a set X � V is calledtight (with respect to m0) if m0(X ) = p(X ). A node

v 2 V is positive if m0(v) > 0. The minimality of m0 means that each positivev is contained

in a tight set. Let X be a collection of tight sets so that for every positivev, there exists an

X 2 X with v 2 X . ChooseX with
P

X 2X jX j minimal. We claim that X is a subpartition of

V. This completes the proof as it impliesm0(V) = p(X ).

By the minimality, X may not contain X and Y with X � Y. AssumeX; Y 2 X are

intersecting. (1.7a) implies that X \ Y and X [ Y are also tight, while (1.7b) gives that X � Y

and Y � X are tight and m0(X \ Y) = 0. Let us replaceX and Y by X [ Y in the �rst and by

X � Y and Y � X in the second case; both contradict the minimal choice ofX .

5.1.2 Covering symmetric positively skew supermodular funct ions

We shall prove Theorem1.41 in this section. We usually omit the indexF and use� = � F ,

q = qF , F = FF etc. whenever clear from the context. The following is a well-known simple
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property of the degree function1.

Claim 5.1. In a graph G = ( V; E), the degree functiond satis�es the following for anyX; Y �

V:

d(X ) + d(Y) = d(X \ Y) + d(X [ Y) + 2 d(X; Y );

d(X ) + d(Y) = d(X � Y) + d(Y � X ) + 2 d(X; Y )

�

Together with the SPSS-property ofp we get the following claim. (Recall the de�nition

qF (X ) = p(X ) � dF (X ).)

Claim 5.2. For any X; Y � V, with p(X ); p(Y) > 0, at least one of the following inequalities

hold:

q(X ) + q(Y) � q(X \ Y) + q(X [ Y) � 2dF (X; Y ); (5.1a)

q(X ) + q(Y) � q(X � Y) + q(Y � X ) � 2dF (X; Y ) (5.1b)

�

When applying this claim, we usually omit checkingp(X ); p(Y) > 0, but this will always be

easy to verify. An easy consequence is the following.

Claim 5.3. If q(X ) = q(Y) = � , then either q(X \ Y) = q(X [ Y) = � or q(X � Y) =

q(Y � X ) = � . In addition, dF (X; Y ) = 0 in the �rst and dF (X; Y ) = 0 in the second alternative.

Consequently,F is a subpartition of V. �

The next simple lemma describes the change in the values ofqF when a 
ipping is performed.

Lemma 5.4. Consider a setZ � V . By 
ipping (xy; uv), qF (Z ) either remains unchanged or

it increases or decreases by 2. It decreases by 2 if and only ifboth Z and V � Z span exactly

one of the two edgesxy and uv. It inccreases by two if bothZ and V � Z span exactly one of

the two edgesxv and yu. �

We are now ready to prove Theorem1.41. For a contradiction, assume� � 2. jFj � 2

follows by the symmetry ofp. Choose two setsX; Y 2 F , disjoint by Claim 5.3. (1.4) implies

the existence of two edgesxy 2 I F (X ), uv 2 I F (Y) (I F (X ) is the set of edgesxy 2 F with

x; y 2 F ). At this point, xy and uv are chosen arbitrarly; in the later part of the proof their

choice we will be further speci�ed.

Let F1 and F2 be the result of 
ipping (xy; uv) and (xy; vu), respectively. We claim that

either F1 � F or F2 � F , leading to a contradiction.

1Its directed counterpart is Claim 6.8.
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Claim 5.5. There exists no setZ with q(Z ) � � � 1 crossing bothX and Y.

Proof. Assume for a contradiction that such a set exists. If (5.1a) held for X an Z , then

q(X \ Z ) + q(X [ Z ) � 2� � 1. However,q(X \ Z ) � � � 1 by the minimal choice ofX and

henceq(X [ Z ) = � . Now Claim 5.3 yields a contradiction forX [ Z and Y. If ( 5.1b) held for

X and Z , then similarly, q(Z � X ) = � and we get a contradiction forZ � X and Y.

We call a setZ � V stable if it does not contain a subsetU � Z with q(U) = � . The

� -minimal choice ofF implies that either � F1 > � F or � F1 = � F and jF F1 j � jF F j. This enables

us to derive an extremely useful structural property.

Lemma 5.6. For xy 2 I F (X ), uv 2 I F (Y), there exists a unique minimal stablexvyu-set2Zxv

and a unique minimal stablexvyu-set Zyu with q(Zxv ) = q(Zyu) = � � 2, Zxv \ Zyu = ; .

Furthermore, either (a) q(Zxv \ X ) = q(Zxv [ X ) = � � 1, dF (Zxv ; X ) = 0 or (b) q(Zxv � X ) =

q(X � Zxv ) = � � 1, dF (Zxv ; X ) = 0 ; analogous properties hold by changing the role ofX and

Y and also that ofZxv and Zyu .

Proof. Lemma 5.4 and Claim 5.5 together imply � F1 � � F . Assume now� F1 = � F = � but

jF F1 j � jF F j. X; Y =2 F F1 , hencejF F1 � F F j � 2. This may only happen if there exist two

disjoint stable setsZxv and Zyu with q(Zxv ) = q(Zyu) = � � 2, and Zxv is an xvyu-set while

Zyu is a xvyu-set. To see that a unique minimalZxv can be choosen, assumeZ and Z 0 are two

stablexvyu sets with q(Z ) = q(Z 0) = � � 2. It su�ces to show q(Z \ Z 0) = � � 2. (5.1b) cannot

hold for Z and Z 0 as it would giveq(Z � Z 0) = q(Z 0� Z ) = � , contradicting the stability. Thus

(5.1a) gives q(Z \ Z 0) + q(Z [ Z 0) � 2� � 4. Claim 5.5 implies that both terms are at most

� � 2, henceq(Z \ Z 0) = � � 2. The rest of the claim follows similarly, using Claim5.2 for X

and Zxv .

The same argument for 
ipping (xy; vu) instead of (xy; uv) shows the existence of the sets

Zxu ; Zyv with analogous properties. This is an abuse of notation as the set Zxv depends not

only on the nodesx and v but on the edgesxy and uv; however, this should always be clear

from the context. Claims5.2 and 5.5 imply:

Claim 5.7. At least one of the following alternatives hold:

(a) q(Zxu \ Zxv ) = q(Zxu [ Zxv ) = � � 1, dF (Zxu ; Zxv ) = 1 , Y � Zxu � Zxv ;

(b) q(Zxu � Zxv ) = q(Zxv � Zxu ) = � � 1, dF (Zxu ; Zxv ) = 1 , (Zxu � Zxv ) \ X = ; .

There are analogue alternatives forZyu and Zyv . �

2By an xy-set we mean a set containingx and not containing y. We also use this notation for multiple nodes,

for example, anxvyu-set containsx and v and does not containy and u.
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Lemma 5.8. There exist subsetsX 0 � X , Y0 � Y with qF (X 0) = qF (Y0) = � � 1 and X 0; Y0

minimal subject to these properties. Furthermore, ifT is stable, q(T) = � � 1, X 0 � T and

X 0 \ T are nonempty, thenX 0 [ T � X . The same holds forX 0 and X replaced byY0 and Y.

Proof. By Lemma 5.6, either q(X \ Zxv ) = � � 1 or q(X � Zxv ) = � � 1, implying the existence

of X 0. For the second part,T � X 0 6= ; by the minimality of X 0; (5.1b) cannot hold for X 0 and

T sinceq(X 0 � T) � � � 2 also by the minimality and q(T � X 0) � � � 1 by the stability of T.

Thus (5.1a) holds. Again, q(X 0 \ T) � � � 2 by the minimality of X 0 and henceq(X 0 [ T) � �

implying X 0 [ T � X .

Since � � 1 > 0, (1.4) enables us to choose the edgesxy; uv with the stronger property

xy 2 I F (X 0), uv 2 I F (Y0). Take alternative (b) in Claim 5.7. Then Zxu � Zxv and Zxv � Zxu

ful�ll the conditions on T in Lemma 5.8 for Y, giving that the nonempty setY � Y0 is contained

in both, a contradiction as these sets are disjoint. Thus alternative (a) holds for Zxu ; Zxv and

similarly for Zyu ; Zyv . Now Zxu \ Zxv and Zyu \ Zyv ful�ll the conditions on T and hence both

contain X � X 0, a contradiction again (they are disjoint asZxu and Zyv have already been

disjoint.) The proof of Theorem1.41 is now complete.

5.1.3 New proof of Theorem 1.17

For p(X ) = ( R(X ) � dG(X ))+ , we have the following slightly stronger version of Claim5.2, with

dG+ F instead ofdF :

Claim 5.9. For any X; Y � V with p(X ); p(Y) > 0, at least one of the following inequalities

hold:

q(X ) + q(Y) � q(X \ Y) + q(X [ Y) � 2dG+ F (X; Y ); (5.2a)

q(X ) + q(Y) � q(X � Y) + q(Y � X ) � 2dG+ F (X; Y ) (5.2b)

Besides this, the only speci�c property ofR we use is

R(X [ Y) � maxf R(X ); R(Y)g for any disjoint setsX; Y � V; (5.3)

straightforward from the de�nition of R.3 In fact, (5.3) will solely be used to prove Lemma5.10.

To prove Theorem1.17, choose a� -minimal m-prescribed edge-setF ; � F � 1 by Theo-

rem 1.41. We are done if� F = 0, therefore the only remaining case is� F = 1.

Let us adapt the notation of the proof of Theorem1.41. The argument of the proof fails for

� = 1 since althoughX 0 and Y0 exist, I F (X 0) or I F (Y0) might be empty. Instead, we will use

the following connectivity property:
3Actually, this property is valid for arbitrary (not necessarly disjoint) setsX and Y . In fact, if we require it

for arbitrary sets, it will itself imply not only that R is skew-supermodular but also that it arises in the form

(1.2) from a connectivity requirement function r . On the other hand, given a function R which is symmetric,

skew-supermodular and satis�es (5.3), it does not follow that R arises in the form (1.2).
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Lemma 5.10. If � = 1, then there exists no; 6= U ( X such that dG(U; X � U) = 0 and

dF (U; X � U) � 1. The same holds forY.

Proof. Suppose, contrary to our claim, that such a setU existed. R(X ) � maxf R(U); R(X � U)g

by (5.3). By symmetry, assumeR(X ) � R(U). Also, dG+ F (U) � dG+ F (X ) � dG+ F (X �

U; V � X ) + 1. By the minimal choice of X , q(U) < q(X ) = R(X ) � dG+ F (X ), implying

dG+ F (X � U; V � X ) = 0, hencedG(X � U) = 0. � = 1 yields R(X � U) � 1, contradicting the

assumption that there are no marginal sets.

In Claim 5.7, we can also writedG+ F instead ofdF because of the stronger Claim5.9. Taking

alternative (a), the disjoint setsZxu � Zxv and Zxv � Zxu coverY and the only edge connecting

them is uv, a contradiction to Lemma5.10. In alternative (b), xy is the only edge connecting

X \ (Zxu \ Zxv ) and X � (Zxu \ Zxv ), a contradiction again to Lemma5.10. This completes the

proof of Theorem1.17.

5.1.4 New proof of Theorem 1.22

Assume nowp is symmetric and positively crossing supermodular. Thus for crossing X; Y with

p(X ); p(Y) > 0, both (5.1a) and (5.1b), and also both alternatives in Lemma5.6and Claim 5.7

hold. We assume that (1.4) holds, but do not assume (1.6). Theorem 1.22 is an immediate

consequence of the following:

Theorem 5.11. Let F be a� -minimal m-prescribed edge set. Either� F = 0, or � F = 1 and

the following hold:

(i) FF forms a partition of V.

(ii) dim(p) � 1 � jF F j + jF j.

(iii) There exists an edge setH coveringp with jH j = jF F j + jF j.

We will need the following slight generalization of Lemma1.20:

Lemma 5.12. Let P = f X 1; : : : ; X tg be a subpartition ofV so that p(
S t

i =1 X i ) = 0 , p(X 1) = 1

and p(X 1 [ X j ) > 0 for any j = 2; : : : ; t. Then P is a p-full partition.

Proof. Assume �rst P is not a partition, that is, V �
S t

i =1 X i 6= ; . By induction on jIj , we

prove that p(
S

i 2I X i ) > 0 for any 1 2 I � f 1; : : : ; tg. This will give a contradiction for

I = f 1; : : : ; tg. By the assumption, the claim is true forjIj � 2. For somez 2 I � f 1g,

let A = X 1 [ X z and B =
S

i 2I� z X i . Now A and B are crossing andp(A); p(B) > 0, hence

p(A)+ p(B) � p(A [ B)+ p(A \ B). The claim follows as the LHS is at least 2, whilep(A \ B) = 1

and A [ B =
S

i 2I X i .

We have proved that
S t

i =1 X i = V. The same argument is still applicable for every 12 I (

f 1; : : : ; tg. Using the symmetry ofp, we get that P is p-full.
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Proof of Theorem5.11. � F � 1 follows by Theorem1.41; from now on, assume� F = 1. Let us

use the notation of the proof of Theorem1.41: let X; Y 2 F F , xy 2 I F (X ), uv 2 I F (Y), Zxv ,

Zyu , Zxu , Zyv as in Lemma5.6.

Lemma 5.13. (i) For each edgexy 2 I F (X ), there exist a unique maximal�xy-set Dxy � X

and a unique maximalx �y-set Dyx � X with q(Dxy ) = q(Dyx ) = 0 . Moreover, Dxy \ Dyx =

; , Dxy [ Dyx = X . Analogous sets exists for edges inI F (Y).

(ii) For xy 2 I F (X ) and uv 2 I F (Y), we haveZxv = Dyx [ Duv .

(iii) For xy 2 I F (X ), the unique edge betweenDxy and Dyx is xy. Furthermore, dF (X ) = 0 .

(iv) For xy; x0y0 2 I F (X ), the setsDxy and Dx0y0 are either disjoint or one contains the other

or their union is X .

Proof. (i) For an arbitrary uv 2 I F (Y), consider the setZxv . Both alternatives in Lemma 5.6

hold and thus q(X \ Zxv ) = q(X � Zxv ) = 0. The existence of the unique maximal setsDxy

and Dyx easily follows by (5.1a). Also, (5.1a) would give a contradiction if Dxy \ Dyx 6= ; .

Dxy [ Dyx = X follows by X � Zxv � Dxy , X \ Zxv � Dyx . We have equality for both because

of Dxy \ Dyx = ; .

(ii) By the above argument, we already haveZxv \ X = Dyx , Zxv \ Y = Duv . Assume

for a contradiction that U = Zxv � (X [ Y) 6= ; . From Lemma 5.6, we obtain q(Zxv � X ) =

q(Zxv � Y ) = 0. These two sets are crossing sinceU 6= ; . (5.1a) gives 0� q(Zxv ) + q(U) and

thus 1 � q(U), a contradiction sinceZxv is stable.

(iii) Alternative (b) in Claim 5.7 gives the �rst part. The second part follows from (5.1b)

applied for X and each ofZxv ; Zxu ; Zyv and Zyu for an arbitrary uv 2 I F (Y).

(iv) can be derived easily using (5.1a) and (5.1b) for the setsDxy ; Dxy ; Dx0y0 and Dy0x0.

These arguments work for all possible choices ofX , Y, xy and uv. This enables us to derive

the following nice structure. Let W1; : : : ; W` be the members ofFF . Then eachWi admits a

partition Wi = f W 1
i ; : : : ; Wsi

i g satisfying the following:

� dF (Wi ) = 0 for i = 1; : : : ; `.

� The edges inI F (Wi ) are between di�erent classes ofWi , and I F (Wi ) forms a spanning

tree Ti if we contract the members ofWi to single nodes.

� For an uv 2 I F (Wi ), the sets Duv and Dvu are the unions of the members ofWi corre-

sponding to the connected components ofTi � uv containing v and u, respectively.

Let P =
S `

i =1 Wi . We claim that for some choice ofX 1 2 P , P ful�ls the conditions in

Lemma 5.12. This immediately implies (i) and (ii) of the theorem. (iii) can be proved by

induction: for somei 6= j , choose an arbitraryx 2 Wi and v 2 Wj , increasem(x) and m(v) by
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1 and add the edgexv to F . Clearly, if jF F j > 2 then it decreases by 1, and ifjF F j = 2 then

� F reduces to 0.

Let X 1 correspond to a leafx in T1; we may assumeX 1 = W 1
1 = Dyx for xy 2 I F (W1). Since

q(Dyx ) = 0 and dF (Dyx ) = 1, it follows that p(X 1) = 1. We need to provep(X 1 [ W j
i ) > 0 for

any 1 � i � `, 1 � j � si .

First, consider the casei > 1. If W j
i corresponds to a leaf inTi , then W j

i = Duv for some

uv 2 I F (Wi ) and X 1 [ W j
i = Zxv . We are done sinceq(Zxv ) = � 1 and dF (Zxw ) = 2. Next,

assume thatW j
i is not a leaf. Letuv 2 I F (W) be one of the edges enteringW j

i . Then Duv ) W j
i .

Let F 0 = f u0v0 2 I F (Duv ); u0 2 W j
i � f vgg. Clearly, Duv = W j

i [
� S

u0v02 F 0 Du0v0

�
:

Let A = Dxy [
� S

u0v02 F 0 Du0v0

�
. This is the union of the setsZyv0 for u0v0 2 F 0. Recall that

p(Dxy ) = p(Zyv0) = 1 for each u0v0. As in the proof of Lemma5.12, the iterative application

of (1.7a) for these sets givesp(A) � 1. Now (1.7b) for A and Zxv = Dyx [ Duv gives 2 �

p(A) + p(Zxv ) � p(A � Zxv ) + p(Zxv � A) = 1 + p(Zxv � A), sinceA � Zxv = Dxy . We are done

sinceZxv � A = X 1 [ W j
i , the set we are interested in.

It remains to prove p(X 1 [ W j
1 ) > 0 for 2 � j � s1. AssumeW 1

2 corresponds to a leaf inT2,

W 1
2 = Duv . Now p(X 1 [ W 1

2 ) = 1, since X 1 [ W 1
2 = Zxv , and p(W j

1 [ W 1
2 ) � 1 can be proved the

same way as above. Then 2� p(X 1 [ W 1
2 )+ p(W j

1 [ W 1
2 ) � p(W 1

2 )+ p(X 1 [ W j
1 [ W 1

2 ) and hence

p(B) � 1 for B = X 1 [ W j
1 [ W 1

2 . Note that p(W2) = 1, since q(W2) = 1, dF (W2) = 0. Applying

(1.7b) for B and W2 we get 2� p(B)+ p(W2) � p(B � W2)+ p(W2 � B ) = p(X 1 [ W j
1 )+ p(Dvu).

We are done sincep(Dvu) = 1.

5.2 Basic results on partition-constrained local edge-con-

nectivity augmentation

5.2.1 Proof of Theorem 1.42

Let (F; ' ) be an ~m-prescribed legal edge set. For edgesxy; uv 2 F , the pair (xy; uv) is 
ippable

if xy is an ij -edge anduv is an i 0j 0-edge with i 6= j 0, j 6= i 0. In this case, 
ipping (xy; uv) with

' 0(xv; x) = i , ' 0(xv; v) = j 0, ' 0(yu; y) = j , ' 0(yu; u) = i 0 gives another~m-prescribed legal edge

set (F 0; ' 0). Notice that for two edgesxy; uv 2 F , at least one of (xy; uv) and (xy; vu) is a


ippable pair.

Let us adapt the notation and results of Section5.1 on covering SPSS-functions. Assume

� F > 0. The symmetry ofp yields jF F j � 2. By way of contradiction, assumejF F j � 3. Let

X; Y and W be three di�erent (and thus disjoint) members ofFF . By (1.4), there exist 
ippable

edgesxy 2 I F (X ), uv 2 I F (Y).

If ( xy; uv) is 
ippable, then Lemma 5.6remains also valid in the current context. Lemma5.8

is also applicable, as its proof used only the existence of a 
ippable edge pair and the SPSS-
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property. We also need the following simple observation:

Claim 5.14. There exists no setZ with q(Z ) � � � 2 crossing all three setsX; Y and W.

Proof. By Claim 5.2, q(Z 0) � � � 1 for either Z 0 = Z [ W or Z 0 = Z � W. This contradicts

Claim 5.5.

A di�erent argument is given for � � 2 and � = 1.

The case � � 2

For an edgexy 2 I F (X ), we say that the endnodey is heavy if there exists anxy-set D � X

with q(D) = � � 1. An endnode islight if it is not heavy. Heavy and light endnodes of edges

in I F (Y) and in I F (W) can be de�ned in an analogous way.

Claim 5.15. If y is a heavy endnode of the edgexy 2 I F (X ), then there exists a unique maximal

xy-set Dxy � X with q(Dxy ) = � � 1. The analogous statement holds for edges inI F (Y) and in

I F (W).

Proof. AssumeD and D 0 are two xy-sets with D; D 0 � X and q(D) = q(D 0) = � � 1. We claim

that q(D [ D 0) = � � 1, implying the existence of a unique maximalDxy . Indeed, if (5.2b) held

for D and D 0 then q(D � D 0) = q(D 0 � D) = � would follow, contradicting the fact that both

are subsets ofX .

Lemma 5.16. For an edgexy 2 I F (X ), if the endnodex is light, then y is heavy. Furthermore,

if x is light and (xy; uv) is 
ippable for some uv 2 I F (Y), then v is a heavy endnode ofuv.

Also, Zxv \ X = X � Dxy and q(Zxv � X ) = � � 1.

Proof. Consider an edgeuv 2 I F (Y) with ( xy; uv) 
ippable. Alternative (a) in Lemma 5.6 is

excluded sincex is light, henceq(Zxv � X ) = q(X � Zxv ) = � � 1. Now D = X � Zxv is an

xy-set with q(D) = � � 1, implying that y is heavy. To see thatv is also heavy, apply Claim5.9

for Z 0 = Zxv � X and Y. (5.2b) cannot hold for Z 0 and Y. Indeed,q(Z 0 � Y) � � � 1 because

Z 0 is stable, andq(Y � Z 0) � � � 1 by the minimality of Y. (5.2a) yields q(Y \ Z 0) = � � 1 and

hencev is heavy.

It is left to show that Zxv \ X = X � Dxy . On the one hand,X � Zxv � Dxy by the

maximality of Dxy . On the other hand, assume thatZxv \ Dxy 6= ; . (5.2a) cannot hold for Zxv

and Dxy as dF (Zxv ; Dxy ) � 1 and thus we would haveq(Zxv \ Dxy ) + q(Dxy [ Zxu ) � 2� � 1.

a contradiction. Hence (5.2b) applies, givingq(Zxv � Dxy ) = � � 2, contradicting the minimal

choice ofZxv .

Fix X 0 � X be as in Lemma5.8.

Lemma 5.17. For every edgexy 2 I F (X 0), exactly one of the two endnodes is heavy.
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Proof. According to the previous lemma, we only have to show thatx and y cannot be both

heavy. Indeed, assumeD is anxy-set andD 0 is anxy-set with q(D) = q(D 0) = � � 1, D; D 0 � X ,

and both of them are choosen minimal to these properties. IfD and D 0 are not disjoint, then

they are crossing. Now (5.2b) would give that D � D 0 and D 0� D are smaller sets with the same

properties, while in the case of (5.2a), we have the contradictoryq(D [ D 0) + q(D \ D 0) � 2� .

However, the second part of Lemma5.8 implies that X � X 0 is a subset of bothD and D 0,

giving a contradiction.

Fix an xy 2 I F (X 0) with heavy endnodey so that Dxy is maximal. Let A = X � Dxy . Again

by Lemma 5.8, A � X 0, and q(A) � � � 2, sincex is the light endnode ofxy (and also by the

minimality of X 0).

Claim 5.18. I F (A) = ; .

Proof. Indeed, assume that there exists an edgex0y0 2 I F (A) with heavy endnode y0 and

consider the setsDxy and Dx0y0. None of them is contained in the other because ofy0 =2 Dxy

and the maximal choice ofDxy . If ( 5.2b) held, then q(Dxy � Dx0y0) = q(Dxy � Dx0y0) = � � 1,

a contradiction: by Lemma 5.8, both must be subsets ofX 0. In the case of (5.2a), we have

q(Dxy \ Dx0y0) = q(Dxy [ Dx0y0) = � � 1, sinceDxy [ Dx0y0 � X � x0. Now Dxy [ Dx0y0 is a larger

x0y0 set, contradicting the maximality of Dx0y0.

Choose arbitrary edgesuv 2 I F (Y), wz 2 I F (W) so that (xy; uv) and (xy; wz) are both


ippable. Let Z = Zxv and Z 0 = Zxz . Claim 5.14 implies Z \ W = Z 0 \ Y = ; and thus

Z � Z 0; Z 0 � Z 6= ; .

Lemma 5.19. xy is the only edge inG + F incident to A.

Together with Claim 5.18, this will immediately lead to a contradiction. Indeed,m(A) = 1

because ofI F (A) = ; . Now dG(A) = 0 and (1.4) give R(A) � 1, henceA is a marginal set.

Proof. We already know by Lemma5.16that Z \ X = Z 0\ X = A and q(Z � A) = q(Z 0� A) =

� � 1. We shall proveZ \ Z 0 = A. It su�ces to verify that Z \ (Z 0 � A) = ; . Indeed, assume

they intersected. If (5.2a) held for Z and Z 0� A, then q(Z \ (Z 0� A))+ q(Z [ (Z 0� A)) � 2� � 3.

This is a contradiction since the �rst term is at most� � 1 by the stability of Z , while the second

is at most � � 3 by Claim 5.14. On the other hand, (5.2b) would give q(Z � (Z 0� A)) = � � 2,

a contradiction to the minimality of Z .

HenceA is the intersection of any two of the three setsX , Z and Z 0. (5.2b) holds for any

two of them, since (5.2a) is excluded byq(A) � � � 2 and q(Z [ Z 0) � � � 3. (5.2b) gives

dG+ F (Z; X ) = dG+ F (Z 0; X ) = 0, dG+ F (Z; Z 0) = 1, leading to the desired conclusion.
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The case � = 1

We will again use the connectivity property Lemma5.10as in the proof of Theorem1.17. The

next claim can be proved similarly.

Claim 5.20. If � = 1 and Z is a stable set withq(Z ) = � 1, then Z is connected inG + F . �

Consider edgesxy 2 I F (X ), uv 2 I F (Y) and wz 2 I F (W) so that (xy; uv) and (xy; wz)

are 
ippable. Let us investigate the three setsX , Z = Zxv and Z 0 = Zxz , pairwise crossing by

Claim 5.14.

If ( 5.2b) held for X and Z , then q(X � Z ) = q(Z � X ) = 0, dG+ F (X; Z ) = 0. As in the

proof of Lemma5.19, it can be seen thatZ 0 is disjoint from both Z � X and X � Z . We get

a contradiction to Claim 5.20, sincedG+ F (Z 0 \ X; Z 0 � X ) = 0. Consequently, (5.2a) can be

applied, giving q(X [ Z ) = 0. Let A = X [ Z .

The same argument leads toq(B) = 0 for B = X [ Zyu . Assume now (5.2a) holds for A and

B. dG+ F (A; B ) � 1 because of the edgeuv; henceq(A \ B) = q(A [ B) = 1 and dG+ F (A; B ) = 1

follows, giving Y � A [ B . Since the setsZxv and Zyu are disjoint, A \ B = X and thus

Y � A� B , giving a contradiction to Lemma5.10when applied forY, asuv is a cut edge ofY.

On the other hand, (5.2b) for A and B givesq(A � B) = q(B � A) = 0, dG+ F (A; B ) = 0.

Again, we can prove using the minimality ofZ 0and Claim5.14that Z 0 is disjoint from both A� B

and B � A, and we get a contradiction again to Claim5.20because ofdG+ F (Z 0\ X; Z 0� X ) = 0.

5.2.2 Approximating with an additive error rmax

In this section we shall prove Theorem1.43. The key is the following simple corollary of

Theorem 1.42. We say that a partition Q = ( Q1; : : : ; Qt ) of V and a legal degree-prescription

~m = ( m1; : : : ; mt ) are compatible if mi (v) = 0 whenever v =2 Qi .

Lemma 5.21. Assume we have a partitionQ = ( Q1; : : : ; Qt ) of V with a compatible legal

degree-prescription~m = ( m1; : : : ; mt ) satisfying (1.4). Let F -be an ~m-prescribed edge set. Then

there exists aQ-legal augmenting edge setH with jH j = 1
2m(V) + � F . Given ~m, we can �nd

such anH in polynomial time.

Proof. We may assume thatF is � -minimal. The proof is by induction on � F . If � F = 0 then

H = F is a Q-legal augmenting edge set because of the compatibility. If� F > 0, then jF F j = 2

by Theorem1.42;. Let FF = f X; Y g. (1.4) yields two di�erent colours i and j among two nodes

x 2 X , v 2 Y with mi (x); mj (v) > 0. Let us increasemi (x) and mj (v) by one; let ~m0 denote

the resulting degree-prescription (which is clearly legal) and let F 0 = F + xv. Now � F 0 = � F � 1

and ~m0 is also compatible withQ. Hence by induction, we have aQ-legal augmenting edge set

of size 1
2m0(V) + � F 0 = 1

2m(V) + � F , which is the desired conclusion.
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From the algorithmic point of view, all we use from the extremechoice ofF is that there is

no improving 
ipping. This can be checked by a 
ow computation for each pair of edges ofF ,

and the set systemFF can also be determined via 
ow computations.

We do not estimate the running times as one can certainly gain alot by careful implemen-

tations; this is beyond the scope of this chapter. Let us now turn to the proof of Theorem1.43.

We shall construct a legal degree-prescription~m compatible with Q so that m(V) = 2	 Q(G).

Then the theorem will follow by the previous lemma, sincermax is a trivial upper bound on � F .

First, let us choose a minimalm0 satisfying (1.4) as in Section 5.1.1, regardless to the

partition Q. Let m0
i (v) = m0(v) if v 2 Qi and 0 otherwise. If (1.8) holds for m0, then we are

done: consider them we get fromm0 by parity adjusting. Clearly, m(V) = � (G).

Otherwise, there is exactly onej with m0
j (V) > m0(V )

2 . We need the following simple claim

(recall that a set X is called tight if m0(X ) = p(X ) and v 2 V is positive if m0(v) > 0.)

Claim 5.22. If m0 is minimal, then for each positivev there exists a unique minimal tight set

X v containing v. If u 2 X v � v, then the followingm00also satis�es (1.4): m00(u) := m0(u) + 1 ,

m00(v) := m0(v) � 1, and m00(z) := m0(z) otherwise. �

Consider now a positivev 2 Qj . If X v � Qj 6= ; then by the above claim, we can modifym0so

that m0
j (V) decreases by one. Let us iterate this procedure as long as possible. Either we arrive

at an m0 with m0
j (V) = m0(V )

2 and thus (1.8) is satis�ed, or at a certain point, no more such

modi�cation is possible. Hencem0
j (V) > m0(V )

2 and X v � Qj for every positivev 2 Qj . Using

the uncrossing argument as in Section5.1.1, we get a subpartitionX of Qj with p(X ) = m0
j (V).

Afterwards, let us increasem0(z) on an arbitrary node z 2 V � Qj by 2m0
j (V) � m(V). The

resulting m is a legal degree-prescription withm(V) = � j (G), as required.

5.2.3 Hydrae and medusae

For a partition H , let RH = maxZ 2H R(Z). Our aim is now to �nd a good characterization in

order to decide whether a partitionH = f X � ; Y � ; C1; : : : ; C`g forms a hydra with headsX � and

Y � . Let � = min f R(X � ); R(Y � )g, � = max f R(X � ); R(Y � )g. Let GH denote the graph on the

node setf vX � ; vY � ; vC1 ; : : : ; vC` g corresponding to the members ofH , and let vZ vZ 0 be an edge

if R(Z; Z 0) � � for Z; Z 0 2 H .

Theorem 5.23. H = f X � ; Y � ; C1; : : : ; C`g with dG(Ci ; Cj ) = 0 for every 1 � i < j � ` forms a

hydra if and only if the following hold:RH = � , and there is a path inGH connectingvX � and

vY � . Furthermore, if � < � then there is a uniqueCa with R(Ca) = � , and R(Ci ; Cj ) � � for

every 1 � i < j � `.

Proof. Wlog. assumeR(X � ) = �, R(Y � ) = � . Let us show the necessity of the conditions �rst.

RH > � means that for some i; j , RH = R(Ci ; Cj ) > �. Now ( 1.5a) cannot hold for X � [ Ci and
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X � [ Cj . Next, assume there is no path inGH betweenvX � and vY � . Let I denote the set of

those indicesi for which vCi can be reached fromvX � , and let J = f 1; : : : ; `g � I . Then (1.5a)

cannot hold with equality for Z = X � [ (
S

i 2 I Ci ) and Z 0 = X � [ (
S

j 2 J Cj ), since R(Z) < � ,

R(Z 0) = �, but R(Z \ Z 0) = � and R(Z [ Z 0) = � .

In the case of� < �, assume �rst R(Ci ; Cj ) > � for somei 6= j . Now (1.5a) cannot hold for

Z = Y � [ Ci and Z 0 = Y � [ Cj . Indeed, it is easy to see thatR(Z [ Z 0) � maxf R(Z ); R(Z 0)g, and

minf R(Z ); R(Z 0)g > R (Z \ Z 0). Assume next that there are multiple indicesi with R(X � ; Ci ) =

�. Let I and J be the partition of such indices into two nonempty sets. ForZ = X � [ (
S

i 2 I Ci )

and Z 0 = X � [ (
S

j 2 J Cj ), we get a contradiction sinceR(Z) = R(Z 0) = R(Z \ Z 0) = �, although

R(Z [ Z 0) < �.

Su�ciency is straightforward if � = � since the path inGH betweenvX � and vY � guarantees

R(X � [ (
S

i 2 I Ci )) = R(Y � [ (
S

i 2 I Ci )) = � for arbitrary I � f 1; : : : ; `g. It is also easy to verify

the de�nition for � < � using the path in GH and the uniqueness ofCa. This is left to the

reader.

In the rest of this section, we list some useful properties of hydrae, needed for proving the

max � min direction of the conjectures and Theorem5.30. H = f X � ; Y � ; C1; : : : ; C`g will

always denote a hydra with headsX � and Y � . The following two lemmas can be proved by a

simple induction based on the properties in De�nition1.44.

Lemma 5.24. For a subsetI � f 1; : : : ; `g,

p(X � [ (
[

i 2 I

Ci )) � p(X � ) =
X

i 2 I

(p(X � [ Ci ) � p(X � )) ;

and the same holds forX � substituted byY � . �

Let us �x a colour h. We say that an edgexy 2 V 2 is a ordinary edge w.r.t. H and h, if

mh(x) > 0 and mi (y) > 0, for somei 6= h and furthermore, x and y are in one of the following

three con�gurations: (a) x 2 X � , y 2 Y � ; (b) x 2 Y � , y 2 X � ; or (c) x 2
S

Ci and y 2 X � [ Y � .

Lemma 5.25. (i) Let xy 2 V 2 be a ordinary edge. Consider the graphG0 = G + xy and the

degree-prescription ~m0 with m0
h(x) = mh(x) � 1, m0

i (y) = mi (y) � 1 and m0
j (z) = mj (z)

otherwise. A tentacleCi is h-odd for G0; ~m0; p0 if and only if it is h-odd for G; ~m; p.4

(ii) H 0 = f X � ; Y � ; C1 [ C2; C3; : : : ; C`g is also a hydra.

(iii) H 0 = f X � [ C1; Y � ; C2; : : : ; C`g is also a hydra. Moreover, a tentacleCi is h-odd in H 0 if

and only if it is h-odd in H .

�
4Note that p is also dependent fromG.
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Unlike the previous two, the next lemma is not a direct consequence of the de�nition,

however, follows easily from the structural characterization, Theorem5.23.

Lemma 5.26. For any tentacleCi , p(Ci [ X � ) + p(Ci [ Y � ) = p(X � ) + p(Y � ). �

An important consequence of this lemma is thatCi is h-odd if and only if p(Ci [ Y � ) �

p(Y � ) + mh(Ci ) is odd, that is, X � can be replaced byY � in the de�nition of h-odd tentacles.

In the next de�nition we de�ne the subclass of hydrae, which plays a central role in the

proof of Theorem5.30.

De�nition 5.27. The partition H = f X � ; Y � ; C1; : : : ; C`g forms a medusa in G with heads

X � ; Y � and tentacles Ci if

(i) dG(Ci ; Cj ) = 0 for every 1 � i < j � `; and

(ii) R(Ci ) < � = min f R(X � ); R(Y � )g for at least ` � 1 di�erent values of i 2 f 1; : : : ; `g.

Theorem5.23 immediately implies that all medusae are hydrae. Indeed, ifR(Ci ) < � holds

for every tentacleCi , then R(X � ; Y � ) = � = � . If there is a single exceptional tentacleCa, then

either GH contains the edgevX � vY � or the path vX � vCa vY � . Notice that the underlying partition

of a C4-con�guration forms a hydra, however, not a medusa.

We give another, equivalent characterization of medusae. Let H = f X � ; Y � ; C1; : : : ; C`g be

a partition of V. For 1 � i; j � `, i 6= j , we say that Z; Z 0 is a separating pair for i and j if

both sets are unions of some components ofH ; furthermore, Ci � Z \ Z 0, Cj \ (Z [ Z 0) = ; ,

X � � Z � Z 0 and Y � � Z 0� Z . For 1 � t � `, we say that the separating pairZ , Z 0 is coherent

with t if either Ct � (Z \ Z 0) or Ct \ (Z [ Z 0) = ; . (Note that Z and Z 0 is always coherent

with i and j .)

Lemma 5.28. Let H = f X � ; Y � ; C1; : : : ; C`g be a partition with dG(Ci ; Cj ) = 0 for every

1 � i < j � `. H forms a medusa with headsX � and Y � if any only if for any 1 � i; j; t � `,

i 6= j , there exists a separating pairZ , Z 0 for i and j coherent with t, so that (1.5a) does not

hold for Z and Z 0.

Proof. If H is a medusa, thenZ = X � [ Ci and Z 0 = Y � [ Ci is a separating pair fori and

any j 6= i , coherent with t for any 1 � t � `. For the other direction, let us use � and � as

before. We shall �rst prove R(Ci ; Cj ) < � for any i 6= j . By way of contradiction, assume

RH = R(Ci ; Cj ) for somei 6= j . Then (1.5a) clearly holds for any pairZ; Z 0 separating i and

j . We also get a contradiction if there existedi 6= j with R(Ci ) = R(Cj ) = � (and thus

R(Ci ; X � [ Y � ) = R(Cj ; X � [ Y � ) = �). In the case of � = � it already follows that H is a

medusa.
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If � < � then wlog. assume � = R(X � ; Ca). By the argument above, there is a unique such

a. Let � 0 be the second largest connectivity value between di�erent classes ofH (� � � 0). It

su�ces to prove that � 0 may occur only betweenY � and X � or betweenY � and Ca.

Indeed, if � 0 = R(Ci ; Cj ), we show that (1.5a) holds for any pair Z; Z 0 separating i and j ,

coherent with a. If Ca � Z \ Z 0, then R(Z)+ R(Z 0) = �+ � 0, R(Z \ Z 0) = � and R(Z [ Z 0) = � 0.

If Ca \ (Z [ Z 0) = ; , then R(Z) = R(Z [ Z 0) = � and R(Z 0) = R(Z \ Z 0) = � 0. Finally, if

� 0 = R(Ci ; X � [ Y � ) for i 6= a, then we get a contradiction for any pairZ , Z 0 separatingi and

a.

5.2.4 max � min in Conjectures 1.45 and 1.46

max � min in Conjecture 1.45 is established by the following lemma:

Lemma 5.29. Let us be given a hydraH = f X � ; Y � ; C1; : : : ; C`g, a legal degree-prescription

~m = ( m1; : : : ; mt ), a �xed 1 � h � t, and an arbitrary ~m-prescribed legal edge set(F; ' ). Then

� F � � h(G; r; ~m; H).

Note that (1.4) is not being assumed.

Proof. The proof is by induction on m(V). First, we shall prove that if ~m � 0, then the

maximum value ofp is at least � h(G; r; 0; H ). (This maximum value equals� F for F = ; , the

unique ~m-prescribed legal edge-set.) For anh-odd tentacleCi , p(X � [ Ci ) � p(X � ) is odd. Let

I = f i : p(X � [ Ci ) � p(X � ) > 0g and J = f 1; : : : ; `g� I . By Lemma5.26, p(Y � [ Cj ) � p(Y � ) � 0

for everyj 2 J . Furthermore, if Cj is h-odd, then we have strong inequality here. The number of

such indices is at least� h �j I j. Let X = X � [ (
S

i 2 I Ci ) and Y = Y � [ (
S

i 2 J Cj ). By Lemma 5.24,

p(X ) � p(X � ) � j I j and p(Y) � p(Y � ) � � h � j I j. Y = V � X and thus p(X ) = p(Y). Therefore

� h(G; r; ~m; H) =
1
2

(� h + p(X � ) + p(Y � )) �
1
2

(p(X ) + p(Y)) = p(X ) � � ; ;

proving the claim.

Next, assume~m 6� ; , and let uv 2 F be an arbitrary edge. Leta = ' (uv; u) and b= ' (uv; v).

We apply induction for G0 = G+ uv, F 0 = F � uv and ~m0, where ~m0 arises from~m by decreasing

ma(u) and mb(v) by one. Let H 0 = H unlessu and v lie in di�erent tentacles. If u 2 Ci ,

v 2 Cj for i 6= j , then let us replace the tentaclesCi and Cj by Ci [ Cj . We shall prove

� h(G; r; ~m; H) � � h(G0; r; ~m0; H 0). implying the claim.

It is a routine to check this for any possible con�guration ofuv and H. For example, ifuv is

a ordinary edge w.r.t. toH and ~m, then we may apply Lemma5.25(i). Let us now analyze the

least trivial case whenu 2 Ci , v 2 Cj for i 6= j , and both Ci and Cj areh-odd in H . If h 2 f a; bg

then Ci [ Cj is h-odd in H 0, hence� h decreases by 1. However, the termmh(
S

Ci ) � m(V)

increases by one; all other terms are left unchanged. On the other hand, if h =2 f a; bg, then
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Ci [ Cj is not h-odd in H 0, thus � h decreases by two, butmh(
S

Ci ) � m(V) inreases also by

two. We leave it to the reader to verify the remaining cases.

We will also use this lemma for the max� min direction of Conjecture1.46. Let F be an

arbitrary legal augmenting edge set. SinceZ is anh-subpartition, F contains at leastp(Z ) edges

incident to the classes ofZ . Let F1 � F be an arbitrary subset of such edges withjF1j = p(Z );

let F2 = F � F1. Clearly, � F1 � j F2j.

Let us de�ne ~m as follows. Letm(v) = dF1 (v) for v 2 V, and let mi (v) = m(v) if v 2 Qi and

mi (v) = 0 otherwise. In particular,
P

(p(Z ) : Z 2 Z ; Z � Ci ) = mh(Ci ) for arbitrary tentacle

Ci , henceCi is h-odd if and only if it is h-toxic. Also, p(Z ) = mh(
S

C i ). These observations

yield

� 0
h(G; r; H ; Z ) = � h(G; r; ~m; H) +

1
2

m(V):

Since 1
2m(V) = jF1j, by Lemma 5.29we obtain

� 0
h(G; r; H ; Z ) � � F1 + jF1j � j F2j + jF1j = jF j:

5.3 Towards proving the conjectures

In this section, we shall prove Conjecture1.45 in a special setting.

Theorem 5.30. Let (F; ' ) be a� -minimal ~m = ( m1; m2)-prescribed legal edge set as in Con-

jecture 1.45. If � F � 2 and
S

FF = V, then � F = � (G; r; ~m). Moreover, there is a medusaH

giving the optimum value.

As we have already seen (e.g. in Section5.2.1), the cases� = 1 and � � 2 are of di�erent

nature. We investigate here only the case� � 2. We already knowjF F j = 2 by Theorem 1.42.

As before, let X and Y denote its two members. Hence the assumption of the theorem is

X [ Y = V. An important consequence is thatq(Z ) = � implies Z = X or Z = Y.

The proof relies on the results of Section5.2.1. So far, the only way of using the extreme

choice ofF has been that no improving 
ipping exists. Another operation will also be needed

here. By hexa-
ipping (xy; uv; wz) for three 12-edgesxy; uv; wz 2 F , we mean replacingF

by F 0 = F � f xy; uv; wzg+ f xv; uz; wyg, where the new edges are de�ned as 12-edges. Actually,

this is a sequence of two 
ippings: 
ippingxy and uv �rst, then 
ipping uy and zw, yet it is

easier to handle these two 
ippings together. The next simple lemma describes the changes in

the values ofqF by a hexa-
ipping.

Lemma 5.31. Consider a setZ � V . By hexa-
ipping (xy; vu; zw), qF (Z ) either remains

unchanged or it increases or decreases by 2. It increases by 2if and only if Z intersects the

set f x; y; u; v; w; zg in one of the following six sets or in the complement of one:f x; vg, f u; zg,

f w; yg, f x; v; wg, f x; v; zg, f u; z; xg. �
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We do not formulate the analogous characterization for the sets with qF (Z ) decreasing since

we will not need it. Let us call a setZ with qF 0(Z ) = qF (Z ) + 2 an increasing set (w.r.t. the

hexa-
ipping).

Consider the minimal setsX 0 � X , Y0 � Y with q(X 0) = q(Y0) = � � 1 as in Lemma5.85,

and choose 12-edgesxy 2 I F (X 0), uv 2 I F (Y0). By Lemma 5.17, exactly one of the two endnodes

of xy is light; wlog. assume this isx. By Lemma 5.16, the 2-coloured endnode of each edge in

I F (Y) is heavy. This holds in particular for uv, and by changing the role ofX and Y we can

conclude that the 2-coloured endnode of all edges inI F (X ) [ I F (Y) is heavy.

Our aim is to construct a hydraH with � 1(G; r; ~m; H) = � F . For this, further investigation

of the structure of the edge setF is needed. We start by formulating a sequence of lemmas

which together provide the construction; the proofs are postponed.

First, we extend the results of Section5.2.1 and prove, in particular, that the 1-coloured

endnode of all edges inI F (X ) [ I F (Y) is light. For every 12-edgexy 2 I F (X ) [ I F (Y), consider

the xy-set Dxy as in Claim 5.15. Let Axy = X � Dxy if xy 2 I F (X ), and Axy = Y � Dxy if

xy 2 I F (Y). Recall that a set Z � V has been called stable if there exists noU � Z with

q(U) = � . Accordingly, we call a setZ � V steady , if it has no subsetU with q(U) � � � 1.

In the next lemma, we prove, among other structural properties, that all sets Axy are steady

(in fact, we assert a slightly stronger property).

Lemma 5.32. (i) Let xy 2 I F (X ) be an arbitrary 12-edge. Thenx is a light and y a heavy

endnode ofxy. The set Axy is steady, moreover, there exists no setZ � V with q(Z ) =

� � 1, y =2 Z and Z \ Axy 6= ; . For an arbitrary 12-edgeuv 2 I F (Y), we haveZxv \ X = Axy

and q(Duv [ Axy ) = � � 2.

(ii) If wz 2 I F (Axy ) is an 12-edge, thenAwz � Axy , q(Dxy [ Awz) = � � 2 and dG+ F (Awz ; Axy �

Awz) = 1 .

(iii) For 12-edges xy; wz 2 I F (X ) we havedG+ F (Axy ; Awz) = 0 .

(iv) If wz 2 F is an 12-edge withz 2 Axy , then w 2 Axy .

Analogous statements hold when exchanging the role ofX and Y.

If the set systemsA 0 = f Axy : xy 2 I F (X )g and B0 = f Axy : xy 2 I F (Y)g were laminar,

then we would already be ready to construct an optimal hydraH. Unfortunately, this is not

necessarly true, and thus these set systems are needed to be uncrossed. The uncrossing has

to be done very carefully as we shall keep the valuable structural properties asserted in the

previous lemma. This motivates the following de�nitions.

AssumeU; T � X are steady sets withq(X � T) = q(X � U) = � � 1 and T ( U. We say

that T is a descendant of U if q(T [ (X � U)) = � � 2, dG+ F (T; U � T) = 1 and there is a

5Recall from Section5.2.1 that this lemma is also valid in the context of the PCLECA problem.
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(unique) 12-edgewz 2 F from T to U � T. For example, if xy; wz 2 I F (X ) are 12-edges with

wz 2 I F (Axy ), then Lemma 5.32(ii) states that Awz is a descendant ofAxy .

We say that a set systemA 0 blocks the 12-edgexy 2 I F (X ) if A 0 contains an xy-set.

Analogously,A 0 blocks the edge setF 0 � I F (X ) if it blocks each edge inF 0.

De�nition 5.33. For a set F 0 � I F (X ) of 12-edges and a set systemA 0 of subsets ofX , we

say that A 0 is a witness system for F 0 if the following hold.

(a) A 0 is laminar, and for everyA 2 A 0, A is a steady set,q(X � A) = � � 1, dF (A; X � A) > 0.

(b) A 0 blocksF 0.

(c) For each non-maximalA 2 A 0, let U 2 A 0� A be the smallest set containingA. Then A is

a descendant ofU.

Descendants and witness systems for subsets ofI F (Y) can be de�ned analogously. LetA 0

and B0 be arbitrary sets of subsets ofX and Y, respectively. A 0 and B0 are calledlinked if

q(A [ (Y � B)) = � � 2 holds for everyA 2 A ; B 2 B: (5.4)

Lemma 5.34. There exist linked witness systemsA, B for I F (X ) and I F (Y), respectively.

YX

Figure 5.1: Illustration of Lemma 5.34. The sets in X form a witness systemA and those in Y

form B. The 1- and 2-endnodes of edges inF are denoted by circles and rectangles,

respectively.
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Consider now the witness systemsA and B as in the previous lemma. LetCX denote the

underlying subpartition of A , that is, CX contains the minimal members ofA , and for each

non-minimal memberA 2 A , let CX contain C = A �
S

f A0 : A0 2 A ; A0 ( Ag. Let us say that

A is the corresponding member for C in A . Let TX =
S

CX =
S

A, and X � = X � TX .

De�ne CY , TY and Y � the analogous way fromB. Let C = CX [ C Y , and let us denote its

members byC = f C1; : : : ; C`g. The next lemma completes the proof of Theorem5.30.

Lemma 5.35. The partition H = f X � ; Y � ; C1; : : : ; C`g forms a medusa with headsX � and Y �

and tentaclesCi . Moreover, � 1(G; r; ~m; H) = � F .

5.3.1 Proofs of the Lemmas

Proof of Lemma5.32. (i) It is enough to prove that Axy is a steady set. Indeed, ifZ were a set

as in the conditions, thenZ \ Y = ; by Claim 5.5. AssumeZ \ Dxy 6= ; ; we claim that (5.2a)

cannot hold forZ and Dxy . Indeed, fromx 2 Z we would obtainq(Z [ Dxy ) + q(Z \ Dxy ) � 2� ,

while if x =2 Z then q(Z [ Dxy ) � � � 1 gives a contradiction to the maximality ofDxy . On the

other hand, from (5.2b) we get U = Z � Dxy � Axy with q(U) = � � 1.

Assume nowX 0 � Axy is a minimal set with q(X 0) = � � 1. Since� � 2, there exists

an 12-edgewz 2 I F (X 0). Let us choose this withDwz maximal, or equivalently, Awz minimal.

By Lemma 5.8, Awz � X 0. Choose a minimalY0 � Y with q(Y0) = � � 1, and let uv 2

I F (Y0) be an arbitrary 12-edge. By Lemma5.17, w and u are light endnodes ofwz and uv,

respectively. Consider the hexa-
ipping of (xy; uv; wz). This decreasesq(X ) and q(Y) by 2;

hence by the extreme choice ofF , there exists an increasing setZ with q(Z ) � � � 2. Let

T = f x; y; u; v; w; zg \ Z . By possibly complementingZ , we get that T is one of the six sets in

Lemma 5.31. AssumeZ is chosen minimal.

(I) T is one off x; vg, f x; v; wg and f x; v; zg. If ( 5.2a) held for X and Z , then q(X [ Z ) = � � 1.

This is a contradiction sinceu is the light endnode ofuv and V � (X [ Z ) � Y is a uv-set.

However, (5.2b) givesq(X � Z ) = � � 1, a contradiction to the maximality of Dxy , since

X � Z is an xy-set containing at least one ofw and z.

(II) T = f u; zg or T = f u; z; xg. Sinceu is the light endnode ofuv, (5.2a) cannot hold for Y

and Z , thus we may apply (5.2b), yielding q(Z � Y) = � � 1. This contradicts Lemma5.8

sincez 2 X 0 \ (Z � Y) and y 2 X � (X 0 [ (Z � Y)).

(III) T = f w; yg. Let us consider the three setsX 0, Z and Z 0 = Zvw . We use an argument

similar to the one in the proof of Lemma5.19. By the minimal choice ofAwz , Claim 5.18

is applicable, and thusI F (Awz) = 0. We shall prove that (5.2a) does not hold for any

two of the three setsX 0, Z and Z 0, and the intersection of any two of them isAwz . These

easily imply that Awz is a marginal set. The proof is illustrated in Figure5.2.
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Figure 5.2: Illustration of the proof of Lemma 5.32(i) for T = f w; yg.

First, considerX 0 and Z 0. By Lemma 5.16, Z 0\ X = Awz ; this implies Z 0\ X 0 = Awz and

y =2 Z 0. By the minimality of X 0, q(Z 0\ X 0) � � � 2; and by Claim5.5, q(X 0 [ Z 0) � � � 2,

hence (5.2a) cannot hold for Z 0 and X 0. Next, we show that (5.2a) cannot hold for X 0

and Z either. q(Z \ X 0) � � � 2 again by the minimal choice ofX 0. If x 2 X 0, then

q(Z [ X 0) � � + 1 since dF (Z; X 0) � 1, yielding a contradiction. If x =2 X 0, then we get

q(Z [ X 0) = � � 1 and Z [ X 0 is an xy-set, contradicting the maximality of Dxy .

Finally, assume (5.2a) were true for Z and Z 0. We claim that q(Z \ Z 0) � � � 2. This is

trivial by Claim 5.5 if (Z \ Z 0) \ Y 6= ; . On the other hand, ifZ \ Z 0 � X , then this follows

by Lemma 5.8, sinceu 2 X 0 \ (Z \ Z 0) and y 2 X � (X 0 [ (Z \ Z 0)). Consequently,

q(W) = � � 2 for W = Z [ Z 0 and x =2 W. (This follows sincex 2 W would imply

dF (Z; Z 0) � 1, yielding q(W) = � .) A similar argument to the one above forX 0 and Z

shows that (5.2a) cannot hold for X 0 and W. However, (5.2b) givesq(W � X 0) � � � 1,

a contradiction to Claim 5.5 sincev; y 2 W � X 0. It may also be easily veri�ed that Awz

is the intersection of any two of the setsX 0, Z and Z 0; we leave this to the reader.

For the rest, X \ Zxv = Axy follows by Lemma5.16. If Duv and Zxv are crossing, then (5.2b)

cannot hold for Duv and Zxv , while (5.2a) gives q(Duv [ Zxv ) = � � 2.

(ii) We start by proving Awz � Axy , or equivalently, Dwz � Dxy . AssumeDwz and Dxy are

crossing (Dwz � Dxy is excluded byz 2 Dwz � Dxy ). (5.2b) gives a contradiction, since part (i)
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implies q(Dwz � Dxy ) � � � 2. (5.2a) is also impossible, sinceDxy [ Dwz is a wz-set, and thus

the maximality of Dwz implies q(Dxy [ Dwz) � � � 2.

As in the proof of part (i), let us choose an 12-edgeuv 2 I F (Y); we already know that its

light endnode isu. Consider the hexa-
ipping of (xy; uv; wz). We get a setZ with q(Z ) � � � 2

and with six possible setsT as in the �rst part. Case (I) is settled by an identical argument.

In the case (II), the existence of the setZ � Y with q(Z � Y) = � � 1, y =2 Z � Y and

(Z � Y) \ Axy 6= ; gives a contradiction to part (i). Let us now turn to case (III); assume again

Z is chosen minimal.

We claim that Z � X . Indeed, if Z and X were crossing and (5.2a) held, then q(Z \ X ) �

� � 3 by the minimality of Z , leading to contradiction. If (5.2b) held, then q(X � Z ) � � � 2

by part (i) and thus q(Z � X ) = � , a contradiction again.

Consider the setZ 0 = Zvw . By part (i), Z 0 \ X = Awz � Axy , thus Z 0 and Z are crossing.

We claim that (5.2b) must hold for Z and Z 0. For a contradiction, assume (5.2a) held for them.

Then q(Z \ Z 0) � � � 2 by part (i), and thus q(W) = � � 2 for W = Z [ Z 0, furthermore, x =2 Z 0

(as x 2 Z 0 would give dF (Z; Z 0) � 1). (5.2a) for X and W is impossible since it would give

q(V � (X [ W)) = � � 1, a contradiction as it is anuv-subset ofY, and u is the light endnode

of uv. On the other hand, (5.2b) implies q(X � W) = � � 1, a contradiction asx is the light

endnode ofxy.

For Z and Z 0, (5.2b) gives q(Z � Z 0) = q(Z 0 � Z ) = � � 1, dG+ F (Z; Z 0) = 1. Part (i)

and the maximal choice ofDxy implies that Z � Z 0 � Dxy and Z \ Z 0 = Awz . This yields

dG+ F (Awz ; Axy � Awz) = 1, as required. Also, (5.2b) cannot hold for Dxy and Z ; henceq(Dxy [

Z ) = � � 2. The proof is complete sinceDxy [ Awz = Dxy [ Z .

(iii) is a trivial consequence of Claim5.9 for Dxy and Dwz and the steadiness ofAxy and

Awz .

(iv) For a contradiction, assume thatw 2 Dxy or w 2 Y. The �rst case contradicts part (i):

although w is the light endnode ofwz, Dxy is a wz-set with q(Dxy ) = � � 1. Hencew 2 Y; let

uv 2 I F (Y) be an arbitrary 12-edge, and consider the hexa-
ipping (xy; uv; wz). There must

be an increasing setZ as in the proofs of (i) and (ii), and we examine the same cases (I)-(III).

In each case,q(Z ) = � � 2 asq(Z ) = � � 1 is excluded by Claim5.5; let us chooseZ minimal.

(I) Z is a minimal (and stable)xvuy-set with q(Z ) = � � 2 and thus Z = Zxv . By part (i),

Zxv \ X = Axy and hencez 2 Z . Consequently,w =2 Z . (5.2b) is impossible forZ and

Y becausex is a light endnode ofxy. (5.2a) cannot hold either, sincedG+ F (Z; Y ) � 1

because of the edgewz.

(II) Since u is the light endnode ofuv, we getq(Z � Y) = � � 1 by (5.2b). This contradicts

part (i) since Z � Y intersectsAxy and y =2 Z � Y.
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(III) For X and Z , (5.2a) is impossible sincedG+ F (X; Z ) � 1. On the other hand, (5.2b)

cannot hold either sincex is the light endnode ofxy.

Some prerequisites are needed to prove Lemma5.34. W � X is called a witness set

for X if there exists setsAx1y1 ; : : : ; Ax � y� 2 A 0 (with � � 1) so that
S w

i =1 Ax i yi = W, and

(
S j � 1

i =1 Ax i yi ) \ Ax j yj 6= ; for j = 2; : : : ; � . Ax1y1 ; : : : ; Ax � y� is called aconstruction sequence

for W. Note that witness sets are exactly the node sets of connected subhypergraphs of the

hypergraph (X; A 0). Witness sets forY are de�ned analogously.

Lemma 5.36. (i) Every witness setW for X is steady,q(X � W) = � � 1 and dF (W; X �

W) > 0.

(ii) If wz 2 I F (W), then wz 2 I F (Ax i yi ) for some member of the construction sequence.

(iii) If W and W 0 are two witness sets forX , then dG+ F (W; W0) = 0 . If A is a witness set for

X and B is a witness set forY, then they satisfy (5.4).

Proof. (i) Consider a construction sequence forW as in the de�nition. If � = 1, then we are

done by Lemma5.32(i). Assume now� > 1. By induction, W 0 =
S � � 1

i =1 Ax i yi is a steady set

with q(X � W 0) = � � 1. Let A = Ax � y� , D = X � A = Dx � y� . We may assume thatD

and X � W 0 are crossing, as otherwiseW = W 0 or W = A or we get a contradiction to the

stability of A and W 0. The stability also excludes (5.2b) for X � W 0 and D. (5.2a) implies

q(D [ (X � W 0)) = q(D \ (X � W 0)) = � � 1, dG+ F (A; W 0) = 0. Since X � W = D \ (X � W 0),

it remains to prove the steadiness ofW.

Indeed, assume there is a setU � W with q(U) = � � 1. As W 0 and A are steady, both

sets U \ (W 0 � A) and U \ (A � W 0) are nonempty. (5.2b) cannot hold for U and D, since

q(U � D) � � � 2 by the stability of A. (5.2a) implies U [ D = X , dG+ F (U; D) = 0. These,

together with dG+ F (A; W 0) = 0 yield x � 2 A \ W 0, y� 2 W 0 � A. By the induction hypothesis,

x � y� 2 I F (Ax i yi ) for somei < � . Then, by Lemma5.32(ii), A � Ax i yi � W, a contradiction.

(ii) follows by dG+ F (A; W 0) = 0 and the inductional hypothesis. The �rst part of (iii) is

immediate by Lemma5.32(iii). For the second part, if A = Axy and B = Auv for 12-edges

xy 2 I F (X ), uv 2 I F (Y), then Lemma 5.32(i) proves (5.4). For larger witness sets, it can be

veri�ed easily by induction as in part (i).

Let us now prove further useful properties of witness sets. The next claim is straightforward

by the de�nition of Dxy .

Claim 5.37. If for an 12-edgexy 2 I F (X ), W is a witness set and also anxy-set, then

Axy � W. �
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Lemma 5.38. Let U, T and W be three witness sets forX . Assume thatT is a descendant of

U, and let wz 2 F be the unique 12-edge fromT to U � T.

(i) If T \ W 6= ; and z =2 W, then U \ W � T. Consequently,T [ W is a descendant of

U [ W.

(ii) If T is also a descendant ofW or T \ W = ; , then T is a descendant ofU [ W.

(iii) If W 2 A 0, then T is always a descendant ofU [ W whenever the condition in part (i) is

not met.

Proof. (i) Consider the setsZ = T [ (X � U) and D = X � W. q(Z ) = � � 2 as T is a

descendant ofU, and q(D) = � � 1 by Lemma 5.36(i). For Z and D, (5.2b) is impossible

because ofq(Z � D); q(D � Z ) � � � 2, asZ � D and D � Z are nonempty subsets of the steady

setsW and U, respectively. (The nonemptiness follows sinceT \ W � Z � D and z 2 D � Z .)

(5.2a) yields q(D \ Z )+ q(D [ Z ) � 2dG+ F (D; Z ) � 2� � 3. The proof is illustrated in Figure5.3.
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Figure 5.3: Illustration of the proof of Lemma 5.38(i); the sets Z and D are vertically and horizontally

striped, respectively.

If q(D [ Z ) = � , then D [ Z = X , or equivalently, U \ W � T, as required. This is always

the case ifw 2 W as it implies dG+ F (D; Z ) � 1.

Let us assumeq(D [ Z ) � � � 1, and thusw 2 T � W and q(D \ Z ) � � � 2. Let Z 0 = D \ Z

and D 0 = X � T. Note that w 2 Z 0. For Z 0 and D 0, (5.2b) is again impossible: Z 0 � D 0

and D 0 � Z 0 are subsets of the steady setsT and U [ W, respectively. Thus (5.2a) must hold.

dG+ F (Z 0; D 0) � 1 because of the edgewz. Consequently,q(Z 0 \ D 0) + q(Z 0 [ D 0) � 2� � 1, a

contradiction as both are proper subsets ofX .

The last part follows since we have just proved (U [ W) � (T [ W) = U � T. Since

dG+ F (U; W) = 0 by Lemma 5.36(iii), this also implies that wz is the only edge inG + F

betweenT [ W and (U [ W) � (T [ W).
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(ii) Consider the setsT [ (X � U) and T [ (X � W) if T is also a descendant ofW; and

T [ (X � U) and X � W in case ofT \ W = ; . In both cases, (5.2b) is excluded by steadiness,

while (5.2a) yields q(T [ (X � (U [ W))) = � � 2. (Notice that q(T [ (X � (U [ W))) � � � 1 is

impossible sincew is the light endnode ofwz. q(T [ (X � (U \ W))) � � � 2 similarly follows

in the �rst case.) dG+ F (T; (U [ W) � T) = 1 is trivial in the �rst case, whereas it follows by

Lemma 5.36(iii) in the second case.

(iii) Let W = Axy for somexy 2 I F (X ). Using part (ii), it remains to investigate the case

whenT \ W 6= ; and z 2 W. By Lemma 5.32(iv), w 2 W, whereas part (ii) of the same lemma

implies that Awz is a descendant ofW. Furthermore, Awz � T by Claim 5.37. Let us apply

part (i) for W; Awz and T in place ofU; T and W; respectively. We getW \ T = Awz and that

T = T [ Awz is a descendant ofW [ T. Now we may apply part (ii) for U, T and W [ T, leading

to the desired conclusion.

Corollary 5.39. For any Axy 2 A 0, the set systemU = f Awz : wz 2 I F (Axy )g is laminar.

Consequently, ifW is a witness set whose construction sequence consists of sets in U, then

W 2 U.

Proof. Indeed, assumeT = Awz and W = Aw0z0 are crossing sets withwz; w0z0 2 I F (Axy ), both

descendants ofU = Axy . z 2 W is impossible as Lemma5.32(iv) and (ii) would imply T � W,

and thus Lemma5.38(i) is applicable, yielding W � T, a contradiction again.

Let us now de�ne an orderingA1; A2; : : : ; A
 of the elementsA 0 among auxiliary witness

setsW1; : : : ; W
 (
 = jA 0j). Let A1 be an arbitrary minimal element ofA 0 and let W1 = A1.

In step i � 2, let R = A 0 � f A j : j < i g, that is, the sets which have not yet been indexed.

Assume �rst that there exists anA 2 R with A \ Wi � 1 6= ; . Let us choose such anA minimal

for containment, and subject to this, jA � Wi � 1j minimal. Let A i = A, Wi = Wi � 1 [ A i . If

A \ Wi � 1 = ; for every A 2 R , then let A i be an arbitrary minimal element of R and let

Wi = A i .

Notice that in this ordering, the connected components of thehypergraph (X; A 0) will be

the maximal Wi 's, and their building sequences are \continuous" subsets off 1; : : : ; 
 g.

Proof of Lemma5.34. Let Fi = f xy 2 I F (X ) : Axy = A j for somej � ig. Note that F
 =

I F (X ). In what follows, we construct a witness systemA i for Fi consisting of witness sets,

providing a witness systemA 
 for I F (X ). A witness system forI F (Y) can be constructed

similarly. Since both consist of witness sets, they are automatically linked by Lemma 5.36(iii),

and thus the claim follows.

The members ofA i will be witness sets whose construction sequences contain only the sets

A1; : : : ; Ai . Furthermore, it will be obvious from the construction that A i contains all maximal

such witness sets (in particular,Wi .) Note that, by the indexing rule, Wi � 1 will be the only
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maximal member ofA i � 1 intersecting A i . Let A 1 = f A1g. For somei � 2, assume we have

already constructedA i � 1.

(I) If A i \ Wi � 1 = ; or Wi � 1 � A i , then let A i = A i � 1 [ f A i g. This clearly satis�es the

conditions. Note that if Wi � 1 � A i then Corollary 5.39implies that Wi � 1 � f A1; : : : ; Ai � 1g and

thus all these sets are descendants ofA i .

(II) Assume nextA i � Wi � 1. If A i � 1 blocks the entire edge setFi , then let A i = A i � 1.

Otherwise, there exists an 12-edgexy 2 Fi � Fi � 1 not blocked by A i � 1 but only by A i = Axy .

We shall prove that A i = A i � 1 [ f A i g satis�es the conditions.

xy 2 I F (Wi � 1), hence by Lemma5.36(ii), xy 2 I F (A j ) for somej < i . By Lemma 5.32(ii),

A i is a descendant ofA j . The selection rule in stepj implies A i \ Wj � 1 = ; and A j � Wj � 1 6= ; .

We claim that Wi = Wj . Indeed, A i � Wj , and thus chosingA ` with A ` � W` � 1 6= ; in step

j < ` < i contradicts the selection rule, asA i � W` � 1 = ; . On the other hand, for j < ` < i ,

either A ` \ Wj � 1 = ; or A ` � Wj � 1 = A j � Wj � 1, as otherwise we would have had a better choice

in step j . Together with Corollary 5.39, these guarantee the laminarity ofA i .

It is left to prove (c) in De�ntion 5.33. Let C be the smallest member ofA i containing A i .

Clearly, C = A j [ W for some witness setW � Wj � 1. Lemma 5.38(ii) for U = A j , T = A i

and W gives that A i is a descendant ofC. Next, assumeA i is the smallest set inA i containing

someT 2 A i . Again, Corollary 5.39ensures that this is only possible ifT = A ` for some` < i ,

and A ` is a descendant ofA i by Lemma 5.32(ii).

(III) Finally, assumeA i and Wi � 1 are crossing. For an 12-edgexy 2 F , A i = Axy implies

y =2 Wi � 1 as otherwise Lemma5.32(iv) and (ii) would give A i � Wi � 1. Consequently,xy is also

blocked byWi = Wi � 1 [ A i . Let T � A i � 1 denote the set of the largest proper subsets ofWi � 1.

Note that T forms a subpartition of Wi � 1, and according to (c) in De�ntion 5.33, all members

of T are descendants ofWi � 1. We distinguish three cases. In each of them, we assume that the

conditions of the previous case(s) are not met.

(IIIa) There is an 12-edgewz 2 Fi � 1 with w 2 A i \ Wi � 1, z 2 A i � Wi � 1. By Claim 5.37,

Awz � Wi � 1. The conditions in Lemma5.38(i) are met for A i ; Awz and Wi � 1 in place of U; T

and W, thus Wi � 1 = Wi � 1 [ Awz is a descendant ofWi . Consequently,A i = A i � 1 [ f Wi g is an

appropriate choice.

(IIIb) There is aB 2 T with B \ A i 6= ; and z =2 A i , wherewz 2 Fi � 1 is the unique 12-edge

betweenB and Wi � 1 � B . The conditions in Lemma5.38(i) hold for Wi � 1; B and A i , hence

Wi � 1 \ A i � B and A i [ B is a descendant ofWi . This also implies that all sets inT � B are

disjoint from A i and hence by Lemma5.38(ii), they are all descendants ofWi . As the condition

in (IIIa) is not met, all edges inFi � 1 blocked byWi � 1 are also blocked byWi , and those blocked

by B are also blocked byA i [ B . Now A i = ( A i � 1 � f Wi � 1; Bg) [ f Wi ; A i [ Bg is a witness

system forFi .

(IIIc) Otherwise, Lemma5.38(iii) yields that all members of T are descendants ofWi .

Setting A i = ( A i � 1 � f Wi � 1g) [ f Wi g satis�es the conditions.
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So far, we used only Claim1.18 on the skew supermodularity ofR. In the proof of

Lemma 5.35 we will however need the stronger Claim1.19 stating that if ( 1.5a) or (1.5b)

does not hold, then the other holds with equality. Consequently, (5.2a) and (5.2b) have the

same property. This will be needed to prove the next claim.

Claim 5.40. If H1; : : : ; H � are disjoint members ofA , then q(X �
S �

i =1 H i ) = � � � and

q(
S �

i =1 H i ) < � � � . The same hold forY and B. �

Proof. We prove the two claims together by induction on� . For � = 1 these follow by

Lemma 5.36(i); assume we have already proved them for 1; : : : ; � � 1. Consider the sets

D = X �
S � � 1

i =1 H i and D 0 = X � H � . By induction, q(D) = � � � + 1 and q(D 0) = � � 1. (5.2b)

cannot hold sinceD � D 0 =
S � � 1

i =1 H i , D 0� D = H � , and thus by induction q(D � D 0) < � � � +1

and q(D 0 � D) < � � 1. Hence (5.2a) holds with equality. Now q(D [ D 0) = � as D [ D 0 = X ,

yielding the �rst part of the claim.

For the second part, let Z =
S �

i =1 H i . Assume for a contradiction that q(Z ) � � � � .

Lemma 5.36(i) and (iii) together imply dF (Z; D 0) � 1. If (5.2a) held for Z and D 0 then we get

a contradiction sinceq(Z [ D 0) = � and q(Z \ D 0) < � � � + 1 by the induction hypothesis.

On the other hand, (5.2b) is also impossible sinceZ � D 0 = X �
S �

i =1 H i and D 0 � Z = H � .

q(D 0 � Z ) < � � 1 and we have just proved in the �rst part that q(Z � D) = � � � .

Proof of Lemma5.35. We use Lemma5.28to verify that H is a medusa. For any 1� i; j; t � `,

i 6= j , we construct a separating pairZ; Z 0 for i and j coherent with t, so that (5.2a) does not

hold for them, and dG(Z; Z 0) = 0. Note that this also implies dG(Ci ; Cj ) = 0 and hence the

conditions of the lemma are satis�ed. LetA; A 0 and B be the corresponding members ofA or

B for Ci ; Cj and Ct , respectively.

We start by showing the existence of a separating pair (regardlessto t). (I) First, if Ci 2 CX ,

Cj 2 CY , then let Z = X , Z 0 = A [ (Y � A0). q(Z ) = � and q(Z 0) = � � 2 sinceA and B

are linked. (5.2a) would contradict the steadiness ofA; in the case of (5.2b), dG+ F (Z; Z 0) = 0

follows sinceq(Z � Z 0) + q(Z 0 � Z ) � 2� � 2.

(II) Let us now assume thatCi and Cj are both in CX or both in CY ; wlog. considerCX .

(IIa) If A and A0 are disjoint, then let Z = Y [ A, Z 0 = X � A0. q(Z ) = q(Z 0) = � � 1 (notice

that Z = V � (X � A)), and the same argument works as in the �rst case.(IIb) If A � A0, then

we may assume thatA is a descendant ofA0 (otherwise, we replaceA by the largest setA00with

A ( A00( A0). For Z = A [ (X � A0) and Z 0 = Y [ A we haveq(Z ) = � � 2 and q(Z 0) = � � 1.

(5.2a) is impossible sinceq(Z \ Z 0) � � � 2 because ofZ \ Z 0 = A, and q(Z [ Z 0) � � � 2 as

V � (Z [ Z 0) is a subset of the steady setA0. From (5.2b) we get dG+ F (Z; Z 0) � 1. However,

we know that there exists an 12-edgewz 2 I F (A0) from A to A0 � A, hencedG(Z; Z 0) = 0.

(IIc) The argument is the same for the caseA0 � A by changing the role ofA and A0 and

complementing the setsZ and Z 0. (Hence we setZ = ( A � A0) [ Y and Z 0 = X � A0.)
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We need a separating pair with the stronger property of being consitent with t. Let us

reconsidert the cases above.(I) In the construction above,A � Z \ Z 0 and A0 \ (Z [ Z 0) = ; .

Hence ifB � A, then any pair separatingi and j is automatically consistent with t. Also, if

A � B , then a pair separatingt and j also separatesi and j , and is consitent with t. By similar

arguments, we are also done ifB � A0 or A0 � B . The remaining case is whenB is disjoint

from both A and A0. If B � Z � Z 0 = X � A, then let Ẑ = X � B . If B � Z 0 � Z = Y � A0,

then let Ẑ = X [ B . In both cases,q(Ẑ ) = � � 1 and it can be veri�ed easily that Ẑ; Z 0 is an

appropriate choice.

(IIa) Again, the nontrivial cases is whenB is disjoint from both A and A0. If B � Y then

let Ẑ = A [ (Y � B), Ẑ 0 = Z 0 and if B � X , then let Ẑ = Z and Ẑ 0 = X � (A [ B). It is easy

to show that Ẑ; Ẑ 0 is a good pair in both cases, however, Claim5.40 is needed for the proof.

In the case(IIb) , we have to investigateB � Y and B � X � A0. Let Ẑ 0 = A [ (Y � B)

in the �rst while Ẑ 0 = A [ B [ Y in the second case and̂Z = Z in both cases. It is left to

the reader to verify, using Claim5.40, that Ẑ; Ẑ 0 is a good pair. (IIc) can be again handled

similarly.

Having proved that H is a medusa, we shall verify� 1(G; r; ~m; H) = � . Let A M and BM

denote the set of the maximal components ofA and B, respectively; letjA M j = s and jBM j = t.

Furthermore, let F1 � F be the set of ordinary edges w.r.t.H and h = 1 (as de�ned before

Lemma 5.25). Let F2 = F � F1. Let G0 = G + F1, and let ~m0 denote the \degree vector" ofF2,

that is, (1.9) holds for ~m0 and (F2; ' ).

Notice that I F (X � ) = I F (Y � ) = I F (Ci ) = ; for eachCi 2 C, and there are exists no 12-edge

xy 2 F with x 2 X � [ Y � , y 2
S

C = TX [ TY . The edges inF2 are exactly those inF connecting

two tentacles inCX or two in CY . Therefore,m(V) � m1(
S

C) = m(X � ) + m(Y � ) + m2(
S

C) =

dF (X � ) + dF (Y � ) + jF2j. Hence we may rewrite� 1(G; r; ~m; H) in the form

� 1(G; r; ~m; H) =
1
2

(� 1 + q(X � ) + q(Y � ) � j F2j) :

The proof �nishes by the following claim.

Claim 5.41. (i) q(X � ) = � � s, q(Y � ) = � � t.

(ii) jCj = s + t + jF2j.

(iii) Every tentacle Ci is 1-odd.

Proof. (i) is immediate by Claim 5.40. (ii) By Lemma 5.36(iii), dF2 (TX ; TY ) = 0. We claim

that jCX j = jAj = s+ jI F2 (TX )j and analogously forCY . Indeed, by (e) in De�nition 5.33, there

is a unique 12-edge inF2 betweenA0 and A � A0 for eachA0 2 A�A M with A being the smallest

set containing it. Hence there is a bijection betweenI F2 (TX ) and A � A M .

(iii) By Lemma 5.25, the set of 1-odd tentacles is the same forH ; G; ~m and H 0; G0; ~m0, where

H 0 = ( X � ; Y;CX ). Notice also that p0 = qF1 , wherep0 denotes the demand function forG0. For
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a tentacleC 2 CX , let A denote the corresponding member inA . Let T � A denote the set of

largest sets contained inA; let jT j = a. For eachA0 2 T , dG+ F (A0; A � A0) = 1, and the unique

edge is an 12-edgexy 2 F2 with x 2 A0, y 2 C.

qF1 (Y) = qF (Y) = � andqF (Y [ A) = � � 1. Let b1 = dF2 (C; X � A) and b2 = dF2 (
S

T ; X � A).

Note that if A 2 A M , then b1 = b2 = 0, and if A =2 A M then b1 + b2 � 1. Thus qF1 (Y [ A) =

� � 1 + b1 + b2. By Claim 5.40, qF (Y [ (
S

T )) = � � a, and thus qF1 (Y [ (
S

T )) = � + b2. By

the hydra property, p(Y [ A) + p(Y) = p(Y [ (
S

T )) + p(Y [ C). Since dF1 (
S

T ; C) = 0, it

follows that

qF1 (Y [ C) � qF1 (Y) = qF1 (Y [ A) � qF1 (Y [ (
[

T )) = b1 � 1:

m0
1(C) = b1 and thus C is 1-odd forH 0; G0; ~m0 (recall p0 = qF1 ), and consequently, forH ; G; ~m.

5.3.2 The augmentation problem

In this section, we brie
y sketch how Conjecture1.46could be derived from Conjecture1.45. We

start by constructing a legal degree-prescription~m = ( m1; m2) compatible with the partition

Q = ( Q1; Q2) as in Section5.2.2. This satis�es m1(V) = m2(V) = 	 Q (G). Next, consider a

� -minimal ~m-prescribed legal edge setF . We are done if� F = 0. If � F > 0, then consider

an optimal hydra H = ( X � ; Y � ; C1; : : : ; C` ) and h 2 f 1; 2g with � F = � 1(G; r; ~m; H) as in

Conjecture1.46. Wlog. assumeh = 1. Let v 2 Ci with m1(v) > 0; consider the minimum tight

set X v containing v as in Section5.2.2.

If X v � Ci \ Q1 holds in all such cases, then we may uncross these sets as in Section5.1.1.

This result in a 1-subpartition Z , which is a re�nement of C1; : : : ; C` and p(Z ) = m1(
S

Ci ).

Now
P

(p(Z ) : Z 2 Z ; Z � Ci ) = m1(Ci ) for each 1� i � `. Consequently, the 1-odd tentacles

are the same as the 1-toxic tentacles, and hence� 0
1(G; r; Z ; H ) = � 1(G; r; ~m; H) + 1

2m(V) =

� F + 1
2m(V). Finally, Lemma 5.21yields an augmenting edge set of size� 0

1(G; r; Z ; H ).

If X v � (Ci \ Q1) 6= ; for some v 2 Ci , m1(v) > 0, then we may de�ne another legal

degree-prescriptionm0 and a � -minimal ~m0-prescribed legal edge setF 0 with � F 0 < � F . We

do not elabourate this argument here: it needs structural properties of � -minimal legal edge

sets generalizing Lemma5.32. However, these results were proved only under the assumptions

� F � 2 and
S

FF = V.
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5.4 Further remarks

Partition-constrained global edge-connectivity augmentati on

Let us brie
y sketch how the ideas in Section5.2.1can be extended to give a new and simpler

proof of Theorem1.23. More precisely, we work here with the degree-prescribed version, which

we did not formulate in the thesis. Nevertheless, assume we have a legal degree-prescription~m

so that (1.4) holds, and let us have a connectivity requirementr � k. Let F be a � -minimal

~m-prescribed edge set. We shall prove� � 1.

In the case of global connectivity requirements, both (5.1a) and (5.1b) hold for any crossing

X; Y with p(X ); p(Y) > 0. Proving � = 1 is utterly simple. Indeed, assume� � 2. Consider

X 0 as in Lemma5.8, and xy 2 X 0, uv 2 Y with ( xy; uv) 
ippable. For X 0 and the stable set

Zxv , (5.1b) yields a contradiction. If � = 1, we can exhibit a C4- or C6-obstacle6 by analyzing

a single hexa-
ipping.

A similar argument, combined with the ideas of the proof of Theorem 5.11 in Section5.1.4,

could be used to develop a simpler proof of the recent theorem ofBern�ath, Grappe and Szigeti

[11] on partition-constrained coverings of positively crossing symmetric supermodular functions.

Beyond Theorem 5.30

On the way from Theorem5.30 towards Conjecture1.45, the �rst step would be to leave the

assumptionX [ Y = V. Lemma 5.32 does not really use this assumption, and remains true

with minor modi�cations. The di�culty comes from the edges incident to V � (X [ Y). One

might give a categorization of such edges, but there is essentially �ve di�erent types of them.

Each type can be characterized in a manner similar to Lemmas5.6 and 5.32. However, the

argument reaches an extreme level of complexity, far beyondthe patience of both the author

and any possible reader.

To handle edges incident toV � (X [ Y), we also need a re�nement of the partial order�

as follows:F 0 � F if � F 0 < � F , or � F 0 = � F and jF F 0j < jF F j, or � F 0 = � F and jF F 0j = jF F j, but
P

Z 2F F 0
jZ j >

P
Z 2F F

jZ j. That is, we also want to maximizejX j + jY j.

For � F = 1, the situation is even worse. We needed completely di�erentkind of arguments

for � F = 1 and � F � 2 already in the proof of Theorem1.42. For Conjecture 1.45, we would

apparently also need a new type of argument for this case, doubling both length and complexity.

Once having proved Conjecture1.45, it can be probably easily extended to an arbitrary

number of partition classes. For the global connectivity version Theorem 1.23, the main di�-

culties already occur fort = 2. We also need some general version of theC6-con�guration, but

6C4- and C6-con�gurations are for the augmentation problem, while the obstacles for the degree-prescribed

problem. Analogously, notice that we also use hydrae in two di�erent senses, with toxic tentacles for the

augmentation and odd ones in the degree-prescribed version.
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hopefully this is the only new kind of obstacle.

Minimum cost edge-connectivity augmentation problems

Although the minimum-cost version of local edge-connectivityaugmentation is NP-complete,

however, unlike the other basic connectivity augmentation problems, it admits a nice and strong

approximation. Jain [48] proved that for the natural LP-relaxation of the problem, abasic

feasible solution always has a component of value at least1
2. Rounding up such a value to 1,

adding this edge to the graph and iterating the method gives a2-approximation algorithm.

A natural question is: for which classes cost functions is local edge-connectivity augmentation

polynomially solvable?An example is - similarly to Chapters2 and 3 - the class of node-induced

cost functions, as it can be shown via standard polyhedral methods. The partition constrained

problem can also be interpreted in this framework: given the partition Q, let c(uv) = 1 if u

and v lie in di�erent classes ofQ and let c(uv) = 2 if u and v are contained in the same class.

It is clear that �nding a minimum size Q-legal augmenting edge set is equivalent to �nding a

minimum cost augmentation, hence the problem for this cost is in P for the global connectivity

case - and we conjecture that also for arbitrary requirements.7

One might wonder if there is a solvable class containing both node-induced cost functions

and the partition-induced cost functions as above. For example, a natural candidate is if we

have a di�erent valuewi for each partition classQi , and the cost of edges between classesQi and

Qj is wi + wj , while the cost of edges inside classQi is 2wi + 2 min j 6= i wj . (Or equivalently, we

want to �nd a minimum cost Q-legal augmenting edge set with costwi + wj betweenQi and Qj .

Notice that for this cost function, the cost remains unchanged by a Q-legal 
ipping.) We think

that this should not be much more di�cult than the minimum card inality partition-constrained

problem.

Let us propose another, related question. Jain's iterative rounding method is the only

known 2-approximation algorithm for the general minimum cost problem; combinatorial al-

gorithms (e.g. Williamson et. al. [78]) have much worse approximation ratios. A possible

approach for constructing a combinatorial 2-approximationcould be the following (at least for

the uncapacitated case). Find an su�ciently broad class of cost functions K for which (i) the

minimum cost version is still solvable; (ii) arbitrary metric cost function can be 2-approximated

by a cost function in K (that is, for a cost function c, we can �nd a c0 2 K with c0 � c � 2c0).

K being the node-induced cost functions does not meet this latter requirement; however, there

might exist a broader class that works. (Nevertheless, partition-induced cost functions should

7In these problems, we allow an arbitrary number of copies of the same edge in theaugmenting set. In this

case, it may always be assumed that the cost function satis�es the triangle inequality. If capacities are also

imposed, the problem becomes NP-complete even in the minimum cardinality case (that is, if c � 1), as shown

by Jord�an [ 51]. Nevertheless, the approximation result of Jain also works with capacities.
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be rather excluded fromK: it would be desireable to �nd a class where a relatively simple

algorithm yields an optimal solution.)
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Chapter 6

Constructive characterization of

(k; `)-edge-connected digraphs

This chapter is devoted to the proof of Theorem1.47, based on our joint paper [56] with Erika

Ren�ata Kov�acs. In Section 6.1, the precise de�nitions are given and some basic properties

are exhibited. We also give the proof of Theorem1.47 here based on the main technical tool

Theorem 6.1. This is a special case of the stronger Theorem6.7 that we prove in Section6.2

by using three basic lemmas. Among these, the �rst is a general splitting o� result proved in

Section6.3, while the proof of the other two lemmas is given in Section6.4. Finally, in Section6.5

we describe the structure of locally admissible sets and present a polynomial algorithm for

�nding a su�cient locally admissible set F at a special nodez. We also show an example of an

insu�cient maximal globally admissible edge set.

6.1 Basic concepts and the proof of Theorem 1.47

We start with recalling some de�nitions from Section1.5.4. Let D = ( V; A) be a (k; `)-edge-

connected directed graph with rootr0 2 V. For X � V, let 
 (X ) = k if r0 =2 X and 
 (X ) = `

if r0 2 X . A node v 2 V is calledspecial if � (v) = k, ` � � (v) � k � 1. Let S denote the set of

special nodes (S 6= ; is not assumed). IfX � S then we say thatX is a special set. Observe

that r0 =2 S as � (r0) � k. For a z 2 S, a subsetF of edges enteringz is locally admissible at

z if D � F is (k; `)-edge-connected inV � z and jF j � k � � (z). A locally admissibleF will be

called su�cient if jF j = k � � (z). Theorem 1.47will be an easy consequence of the following.

Theorem 6.1. In a minimally (k; `)-edge-connected digraphD = ( V; A) there exists a special

nodez with a su�cient locally admissible set atz.

Let us see how Theorem1.47 follows from this.
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Proof of Theorem1.47. First let us show that the operations (i) and (ii) preserve (k; `)-edge-

connectivity. This is straightforward in the case of (i). For (ii), let D 0 = ( V + z; A0) denote the

digraph resulting from the (k; `)-edge-connected digraphD = ( V; A) by applying (ii). For every

v 2 V � r0, the k edge-disjoint paths fromr0 to v and the ` edge-disjoint paths fromv to r0

in D naturally give the same number of paths inD 0. Thus the only problem could be if there

were too few paths fromr0 to z or from z to r0.

In this case, by Menger's theorem we have a subsetX of V + z with r0 =2 X , z 2 X , and

either � (X ) < k or � (X ) < ` . SinceD 0 is (k; `)-edge-connected inV, the only possibility is

X = f zg. However,� (z) = k and � (z) � ` gives a contradiction.

For the other direction, if D is not minimally (k; `)-edge-connected, then we can obtain

D from a smaller (k; `)-edge-connected graph by operation (i). Otherwise, Theorem 6.1 is

applicable. Consider the special nodez and the su�cient locally admissible F . D � F is (k; `)-

edge-connected inV � z and � (z) = � (z), satisfying the conditions of Theorem1.34. For the

digraph D 0 resulting by a complete splitting atz, operation (ii) can be applyied to getD.

The locally admissible edge sets are characterized by the following claim. Let � in (Z ) and

� out (Z ) denote the sets of edges entering and leaving the setZ , respectively. As before,z

sometimes stands for the setf Zg.

Claim 6.2. F � � in (z) is locally admissible atz if and only if jF j � k � � (z) and for each

; 6= X ( V, X 6= f zg,

� A� F (X ) � 
 (X ): (6.1)

Proof. If F is locally admissible then forX 6= V � z, (6.1) is the necessary cut condition as

D � F is (k; `)-edge-connected inV � z. If X = V � z then it is equivalent to � A� F (z) � `,

which follows since� F (z) = 0. The converse direction follows by Menger's theorem.

It is easy to check in polynomial time whether a set of edges entering z is locally admissible.

Furthermore these edge sets admit a nice structure: they form a matroid. A consequence is

that a building sequence can be found in polynomial time for a (k; `)-edge-connected digraph

D. This will be discussed in Section6.5.

Given an arbitrary edge setF � A, for a nodev 2 V we use the notationFv = F \ � in (v).

Let � (X ) = � F (V � S � X; X ), and let t(X ) = min f � F (V � S � X; v ) : v 2 X g. A v giving

the minimum value in the de�nition of t(X ) is called aseed of X . Let T(X ) = max f � Fv (X ) :

v 2 X g, and a v giving the maximum value is called asprout of X . Note that a set may have

multiple seeds and sprouts.
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De�nition 6.3. In a digraph D = ( V; A) with special nodesS � V, we say that F � A is

globally admissible if

� (X ) � 
 (X ) + � F (X ); if X � S 6= ; ; X ( V; (6.2a)

� (X ) � k + T(X ); if X is special,jX j � 2; (6.2b)

� (X ) � 
 (X ) + � (X ) � t(X ); for every ; 6= X ( V; (6.2c)

jFv j � k � � (v); for every special nodev and; (6.2d)

Fv = ; ; if v =2 S: (6.2e)

Note that if X is not special, then all nodes inX � S are seeds andt(X ) = 0, and thus

(6.2a) implies (6.2c). For a special setX , we have two conditions. On the right hand side of

(6.2c), we consider only edges coming from non-special nodes, however, not all such edges are

taken into account. The importance of (6.2b) is revealed by the following claim.

Claim 6.4. If F is globally admissible, then for eachv 2 S, Fv is locally admissible atv.

Proof. We have to verify (6.1). If X is not special, then� A� Fv (X ) � � A� F (X ) � 
 (X ) by

(6.2a). If X is special andjX j � 2, then by (6.2b), � A� Fv (X ) � � (X ) � T(X ) � k.

Claim 6.5. If F is globally admissible inD and F 0 � F , then F 0 is also globally admissible in

D.

Proof. When removing an edge fromF , the right hand sides of (6.2a), (6.2b) and (6.2c) cannot

increase.

F = ; is globally admissible if and only ifD is (k; `)-edge-connected. By the above claim,

any digraph D that admits a globally admissibleF is automatically (k; `)-edge-connected.

We say that a globally admissible setF is maximal if there is no edgeuv 2 A � F so that

F + uv is also globally admissible. A globally admissibleF is calledsu�cient if (6.2d) holds

with equality for at least one specialv, otherwise it is insu�cient .

Let us now introduce now the various types of tight sets. We say that a set X is tight with

respect to the globally admissibleF if at least one of (6.2a), (6.2b) or (6.2c) holds with equality

for X . A tight set with X � S 6= ; is callednormal tight . A special tight X with jX j � 2 is

called T-tight or � -tight if it satis�es ( 6.2b) or (6.2c) with equality, respectively. For a tight

X , if r0 =2 X , then X is called in-tight , and if r0 2 X , then V � X is calledout-tight . Note

that, somewhat confusingly, an out-tight set is not necessarily tight.

Claim 6.6. If F is insu�cient globally admissible and for uv 2 A � F , v 2 S, F + uv is not

globally admissible, thenuv enters a tight setX satisfying one of the following: (a)X is a

normal tight set, or (b) X is a T-tight set with sproutv, or (c) X is � -tight, u 2 V � S and X

has a seedt with t 6= v.
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Proof. By assumption,F + uv should violate one of (6.2a), (6.2b) or (6.2c). This cannot happen

if none of them holds with equality forF , since the right hand sides may increase by at most 1.

Thus uv must enter a tight set X . If X is T-tight and v is not a sprout of v, then T(X ) does

not increase by addinguv to F and thus (6.2b) will not be violated for X . Similarly, if X is

� -tight and u 2 S, then (6.2c) remains unchanged forF + uv. If u =2 S but the unique seed of

X is v, then for F + uv, both � (X ) and t(X ) increase by 1.

Note that if F is insu�cient maximal globally admissible, this claim appliesfor every edge

uv 2 A � F , v 2 S.

We will prove a slight generalization of Theorem6.1 for the purpose of a special induction

argument. To formulte this, one more new notion is needed. A globally admissible edge setF

saturates the digraph D if every edgeuv 2 A � F with v =2 S enters a normal tight set. We

are going to prove the following:

Theorem 6.7. Let F0 � � out (r0) be an arbitrary globally admissible set of edges inD = ( V; A)

so that F0 saturatesD. Then there exists a su�cient globally admissibleF with F � F0.

The (k; `)-edge-connectivity ofD is tacitly implied by the existence ofF0. However,D is not

assumed to be minimal subject to this property. Nevertheless,F0 = ; is a globally admissible

edge set saturatingD if and only if D is a minimally (k; `)-edge-connected digraph, and thus

Theorem 6.1 is a direct consequence of Theorem6.7. Unfortunately, it is not true that every

maximal globally admissibleF with F � F0 is su�cient, as shown by a counterexample in

Section6.5.

Let uv be an edge entering the tight setX . If v 2 S and X and uv satisfy one of the

conditions in Claim 6.6 or v =2 S and X is normal tight, then we say that X blocks uv.

We conclude this section with some elementary propositions.

Claim 6.8. If X; Y � V , then

� (X ) + � (Y) = � (X \ Y) + � (X [ Y) + d(X; Y ); and (6.3a)

� (X ) + � (Y) = � (X � Y) + � (Y � X ) + � (X \ Y) � � (X \ Y) + �d(X; Y ): (6.3b)

�

Claim 6.9. For any X; Y � V,


 (X ) + 
 (Y) = 
 (X [ Y) + 
 (X \ Y); and (6.4a)


 (X ) + 
 (Y) � 
 (X � Y) + 
 (Y � X ): (6.4b)

�

Claim 6.10. For any X � V, � (X ) � � (X ) =
P

v2 X (� (v) � � (v)) . �
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Claim 6.11. AssumeF is insu�cient globally admissible, andZ 6= ; is special. Then� (Z ) <

� A� F (Z ).

Proof. For eachv 2 Z , � (v) � � (v) > jFv j, and thus by summing for allv 2 Z , � (Z ) � � (Z ) =
P

v2 Z (� (v) � � (v)) >
P

v2 Z jFv j � � F (Z ), hence the claim follows.

Claim 6.12. For D = ( U + u; A) with � (u) = � (u), let Du denote the result of an (arbitrary)

complete splitting atu. Then for any X ( U + u, � D u (X � u) � � D (X ).

Proof. If u =2 X , then the claim follows since splitting o� a pair of edges incident to u cannot

increase the degree ofX = X � u. In the case ofu 2 X , � D u (X � u) � � D (U � X; u ) + � D (U �

X; X � u) = � D (X ).

6.2 Proof of Theorem 6.7

The proof relies on three basic lemmas. First:

Lemma 6.13. Let F0 � � out (r0) be an insu�cient globally admissible set of edges, and� (u) =

� (u) for somer0 6= u 2 V. There exists a complete splitting atu so thatF0 is globally admissible

in the resulting digraph.

Lemma 6.14. AssumeF 0 is a globally admissible edge set andX is a tight set with jX j � 2,

r0 =2 X , jX � Sj � 1. Then for any maximal globally admissibleF � F 0, F is su�cient.

Lemma 6.15. If F is maximal globally admissible withu 2 S + r0 for eachuv 2 F , then F is

su�cient.

The �rst of these will be proved in Section6.3, while the last two in Section6.4. Let us now

turn to the proof of Theorem6.7. Consider a counterexampleD = ( V; A) and F0 so that jV j is

minimal, and subject to this, jF0j is maximal. Consider a maximal globally admissibleF � F0.

By the assumption,F is insu�cient.

Case I

Assume there is au 2 V with � (u) = � (u) = k. By Lemma 6.13, there is a complete splitting

at u so that F0 is globally admissible in the resulting digraphDu = ( V � u; A0):

Claim 6.16. F0 saturatesDu.

Proof. The set of special nodes is the sameS in D and Du. Consider an edgee = yz in Du

with z =2 S. Assume �rst that e is an edge inD as well. There is a normal tight setX � V

blocking e in D, sinceF0 saturated D. Claim 6.12 implies � D u (X � u) � � D (X ). X � u is also
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normal and as the subset ofF0 entering X � u in Du is the same as the subset inD entering

X , it follows that X � u blockse in Du.

If e = yz is a new edge, then take a setX that blocked uz in D. X is again a normal tight

set in Du. Note that y =2 X as otherwise the in-degree ofX would be smaller inDu than in D

while the value of� F0 (X ) does not change. HenceX blockse in Du, completing the proof.

As Du has less nodes thanD, by the minimality of jV j there exists a special nodew and a

su�cient locally admissible edge setFw so that F 0 = Fw [ F0 is globally admissible. Note that

w is special inD as well.

From Du we can get toD by pinching the k splitted edges withu. By abuse of notation,

we will denote byFw the edge set inD corresponding toFw in Du in the sense that if an edge

xw 2 Fw has been divided byu, then we replacexw by uw in Fw . We will also useF 0 in this

sense inD. Unfortunately, it might happen that F 0 is not globally admissible inD. Consider

a globally admissibleF1 maximal subject to the condition F0 � F1 � F 0 with jF1j as large as

possible. IfF1 = F 0, then F1 is su�cient as � D (w) = � D u (w). Otherwise, we are going to prove

that there is a tight set Z for F1 with jZ � Sj � 1, jZ j � 2 so Lemma6.14 is applicable giving

a su�cient globally admissible superset ofF1.

AssumeFw � F1 6= ; , and consider an edgezw 2 Fw � F1. By Claim 6.6, zw is blocked by

some tight setZ with respect to F1.

Claim 6.17. Z � S [ f ug

Proof. Z = V � u is impossible as� F1 (u) < jFw j � k � `, and thus � A� F1 (V � u) > ` . Assume

V � Z � u 6= ; and Z � S � u 6= ; . As F 0 is admissible inDu and Z � u is not special,

� D u ;A 0� F 0(Z � u) � 
 (Z ) follows. Claim 6.12 implies � D;A � F 0(Z ) � � D u ;A 0� F 0(Z � u). However,

� A� F1 (Z ) > � A� F 0(Z ) � 
 (Z ) as zw 2 F1 � F entersZ , showing that Z cannot be tight in D.

This implies the claim.

Case II

Assume the condition of Case I does not hold and there is an edgeuv 2 F with u 2 V � S � r0.

Let D1 = ( V; A � uv + r0v) and F1 = F0 + r0v.

Claim 6.18. F1 is globally admissible inD1 and saturates it. The set of tight sets is the same

in D and in D1.

Proof. If v =2 X or v 2 X and jf u; r0g\ X j 6= 1 then no term is changed in the conditions (6.2a),

(6.2b) and (6.2c). This is in fact always the case for (6.2b). If u; v 2 X , r0 =2 X , then in (6.2a)

and (6.2c), both sides increase by one, while ifv 2 X , u =2 X , r0 2 X , both sides decrease by

one. (Note that t(X ) = 0 in both cases asX � S 6= ; .)
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This implies the admissibility and that the set of tight sets coincide in the two cases. Thus

if an edgeuv 2 A � F with v =2 S is blocked by a normal tight set forF0 in D, then the same

set blocks it in D1, proving the saturation.

By the choice ofD and F0, there is a su�cient edge setF 0 � F1 in D1 with jF 0
w j = k � � D 1 (w)

for somew special node inD1. All nodes but u and r0 have the same in- and out-degrees inD

and D1, and thus w is special inD unlessw = u and � (w) = � (w) = k. This is a contradiction

since we assumed that no such node exists.

Let F 00= F 0 � r0v + uv. By the previous claim, it is straightforward to show that F 00 is

globally admissible inD containing F0.

Case III.

For all edges inuv 2 F , u 2 S + r0. The conditions of Lemma6.15are satis�ed, showing that

F is su�cient.

6.3 Splitting o�

Theorem 1.1 gave the minimum number of edges covering a positively crossingsupermodular

function on set pairs. What we are now interested in is an easier problem, namely, coverings

of positively crossing supermodular set functions. The followingtheorem of Frank can be seen

as a corollary of Theorem1.1 on the one hand, and as an abstract generalization of Mader's

splitting o� theorem (Theorem 1.28) on the other hand.

Analogously as in Section1.3, we introduce the notion of degree prescribed edge sets in

directed graphs. For a ground setU, let us call the pair (mi ; mo) a degree prescription if

mi and mo are two U ! Z+ functions with mi (U) = mo(U). We say that H is an (mi ; mo)-

prescribed edge set if � H (v) = mi (v), � H (v) = mo(v) for every v 2 U. The existence of such

an edge set is straightforward.

Theorem 6.19 (Frank, 1999 [24]). Let U be a ground-set with a degree-prescription(mi ; mo).

Let p be a non-negative, integer valued positively crossing supermodular set function onU with

p(; ) = p(U) = 0 . Then there exists an(mi ; mo)-prescribed edge setH with

� H (X ) � p(X ) for every X � V (6.5)

and if and only if

mi (X ) � p(X ) and (6.6)

mo(U � X ) � p(X ) for every X � U: (6.7)
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Theorem 1.34 is an easy consequence: consider a digraphD = ( U + z; A) which is (k; `)-

edge-connected inU with root node r0 2 U. Let A0 denote the set of edges induced byU. For

v 2 U, let mo(v) = � A (v; z) and mi (v) = � A (z; v). Let p(; ) = p(V) = 0 and let p(X ) = ( 
 (X ) �

� A 0(X ))+ otherwise. It is easy to check that this function is positively crossing supermodular

and that the conditions of the theorem are met due to the (k; `)-connectedness inU. The edge

set H ensured by the theorem corresponds to the split edges.

Let us now present a generalization of this theorem. The only di�erence will be that we

require a property slightly weaker than positively crossing supermodularity. This is still only

a special case of a theorem in the master thesis of T. Kir�aly [52, Theorem 2.8]. Our proof

follows the same lines as the proof given in [33] for Theorem 6.19. Whereas Theorem6.19can

be derived from Theorem1.1, such a deduction does not seem to be possible in our case since

we have a skew supermodular-type property.

Theorem 6.20. Let U be a ground-set with a degree-prescription(mi ; mo). Let p be a non-

negative, integer valued set function onU with p(; ) = p(U) = 0 satisfying the following property.

For crossing setsX; Y 2 U, with p(X ); p(Y) > 0, either

p(X ) + p(Y) � p(X \ Y) + p(X [ Y) or (6.8a)

p(X ) + p(Y) < p(X � Y) + p(Y � X ) + mi (X \ Y) � mo(X \ Y): (6.8b)

Then there exists an(mi ; mo)-prescribed edge setH satisfying (6.5) if and only if ( 6.6) and

(6.7) hold.

Proof. Necessity is obvious asp(X ) � � H (X ) � minf mi (X ); m0(U � X )g. For su�ciency,

assume for a contradiction that no suchH exists. For an (mi ; mo)-prescribed edge setH , Let

qH (X ) = p(X ) � � H (X ) denote the violation of (6.5) for X and let � H = maxX � U qH (X ) denote

the maximum violation. Let FH := f X � U : qH (X ) = � H g the set of maximally violating

sets.1 As in Section1.3, assumeH is chosen so that� H is as small as possible, and subject to

this, jF H j is as small as possible. As (6.5) does not hold,� H > 0, and thusp(X ) > 0 for every

X 2 F H . The next claim is a directed analogoue of Claim5.3.

Claim 6.21. Let X; Y 2 F H crossing. Then bothX \ Y and X [ Y belong toFH .

Proof. If ( 6.8a) holds for X and Y then 2� H = p(X ) + p(Y) � � H (X ) � � H (Y) � p(X [ Y) +

p(X \ Y) � � H (X [ Y) � � H (X \ Y) � 2� H , hence the claim follows. Assume now (6.8b) holds.

Observe thatmi (X \ Y) � m0(X \ Y) = � H (X \ Y) � � H (X \ Y). Using this,

2� H = p(X ) + p(Y) � � H (X ) � � H (Y) <

< p(X � Y) + p(Y � X ) + ( mi (X \ Y) � mo(X \ Y)) � � H (X ) � � H (Y) �

� 2� H + � H (X � Y) + � H (Y � X ) + ( � H (X \ Y) � � H (X \ Y)) � � H (X ) � � H (Y):
1It is a di�erence between the undirected and directed setting that in Section 1.3, F denoted the set of

maximally violating sets minimal for containment.
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Finally we get

� H (X ) + � H (Y) < � H (X � Y) + � H (Y � X ) + ( � H (X \ Y) � � H (X \ Y));

a contradiction to (6.3b).

Let K be a minimal member ofF and L � K be a maximal member. There is an edge

e = uv of H with u; v 2 K and an f = xy with x; y 2 U � L as otherwiseK or L would violate

(6.6) or (6.7). Let H 0 be the result of 
ipping the edgesxy and uv, that is, replacing them by

uy and xv.

Now � H 0(X ) � � H (X ) � 1 for everyX � V and equality may hold only if X \ f x; y; u; vg is

either f x; vg or f u; yg. This condition cannot hold for anX 2 F as it would imply that X and

K are crossing. Therefore,� H 0 � � H and here equality holds by the minimality of� H .

K =2 F H 0 as � H 0(K ) = � H (K ) + 1. So by the minimality of FH , there is anX 2 F H 0 � F H

with qH (X ) = � H � 1. By symmetry we may assumeX \ f x; y; u; vg = f x; vg. p(X ); p(K ) > 0.

Again (6.8a) gives a contradiction easily, and if (6.8b) holds, then

2� H � 1 = p(X ) + p(K ) � � H (X ) � � H (K ) <

< p(X � K ) + p(K � X ) + mi (X \ K ) � mo(K \ X ) � � H (X ) � � H (K ) �

� 2� H � 1 + � H (X � K ) + � H (K � X ) + � H (X \ K ) � � H (X \ K ) � � H (X ) � � H (K ):

In the last equation we have used that by the minimal choice ofK and K � X 6= ; , qH (K � X ) �

� H � 1. This is again a contradiction to (6.3b).

We are in the position to derive Lemma6.13as an easy consequence.

Proof of Lemma6.13. Let F = F0. As F � � out (r0), it follows that � (X ) = � F (X ) = � F (s; X )

for everyX . Observe that in this case we only have to guarantee (6.2c) as it implies both (6.2a)

and (6.2b).

Let U = V � u, and let D 0 = ( U; A0) denote the subgraph induced byU.Let us de�ne p(X )

the following way. p(; ) := p(V) := 0, and for ; 6= X 6= V, let

p(X ) := ( 
 (X ) � � A 0(X ) + � (X ) � t(X ))+ = ( 
 (X ) � � A 0� F (X ) � t(X ))+

Let mo(z) = � D (z; u) and mi (z) = � D (u; z).

Claim 6.22. The conditions of Theorem6.20 are satis�ed.

Using this claim Lemma6.13 follows immediately. Let us split o� the edges incident tou

according to the edge setA given by the theorem. Asu was not special, the edges inF are left

unchanged. LetDu = ( U; A0+ H ) denote the digraph after the splitting. We have to prove that

F is globally admissible inDu. Again it is enough to verify (6.2c), which is a direct consequence

of � H (X ) � p(X ).
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Proof of Claim 6.22. Consider crossing setsX; Y � U with p(X ); p(Y) > 0. Then t(X ) �

t(X [ Y); furthermore, if X has a seed inX \ Y, then t(X ) = t(X \ Y) and the same holds

for exchangingX and Y. Consequently, ifX \ Y � S 6= ; or X \ Y is special but it contains a

seed ofX or Y, then t(X ) + t(Y) � t(X \ Y) + t(X [ Y) follows. In this case

p(X ) + p(Y) = 
 (X ) + 
 (Y) � t(X ) � t(Y) � � A 0� F (X ) � � A 0� F (Y) �

� 
 (X [ Y) + 
 (X \ Y) � t(X [ Y) � t(X \ Y) �

� � A 0� F (X [ Y) � � A 0� F (X \ Y) � p(X [ Y) + p(X \ Y);

and thus (6.8a) holds. Assume nowX \ Y is special andX has a seedx 2 X � Y, Y has a seed

y 2 Y � X .

p(X ) + p(Y) = 
 (X ) + 
 (Y) � t(X ) � t(Y) � � A 0� F (X ) � � A 0� F (Y) �

� 
 (X � Y) + 
 (Y � X ) � t(X ) � t(Y) �

� � A 0� F (X � Y) � � A 0� F (Y � X ) � (� A 0� F (X \ Y) � � A 0� F (X \ Y))

As F was insu�cient, jFt j < � A (t) � � A (t) in the original digraph D for every t 2 X \ Y, which

implies jFt j < � A 0(t) + mi (t) � � A 0(t) � mo(t). This gives mo(t) � mi (t) < � A 0� F (t) � � A 0� F (t),

and thus mo(X \ Y) � mi (X \ Y) < � A 0� F (X \ Y) � � A 0� F (X \ Y): Now t(X ) = t(X � Y) and

t(Y) = t(Y � X ) because of the seedsx and y, so we get

p(X ) + p(Y) < 
 (X � Y) + 
 (Y � X ) � t(X � Y) � t(Y � X ) �

� � A 0� F (X � Y) � � A 0� F (Y � X ) + ( mi (X \ Y) � mo(X \ Y)) �

� p(X � Y) + p(Y � X ) + mi (X \ Y) � mo(X \ Y):

It is left to verify ( 6.6) and (6.7). Let X � U. As F was globally admissible inD, � A� F (X ) �


 (X ) � t(X ). Now � A� F (X ) = mi (X ) + � A 0� F (X ), giving (6.6). On the other hand, � A� F (X +

u) � 
 (X + u) � t(X + u) = 
 (X ) as u =2 S. � A� F (X + u) = mo(U � X ) + � A 0� F (X ) and thus

mo(U � X ) � 
 (X ) � � A 0� F (X ), giving (6.7).

6.4 Lemmas

In all claims and lemmas of this sections,F is assumed to be an insu�cient globally admissible

edge set, if not asserted explicitly otherwise.

Claim 6.23. Assume; 6= Z ( X ( V, X � Z � S and � A� F (Z; X � Z ) = ; . Then � (Z ) <

� (X ) � � F (V � X; X � Z ) and � A� F (Z ) < � A� F (X ).
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Proof. For the �rst part, � (X � Z ) < � A� F (X � Z ) by Claim 6.11 as X � Z is special. Then

� (Z ) = � (X )+ � (X � Z; Z ) � � F (V � X; X � Z ) � � A� F (V � X; X � Z ) < � (X ) � � F (V � X; X � Z )

since� (X � Z; Z )� � A� F (V � X; X � Z ) = � (X � Z; Z )� � A� F (X � Z ) � � (X � Z )� � A� F (X � Z ) <

0 by the previous remark. The second part follows from this using � F (Z )+ � F (V � X; X � Z ) �

� F (X ).

The next lemma describes strong connectivity properties of various tight sets.

Lemma 6.24. (i) Assume X is an out-tight set. If for someZ � X , � A� F (Z; X � Z ) = 0 ,

then Z is out-tight and � out
D � F (Z ) = � out

D � F (X ). (ii) If X is normal in-tight, Z � X , then

� A� F (Z; X � Z ) = 0 implies that X � Z is also normal in-tight and� in
D � F (X ) = � in

D � F (X � Z ).

(iii) If X is � -tight, and u is a seed ofX , then there is an edgeuv 2 A � F with v 2 X . (iv) If

X is T-tight and v is a sprout ofX , then there is an edgeuv 2 A � F with u 2 X .

Proof. (i) � A� F (X ) = ` and � A� F (Z ) � `. Thus if � A� F (Z; X � Z ) = 0 then all edges inA � F

leaving Z must leaveX as well, and this is what we wanted to prove.

(ii) Assume �rst X � Z � S 6= ; . � A� F (X ) = k, � A� F (X � Z ) � k, and the claim follows as

in the �rst part.

Assume nowX � Z is special. By Claim6.23, � A� F (Z ) < � A� F (X ) = k, a contradiction as

X was not special, and thus neither isZ .

(iii) � (X ) = k+ � F (V � X � S; X � u). If all edges inX outgoing fromu are in F , then we can

use Claim6.23for Z = f ug, and thusk = � (u) < k + � F (V � X � S; X � u)� � F (V � X; X � u) � k,

a contradiction.

(iv) � (X ) = k + T(X ) = k + � F (V � X; v ). If all edges in X entering v are in F , then

Claim 6.23can be applied forZ = X � v. Thus k � � (X � v) < k + T(X ) � � F (V � X; v ) = k,

a contradiction again.

Claim 6.25. For sets ; 6= Z � X , X � Z � S, if X has a seedu 2 Z then t(X ) = t(Z ).

Proof. As X � Z � S, for any x 2 Z , � F (V � Z � S; x) = � F (V � X � S; x). u is the node in

X minimizing � (V � X � S; x), and thus the claim follows.

In the next lemma, we show some con�gurations of tight sets whichmay not exist for an

insu�cient globally admissible F .

Lemma 6.26. There exists noX � V with the following properties:jX j � 2, X is in-tight and

(i) X � S 6= ; and there is a subpartitionY = f Y1; : : : ; Ymg of X so that X � S � [Y and

eachYi is out-tight and proper subset ofX or (ii) X is � -tight and there is an out-tightY ( X

containing a seedu of X ; (iii) X is T-tight and there is an out-tightY ( X not containing a

sprout z of X .
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Proof. (i) We may assume that there is no specialYi as leaving such members fromY the

conditions still hold. Thus � A� F (Yi ) � k for each i and � A� F (Yi ) = ` as they are out-tight

sets. LetX 0 = X � [Y . As X 0 is special, Claim6.11 implies � A� F (X 0) � � A� F (X 0) > � F (X 0)

wheneverX 0 6= ; . Now � A� F (X ) = k, � A� F (X ) � `, and thus

k � ` � � A� F (X ) � � A� F (X ) =

= ( � A� F (X 0) � � A� F (X 0)) +
mX

i =1

(� A� F (Yi ) � � A� F (Yi )) � � F (X 0) + m(k � `);

a contradiction, since eitherX 0 6= ; and thus the last inequality is strict, or m � 2 as we did

not allow Y = f X g.

(ii) Let u denote a seed ofX as in the conditions. t(X ) = t(Y) by Claim 6.25(X � Y � S

holds sinceX is special). � (Y) = ` + � F (Y) as Y is out-tight. Claim 6.11 gives � (X � Y) �

� (X � Y) > � F (X � Y). Similarly to the previous case,

k + � (X ) � t(X ) � ` � � F (X ) � � (X ) � � (X ) = � (X � Y) � � (X � Y) +

+ � (Y) � � (Y) > � F (X � Y) + k + � (Y) � t(Y) � ` � � F (Y):

This gives� F (Y) � � F (X )+ � (X ) � � (Y) > � F (X � Y). Using � F (Y) � � F (X )+ � F (Y; X � Y) and

� (X ) = � (Y)+ � F (V � X � S; X � Y), one gets� F (Y; X � Y)+ � F (V � X � S; X � Y) > � F (X � Y),

clearly a contradiction.

(iii) As in the previous two cases,

k + T(X ) � ` � � F (X ) � � (X ) � � (X ) = � (X � Y) � � (X � Y) +

+ � (Y) � � (Y) > � F (X � Y) + k � ` � � F (Y):

Thus � F (Y) � � F (X ) + T(X ) > � F (X � Y). As � F (Y) � � F (X ) + � F (Y; X � Y) and T(X ) =

� F (V � X; z ), we have� F (Y; X � Y) + � F (V � X; z ) > � F (X � Y), a contradiction again.

Claim 6.27. (a) If X \ Y is special, then� (X ) + � (Y) > � (X � Y) + � (Y � X ) + � F (V �

X; X \ Y) + � F (V � Y; X \ Y):

(b) If Y is normal tight, Y � X � S 6= ; , r0 =2 X \ Y, then � (Y) � � (Y � X )+ � F (V � Y; X \ Y).

Proof. (a) By (6.3b), it is enough to prove that (� (X \ Y) � � (X \ Y)) + �d(X; Y ) > � F (V �

X; X \ Y)+ � F (V � Y; X \ Y). By Claim 6.11, � F (X \ Y) < � (X \ Y) � � (X \ Y) and obviously,

� F (V � X � Y; X \ Y) � �d(X; Y ). These together imply the claim.

(b) SinceY � X is not special,� (Y � X ) � 
 (Y � X ) + � F (Y � X ) and 
 (Y � X ) = 
 (Y)

as r0 =2 X \ Y. Using these,

� (Y) = 
 (Y) + � F (Y) = 
 (Y) + � F (V � Y; Y � X ) + � F (V � Y; X \ Y) �

� 
 (Y � X ) + � F (Y � X ) + � F (V � Y; X \ Y) � � (Y � X ) + � F (V � Y; X \ Y):

126



We are almost ready to prove Lemma6.14. The following lemma is slightly weaker, but will

easly imply it.

Lemma 6.28. If F 0 is globally admissible and there exists at least one specialtight set, then

any maximal globally admissible setF � F 0 is su�cient.

Proof. Let F be a maximal globally admissible set containingF 0. Clearly, the tight sets for F

are also tight for F 0. We show that if F is insu�cient, then no special tight set may exist.

First we show that no T-tight set exists. Indeed, assumeX is minimal T-tight; let z be a

sprout. By Lemma 6.24(iv), there is an edgeuz 2 A � F with u 2 X . By Claim 6.6, uz must

enter a tight set Y which is either normal orT-tight with sprout z. Case (c) is excluded since

u is special.

First assumeY is normal. If V � Y � X then we have a contradiction by Lemma6.26(iii)

as V � Y is an out-tight set satisfying the conditions. Y � X is impossible as it would give

Y � S. Thus X and Y are crossing.

� (X ) = k + T(X ) � � (X � Y) + � F (V � X; X \ Y) (6.9)

as z 2 X \ Y and � (X � Y) � 
 (X � Y) = k. Using both Claim 6.27(b) and (a) we get a

contradiction unlessF is su�cient.

If Y is a T-tight set, by the minimality of X , X and Y are crossing. (6.9) holds again and

also � (Y) = k + T(Y) � � (Y � X ) + � F (V � Y; X \ Y) as z 2 X \ Y is also a sprout ofY. A

contradiction again.

Next, assumeX is minimal � -tight, and let u be a seed. By Lemma6.24(iii), we have a

uv 2 A� F with v 2 X blocked by a tight setY. We have seen already that noT-tight sets exist.

Neither may Y be � -tight since u is special. ThusY should be normal. AgainV � Y � X would

contradict Lemma 6.26(ii) and Y � X is impossible, and thusX and Y should be crossing.

Using Claim 6.25 for X and Z = X � Y, t(X � Y) = t(X ). Thus

� (X ) = k + � (X ) � t(X ) = k + � F (V � S � X; X ) � t(X � Y) =

k + � F (V � S � X; X � Y) � t(X � Y) + � F (V � S � X; X \ Y) �

� � (X � Y) + � F (V � X; X \ Y):

Using again Claim6.27(b) and (a) gives a contradiction.

Lemma 6.29. AssumeF is a maximal, insu�cient globally admissible set of edges. If X and

Y are crossing tight sets, thenX [ Y and X \ Y are tight as well. If X or Y blocks an edge

uv 2 A � F , then either X [ Y or X \ Y blocksuv as well.

Proof. By Lemma 6.28, we know that both X and Y are normal tight. Assume �rst that

(X \ Y) � S 6= ; . From (6.3a) and (6.4a) we have:

� A� F (X ) + � A� F (Y) = 
 (X ) + 
 (Y) = 
 (X \ Y) + 
 (X [ Y) �

� � A� F (X \ Y) + � A� F (X [ Y) � � A� F (X ) + � A� F (Y);
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implying that both X \ Y and X [ Y are tight and dA� F (X; Y ) = 0. The second part of the

claim follows as both of them are normal.

We show thatX \ Y � S is impossible.X � Y and Y � X are both non-special sets, and thus

Claim 6.27(b) applies for Y and also forX by exchanging the role ofX and Y. Claim 6.27(a)

leads to a contradiction again.

An easy consequence of Lemma6.29 is the following:

Claim 6.30. If F is maximal insu�cient globally admissible anduv 2 A � F , either there is a

unique minimal in-tight set B in
uv blockinguv or a unique minimal out-tight B out

uv blockinguv. If

u; v 2 X for an in- or out-tight set X , then B in
uv � X or B out

uv � X .

Proof. By Lemma 6.29, for every edgeuv 2 A � F there is a unique minimalB1 and a unique

maximal B2 in-tight set entered by uv. If r0 =2 B1 then B1 is in-tight and thus B in
uv = B1, if

r0 2 B1 then B out
uv = V � B2. (Note that both sets may exist). The second part also follows by

Lemma 6.29.

Now we are ready to prove Lemmas6.14and 6.15.

Proof of Lemma6.14. By Lemma 6.28, the only case left is ifX is normal tight with r0 =2 X ,

jX � Sj = 1. Let X � S = f ug. If there is no edge inA � F from u to X � u, then by

Lemma6.24, X � u is normal in-tight, a contradiction to X � u � S. Thus there exists an edge

uv 2 A � F with v 2 X . Let Y = B in
uv or Y = B out

uv as in Claim 6.30. In the �rst case Y � S

contradicting that it is a tight set and every tight set is normal. In the second case,X and

Y = f Yg satisfy the conditions of Lemma6.26(i), a contradiction again.

Proof of Lemma6.15. For a contradiction, assumeF is insu�cient. Let K denote the set of

in-tight singletons and L the set of out-tight singletons.

Claim 6.31. K \ L = ; .

Proof. Let u 2 K \ L. Trivially, u 6= r0. As a singleton tight set cannot be special,� (u) = k

and � (u) � k. However, the out-tightness off ug implies � A� F (u) = `, and thus � F (u) > 0, a

contradiction.

Claim 6.32. If an edgef = xy 2 A � F is blocked by an in-tight set, thenB in
xy = f yg. If it is

blocked by an out-tight set, thenB out
xy = f xg.

Proof. Consider a minimal in-tight or out-tight set X for some edgef = xy 2 A � F which is

not a singleton. By Lemma6.24(i) or (ii) and the minimality of X , X is strongly connected in

A � F . We show that either X � K or X � L. Consider an edgeuv 2 A � F with u; v 2 X ,

guaranteed by the strong connectivity. By Claim6.30, either uv enters a minimal in-tight or
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leaves a minimal out-tight Y with Y � X . By the minimal choice of X , Y is a singleton:

Y = f ug 2 L or Y = f vg 2 K . Thus either X \ K 6= ; or X \ L 6= ; .

Assume �rst X \ K 6= ; and let Z = X \ K . If X � Z 6= ; , then by the strongly connectedness

there is an edgeuv 2 A � F with u 2 Z and v 2 X � Z blocked by a minimal in- or out-tight set

Y. Again, Y is a singleton and eitherY = f ug 2 L or Y = f vg 2 K . Both cases are impossible

sinceu 2 X \ K , and v 2 X � K . Thus we may concludeX � K .

Next, considerX \ L 6= ; and let Z = X \ L. If X � Z 6= ; , then an edgeuv 2 A � F with

u 2 X � Z , v 2 Z gives the contradiction as above. ThusX � L follows.

X was either in- or out-tight. If X = B out
xy is out-tight, then X � L is excluded as it would

give B out
xy = f xg. Thus X � K . As K \ S = ; , for eachu 2 X , � (u) = k, � (u) � k. By the

assumption that all edges inF have tail in S + r0, � F (X ) = 0 and thus � (X ) = `. Now

k � ` � � (X ) � � (X ) =
X

u2 X

(� (u) � � (u)) � 0;

giving a contradiction.

If X = B in
xy is in-tight, then X � K is excluded since it would giveB in

xy = f yg. Thus X � L.

X � S 6= ; as all tight sets are normal by Lemma6.28, and thus the conditions of Lemma6.26(i)

apply with Y being the partition of X into singletons.

r0 =2 K implies K 6= V. Also K 6= ; as by Claim 6.32, all edges inA � F leaving r0 should

enter members ofK . As � A� F (V � K ) � `, there is an edgeuv 2 A � F leavingK . This cannot

be blocked by neither an in-tight nor an out-tight singleton.

6.5 Further remarks

6.5.1 Matroid property of locally admissible sets

First, we describe the structure of the locally admissible edge sets at a given special nodez. We

prove

Theorem 6.33. The set systemM z = f F : F is locally admissible atzg is a matroid.

This together with Theorem 6.1 gives a straightforward way for �nding a su�cient locally

admissible edge set. By Theorem6.1, we know that special nodes exist and one of them has

a su�cient locally admissible set. We check the special nodes one-by-one, and at each special

node z we greedily choose a maximal locally admissible edge set. Note that this can be done

easily as we just need to take care of the (k; `)-edge-connectedness inV � z which can be checked

by 
ow computations. Theorem6.33ensures that ifz admits a su�cient global admissible edge

set, we can �nd it this way.
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Proof of Theorem6.33. The only nontrivial property we have to check is that ifjF j < jF 0j and

both F; F 0 2 M z then there is an edgeuz 2 F 0� F so that F + uz is locally admissible as well.

For a contradiction, assume this does not hold.

A set X will now be calledtight at z for F if z 2 X , X 6= f zg and it satis�es (6.1) with

equality. (Actually this notion coincides with the tight sets containing z when we considerF as

a globally admissible set of edges). Note that sincejF 0j � k � � (z) by de�nition and jF j < jF 0j,

jF j is insu�cient.

Claim 6.34. If X and Y are crossing tight sets atz for F then X \ Y and X [ Y are also

tight.

Proof. If X \ Y 6= f zg, then (6.1) also holds forX \ Y and X [ Y and thus the claim follows

by the submodularity of the function � A� F . We show that X \ Y = f zg is impossible. Indeed,

by (6.3b) we would have
 (X ) + 
 (Y) = � A� F (X ) + � A� F (Y) � � A� F (X � Y) + � A� F (Y �

X ) + � A� F (z) � � A� F (z) > � A� F (X � Y) + � A� F (Y � X ) � 
 (X � Y) + 
 (Y � X ) as F was

insu�cient, a contradiction to ( 6.4b).

Thus for each edgeuz 2 F 0 � F there is a unique minimal tight setX uz at z for F entered

by uz. For di�erent uz; wz 2 F 0 � F , X uz and X wz cannot be crossing asX uz \ X wz would

also be tight contradicting their minimality. Thus X uz [ X wz = V. Let T = f V � X uz : uz 2

F 0 � F g. T forms a subpartition of V � z so that for eachuz 2 F 0 � F , u is contained in

some member ofT . For eachY 2 T , � (Y) = 
 (V � Y) + � F (Y). As F 0 is locally admissible,

� F 0(Y) � � (Y) � 
 (V � Y) = � F (Y), and thus � F 0� F (Y) � � F � F 0(Y). Summing up for allY 2 T

we get jF 0 � F j =
P

Y 2T � F 0� F (Y) �
P

Y 2T � F � F 0(Y) � j F � F 0j, contradicting jF j < jF 0j.

6.5.2 Example of an insu�cient maximal globally admissible s et

u

r 0

v

t

w

An example for an insu�cient maximal globally admissible set is shown on the �gure for

k = 4, ` = 2. D is minimally (4; 2)-edge-connected. It contains two special nodesu and t with

in-degree 4 and out-degree 2. Both of them have a su�cient locally admissible edge set: for

both u and t the two edges coming fromw are su�cient locally admissible. However, if we
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considerF consisting of onewu and onwt edge (the thick edges),F is maximal as the following

sets block every edge enteringu and t: f ug, f tg f wg are out-tight and f u; t; v; wg is in-tight.

However,F is insu�cient.

The proof of the casè = k � 1 by Frank and Kir�aly [ 33] used an argument similar to the

proof of Lemma6.15. One might wonder why the much simpler argument cannot be applied

in the general case to prove that every maximal globally admissible set is su�cient (which is,

in fact, false). A possible explanation is that Claim6.31 fails to hold unlessF satis�es the

condition in Lemma 6.15: in this example the singleton setf wg is both in- and out-tight.
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Abstract

The main subject of the thesis is connectivity augmentation: we would like to make a given graph

k-connected by adding a minimum number of new edges. There are four basic problems in this

�eld, since one might consider both edge- and node-connectivity augmentation in both graphs

and digraphs. The thesis wishes to contribute to three out of these four problems: directed-

and undirected node-connectivity and undirected edge-connectivity augmentation. Although

directed edge-connectivity augmentation is not being considered, the last chapter is devoted to

a constructive characterization result related to directed edge-connectivity. Let us summarize

the main results of the thesis.

� We present a min-max formula and a combinatorial polynomial time algorithm for aug-

menting undirected node-connectivity by one.The complexity status of undirected node-

connectivity augmentation of arbitrary graphs is still open; already the special case of

augmenting by one has attracted considerable attention. Theformula proved in Chap-

ter 3 was conjectured by Frank and Jord�an in 1994.

� We present the �rst combinatorial polynomial time algorithmfor directed node-connec-

tivity augmentation. For this problem, Frank and Jord�an gave a min-max formula in

1995; however, it remained an open problem to develop a combinatorial algorithm. We

present two, completely di�erent combinatorial algorithms. Chapter 2 contains one for

the special case of augmenting connectivity by one (a joint work with Andr�as Frank), and

Chapter 4 presents another for augmenting the connectivity of arbitrary digraphs (a joint

work with Andr�as Bencz�ur Jr.). The latter result also gives a new, algorithmic proof of

the general theorem of Frank and Jord�an on covering positively crossing supermodular

functions on set pairs.

� We establish a constructive characterization of(k; `)-edge-connected digraphs.This result

of Chapter 6, a joint work with Erika Ren�ata Kov�acs, settles a conjecture of Frank from

2003. The theorem gives a common generalization of a number of previously known char-

acterizations, and naturally �ts into the framework de�ned by splitting o� and orientation

theorems.

� We present partial results concerning partition constrained undirected local edge-conn-

ectivity augmentation. In Chapter 5, we discuss some classical results concerning undi-

rected edge-connectivity augmentation in a uni�ed framework, based on the technique of

edge-
ippings. For the partition constrained problem we formulate a conjecture and give

a partial proof.

Most results are based on the papers [36], [74], [73] and [56], except for Chapter5, which

contains unpublished results.





•Osszefoglal�as

Az �ertekez�es f}o t�em�aja az •osszef•ugg}os�eg-n•ovel�es: egy adott gr�afot szeretn�enk minim�alis sz�am�u

�el hozz�av�etel�evel k-szorosan •osszef•ugg}ov�e tenni. Ez n�egy alapk�erd�est foglal mag�aban, mivel �el-

�es pont•osszef•ugg}os�eg n•ovel�ese is felvethet}o mind ir�any��tott, mind ir�any��tatlan gr�afokban. Az

�ertekez�esben ezen alapprobl�em�ak k•oz•ul h�arommal foglalkozunk: az ir�any��tott �es ir�any��tatalan

pont•osszef•ugg}os�eg, valamint az ir�any��tatlan �el•osszef•ugg}os�eg n•ovel�es�evel. Ir�any��tott �el•ossze-

f•ugg}os�eg-n•ovel�esr}ol ugyan nem esik sz�o, viszont az utols�o fejezetben ezzel az •osszef•ugg}os�eg-

fogalommal kapcsolatban adunk egy konstrukt��v karakteriz�aci�os eredm�enyt. Az �ertekez�es f}o

eredm�enyei a k•ovetkez}ok.

� Megadunk egy min-max formul�at �es egy kombinatorikus polinomi�alis algoritmust az ir�a-

ny��tatlan pont•osszef•ugg}os�eg eggyel val�o n•ovel�es�ere. Tetsz}oleges gr�afok ir�any��tatlan pont-

•osszef•ugg}os�eg-n•ovel�es�enek bonyolults�aga nyitott k�erd�es; az eggyel val�o n•ovel�es •onmag�aban

is sokat vizsg�alt ter•ulet. A harmadik r�eszben bizony��tott formula Frank �es Jord�an 1994-b}ol

sz�armaz�o sejt�ese.

� Megadjuk az els}o kombinatorikus polinomi�alis algoritmust ir�any��tott pont•osszef•ugg}os�eg-

n•ovel�esre. Erre a probl�em�ara Frank �es Jord�an 1995-ben adtak min-max formul�at. Nyitott

maradt azonban a k�erd�es: hogyan tal�alhat�o meg egy optim�alis megold�as kombinatorikus

algoritmus seg��ts�eg�evel. Az �ertekez�esben megadunk k�et, teljesen k•ul•onb•oz}o kombina-

torikus algoritmust. A m�asodik r�esz az •osszef•ugg}os�eg eggyel val�o n•ovel�es�enek speci�a-

lis eset�et oldja meg algoritmikusan (Frank Andr�assal k•oz•os eredm�eny), a negyedik r�esz

pedig az �altal�anos probl�em�ara ad algoritmust (ifj. Benc z�ur Andr�assal k•oz•os eredm�eny).

Val�oj�aban m�eg �altal�anosabb probl�em�at oldunk meg: �u j, algoritmikus bizony��t�ast adunk

Frank �es Jord�an �altal�anos halmazp�arfed�esi t�etel�er e is.

� Megadjuk a(k; `)-�el•osszef•ugg}o gr�afok egy konstrukt��v karakteriz�aci�oj�at. A hatodik r�eszben

bemutatott, Kov�acs Erika Ren�at�aval k•oz•os eredm�eny F rank 2003-as sejt�es�et bizony��tja be.

A t�etel t•obb kor�abbi karakteriz�aci�o k•oz•os �altal�a nos��t�as�at adja, �es term�eszetesen illeszkedik

az eddig leemel�esi �es ir�any��t�asi t�etelek rendszer�ebe.

� R�eszleges eredm�enyeket adunk a part��ci�okorl�atos ir�any��tatlan lok�alis �el•osszef•ugg}os�eg-n•ove-

l�esi probl�em�ara. Az •ot•odik r�eszben ir�any��tatlan �el•osszef•ugg}os�eg-n• ovel�essel kapcsolatban

t�argyalunk n�eh�any klasszikus eredm�enyt egys�eges keretben, az �el�atbillent�esi technik�at

haszn�alva. A part��ci�okorl�atos probl�em�aval kapcsolat ban megfogalmazunk �es r�eszben be-

bizony��tunk egy sejt�est.

Az eredm�enyek nagy r�esze a [36], [74], [73] �es [56] cikkekb}ol sz�armazik. Kiv�etelt k�epez az

•ot•odik r�esz, amely nem publik�alt eredm�enyeket tartalm az.
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