TWO APPLICATIONS OF THE DEFICIENCY-ONE ALGORITHM

Balázs Boros

Institute of Mathematics
Eötvös Loránd University
Budapest, Hungary

Workshop on Mathematical Trends in Reaction Network Theory
Copenhagen, July 1-3, 2015
Notations

- \(\mathcal{X} = \{X_1, X_2, \ldots, X_n\} \) - set of species
- \(\mathcal{C} \) - set of complexes
- \(Y \in \mathbb{R}^{n \times |\mathcal{C}|}_{\geq 0} \) - matrix of complexes
- \(\mathcal{R} \) - set of reactions
- \((\mathcal{X}, \mathcal{C}, \mathcal{R}) \) - chemical reaction network
- \(I \in \{-1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|} \) - incidence matrix of \((\mathcal{C}, \mathcal{R})\)
- \(\ell \) - number of linkage classes
- \(t \) - number of terminal strong linkage classes
Notations

- $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ - set of species
- \mathcal{C} - set of complexes
- $Y \in \mathbb{R}^{n \times |\mathcal{C}|}_{\geq 0}$ - matrix of complexes
- \mathcal{R} - set of reactions
- $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ - chemical reaction network
- $I \in \{−1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|}$ - incidence matrix of $(\mathcal{C}, \mathcal{R})$
- ℓ - number of linkage classes
- t - number of terminal strong linkage classes
NOTATIONS

- $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ - set of species
- \mathcal{C} - set of complexes
- $Y \in \mathbb{R}_{\geq 0}^{n \times |\mathcal{C}|}$ - matrix of complexes
- \mathcal{R} - set of reactions
- $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ - chemical reaction network
- $I \in \{-1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|}$ - incidence matrix of $(\mathcal{C}, \mathcal{R})$
- ℓ - number of linkage classes
- t - number of terminal strong linkage classes
Notations

- $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ - set of species
- \mathcal{C} - set of complexes
- $Y \in \mathbb{R}^{n \times |\mathcal{C}|}_{\geq 0}$ - matrix of complexes
- \mathcal{R} - set of reactions
- $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ - chemical reaction network
- $I \in \{-1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|}$ - incidence matrix of $(\mathcal{C}, \mathcal{R})$
- ℓ - number of linkage classes
- t - number of terminal strong linkage classes
Notations

- $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ - set of species
- \mathcal{C} - set of complexes
- $Y \in \mathbb{R}^{n \times |\mathcal{C}|}_{\geq 0}$ - matrix of complexes
- \mathcal{R} - set of reactions
- $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ - chemical reaction network
- $I \in \{-1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|}$ - incidence matrix of $(\mathcal{C}, \mathcal{R})$
- ℓ - number of linkage classes
- t - number of terminal strong linkage classes
Notations

- $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ - set of species
- \mathcal{C} - set of complexes
- $Y \in \mathbb{R}^{n \times |\mathcal{C}|}_{\geq 0}$ - matrix of complexes
- \mathcal{R} - set of reactions
- $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ - chemical reaction network
- $l \in \{-1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|}$ - incidence matrix of $(\mathcal{C}, \mathcal{R})$
- ℓ - number of linkage classes
- t - number of terminal strong linkage classes
Notations

- $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ - set of species
- \mathcal{C} - set of complexes
- $Y \in \mathbb{R}^{n \times |\mathcal{C}|}_{\geq 0}$ - matrix of complexes
- \mathcal{R} - set of reactions
- $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ - chemical reaction network
- $I \in \{-1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|}$ - incidence matrix of $(\mathcal{C}, \mathcal{R})$
- ℓ - number of linkage classes
- t - number of terminal strong linkage classes
Notations

- $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ - set of species
- \mathcal{C} - set of complexes
- $\mathbf{Y} \in \mathbb{R}^{n \times |\mathcal{C}|}_{\geq 0}$ - matrix of complexes
- \mathcal{R} - set of reactions
- $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ - chemical reaction network
- $I \in \{-1, 0, 1\}^{|\mathcal{C}| \times |\mathcal{R}|}$ - incidence matrix of $(\mathcal{C}, \mathcal{R})$
- ℓ - number of linkage classes
- t - number of terminal strong linkage classes
Notations

- \(\kappa = (\kappa_{ij})_{(i,j) \in R} \in \mathbb{R}^{|R|}_+ \) - rate coefficients

- \((\mathcal{X}, \mathcal{C}, \mathcal{R}, \kappa)\) - mass action system

\[
R_{\kappa}(x) = \begin{bmatrix}
\vdots \\
\kappa_{ij} \prod_{s=1}^{n} x_s^{y_{si}} \\
\vdots \\
\end{bmatrix}_{(i,j) \in R}
\]

\[
\dot{x}(\tau) = Y \cdot I \cdot R_{\kappa}(x(\tau)), \text{ state space: } \mathbb{R}^n_+
\]
\begin{itemize}
 \item $\kappa = (\kappa_{ij})_{(i,j) \in \mathcal{R}} \in \mathbb{R}^{\left|\mathcal{R}\right|}$ - rate coefficients
 \item $(\mathcal{X}, \mathcal{C}, \mathcal{R}, \kappa)$ - mass action system
\end{itemize}

\[
R_{\kappa}(x) = \begin{bmatrix}
\vdots \\
\kappa_{ij} \prod_{s=1}^{n} x_{s}^{y_{si}} \\
\vdots
\end{bmatrix}
\]

\[
\dot{x}(\tau) = Y \cdot I \cdot R_{\kappa}(x(\tau)), \text{ state space: } \mathbb{R}_{+}^{n}
\]
Notations

- \(\kappa = (\kappa_{ij})(i,j) \in \mathcal{R} \in \mathbb{R}^{|\mathcal{R}|} \) - rate coefficients

- \((\mathcal{X}, \mathcal{C}, \mathcal{R}, \kappa)\) - mass action system

\[
R_{\kappa_0}(x) = \begin{bmatrix}
\vdots \\
\kappa_{ij} \prod_{s=1}^{n} x_s^{y_{si}} \\
\vdots \\
\end{bmatrix}_{(i,j) \in \mathcal{R}}
\]

\[
\dot{x}(\tau) = Y \cdot I \cdot R_{\kappa_0}(x(\tau)), \text{ state space: } \mathbb{R}_+^n
\]
NOTATIONS

- $\kappa = (\kappa_{ij})_{(i,j) \in \mathcal{R}} \in \mathbb{R}^{n|R|}_+$ - rate coefficients

- $(\mathcal{X}, \mathcal{C}, \mathcal{R}, \kappa)$ - mass action system

$$
R_{\kappa}(x) = \begin{bmatrix}
\vdots \\
\kappa_{ij} \prod_{s=1}^{n} x_s^{y_{si}} \\
\vdots \\
\end{bmatrix}_{(i,j) \in \mathcal{R}}
$$

$$
\dot{x}(\tau) = Y \cdot I \cdot R_{\kappa}(x(\tau)), \text{ state space: } \mathbb{R}^n_+
$$
$\delta, E_+^\kappa, \text{AND } S$

$$\dot{x}(\tau) = Y \cdot I \cdot R_\kappa(x(\tau))$$

Definition (Deficiency)

$$\delta = \dim(\ker Y \cap \text{ran } I)$$

- $E_+^\kappa = \{ x \in \mathbb{R}^n_+ | Y \cdot I \cdot R_\kappa(x) = 0 \}$ - positive steady states
- $S = \text{span}\{ Y_j - Y_i | (i, j) \in \mathcal{R} \} \leq \mathbb{R}^n$ - stoichiometric subspace
- $(p + S) \cap \mathbb{R}^n_+$ for $p \in \mathbb{R}^n_+$ - positive stoichiometric classes (recall that the state space is \mathbb{R}^n_+)
\[\dot{x}(\tau) = Y \cdot I \cdot R_\kappa(x(\tau)) \]

Definition (Deficiency)

\[\delta = \dim(\ker Y \cap \text{ran } I) \]

- \(E_+^{\kappa} \) = \(\{ x \in \mathbb{R}_+^n \mid Y \cdot I \cdot R_\kappa(x) = 0 \} \) - positive steady states
- \(S = \text{span}\{ Y_{\cdot j} - Y_{\cdot i} \mid (i, j) \in \mathcal{R} \} \leq \mathbb{R}^n \) - stoichiometric subspace
- \((p + S) \cap \mathbb{R}_+^n \) for \(p \in \mathbb{R}_+^n \) - positive stoichiometric classes (recall that the state space is \(\mathbb{R}_+^n \))
\[\dot{x}(\tau) = Y \cdot I \cdot R_\kappa(x(\tau)) \]

Definition (Deficiency)

\[\delta = \dim(\ker Y \cap \text{ran} I) \]

- \(E_+^\kappa = \{ x \in \mathbb{R}_+^n \mid Y \cdot I \cdot R_\kappa(x) = 0 \} \) - positive steady states
- \(S = \text{span}\{ Y_j - Y_i \mid (i, j) \in \mathcal{R} \} \leq \mathbb{R}^n \) - stoichiometric subspace
- \((p + S) \cap \mathbb{R}_+^n \) for \(p \in \mathbb{R}_+^n \) - positive stoichiometric classes (recall that the state space is \(\mathbb{R}_+^n \))
Deficiency-One Theorem

Theorem (Martin Feinberg, 1979, 1987, 1995)

Assume

(I) \(\delta_r = 0 \) or \(1 \) (\(\forall \ r \in \{1, \ell\} \)),

(II) \(\delta_1 + \delta_2 + \cdots + \delta_\ell = \delta \), and

(III) \(\ell = t \).

Then the following two implications hold.

(\(C, R \)) is weakly reversible

\[E^\kappa_+ \neq \emptyset \]

\[\left| (p + S) \cap E^\kappa_+ \right| = 1 \ (\forall \ p \in \mathbb{R}^n_+) \]
DEFICIENCY-ONE THEOREM

THEOREM (Martin Feinberg, 1979, 1987, 1995)

Assume

(1) $\delta_r = 0$ or 1 ($\forall \ r \in 1, \ell$),

(II) $\delta_1 + \delta_2 + \cdots + \delta_\ell = \delta$, and

(III) $\ell = t$.

Then the following two implications hold.

$(\mathcal{C}, \mathcal{R})$ is weakly reversible

\[E_+^\kappa \neq \emptyset \]

\[|(p + S) \cap E_+^\kappa| = 1 \ (\forall \ p \in \mathbb{R}_+^n) \]
What can be said about the possibility of multiple positive steady states for networks with $\delta = 1$ and $\delta_1 = \delta_2 = \cdots = \delta_\ell = 0$?

| $X_1 \leftrightarrow 0 \leftrightarrow X_2$ | for all κ we have $|E_+^\kappa| = 1$ |
|--|---|
| $X_1 + X_2 \leftrightarrow 2X_1$ | |

| $X_1 \leftrightarrow 0 \leftrightarrow X_2$ | there exists κ such that $|E_+^\kappa| \geq 2$ |
|--|--|
| $2X_1 + X_2 \leftrightarrow 3X_1$ | |

| $0 \leftrightarrow X_1 \leftrightarrow X_2$ | for all κ we have $|E_+^\kappa| = 1$ |
|--|---|
| $2X_1 + X_2 \leftrightarrow 3X_1$ | |
What can be said about the possibility of multiple positive steady states for networks with $\delta = 1$ and $\delta_1 = \delta_2 = \cdots = \delta_\ell = 0$?

<table>
<thead>
<tr>
<th>Network</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1 \leftrightarrow 0 \leftrightarrow X_2$</td>
<td>for all κ we have $</td>
<td>E_\kappa^+</td>
</tr>
<tr>
<td>$X_1 + X_2 \leftrightarrow 2X_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$X_1 \leftrightarrow 0 \leftrightarrow X_2$</td>
<td>there exists κ such that $</td>
<td>E_\kappa^+</td>
</tr>
<tr>
<td>$2X_1 + X_2 \leftrightarrow 3X_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$0 \leftrightarrow X_1 \leftrightarrow X_2$</td>
<td>for all κ we have $</td>
<td>E_\kappa^+</td>
</tr>
<tr>
<td>$2X_1 + X_2 \leftrightarrow 3X_1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For a directed graph \((C, R)\) with \(\ell\) weak components, the vertices \(i\) and \(j\) are called a \textit{cut pair} if the number of weak components of the directed graph \((C, R \setminus \{(i, j), (j, i)\})\) is \(\ell + 1\).
Denote by C' the union of the complex sets of the terminal strong linkage classes.

Definition (Regular Networks)

A chemical reaction network (X, C, R) is said to be *regular* if

1. the set $\{Y_j - Y_i \mid (i, j) \in R\}$ is positively dependent, \((R.1) \)
2. $\ell = t$, and \((R.2) \)
3. for all $i, j \in C'$ with $(i, j) \in R$, the complexes i and j form a cut pair. \((R.3) \)
Denote by C' the union of the complex sets of the terminal strong linkage classes.

Definition (Regular Networks)

A chemical reaction network (X, C, R) is said to be *regular* if

1. the set $\{ Y_{\cdot j} - Y_{\cdot i} \mid (i, j) \in R \}$ is positively dependent, \hspace{1cm} (R.1)
2. $\ell = t$, and \hspace{1cm} (R.2)
3. for all $i, j \in C'$ with $(i, j) \in R$, the complexes i and j form a cut pair. \hspace{1cm} (R.3)
Regular networks

Proposition (WR case)

Let \((X, C, R)\) be a weakly reversible reaction network. Then \((X, C, R)\) is regular if and only if

\[
\begin{cases}
(C, R) \text{ is reversible and} \\
(C, R) \text{ is “forest-like”}.
\end{cases}
\]

Proposition (non-WR case)

Let \((X, C, R)\) be a reaction network, which satisfies \(\ell = t\), but is not weakly reversible. Then \((R.3)\) is equivalent to

\[
\begin{cases}
(C, R) \text{ is reversible,} \\
(C, R) \text{ is “forest-like”, and} \\
\text{for all } i \in C \setminus C', \text{ all directed paths from } i \text{ to } C' \text{ must enter } C' \text{ across the exact same element of } C'.
\end{cases}
\]
Regular Networks

Proposition (WR case)
Let \((X, C, R)\) be a weakly reversible reaction network. Then \((X, C, R)\) is regular if and only if

\[
\begin{cases}
(C, R) \text{ is reversible and} \\
(C, R) \text{ is “forest-like”}.
\end{cases}
\]

Proposition (non-WR case)
Let \((X, C, R)\) be a reaction network, which satisfies \(\ell = t\), but is not weakly reversible. Then (R.3) is equivalent to

\[
\begin{cases}
(C, R) \text{ is reversible,} \\
(C, R) \text{ is “forest-like”, and} \\
\text{for all } i \in C \setminus C', \text{ all directed paths from } i \text{ to } C' \text{ must enter } C' \text{ across the exact same element of } C'.
\end{cases}
\]
Confluence vectors

Recall the ODE:

\[\dot{x}(\tau) = Y \cdot l \cdot R_\kappa(x(\tau)) \]

Definition (Confluence vector)

For a reaction network \((X, C, R)\), a vector \(h \in \mathbb{R}^{|C|}\) is called a confluence vector if

- \(h \in \ker Y\),
- \(h \in \text{ran } l\), and
- \(\sum_{i \in \tilde{C}} h_i > 0\) for all \(\tilde{C} \subseteq C\) with \(\varrho^{\text{out}}(\tilde{C}) = \emptyset\) and \(\varrho^{\text{in}}(\tilde{C}) \neq \emptyset\).
Confluence vectors

Recall the ODE:

\[\dot{x}(\tau) = Y \cdot I \cdot R_\kappa(x(\tau)) \]

Definition (Confluence vector)

For a reaction network \((\mathcal{X}, \mathcal{C}, \mathcal{R})\), a vector \(h \in \mathbb{R}^{||\mathcal{C}||}\) is called a confluence vector if

- \(h \in \ker Y\),
- \(h \in \text{ran } I\), and
- \(\sum_{i \in \tilde{C}} h_i > 0\) for all \(\tilde{C} \subseteq \mathcal{C}\) with \(\rho^{\text{out}}(\tilde{C}) = \emptyset\) and \(\rho^{\text{in}}(\tilde{C}) \neq \emptyset\).
CONFLUENCE VECTORS

Recall

- the ODE: \(\dot{x}(\tau) = Y \cdot I \cdot R_\kappa(x(\tau)) \) and
- the set of positive steady states: \(E^\kappa_+ = \{ x \in \mathbb{R}^n_+ \mid Y \cdot I \cdot R_\kappa(x) = 0 \} \).

Proposition (Confluence Vectors and Positive Steady States)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R}, \kappa)\) be a mass action system and let \(x \in \mathbb{R}^n_+\). Then the following are equivalent.

(A) The vector \(x\) is in \(E^\kappa_+\), i.e., \(x\) is a positive steady state.

(B) The vector \(I \cdot R_\kappa(x)\) is a confluence vector for \((\mathcal{X}, \mathcal{C}, \mathcal{R})\).

Proposition (Existence of Confluence Vectors)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a reaction network. Then the following are equivalent.

(A) Condition \((R.1)\) holds.

(B) There exists a confluence vector.
Confluence Vectors

Recall

- the ODE: \(\dot{x}(\tau) = Y \cdot I \cdot R_\kappa(x(\tau)) \) and
- the set of positive steady states: \(E_+^\kappa = \{ x \in \mathbb{R}^n_+ | Y \cdot I \cdot R_\kappa(x) = 0 \} \).

Proposition (Confluence Vectors and Positive Steady States)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R}, \kappa) \) be a mass action system and let \(x \in \mathbb{R}^n_+ \). Then the following are equivalent.

(A) The vector \(x \) is in \(E_+^\kappa \), i.e., \(x \) is a positive steady state.

(B) The vector \(I \cdot R_\kappa(x) \) is a confluence vector for \((\mathcal{X}, \mathcal{C}, \mathcal{R}) \).

Proposition (Existence of Confluence Vectors)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R}) \) be a reaction network. Then the following are equivalent.

(A) Condition (R.1) holds.

(B) There exists a confluence vector.
CONFLUENCE VECTORS

Recall

- the ODE: $\dot{x}(\tau) = Y \cdot I \cdot R_\kappa(x(\tau))$ and
- the set of positive steady states: $E^\kappa_+ = \{x \in \mathbb{R}^n_+ | Y \cdot I \cdot R_\kappa(x) = 0\}$.

Proposition (Confluence Vectors and Positive Steady States)

Let $(\mathcal{X}, C, R, \kappa)$ be a mass action system and let $x \in \mathbb{R}^n_+$. Then the following are equivalent.

(A) The vector x is in E^κ_+, i.e., x is a positive steady state.

(B) The vector $I \cdot R_\kappa(x)$ is a confluence vector for (\mathcal{X}, C, R).

Proposition (Existence of Confluence Vectors)

Let (\mathcal{X}, C, R) be a reaction network. Then the following are equivalent.

(A) Condition (R.1) holds.

(B) There exists a confluence vector.
Let \((C, R)\) be a directed graph with weak components \((C^1, R^1), (C^2, R^2), \ldots, (C^\ell, R^\ell)\).

Denote by \(I \in \mathbb{R}^{|C| \times |R|}\) the incidence matrix of \((C, R)\). Then

\[
\text{ran } I = \text{span}(e^1, e^2, \ldots, e^\ell),
\]

where \(e^1, e^2, \ldots, e^\ell \in \{0, 1\}^{|C|}\) are the characteristic vectors of the sets \(C^1, C^2, \ldots, C^\ell\), respectively, i.e.,

\[
e^r_i = \begin{cases}
1, & \text{if } i \in C^r, \\
0, & \text{if } i \in C \setminus C^r
\end{cases}
\]

for \(r \in \{1, 2, \ldots, \ell\}\) and \(i \in C\).
THE RANGE OF THE INCIDENCE MATRIX

Proposition

Let \((\mathcal{C}, \mathcal{R})\) be a directed graph with weak components

\[(\mathcal{C}^1, \mathcal{R}^1), (\mathcal{C}^2, \mathcal{R}^2), \ldots, (\mathcal{C}^\ell, \mathcal{R}^\ell). \]

Denote by \(I(\in \mathbb{R}^{\mid\mathcal{C}\mid \times \mid\mathcal{R}\mid})\) the incidence matrix of \((\mathcal{C}, \mathcal{R})\). Then

\[\text{ran } I = \text{span}(e^1, e^2, \ldots, e^\ell), \]

where \(e^1, e^2, \ldots, e^\ell \in \{0, 1\}^{\mid\mathcal{C}\mid}\) are the characteristic vectors of the sets \(C^1, C^2, \ldots, C^\ell\), respectively, i.e.,

\[e^r_i = \begin{cases} 1, & \text{if } i \in C^r, \\ 0, & \text{if } i \in C \setminus C^r \end{cases} \]

for \(r \in \{1, 2, \ldots, \ell\}\) and \(i \in \mathcal{C}\).
The intersection \(\ker Y \cap \text{ran } I \)

Consider \(Y \) in the block form \(Y = [Y^1, Y^2, \ldots, Y^\ell] \), where the columns of \(Y^r \) correspond to the complexes in the \(r \)th linkage class \((r \in \{1, 2, \ldots, \ell\}) \).

Corollary

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a reaction network and denote by \(I \) the incidence matrix of the directed graph \((\mathcal{C}, \mathcal{R})\). Then

\[
\ker Y \cap \text{ran } I = \ker \hat{Y},
\]

where

\[
\hat{Y} = \begin{bmatrix}
Y^1 & Y^2 & \cdots & Y^\ell \\
1 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1 & \cdots & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 1 \\
0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 1 \\
\end{bmatrix} \in \mathbb{R}^{(n+\sum_{r=1}^{\ell} 1) \times (\sum_{r=1}^{\ell} |C_r|)}.
\]
The Intersection \(\ker Y \cap \text{ran } I \)

Consider \(Y \) in the block form \(Y = [Y^1, Y^2, \ldots, Y^\ell] \), where the columns of \(Y^r \) correspond to the complexes in the \(r \)th linkage class \((r \in \{1, 2, \ldots, \ell\}) \).

Corollary

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a reaction network and denote by \(I \) the incidence matrix of the directed graph \((\mathcal{C}, \mathcal{R})\). Then

\[
\ker Y \cap \text{ran } I = \ker \hat{Y},
\]

where

\[
\hat{Y} = \begin{bmatrix}
Y^1 & Y^2 & \cdots & Y^\ell \\
1 \cdots 1 & 0 \cdots 0 & \cdots & 0 \cdots 0 \\
0 \cdots 0 & 1 \cdots 1 & \cdots & 0 \cdots 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 \cdots 0 & 0 \cdots 0 & \cdots & 1 \cdots 1
\end{bmatrix}
\in \mathbb{R}^{(n+\sum_{r=1}^\ell 1) \times (\sum_{r=1}^\ell |C^r|)}.
\]
THE SET OF CONFLUENCE VECTORS FOR DFC-1 NETWORKS

Recall that $\delta = \dim(\ker Y \cap \text{ran } I) = \dim \ker \hat{Y}$. Assuming $\delta = 1$, let $0 \neq h \in \ker \hat{Y}$.

Proposition (WR case)

Let $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ be a weakly reversible deficiency-one reaction network. Then the set of confluence vectors is $\{\alpha h \mid \alpha \in \mathbb{R}\}$.

Proposition (non-WR case)

Let $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ be a deficiency-one reaction network, which is not weakly reversible. Assume that (R.1) holds. Then the set of confluence vectors is

$$\begin{cases}
\{\alpha h \mid \alpha > 0\}, & \text{if } h(C') > 0, \\
\{\alpha h \mid \alpha < 0\}, & \text{if } h(C') < 0.
\end{cases}$$
Recall that $\delta = \dim(\ker Y \cap \text{ran } I) = \dim \ker \hat{Y}$. Assuming $\delta = 1$, let $0 \neq h \in \ker \hat{Y}$.

Proposition (WR case)

Let (X, C, R) be a weakly reversible deficiency-one reaction network. Then the set of confluence vectors is $\{\alpha h \mid \alpha \in \mathbb{R}\}$.

Proposition (non-WR case)

Let (X, C, R) be a deficiency-one reaction network, which is not weakly reversible. Assume that (R.1) holds. Then the set of confluence vectors is

\[
\begin{cases}
\{\alpha h \mid \alpha > 0\}, & \text{if } h(C') > 0, \\
\{\alpha h \mid \alpha < 0\}, & \text{if } h(C') < 0.
\end{cases}
\]
THE SET OF CONFLUENCE VECTORS FOR DFC-1 NETWORKS

Recall that $\delta = \dim(\ker Y \cap \text{ran } I) = \dim \ker \hat{Y}$. Assuming $\delta = 1$, let $0 \neq h \in \ker \hat{Y}$.

Proposition (WR case)

Let $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ be a weakly reversible deficiency-one reaction network. Then the set of confluence vectors is $\{\alpha h \mid \alpha \in \mathbb{R}\}$.

Proposition (non-WR case)

Let $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ be a deficiency-one reaction network, which is not weakly reversible. Assume that (R.1) holds. Then the set of confluence vectors is

$$
\begin{cases}
\{\alpha h \mid \alpha > 0\}, & \text{if } h(C') > 0, \\
\{\alpha h \mid \alpha < 0\}, & \text{if } h(C') < 0.
\end{cases}
$$
A complex i is said to be reactive if $\varrho^{\text{out}}(\{i\}) \neq \emptyset$.

Denote by $C(1), C(2), \ldots, C(t)$ the complex sets of the terminal strong linkage classes. Thus, we have $C' = \bigcup_{k=1}^{t} C(k)$.

Definition (Upper-Middle-Lower Partition)

An upper-middle-lower partition for a reaction network is a partition of its reactive complexes into three parts, U, M, and L, called the upper, middle, and lower parts, respectively, such that

- $C \setminus C' \subset M$ and
- for all $k \in \{1, 2, \ldots, t\}$ with $|C(k)| \geq 2$, either $C(k) \subseteq U$ or $C(k) \subseteq M$ or $C(k) \subseteq L$.

A terminal strong linkage class $C(k)$ is nontrivial if $|C(k)| \geq 2$.

The number of upper-middle-lower partitions is $3^{t'}$, where t' is the number of nontrivial terminal strong linkage classes.
A complex i is said to be *reactive* if $\varrho^{\text{out}}(\{i\}) \neq \emptyset$.

Denote by $C(1), C(2), \ldots, C(t)$ the complex sets of the terminal strong linkage classes. Thus, we have $C' = \bigcup_{k=1}^{t} C(k)$.

Definition (Upper-Middle-Lower Partition)

An upper-middle-lower partition for a reaction network is a partition of its reactive complexes into three parts, U, M, and L, called the *upper*, *middle*, and *lower* parts, respectively, such that

- $C \setminus C' \subset M$ and
- for all $k \in \{1, 2, \ldots, t\}$ with $|C(k)| \geq 2$, either $C(k) \subseteq U$ or $C(k) \subseteq M$ or $C(k) \subseteq L$.

A terminal strong linkage class $C(k)$ is *nontrivial* if $|C(k)| \geq 2$.

The number of upper-middle-lower partitions is $3^{t'}$, where t' is the number of nontrivial terminal strong linkage classes.
UPPER-MIDDLE-LOWER PARTITIONS OF THE REACTIVE COMPLEXES

- A complex i is said to be reactive if $\varrho^\text{out}({i}) \neq \emptyset$.
- Denote by $\mathcal{C}(1), \mathcal{C}(2), \ldots, \mathcal{C}(t)$ the complex sets of the terminal strong linkage classes. Thus, we have $\mathcal{C}' = \bigcup_{k=1}^{t} \mathcal{C}(k)$.

DEFINITION (UPPER-MIDDLE-LOWER PARTITION)

An upper-middle-lower partition for a reaction network is a partition of its reactive complexes into three parts, U, M, and L, called the upper, middle, and lower parts, respectively, such that

- $\mathcal{C} \setminus \mathcal{C}' \subset M$ and
- for all $k \in \{1, 2, \ldots, t\}$ with $|\mathcal{C}(k)| \geq 2$, either $\mathcal{C}(k) \subseteq U$ or $\mathcal{C}(k) \subseteq M$ or $\mathcal{C}(k) \subseteq L$.

- A terminal strong linkage class $\mathcal{C}(k)$ is nontrivial if $|\mathcal{C}(k)| \geq 2$.
- The number of upper-middle-lower partitions is $3^{t'}$, where t' is the number of nontrivial terminal strong linkage classes.
Upper-middle-lower partitions of the reactive complexes

- A complex i is said to be *reactive* if $\varrho^\text{out}(\{i\}) \neq \emptyset$.
- Denote by $C(1), C(2), \ldots, C(t)$ the complex sets of the terminal strong linkage classes. Thus, we have $C' = \bigcup_{k=1}^{t} C(k)$.

Definition (Upper-middle-lower partition)

An *upper-middle-lower partition* for a reaction network is a partition of its reactive complexes into three parts, U, M, and L, called the *upper*, *middle*, and *lower* parts, respectively, such that

- $C \setminus C' \subset M$ and
- for all $k \in \{1, 2, \ldots, t\}$ with $|C(k)| \geq 2$, either $C(k) \subseteq U$ or $C(k) \subseteq M$ or $C(k) \subseteq L$.

- A terminal strong linkage class $C(k)$ is *nontrivial* if $|C(k)| \geq 2$.
- The number of upper-middle-lower partitions is $3^{t'}$, where t' is the number of nontrivial terminal strong linkage classes.
Upper-middle-lower partitions of the reactive complexes

- A complex i is said to be *reactive* if $\varrho^\text{out}(\{i\}) \neq \emptyset$.
- Denote by $\mathcal{C}(1)$, $\mathcal{C}(2)$, \ldots, $\mathcal{C}(t)$ the complex sets of the terminal strong linkage classes. Thus, we have $\mathcal{C}' = \bigcup_{k=1}^{t} \mathcal{C}(k)$.

Definition (Upper-middle-lower partition)

An *upper-middle-lower partition* for a reaction network is a partition of its reactive complexes into three parts, U, M, and L, called the *upper*, *middle*, and *lower* parts, respectively, such that:

- $\mathcal{C} \setminus \mathcal{C}' \subset M$ and
- for all $k \in \{1, 2, \ldots, t\}$ with $|\mathcal{C}(k)| \geq 2$, either $\mathcal{C}(k) \subseteq U$ or $\mathcal{C}(k) \subseteq M$ or $\mathcal{C}(k) \subseteq L$.

- A terminal strong linkage class $\mathcal{C}(k)$ is *nontrivial* if $|\mathcal{C}(k)| \geq 2$.
- The number of upper-middle-lower partitions is $3^{t'}$, where t' is the number of nontrivial terminal strong linkage classes.
THE INEQUALITY SYSTEM INDUCED BY A CONFLUENCE VECTOR AND AN UPPER-MIDDLE-LOWER PARTITION

- Fix a reaction network \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) and an upper-middle-lower partition \(\{U, M, L\}\).

- Let

 \[
 \mathcal{M}^1 = \{\mu \in \mathbb{R}^n | \langle Y_j - Y_i, \mu \rangle = 0 \text{ for all } i, j \in M\}.
 \]

- Let

 \[
 \mathcal{M}^2 = \mathcal{M}^2_{MU} \cap \mathcal{M}^2_{LU} \cap \mathcal{M}^2_{LM},
 \]

 where

 \[
 \mathcal{M}^2_{MU} = \{\mu \in \mathbb{R}^n | \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in M, j \in U\},
 \]

 \[
 \mathcal{M}^2_{LU} = \{\mu \in \mathbb{R}^n | \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in L, j \in U\}, \text{ and}
 \]

 \[
 \mathcal{M}^2_{LM} = \{\mu \in \mathbb{R}^n | \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in L, j \in M\}.
 \]
THE INEQUALITY SYSTEM INDUCED BY A CONFLUENCE VECTOR AND AN UPPER-MIDDLE-LOWER PARTITION

- Fix a reaction network \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) and an upper-middle-lower partition \(\{U, M, L\}\).
- Let
 \[
 \mathcal{M}^1 = \{\mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle = 0 \text{ for all } i, j \in M\}.
 \]
- Let
 \[
 \mathcal{M}^2 = \mathcal{M}^2_{MU} \cap \mathcal{M}^2_{LU} \cap \mathcal{M}^2_{LM},
 \]
 where
 \[
 \mathcal{M}^2_{MU} = \{\mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in M, j \in U\},
 \]
 \[
 \mathcal{M}^2_{LU} = \{\mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in L, j \in U\}, \quad \text{and}
 \]
 \[
 \mathcal{M}^2_{LM} = \{\mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in L, j \in M\}.
 \]
THE INEQUALITY SYSTEM INDUCED BY A CONFLUENCE VECTOR AND AN UPPER-MIDDLE-LOWER PARTITION

- Fix a reaction network \((X, C, R)\) and an upper-middle-lower partition \(\{U, M, L\}\).
- Let
 \[\mathcal{M}^1 = \{ \mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle = 0 \text{ for all } i, j \in M \}. \]
- Let
 \[\mathcal{M}^2 = \mathcal{M}_{MU}^2 \cap \mathcal{M}_{LU}^2 \cap \mathcal{M}_{LM}^2, \]
 where
 \[\mathcal{M}_{MU}^2 = \{ \mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in M, j \in U \}, \]
 \[\mathcal{M}_{LU}^2 = \{ \mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in L, j \in U \}, \] and
 \[\mathcal{M}_{LM}^2 = \{ \mu \in \mathbb{R}^n \mid \langle Y_j - Y_i, \mu \rangle > 0 \text{ for all } i \in L, j \in M \}. \]
THE INEQUALITY SYSTEM INDUCED BY A CONFLUENCE VECTOR AND AN UPPER-MIDDLE-LOWER PARTITION

Assume further that (R.1) and (R.3) hold and let h be a confluence vector.

For $i, j \in C'$ with $(i, j) \in R$, there exists a partition of their linkage class into $W(i)$ and $W(j)$ such that $i \in W(i)$, $j \in W(j)$, and the only links between $W(i)$ and $W(j)$ are (i, j) and (j, i).

Let

$$M^3 = M^3_U \cap M^3_L,$$

where

$$M^3_U = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = \text{sgn}(h(W(j))) \right\} \quad \text{and}$$

$$M^3_L = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = -\text{sgn}(h(W(j))) \right\}.$$

Define the *induced polyhedron* by

$$M = M^1 \cap M^2 \cap M^3.$$
THE INEQUALITY SYSTEM INDUCED BY A CONFLUENCE VECTOR AND AN UPPER-MIDDLE-LOWER PARTITION

Assume further that (R.1) and (R.3) hold and let h be a confluence vector.

For $i, j \in C'$ with $(i, j) \in R$, there exists a partition of their linkage class into $W(i)$ and $W(j)$ such that $i \in W(i)$, $j \in W(j)$, and the only links between $W(i)$ and $W(j)$ are (i, j) and (j, i).

Let

$$M^3 = M^3_U \cap M^3_L,$$

where

$$M^3_U = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = \text{sgn}(h(W(j))) \text{ for all } i, j \in C' \cap U \text{ with } (i, j) \in R \right\}$$

and

$$M^3_L = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = -\text{sgn}(h(W(j))) \text{ for all } i, j \in C' \cap L \text{ with } (i, j) \in R \right\}.$$

Define the induced polyhedron by

$$M = M^1 \cap M^2 \cap M^3.$$
THE INEQUALITY SYSTEM INDUCED BY A CONFLUENCE VECTOR AND AN UPPER-MIDDLE-LOWER PARTITION

- Assume further that (R.1) and (R.3) hold and let h be a confluence vector.
- For $i, j \in C'$ with $(i, j) \in R$, there exists a partition of their linkage class into $W(i)$ and $W(j)$ such that $i \in W(i), j \in W(j)$, and the only links between $W(i)$ and $W(j)$ are (i, j) and (j, i).
- Let

$$M^3 = M_U^3 \cap M_L^3,$$

where

$$M_U^3 = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = \text{sgn}(h(W(j))) \text{ for all } i, j \in C' \cap U \text{ with } (i, j) \in R \right\}$$

and

$$M_L^3 = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = -\text{sgn}(h(W(j))) \text{ for all } i, j \in C' \cap L \text{ with } (i, j) \in R \right\}.$$

- Define the induced polyhedron by

$$M = M^1 \cap M^2 \cap M^3.$$
Assume further that (R.1) and (R.3) hold and let \(h \) be a confluence vector.

For \(i, j \in C' \) with \((i, j) \in \mathcal{R} \), there exists a partition of their linkage class into \(W(i) \) and \(W(j) \) such that \(i \in W(i), j \in W(j) \), and the only links between \(W(i) \) and \(W(j) \) are \((i, j) \) and \((j, i) \).

Let

\[
\mathcal{M}^3 = \mathcal{M}^3_U \cap \mathcal{M}^3_L,
\]

where

\[
\mathcal{M}^3_U = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = \text{sgn}(h(W(j))) \text{ for all } i, j \in C' \cap U \text{ with } (i, j) \in \mathcal{R} \right\}
\]

and

\[
\mathcal{M}^3_L = \left\{ \mu \in \mathbb{R}^n \mid \text{sgn}(\langle Y_j - Y_i, \mu \rangle) = -\text{sgn}(h(W(j))) \text{ for all } i, j \in C' \cap L \text{ with } (i, j) \in \mathcal{R} \right\}.
\]

Define the \textit{induced polyhedron} by

\[
\mathcal{M} = \mathcal{M}^1 \cap \mathcal{M}^2 \cap \mathcal{M}^3.
\]
THE DEFICIENCY-ONE ALGORITHM

A vector $\mu \in \mathbb{R}^n$ is said to be sign compatible with the stoichiometric subspace if there exists a $\sigma \in \text{ran } S$ such that $\text{sgn}(\mu_s) = \text{sgn}(\sigma_s)$ for all $s \in \{1, 2, \ldots, n\}$.

THEOREM (MARTIN FEINBERG, 1988, 1995)

Let $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ be a regular reaction network with $\delta = 1$. Then the following are equivalent.

(A) There exists a $\kappa : \mathcal{R} \to \mathbb{R}_+$ and there exists a positive stoichiometric class \mathcal{P} such that $|E_+^\kappa \cap \mathcal{P}| \geq 2$.

(B) There exists a confluence vector $h \in \mathbb{R}^m$ and an upper-middle-lower partition $\{U, M, L\}$ such that there exists a nonzero vector in the polyhedron induced by h and $\{U, M, L\}$, which is sign compatible with the stoichiometric subspace.
A vector $\mu \in \mathbb{R}^n$ is said to be sign compatible with the stoichiometric subspace if there exists a $\sigma \in \text{ran } S$ such that $\text{sgn}(\mu_s) = \text{sgn}(\sigma_s)$ for all $s \in \{1, 2, \ldots, n\}$.

Theorem (Martin Feinberg, 1988, 1995)

Let $(\mathcal{X}, \mathcal{C}, \mathcal{R})$ be a regular reaction network with $\delta = 1$. Then the following are equivalent.

(A) There exists a $\kappa : \mathcal{R} \to \mathbb{R}_+$ and there exists a positive stoichiometric class \mathcal{P} such that $|E_+^{\kappa} \cap \mathcal{P}| \geq 2$.

(B) There exists a confluence vector $h \in \mathbb{R}^m$ and an upper-middle-lower partition $\{U, M, L\}$ such that there exists a nonzero vector in the polyhedron induced by h and $\{U, M, L\}$, which is sign compatible with the stoichiometric subspace.
Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a regular reaction network. Let \(h\) be a confluence vector and \(\{U, M, L\}\) be an upper-middle-lower partition. Let \(\tilde{h} = h, \tilde{U} = L, \tilde{M} = M, \text{ and } \tilde{L} = U\). Denote by \(\mathcal{M}\) and \(\widetilde{\mathcal{M}}\) the polyhedron induced by \(h\) and \(\{U, M, L\}\) and the polyhedron induced by \(\tilde{h}\) and \(\{\tilde{U}, \tilde{M}, \tilde{L}\}\), respectively. Then the following are equivalent.

(A) There exists a nonzero \(\mu \in \mathcal{M}\) that is sign compatible with the stoichiometric subspace.

(B) There exists a nonzero \(\mu \in \widetilde{\mathcal{M}}\) that is sign compatible with the stoichiometric subspace.
A FEW SHORTCUTS

PROPOSITION (MARTIN FEINBERG, 1995)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a regular reaction network with no trivial terminal strong linkage classes (i.e., \(t' = t\)). Let \(h\) be a confluence vector and \(\{U, M, L\}\) be an upper-middle-lower partition, and assume that there exists a nonzero element of the induced polyhedron that is sign compatible with the stoichiometric subspace. Then \(U \neq \emptyset\) and \(L \neq \emptyset\).

PROPOSITION (MARTIN FEINBERG, 1995)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a regular reaction network with exactly one trivial terminal strong linkage class (i.e., \(t' = t - 1\)). Let \(h\) be a confluence vector, \(\{U, M, L\}\) be an upper-middle-lower partition, and assume that there exists a nonzero element of the induced polyhedron that is sign compatible with the stoichiometric subspace. Then at least one of \(U\) and \(L\) is nonempty.
A FEW SHORTCUTS

Proposition (Martin Feinberg, 1995)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a regular reaction network with no trivial terminal strong linkage classes (i.e., \(t' = t\)). Let \(h\) be a confluence vector and \(\{U, M, L\}\) be an upper-middle-lower partition, and assume that there exists a nonzero element of the induced polyhedron that is sign compatible with the stoichiometric subspace. Then \(U \neq \emptyset\) and \(L \neq \emptyset\).

Proposition (Martin Feinberg, 1995)

Let \((\mathcal{X}, \mathcal{C}, \mathcal{R})\) be a regular reaction network with exactly one trivial terminal strong linkage class (i.e., \(t' = t - 1\)). Let \(h\) be a confluence vector, \(\{U, M, L\}\) be an upper-middle-lower partition, and assume that there exists a nonzero element of the induced polyhedron that is sign compatible with the stoichiometric subspace. Then at least one of \(U\) and \(L\) is nonempty.
THE NUMBER OF UPPER-MIDDLE-LOWER PARTITIONS THAT ARE SUFFICIENT TO EXAMINE (BASED ON THE SHORTCUTS)

<table>
<thead>
<tr>
<th></th>
<th>$\ell = t = 1$</th>
<th>$\ell = t = 2$</th>
<th>$\ell = t = 3$</th>
<th>$\ell = t = 4$</th>
<th>$\ell = t = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t' = t$</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>25</td>
<td>90</td>
</tr>
<tr>
<td>$t' = t - 1$</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>$t' = t - 2$</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>$t' = t - 3$</td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>$t' = t - 4$</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>$t' = t - 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
The network $aX_1 \rightleftharpoons bX_1$, $cX_1 \rightleftharpoons dX_1$

- Assume a, b, c, and d are four distinct nonnegative numbers.

- Then $\hat{Y} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$, $h = \begin{bmatrix} \alpha \\ -\alpha \\ 1 \\ -1 \end{bmatrix}$ or $h = \begin{bmatrix} -\alpha \\ \alpha \\ -1 \\ 1 \end{bmatrix}$ for some $\alpha \neq 0$, and $\text{ran } S = \mathbb{R}$. (Easy: $h = 0$ cannot provide a solution.)

- Let $U = \{aX_1, bX_1\}$ and $L = \{cX_1, dX_1\}$.

- Then

 $M^1 = \mathbb{R}$,

 $M^2 = \left\{ \mu \in \mathbb{R} \mid (a - c)\mu > 0, (a - d)\mu > 0, (b - c)\mu > 0, (b - d)\mu > 0 \right\}$, and

 $M^3 = \left\{ \mu \in \mathbb{R} \mid \text{sgn}((a - b)\mu) = \text{sgn}(\alpha), (c - d)\mu < 0 \right\}$ or

 $M^3 = \left\{ \mu \in \mathbb{R} \mid \text{sgn}((a - b)\mu) = \text{sgn}(-\alpha), (c - d)\mu > 0 \right\}$.

- Thus, there exists κ such that $|E^\kappa_+| \geq 2$ if and only if either $\max(a, b) < \min(c, d)$ or $\max(c, d) < \min(a, b)$.

Balázs Boros (Eötvös Univ., Budapest)
THE NETWORK \(aX_1 \Leftrightarrow bX_1, \ cX_1 \Leftrightarrow dX_1 \)

- Assume \(a, b, c, \) and \(d \) are four distinct nonnegative numbers.
- Then \(\hat{Y} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \), \(h = \begin{bmatrix} \alpha \\ -\alpha \\ 1 \\ -1 \end{bmatrix} \) or \(h = \begin{bmatrix} -\alpha \\ \alpha \\ -1 \\ 1 \end{bmatrix} \) for some \(\alpha \neq 0 \), and \(\text{ran } S = \mathbb{R} \). (Easy: \(h = 0 \) cannot provide a solution.)
- Let \(U = \{aX_1, bX_1\} \) and \(L = \{cX_1, dX_1\} \).
- Then

\[
\mathcal{M}^1 = \mathbb{R},
\]
\[
\mathcal{M}^2 = \left\{ \mu \in \mathbb{R} \mathrel{|} (a - c)\mu > 0, (a - d)\mu > 0, (b - c)\mu > 0, (b - d)\mu > 0 \right\}, \ 	ext{and}
\]
\[
\mathcal{M}^3 = \left\{ \mu \in \mathbb{R} \mathrel{|} \text{sgn}((a - b)\mu) = \text{sgn}(\alpha), (c - d)\mu < 0 \right\} \text{ or }
\]
\[
\mathcal{M}^3 = \left\{ \mu \in \mathbb{R} \mathrel{|} \text{sgn}((a - b)\mu) = \text{sgn}(-\alpha), (c - d)\mu > 0 \right\}.
\]

- Thus, there exists \(\kappa \) such that \(|E^\kappa_+| \geq 2 \) if and only if either \(\max(a, b) < \min(c, d) \) or \(\max(c, d) < \min(a, b) \).
The network $aX_1 \iff bX_1$, $cX_1 \iff dX_1$

- Assume a, b, c, and d are four distinct nonnegative numbers.

- Then $
\hat{Y} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \ h = \begin{bmatrix} \alpha \\ -\alpha \\ 1 \\ -1 \end{bmatrix} \text{ or } h = \begin{bmatrix} -\alpha \\ \alpha \\ -1 \\ 1 \end{bmatrix} \text{ for some }
\alpha \neq 0, \text{ and } \text{ran } S = \mathbb{R}. \text{ (Easy: } h = 0 \text{ cannot provide a solution.)}

- Let $U = \{aX_1, bX_1\}$ and $L = \{cX_1, dX_1\}$.

- Then

\[M^1 = \mathbb{R}, \]

\[M^2 = \left\{ \mu \in \mathbb{R} \mid (a - c)\mu > 0, (a - d)\mu > 0, (b - c)\mu > 0, (b - d)\mu > 0 \right\}, \text{ and} \]

\[M^3 = \{ \mu \in \mathbb{R} \mid \text{sgn}((a - b)\mu) = \text{sgn}(\alpha), (c - d)\mu < 0 \} \text{ or} \]

\[M^3 = \{ \mu \in \mathbb{R} \mid \text{sgn}((a - b)\mu) = \text{sgn}(-\alpha), (c - d)\mu > 0 \}. \]

- Thus, there exists κ such that $|E^\kappa_+| \geq 2$ if and only if either $\max(a, b) < \min(c, d)$ or $\max(c, d) < \min(a, b)$.
Assume a, b, c, and d are four distinct nonnegative numbers.

Then \(\hat{Y} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}, \ h = \begin{bmatrix} \alpha \\ -\alpha \\ 1 \\ -1 \end{bmatrix} \) or \(h = \begin{bmatrix} -\alpha \\ \alpha \\ -1 \\ 1 \end{bmatrix} \) for some \(\alpha \neq 0 \), and \(\text{ran } S = \mathbb{R} \). (Easy: \(h = 0 \) cannot provide a solution.)

Let \(U = \{aX_1, bX_1\} \) and \(L = \{cX_1, dX_1\} \).

Then

\[
\mathcal{M}_1 = \mathbb{R},
\]

\[
\mathcal{M}_2 = \left\{ \mu \in \mathbb{R} \ \middle| \ (a-c)\mu > 0, (a-d)\mu > 0, (b-c)\mu > 0, (b-d)\mu > 0 \right\}, \text{ and}
\]

\[
\mathcal{M}_3 = \left\{ \mu \in \mathbb{R} \ \middle| \ \text{sgn}((a-b)\mu) = \text{sgn}(\alpha), (c-d)\mu < 0 \right\} \text{ or }
\]

\[
\mathcal{M}_3 = \left\{ \mu \in \mathbb{R} \ \middle| \ \text{sgn}((a-b)\mu) = \text{sgn}(-\alpha), (c-d)\mu > 0 \right\}.
\]

Thus, there exists \(\kappa \) such that \(|E_+^\kappa| \geq 2 \) if and only if either \(\max(a, b) < \min(c, d) \) or \(\max(c, d) < \min(a, b) \).
THE NETWORK $aX_1 \Leftrightarrow bX_1$, $cX_1 \Leftrightarrow dX_1$

- Assume a, b, c, and d are four distinct nonnegative numbers.

- Then $\hat{Y} = \begin{bmatrix} a & b & c & d \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$, $h = \begin{bmatrix} \alpha \\ -\alpha \\ -1 \end{bmatrix}$ or $h = \begin{bmatrix} -\alpha \\ \alpha \\ -1 \end{bmatrix}$ for some $\alpha \neq 0$, and $\text{ran } S = \mathbb{R}$. (Easy: $h = 0$ cannot provide a solution.)

- Let $U = \{aX_1, bX_1\}$ and $L = \{cX_1, dX_1\}$.

- Then

 $M^1 = \mathbb{R}$,

 $M^2 = \left\{ \mu \in \mathbb{R} \bigg| \begin{array}{l} (a - c)\mu > 0, (a - d)\mu > 0, \\ (b - c)\mu > 0, (b - d)\mu > 0 \end{array} \right\}$, and

 $M^3 = \left\{ \mu \in \mathbb{R} \bigg| \text{sgn}((a - b)\mu) = \text{sgn}(\alpha), (c - d)\mu < 0 \right\}$ or

 $M^3 = \left\{ \mu \in \mathbb{R} \bigg| \text{sgn}((a - b)\mu) = \text{sgn}(-\alpha), (c - d)\mu > 0 \right\}$.

- Thus, there exists κ such that $|E_+^\kappa| \geq 2$ if and only if either $\max(a, b) < \min(c, d)$ or $\max(c, d) < \min(a, b)$.
The network $X_1 \rightleftharpoons X_2$, $X_1 + X_2 \rightleftharpoons 2X_2$

- Then ran $S = \left\{ \begin{bmatrix} \beta \\ -\beta \end{bmatrix} \bigg| \beta \in \mathbb{R} \right\}$.
- Let $U = \{X_1, X_2\}$ and $L = \{X_1 + X_2, 2X_2\}$.
- Then
 \[
 \mathcal{M}^2 = \{ \mu \in \mathbb{R}^2 \mid \mu_1 > \mu_1 + \mu_2, \mu_2 > \mu_1 + \mu_2, \mu_1 > 2\mu_2, \mu_2 > 2\mu_2 \} = \\
 = \{ \mu \in \mathbb{R}^2 \mid \mu_2 < 0, \mu_1 < 0, \mu_1 > 2\mu_2 \}.
 \]
- There is no $\mu \in \mathcal{M}^2$ that is sign compatible with the stoichiometric subspace.
- Thus, for all κ and for all positive stoichiometric classes \mathcal{P}, we have $|E_+^\kappa \cap \mathcal{P}| = 1$. (We know the existence from elsewhere.)
The network $X_1 \rightleftharpoons X_2, X_1 + X_2 \rightleftharpoons 2X_2$

Then ran $S = \left\{ \begin{bmatrix} \beta \\ -\beta \end{bmatrix} | \beta \in \mathbb{R} \right\}$.

Let $U = \{X_1, X_2\}$ and $L = \{X_1 + X_2, 2X_2\}$.

Then

$$\mathcal{M}^2 = \{ \mu \in \mathbb{R}^2 | \mu_1 > \mu_1 + \mu_2, \mu_2 > \mu_1 + \mu_2, \mu_1 > 2\mu_2, \mu_2 > 2\mu_2 \} = \{ \mu \in \mathbb{R}^2 | \mu_2 < 0, \mu_1 < 0, \mu_1 > 2\mu_2 \}.$$

There is no $\mu \in \mathcal{M}^2$ that is sign compatible with the stoichiometric subspace.

Thus, for all κ and for all positive stoichiometric classes \mathcal{P}, we have $|E_+^{\kappa} \cap \mathcal{P}| = 1$. (We know the existence from elsewhere.)
The network $X_1 \rightleftharpoons X_2, X_1 + X_2 \rightleftharpoons 2X_2$

- Then ran $S = \left\{ \begin{bmatrix} \beta \\ -\beta \end{bmatrix} \right| \beta \in \mathbb{R} \right\}$.
- Let $U = \{X_1, X_2\}$ and $L = \{X_1 + X_2, 2X_2\}$.
- Then
 \[M^2 = \{ \mu \in \mathbb{R}^2 \mid \mu_1 > \mu_1 + \mu_2, \mu_2 > \mu_1 + \mu_2, \mu_1 > 2\mu_2, \mu_2 > 2\mu_2 \} = \{ \mu \in \mathbb{R}^2 \mid \mu_2 < 0, \mu_1 < 0, \mu_1 > 2\mu_2 \}. \]

- There is no $\mu \in M^2$ that is sign compatible with the stoichiometric subspace.
- Thus, for all κ and for all positive stoichiometric classes \mathcal{P}, we have $|E_+^\kappa \cap \mathcal{P}| = 1$. (We know the existence from elsewhere.)
The network $X_1 \Leftrightarrow X_2, X_1 + X_2 \Leftrightarrow 2X_2$

- Then ran $S = \begin{bmatrix} \beta \\ -\beta \end{bmatrix} \mid \beta \in \mathbb{R}$.
- Let $U = \{X_1, X_2\}$ and $L = \{X_1 + X_2, 2X_2\}$.
- Then
 \[M^2 = \{ \mu \in \mathbb{R}^2 \mid \mu_1 > \mu_1 + \mu_2, \mu_2 > \mu_1 + \mu_2, \mu_1 > 2\mu_2, \mu_2 > 2\mu_2 \} = \{ \mu \in \mathbb{R}^2 \mid \mu_2 < 0, \mu_1 < 0, \mu_1 > 2\mu_2 \} \]

- There is no $\mu \in M^2$ that is sign compatible with the stoichiometric subspace.
- Thus, for all κ and for all positive stoichiometric classes \mathcal{P}, we have $|E_{\kappa}^+ \cap \mathcal{P}| = 1$. (We know the existence from elsewhere.)
The network $X_1 \Leftrightarrow X_2, \ X_1 + X_2 \Leftrightarrow 2X_2$

- Then ran $S = \left\{ \begin{bmatrix} \beta \\ -\beta \end{bmatrix} \mid \beta \in \mathbb{R} \right\}$.
- Let $U = \{X_1, X_2\}$ and $L = \{X_1 + X_2, 2X_2\}$.
- Then

$$M^2 = \{\mu \in \mathbb{R}^2 \mid \mu_1 > \mu_1 + \mu_2, \mu_2 > \mu_1 + \mu_2, \mu_1 > 2\mu_2, \mu_2 > 2\mu_2\} =$$

$$= \{\mu \in \mathbb{R}^2 \mid \mu_2 < 0, \mu_1 < 0, \mu_1 > 2\mu_2\}.$$

- There is no $\mu \in M^2$ that is sign compatible with the stoichiometric subspace.
- Thus, for all κ and for all positive stoichiometric classes \mathcal{P}, we have $|E^{\kappa}_+ \cap \mathcal{P}| = 1$. (We know the existence from elsewhere.)
The network $X_1 \Leftrightarrow X_2, X_1 + 2X_2 \Leftrightarrow 3X_2$

Then ran $S = \left\{ \left[\begin{array}{c} \beta \\ -\beta \end{array} \right] \mid \beta \in \mathbb{R} \right\}$.

Let $U = \{X_1, X_2\}$ and $L = \{X_1 + 2X_2, 3X_2\}$.

Then

$M^1 = \mathbb{R}^2$ and

$M^2 = \{\mu \in \mathbb{R}^2 \mid \mu_1 > \mu_1 + 2\mu_2, \mu_2 > \mu_1 + 2\mu_2, \mu_1 > 3\mu_2, \mu_2 > 3\mu_2\} = \{\mu \in \mathbb{R}^2 \mid \mu_2 < 0, \mu_1 + \mu_2 < 0, \mu_1 > 3\mu_2\}$.
The network $X_1 \leftrightarrow X_2, X_1 + 2X_2 \leftrightarrow 3X_2$

- Then ran $S = \left\{ \left[\begin{array}{c} \beta \\ -\beta \end{array} \right] \mid \beta \in \mathbb{R} \right\}$.
- Let $U = \{X_1, X_2\}$ and $L = \{X_1 + 2X_2, 3X_2\}$.
- Then

 $\mathcal{M}^1 = \mathbb{R}^2$ and
 $\mathcal{M}^2 = \{\mu \in \mathbb{R}^2 \mid \mu_1 > \mu_1 + 2\mu_2, \mu_2 > \mu_1 + 2\mu_2, \mu_1 > 3\mu_2, \mu_2 > 3\mu_2\} = \{\mu \in \mathbb{R}^2 \mid \mu_2 < 0, \mu_1 + \mu_2 < 0, \mu_1 > 3\mu_2\}$.
The network $X_1 \leftrightarrow X_2, X_1 + 2X_2 \leftrightarrow 3X_2$

Then ran $S = \left\{ \begin{bmatrix} \beta \\ -\beta \end{bmatrix} \mid \beta \in \mathbb{R} \right\}$.

Let $U = \{X_1, X_2\}$ and $L = \{X_1 + 2X_2, 3X_2\}$.

Then

$M^1 = \mathbb{R}^2$ and

$M^2 = \{\mu \in \mathbb{R}^2 \mid \mu_1 > \mu_1 + 2\mu_2, \mu_2 > \mu_1 + 2\mu_2, \mu_1 > 3\mu_2, \mu_2 > 3\mu_2\} = \{\mu \in \mathbb{R}^2 \mid \mu_2 < 0, \mu_1 + \mu_2 < 0, \mu_1 > 3\mu_2\}$.

The network $X_1 \iff X_2, X_1 + 2X_2 \iff 3X_2$

- We have $\hat{Y} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

- For $h = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$, $h = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$, and $h = 0$, we have $M^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 < \mu_2\}$, $M^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 > \mu_2\}$, and $M^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 = \mu_2\}$, respectively.

- In the first and third cases, there is no nonzero element of M that is sign compatible with the stoichiometric subspace.

- However, in the second case, $\mu_1 = 1$ and $\mu_2 = -2$ is a solution.

- Thus, there exists a κ and there exists a positive stoichiometric class P such that $|E_+^\kappa \cap P| \geq 2$.
The network $X_1 \leftrightarrow X_2$, $X_1 + 2X_2 \leftrightarrow 3X_2$

- We have $\hat{Y} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

- For $h = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$, $h = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$, and $h = 0$, we have $\mathcal{M}^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 < \mu_2\}$, $\mathcal{M}^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 > \mu_2\}$, and $\mathcal{M}^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 = \mu_2\}$, respectively.

- In the first and third cases, there is no nonzero element of \mathcal{M} that is sign compatible with the stoichiometric subspace.

- However, in the second case, $\mu_1 = 1$ and $\mu_2 = -2$ is a solution.

- Thus, there exists a κ and there exists a positive stoichiometric class \mathcal{P} such that $|E_+^\kappa \cap \mathcal{P}| \geq 2$.
The network $X_1 \Leftrightarrow X_2, X_1 + 2X_2 \Leftrightarrow 3X_2$

- We have $\hat{Y} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

- For $h = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$, $h = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$, and $h = 0$, we have $M^3 = \{ \mu \in \mathbb{R}^2 \mid \mu_1 < \mu_2 \}$, $M^3 = \{ \mu \in \mathbb{R}^2 \mid \mu_1 > \mu_2 \}$, and $M^3 = \{ \mu \in \mathbb{R}^2 \mid \mu_1 = \mu_2 \}$, respectively.

- In the first and third cases, there is no nonzero element of M that is sign compatible with the stoichiometric subspace.

- However, in the second case, $\mu_1 = 1$ and $\mu_2 = -2$ is a solution.

- Thus, there exists a κ and there exists a positive stoichiometric class \mathcal{P} such that $|E^\kappa_+ \cap \mathcal{P}| \geq 2$.
The network $X_1 \Leftrightarrow X_2, X_1 + 2X_2 \Leftrightarrow 3X_2$

- We have $\hat{Y} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

- For $h = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$, $h = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$, and $h = 0$, we have $\mathcal{M}^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 < \mu_2\}$, $\mathcal{M}^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 > \mu_2\}$, and $\mathcal{M}^3 = \{\mu \in \mathbb{R}^2 \mid \mu_1 = \mu_2\}$, respectively.

- In the first and third cases, there is no nonzero element of \mathcal{M} that is sign compatible with the stoichiometric subspace.

- However, in the second case, $\mu_1 = 1$ and $\mu_2 = -2$ is a solution.

- Thus, there exists a κ and there exists a positive stoichiometric class \mathcal{P} such that $|E_+^\kappa \cap \mathcal{P}| \geq 2$.
The network $X_1 \leftrightarrow X_2, X_1 + 2X_2 \leftrightarrow 3X_2$

- We have $\hat{Y} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$.

- For $h = \begin{bmatrix} -1 \\ 1 \\ 1 \\ -1 \end{bmatrix}$, $h = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$, and $h = 0$, we have $M^3 = \{ \mu \in \mathbb{R}^2 | \mu_1 < \mu_2 \}$, $M^3 = \{ \mu \in \mathbb{R}^2 | \mu_1 > \mu_2 \}$, and $M^3 = \{ \mu \in \mathbb{R}^2 | \mu_1 = \mu_2 \}$, respectively.

- In the first and third cases, there is no nonzero element of M that is sign compatible with the stoichiometric subspace.

- However, in the second case, $\mu_1 = 1$ and $\mu_2 = -2$ is a solution.

- Thus, there exists a κ and there exists a positive stoichiometric class \mathcal{P} such that $|E_+^\kappa \cap \mathcal{P}| \geq 2$.
THE NETWORK $X_1 \leftrightarrow X_2$, $X_1 + 2X_2 \leftrightarrow 3X_2$
THE NETWORK \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s, \)
\(\sum_{s=1}^{n} c_s X_s \rightleftharpoons \sum_{s=1}^{n} d_s X_s \)

PROPOSITION

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s, \)
\(\sum_{s=1}^{n} c_s X_s \rightleftharpoons \sum_{s=1}^{n} d_s X_s, \) where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}^n \geq 0 \) with \(b - a \) and \(d - c \) being linearly dependent. Then

(I) the network is a regular deficiency-one network and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \to \mathbb{R}_+ \) and there exists a positive stoichiometric class \(\mathcal{P} \) such that \(|E^\kappa_+ \cap \mathcal{P}| \geq 2. \)

(B) There exists an \(s^* \in \{1, 2, \ldots, n\} \) such that either

\[
\min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}) < \min(c_{s^*}, d_{s^*}) < \max(c_{s^*}, d_{s^*})
\]

or

\[
\min(c_{s^*}, d_{s^*}) < \max(c_{s^*}, d_{s^*}) < \min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}).
\]
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s\),
\(\sum_{s=1}^{n} c_s X_s \rightleftharpoons \sum_{s=1}^{n} d_s X_s\), where \(a, b, c,\) and \(d\) are four distinct elements of \(\mathbb{R}^n_{\geq 0}\) with \(b - a\) and \(d - c\) being linearly dependent. Then

(1) the network is a regular deficiency-one network and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+\) and there exists a positive stoichiometric class \(\mathcal{P}\) such that \(|E_+^\kappa \cap \mathcal{P}| \geq 2\).

(B) There exists an \(s^* \in \{1, 2, \ldots, n\}\) such that either

\[\min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}) < \min(c_{s^*}, d_{s^*}) < \max(c_{s^*}, d_{s^*})\]

or

\[\min(c_{s^*}, d_{s^*}) < \max(c_{s^*}, d_{s^*}) < \min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}).\]
THE NETWORK \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s \),
\(\sum_{s=1}^{n} c_s X_s \rightleftharpoons \sum_{s=1}^{n} d_s X_s \)

Proposition

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s \),
\(\sum_{s=1}^{n} c_s X_s \rightleftharpoons \sum_{s=1}^{n} d_s X_s \), where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}^n \geq 0 \) with \(b - a \) and \(d - c \) being linearly dependent. Then

(I) the network is a regular deficiency-one network and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) and there exists a positive stoichiometric class \(\mathcal{P} \) such that \(|E^\kappa_+ \cap \mathcal{P}| \geq 2 \).

(B) There exists an \(s^* \in \{1, 2, \ldots, n\} \) such that either

\[
\min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}) < \min(c_{s^*}, d_{s^*}) < \max(c_{s^*}, d_{s^*})
\]

or

\[
\min(c_{s^*}, d_{s^*}) < \max(c_{s^*}, d_{s^*}) < \min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}).
\]
THE NETWORK \[\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s, \]
\[\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s, \]

PROPOSITION

Consider the reaction network \[\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s, \]
\[\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s, \] where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}^n_{\geq 0} \) with \(b - a \) and \(d - c \) being linearly dependent. Then

(I) the network is a regular deficiency-one network and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) and there exists a positive stoichiometric class \(\mathcal{P} \) such that \(|E^*_+ \cap \mathcal{P}| \geq 2. \)

(B) There exists an \(s^* \in \{1, 2, \ldots, n\} \) such that either

\[\min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}) < c_{s^*} < d_{s^*} \]

or

\[d_{s^*} < c_{s^*} < \min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}). \]
Proposition

Consider the reaction network \[\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s, \]
\[\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s, \]
where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}^n \geq 0 \) with \(b - a \) and \(d - c \) being linearly dependent. Then

(I) the network is a regular deficiency-one network and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) and there exists a positive stoichiometric class \(\mathcal{P} \) such that \(|E_+^\kappa \cap \mathcal{P}| \geq 2. \)

(B) There exists an \(s^* \in \{1, 2, \ldots, n\} \) such that either

\[
\min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}) < c_{s^*} < d_{s^*}
\]

or

\[
d_{s^*} < c_{s^*} < \min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}).
\]
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s \),
\(\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s \), where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}_{\geq 0} \) with \(b - a \) and \(d - c \) being linearly dependent. Then

(I) the network is a regular deficiency-one network and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) and there exists a positive stoichiometric class \(\mathcal{P} \) such that \(|E_+^\kappa \cap \mathcal{P}| \geq 2 \).

(B) There exists an \(s^* \in \{1, 2, \ldots, n\} \) such that either

\[
\min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}) < c_{s^*} < d_{s^*}
\]

or

\[
d_{s^*} < c_{s^*} < \min(a_{s^*}, b_{s^*}) < \max(a_{s^*}, b_{s^*}).
\]
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s \),
\(\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s \), where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}_{\geq 0}^n \) with
\[
d - c = \alpha \cdot (a - b) \text{ for some } \alpha \neq 0.
\]
Then
(I) the network is of deficiency-one and
(II) the network is regular if and only if \(\alpha > 0 \).
Consider the reaction network
\[\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, \]
\[\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s, \]
where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}^n_{\geq 0} \) with
\[d - c = \alpha \cdot (a - b) \quad \text{for some} \quad \alpha \neq 0. \]

Then

(I) the network is of deficiency-one and

(II) the network is regular if and only if \(\alpha > 0 \).
Consider the reaction network
\[\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, \]
\[\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s, \]
where \(a, b, c,\) and \(d\) are four distinct elements of \(\mathbb{R}^n\) with
\[d - c = \alpha \cdot (a - b) \text{ for some } \alpha \neq 0. \]

Then
(1) the network is of deficiency-one and
(2) the network is regular if and only if \(\alpha > 0.\)
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, \)
\(\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s, \)
where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}_{\geq 0}^n \) with \(b - a \) and \(d - c \) being linearly dependent.
Assume that the network is regular. Then the following are equivalent.

(A) There exists a \(\kappa : R \rightarrow \mathbb{R}_+ \) and there exists a positive stoichiometric class \(\mathcal{P} \) such that \(|E_+^\kappa \cap \mathcal{P}| \geq 2. \)
Consider the reaction network
\[\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, \]
\[\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s, \]
where \(a, b, c, \) and \(d \) are four distinct elements of \(\mathbb{R}_{\geq 0}^n \) with \(b - a \) and \(d - c \) being linearly dependent.
Assume that the network is regular. Then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) and there exists a positive stoichiometric class \(\mathcal{P} \) such that \(|E^\kappa_\pm \cap \mathcal{P}| \geq 2. \)
The network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, \)
\(\sum_{s=1}^{n} c_s X_s \rightarrow \sum_{s=1}^{n} d_s X_s \)

Proposition (continued from the previous slide)

(B) Either

- there exists a partition \(\mathcal{X} = \mathcal{X}_1 \cup^* \mathcal{X}_2 \) such that

 \(a_s = b_s \) for all \(s \in \mathcal{X}_1 \) and \(a_s = c_s \) for all \(s \in \mathcal{X}_2 \) or

- there exist \(s^*, s^{**} \in \{1, 2, \ldots, n\} \) such that either

 \[b_{s^*} > a_{s^*} < c_{s^*} > d_{s^*} \quad \text{and} \quad b_{s^{**}} < a_{s^{**}} < c_{s^{**}} < d_{s^{**}}, \]

 \[b_{s^*} > a_{s^*} < c_{s^*} > d_{s^*} \quad \text{and} \quad b_{s^{**}} > a_{s^{**}} > c_{s^{**}} > d_{s^{**}}, \]

 \[d_{s^*} > c_{s^*} < a_{s^*} > b_{s^*} \quad \text{and} \quad d_{s^{**}} < c_{s^{**}} < a_{s^{**}} < b_{s^{**}}, \quad \text{or} \]

 \[d_{s^*} > c_{s^*} < a_{s^*} > b_{s^*} \quad \text{and} \quad d_{s^{**}} > c_{s^{**}} > a_{s^{**}} > b_{s^{**}}. \]
The network \(\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftrightarrow 0 \)
\((1 \leq s \leq n)\)

From now on, assume that \(a \) and \(b \) are two distinct elements of \(\mathbb{R}^n_{\geq 0} \) with \(a, b, e_1, e_2, \ldots, e_n, \) and 0 being \(n + 3 \) distinct elements of \(\mathbb{R}^n_{\geq 0} \).

Proposition (Badal Joshi, 2013)

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftrightarrow 0 \)
\((1 \leq s \leq n)\). Then

(I) the network is regular and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathbb{R} \rightarrow \mathbb{R}^+ \) such that \(|E_+^{\kappa}| \geq 2 \).

(B) At least one of the sums

\[
\sum_{s \in \{1, \ldots, n\}} a_s \quad \text{and} \quad \sum_{s \in \{1, \ldots, n\}} b_s
\]

\(\quad a_s < b_s \quad \text{and} \quad a_s > b_s \)

is strictly greater than 1.
The network \(\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftrightarrow 0 \)
\((1 \leq s \leq n)\)

From now on, assume that \(a \) and \(b \) are two distinct elements of \(\mathbb{R}^n_{\geq 0} \) with \(a, b, e_1, e_2, \ldots, e_n, \) and 0 being \(n + 3 \) distinct elements of \(\mathbb{R}^n_{\geq 0} \).

Proposition (Badal Joshi, 2013)

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftrightarrow 0 \)
\((1 \leq s \leq n)\). Then

(I) the network is regular and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E_+^\kappa| \geq 2 \).

(B) At least one of the sums

\[
\sum_{s \in \{1, \ldots, n\} \atop a_s < b_s} a_s \quad \text{and} \quad \sum_{s \in \{1, \ldots, n\} \atop a_s > b_s} b_s
\]

is strictly greater than 1.
THE NETWORK $\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftarrow 0$

$(1 \leq s \leq n)$

From now on, assume that a and b are two distinct elements of $\mathbb{R}^{n}_{\geq 0}$ with a, b, e_1, e_2, \ldots, e_n, and 0 being $n + 3$ distinct elements of $\mathbb{R}^{n}_{\geq 0}$.

Proposition (Badal Joshi, 2013)

Consider the reaction network $\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftarrow 0$

$(1 \leq s \leq n)$. Then

(I) the network is regular and

(II) the following are equivalent.

(A) There exists a $\kappa : \mathcal{R} \rightarrow \mathbb{R}_{+}$ such that $|E_{+}^{\kappa}| \geq 2$.

(B) At least one of the sums

$$\sum_{s \in \{1, \ldots, n\} \atop a_s < b_s} a_s$$

and

$$\sum_{s \in \{1, \ldots, n\} \atop a_s > b_s} b_s$$

is strictly greater than 1.
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftrightarrow \) 0 \((1 \leq s \leq n)\).

Then

(1) the network is regular and

(2) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E^\kappa_+| \geq 2 \).

(B) The sum

\[
\sum_{s \in \{1, \ldots, n\} \atop a_s < b_s} a_s
\]

is strictly greater than 1.
The network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftrightarrow 0 \)
(\(1 \leq s \leq n \))

Proposition (Badal Joshi, 2013)

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \leftrightarrow 0 \)
(\(1 \leq s \leq n \)). Then

(I) the network is regular and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E_+^{\kappa}| \geq 2 \).

(B) The sum

\[
\sum_{s \in \{1, \ldots, n\}, \ a_s < b_s} a_s
\]

is strictly greater than 1.
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, \ X_s \leftrightarrow 0 \) (\(1 \leq s \leq n \)). Then

(I) the network is regular and

(II) the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E^\kappa_+| \geq 2 \).

(B) The sum

\[
\sum_{s \in \{1, \ldots, n\}: \ a_s < b_s} a_s
\]

is strictly greater than 1.
Proposition

Consider the reaction network
\[\sum_{s=1}^{n} a_s X_s \iff \sum_{s=1}^{n} b_s X_s, \ X_s \to 0 \]
\((1 \leq s \leq n)\). Then

(I) the network is regular if and only if either

\[a_s < b_s \text{ for all } 1 \leq s \leq n \text{ or } a_s > b_s \text{ for all } 1 \leq s \leq n \]

and

(II) if the network is regular then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \to \mathbb{R}_+ \) such that \(|E^\kappa| \geq 2 \).

(B) Both of the inequalities

\[\sum_{s=1}^{n} a_s > 1 \text{ and } \sum_{s=1}^{n} b_s > 1 \]

hold.
The network \(\sum_{s=1}^{n} a_s X_s \iff \sum_{s=1}^{n} b_s X_s, X_s \to 0 \)
(\(1 \leq s \leq n\))

Proposition

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \iff \sum_{s=1}^{n} b_s X_s, X_s \to 0 \)
(\(1 \leq s \leq n\)). Then

(I) the network is regular if and only if either

\[a_s < b_s \text{ for all } 1 \leq s \leq n \text{ or } a_s > b_s \text{ for all } 1 \leq s \leq n \]

and

(II) if the network is regular then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \to \mathbb{R}_+ \) such that \(|E^\kappa_+| \geq 2 \).

(B) Both of the inequalities

\[\sum_{s=1}^{n} a_s > 1 \text{ and } \sum_{s=1}^{n} b_s > 1 \]

hold.
The network \[\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, \ X_s \rightarrow 0 \]

(1 \leq s \leq n)

Proposition

Consider the reaction network \[\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s, \ X_s \rightarrow 0 \]

(1 \leq s \leq n). Then

(I) the network is regular if and only if either

\[a_s < b_s \text{ for all } 1 \leq s \leq n \text{ or } a_s > b_s \text{ for all } 1 \leq s \leq n \]

and

(II) if the network is regular then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E_{++}^{\kappa}| \geq 2 \).

(B) Both of the inequalities

\[\sum_{s=1}^{n} a_s > 1 \text{ and } \sum_{s=1}^{n} b_s > 1 \]

hold.
THE NETWORK \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \rightarrow 0 \)
\(1 \leq s \leq n \)

PROPOSITION

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \rightarrow 0 \)
\(1 \leq s \leq n \). Then

(I) the network is regular if and only if

\[a_s < b_s \text{ for all } 1 \leq s \leq n \]

holds and

(II) if the network is regular then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E_+^\kappa| \geq 2 \).

(B) The equality

\[\sum_{s=1}^{n} a_s = 1 \]

holds.
THE NETWORK $\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \rightarrow 0$
($1 \leq s \leq n$)

Proposition

Consider the reaction network $\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \rightarrow 0$
($1 \leq s \leq n$). Then

(I) the network is regular if and only if

$$a_s < b_s \text{ for all } 1 \leq s \leq n$$

holds and

(II) if the network is regular then the following are equivalent.

(A) There exists a $\kappa : \mathcal{R} \rightarrow \mathbb{R}_+$ such that $|E_+^\kappa| \geq 2$.

(B) The equality

$$\sum_{s=1}^{n} a_s = 1$$

holds.
The network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \rightarrow 0 \)
(1 \(\leq s \leq n \))

Proposition

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s, X_s \rightarrow 0 \)
(1 \(\leq s \leq n \)). Then

(I) the network is regular if and only if

\[a_s < b_s \text{ for all } 1 \leq s \leq n \]

holds and

(II) if the network is regular then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E^\kappa_+| \geq 2 \).

(B) The equality

\[\sum_{s=1}^{n} a_s = 1 \]

holds.
0 → \(X_n \)

Proposition

Assume we have either

\[
\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s \quad \text{or} \quad \sum_{s=1}^{n} a_s X_s \rightarrow \sum_{s=1}^{n} b_s X_s.
\]

Assume further that we have the reactions

\[
X_s \rightarrow 0 \text{ for } 1 \leq s \leq k,
\]

\[
X_s \rightleftharpoons 0 \text{ for } k + 1 \leq s \leq n - 1,
\]

\[
0 \rightarrow X_n
\]

for some \(0 \leq k \leq n - 1 \). Then for all \(\kappa \) we have \(|E_{+}^{\kappa}| \leq 1 \).
Proposition

Assume we have either

\[\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s \text{ or } \sum_{s=1}^{n} a_s X_s \to \sum_{s=1}^{n} b_s X_s. \]

Assume further that we have the reactions

\[X_s \to 0 \text{ for } 1 \leq s \leq k, \]
\[X_s \leftrightarrow 0 \text{ for } k + 1 \leq s \leq n - 1, \]
\[0 \to X_n \]

for some \(0 \leq k \leq n - 1\). Then for all \(\kappa\) we have \(|E_+^\kappa| \leq 1\).
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \leftrightarrow \sum_{s=1}^{n} b_s X_s \) and
\[
X_s \to 0 \text{ for } 1 \leq s \leq k, \\
X_s \leftrightarrow 0 \text{ for } k + 1 \leq s \leq n
\]
for some \(1 \leq k \leq n - 1 \). Then

(1) the network is regular if and only if either
\[
a_s < b_s \text{ for all } 1 \leq s \leq k \text{ or } a_s > b_s \text{ for all } 1 \leq s \leq k
\]
and

(II) if the network is regular with \(a_s < b_s \) for all \(1 \leq s \leq k \) then the following are equivalent.

(A) There exists a \(\kappa: \mathbb{R} \to \mathbb{R}_+ \) such that \(|E^\kappa_+| \geq 2 \).
(B) The inequality \(\sum_{s:a_s < b_s} a_s > 1 \) holds.
Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s \) and
\[
X_s \rightarrow 0 \text{ for } 1 \leq s \leq k, \\
X_s \leftrightarrow 0 \text{ for } k + 1 \leq s \leq n
\]
for some \(1 \leq k \leq n - 1 \). Then

(I) the network is regular if and only if either
\[
a_s < b_s \text{ for all } 1 \leq s \leq k \text{ or } a_s > b_s \text{ for all } 1 \leq s \leq k
\]

and

(II) if the network is regular with \(a_s < b_s \) for all \(1 \leq s \leq k \) then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E_{+}^\kappa| \geq 2 \).
(B) The inequality \(\sum_{s:a_s < b_s} a_s > 1 \) holds.
The network \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s, \ X_s \rightarrow 0 \) (1 ≤ s ≤ k), \(X_s \rightleftharpoons 0 \) (k + 1 ≤ s ≤ n)

Proposition

Consider the reaction network \(\sum_{s=1}^{n} a_s X_s \rightleftharpoons \sum_{s=1}^{n} b_s X_s \) and

\[
X_s \rightarrow 0 \text{ for } 1 \leq s \leq k, \\
X_s \rightleftharpoons 0 \text{ for } k + 1 \leq s \leq n
\]

for some 1 ≤ k ≤ n − 1. Then

(I) the network is regular if and only if either

\[a_s < b_s \text{ for all } 1 \leq s \leq k \text{ or } a_s > b_s \text{ for all } 1 \leq s \leq k \]

and

(II) if the network is regular with \(a_s < b_s \) for all 1 ≤ s ≤ k then the following are equivalent.

(A) There exists a \(\kappa : \mathcal{R} \rightarrow \mathbb{R}_+ \) such that \(|E^\kappa_+| \geq 2 \).

(B) The inequality \(\sum_{s:a_s<b_s} a_s > 1 \) holds.
REFERENCES

- B. Boros. Revisiting the Deficiency-One Algorithm. *In preparation.*
These slides are available at

www.cs.elte.hu/~bboros