A linear-time algorithm to find a pair of arc-disjoint spanning in-arborescence and out-arborescence in a directed acyclic graph

Kristóf Bérczia, Satoru Fujishigeb,1, Naoyuki Kamiyamac,*,1

a Department of Operations Research, Eötvös Loránd University, Hungary
b Research Institute for Mathematical Sciences, Kyoto University, Japan
c Department of Information and System Engineering, Chuo University, Japan

1. Introduction

In this paper, we are given a directed graph $D = (V, A)$ and it is assumed that D has no loop, but D may have parallel arcs. Furthermore, we assume that D is weakly connected, i.e., $|V| - 1 \leq |A|$ holds. For each $a \in A$, we denote by $t(a)$ and $h(a)$ the tail and the head of a, respectively. For each $v \in V$, we denote by $\delta_D(v)$ and $\partial_D(v)$ the set of arcs $a \in A$ with $t(a) = v$ and $h(a) = v$, respectively. An acyclic subgraph $T = (W, B)$ of D is called an \textit{in-arborescence} (resp., an \textit{in-arborescence}) when there exists $r \in W$ such that $|\delta_T(r)| = 0$ (resp., $|\partial_T(r)| = 0$), and $|\delta_T(v)| = 1$ (resp., $|\partial_T(v)| = 1$) holds for each $v \in W \setminus \{r\}$. We call T an \textit{r-out-arborescence} (resp., an \textit{r-in-arborescence}). Namely, an \textit{r-out-arborescence} (resp., an \textit{r-in-arborescence}) is a rooted tree in which all arcs are directed away from (resp., toward) the root r.

The problem of finding k arc-disjoint spanning r-out-arborescences for a given root $r \in V$ is very important not only from the theoretical viewpoint but also from practical viewpoints, and it has been extensively studied. It is known \cite{10,9,11,5,3} that this problem can be solved in polynomial time, and several extensions have been considered in \cite{7,4,2}. However, in many situations, we have to simultaneously consider not only an in-arborescence but also an out-arborescence. For example, in evacuation situations, an in-arborescence represents roads which refugees use. On the other hand, an out-arborescence represents roads used by emergency vehicles. Unfortunately, it is known \cite{1} that the problem of finding a pair of arc-disjoint spanning r_1-in-arborescence and r_2-out-arborescence for given roots $r_1, r_2 \in V$ is \mathcal{NP}-complete even if $r_1 = r_2$. As a special case, it is only known \cite{1} that this problem in a tournament can be solved in polynomial time. In this paper, we consider this problem in a directed acyclic graph. We also consider an extension of our problem to the case where we have multiple roots for in-arborescences and out-arborescences, respectively.

© 2009 Elsevier B.V. All rights reserved.

Theorem 1. Given a directed acyclic graph $D = (V, A)$ with roots $r_1, r_2 \in V$, we can discern the existence of a pair of arc-
disjoint spanning r_1-in-arborescence and r_2-out-arborescence, and find such arborescences, if they exist, in $O(|A|)$ time.

The rest of this paper is organized as follows. In Section 2, we introduce a bipartite graph associated with our problem, and then we show that our problem is equivalent to the problem of finding a certain matching in this bipartite graph. In Section 3, we give a linear-time algorithm for discerning the existence of a desired matching in the bipartite graph, and for finding it if one exists. In Section 4, we consider the case where we have multiple roots for in-arborescences and out-arborescences, respectively.

2. An associated bipartite graph

In this section, we define a bipartite graph $G_D = (X, Y; E)$ associated with our problem for a directed acyclic graph $D = (V, A)$, and we show that our problem in D is equivalent to the problem of finding a matching that covers all vertices of Y in G_D. In the sequel, we assume without loss of generality that $\delta_D(r_1) = \emptyset$ and $\varrho_D(t_2) = \emptyset$ holds. Note that if $\delta_D(r_1) \neq \emptyset$ or $\varrho_D(t_2) \neq \emptyset$ holds, there exists no feasible solution since D is acyclic.

2.1. Definitions

Define a bipartite graph $G_D = (X, Y; E)$ with two vertex sets X and Y and an edge set E between X and Y as follows.

(i) Vertex set X is given by $X = \{x(a) \mid a \in A\}$, where $|X| = |A|$.

(ii) Vertex set Y consists of two disjoint sets Y^+ and Y^- given by $Y^+ = \{y^+(v) \mid v \in V \setminus \{r_1\}\}$ and $Y^- = \{y^-(v) \mid v \in V \setminus \{r_2\}\}$.

(iii) For each $a \in A$, we have two edges in E: one connects $x(a)$ and $y^+(t(a))$ and the other connects $x(a)$ and $y^-(h(a))$. That is, $E = \{(x(a), y^+(t(a))) \mid a \in A\} \cup \{(x(a), y^-(h(a))) \mid a \in A\}$.

For example, for a directed graph D in Fig. 1(a) the bipartite graph G_D becomes the one as illustrated in Fig. 1(b).

Here we introduce notations to be used in the subsequent arguments (see Fig. 2). For each $v \in X \cup Y$, we denote by $\deg_{G_D}(v)$ the degree of v in G_D. For each $e \in E$, let $\partial_X(e)$ (resp., $\partial_Y(e)$) be the endpoint of e belonging to X (resp., Y). For each $e \in E$, we denote by $p(e)$ the edge $e' \in E$ with $e \neq e'$ and $\partial_X(e) = \partial_X(e')$. Notice that since $\deg_{G_D}(x) = 2$ holds for each $x \in X$ by the definition of G_D, $p(e)$ is uniquely determined for each $e \in E$.

2.2. An equivalent problem on a bipartite graph

In this subsection, we show the equivalence between our problem for D and the problem of finding a matching in G_D which covers all vertices of Y.

Lemma 2. Given a directed acyclic graph $D = (V, A)$ with roots $r_1, r_2 \in V$, there exists a pair of arc-disjoint spanning r_1-in-arborescence T_1 and r_2-out-arborescence T_2 if and only if there exists a matching M in $G_D = (X, Y; E)$ which covers all vertices of Y.

Proof. Since it is not difficult to see the “only if” part of the lemma, we show the “if” part. Let M be a matching in G_D which covers all vertices of Y. Let A^+ (resp., A^-) be the set of arcs $a \in A$ such that $x(a)$ is connected with some vertex of Y^+ (resp., Y^-) by an edge of M. Let T_1 (resp., T_2) be the subgraph (V, A^+) (resp., (V, A^-)) of D. Since M covers all vertices of Y, $|\partial_T(v)| = 1$ (resp., $|\partial_{T_2}(v)| = 1$) holds for each $v \in V \setminus \{r_1\}$ (resp., $V \setminus \{r_2\}$). Thus, since D is acyclic, T_1 and T_2 are a spanning r_1-in-arborescence and a spanning r_2-out-arborescence, respectively. Furthermore, since M is a matching, A^+ and A^- are disjoint, which implies T_1 and T_2 are arc-disjoint. This completes the proof of the “if” part.

The latter half of the lemma immediately follows from the proof of the “if” part. □

By Lemma 2, we can discern the existence of a pair of arc-disjoint spanning r_1-in-arborescence and r_2-out-arborescence, and find such arborescences if they exist, by computing a maximum matching of G_D. Hence, we can solve our problem in polynomial time by using bipartite-matching algorithms such as in [6]. However, we show in the subsequent section that we can discern the existence of a matching of G_D which covers all vertices of Y and find such a matching if one exists, in $O(|A|)$ time.
3. A linear-time algorithm

The goal of this section is to show the following theorem, which implies Theorem 1 by Lemma 2.

Theorem 3. Given a directed acyclic graph $D = (V, A)$ with roots $r_1, r_2 \in V$, we can discern the existence of a matching in $G_D = (X, Y; E)$ which covers all vertices of Y and find such a matching if one exists, in $O(|A|)$ time.

In the subsequent arguments, we assume without loss of generality that $\deg_{G_D}(y) \geq 1$ holds for every $y \in Y$ since if there exists a vertex $y \in Y$ with $\deg_{G_D}(y) = 0$, there exists no solution. We divide the proof into two parts corresponding to the following two cases.

Case 1: For every $y \in Y$, $\deg_{G_D}(y) \geq 2$ holds. Case 2: There exists a vertex $y \in Y$ with $\deg_{G_D}(y) = 1$.

We first show that in Case 1, there always exists a matching in G_D which covers all vertices of Y, and we can find such a matching in $O(|A|)$ time. Then, we show that in Case 2, we can discern the existence of a matching in G_D which covers all vertices of Y, and reduce the problem to Case 1 if any such matching exists, in $O(|A|)$ time.

3.1. Case 1

We prove the following lemma for Case 1.

Lemma 4. Given a directed acyclic graph $D = (V, A)$ with roots $r_1, r_2 \in V$, if $\deg_{G_D}(y) \geq 2$ holds for every $y \in Y$, there always exists a matching in $G_D = (X, Y; E)$ which covers all vertices of Y, and we can find one such matching in $O(|A|)$ time.

Proof. Let $\tilde{G}_D = (X \cup \{s\}, Y; \tilde{E})$ be the bipartite graph obtained from G_D by adding a new vertex s and connecting edges between s and each odd-degree vertex $y \in Y$ (see Fig. 3(a)). It is easy to see that $|E| \leq |E| + |Y| = |E| + 2(|V| - 1)$. Furthermore, since $\deg_{G_D}(x) = 2$ holds for every $x \in X$, we have $|E| = 2|X| = 2|A|$. Hence, $|\tilde{E}| = O(|A|)$ holds, and our goal is to find a desired matching in $O(|\tilde{E}|)$ time.

Since the sum of the degrees of all vertices $x \in X$ is even, the degree of s in \tilde{G}_D is even. This implies that \tilde{G}_D is an Eulerian graph. Hence, \tilde{G}_D consists of several edge-disjoint cycles (see Fig. 3(b)), which can be computed in $O(|\tilde{E}|)$ time by using an algorithm for finding Eulerian walk [for a standard algorithm, see [8]]. Let M be the set of edges of \tilde{G}_D obtained from all the cycles by choosing every other edge along the cycles (see Fig. 3(b)). Then every vertex v of \tilde{G}_D has $\deg_{\tilde{G}_D}(v) \geq 4$, so such a vertex v is incident to at least two edges in \tilde{M}. Hence, letting $M = \tilde{M} \cap E$, M satisfies the following conditions. (Note that M is obtained by removing from \tilde{M} the edges incident to s in \tilde{G}_D.)

A1. M covers all vertices of \tilde{Y}.
A2. Each $x \in X$ is covered by exactly one edge in M.

By conditions A1 and A2, we can obtain a matching in G_D which covers all vertices of Y by appropriately removing edges from M. This completes the proof.

3.2. Case 2

In this subsection, we show that in Case 2 we can discern the existence of a feasible solution of our problem and reduce the problem to Case 1 if one exists, in $O(|A|)$ time. This will complete the proof of Theorem 3.

The following lemma asserts that we can reduce Case 2 to Case 1 by greedily removing vertices with degree one.

Lemma 5. Suppose that we are given a directed acyclic graph $D = (V, A)$ with roots $r_1, r_2 \in V$, and a vertex $\tilde{y} \in Y$ with $\deg_{G_D}(\tilde{y}) = 1$, denoting by $\tilde{e} \in E$ the single edge incident to \tilde{y}. Let $\tilde{G}_D = (\tilde{X}, \tilde{Y}; \tilde{E})$ be the bipartite graph obtained from $G_D = (X, Y; E)$ by removing vertices \tilde{y} and $\partial_{\tilde{X}}(\tilde{e})$ and edges \tilde{e} and $p(\tilde{e})$ (see Fig. 4). Then, there exists a matching M in \tilde{G}_D which covers all vertices of \tilde{Y} if and only if there exists a matching \tilde{M} in \tilde{G}_D which covers all vertices of \tilde{Y}.

Proof. We first prove the “if” part. Assume that there exists a matching M in \tilde{G}_D which covers all vertices of \tilde{Y}.
Then, we can construct a matching M in G_D which covers all vertices of Y by adding \bar{e} to M.

Next we prove the “only if” part. Assume that there exists a matching M in G_D which covers all vertices of Y. Since $\text{deg}_{G_D}(\bar{e}) = 1$, \bar{e} must be included in M, and $p(\bar{e})$ is not included in M. Hence, we can construct a matching M in G_D which covers all vertices of Y by removing \bar{e} from M. □

By Lemma 5, we can describe the procedure in which we can discern the existence of a feasible solution of our problem, and reduce the problem to Case 1 if one exists, in $O(|A|)$ time as in Procedure 1.

It should be noted that since Q contains all vertices $y \in Y$ with $\text{deg}_{G_D}(y) = 1$ in each iteration of Step 3, the procedure is correct. Furthermore, we can easily see the following lemma, due to Lemma 5.

Lemma 6. Given a directed acyclic graph $D = (V, A)$ with roots $r_1, r_2 \in V$, Procedure 1 always terminates in $O(|A|)$ time. Suppose that Procedure 1 returns a bipartite graph $G'_D = (X', Y'; E')$ and a matching M_0. Then, we have $\text{deg}_{G'_D}(x) = 2$ for every $x \in X'$ and $\text{deg}_{G'_D}(y) \neq 1$ for every $y \in Y'$. If there exists a vertex y in G'_D such that $\text{deg}_{G'_D}(y) = 0$, then there does not exist any pair of arc-disjoint spanning r_1-in-arborescence and r_2-out-arborescence. Otherwise we can construct a matching M in G_D which covers all vertices of Y, from a matching M' in G'_D which covers all vertices of Y', by putting $M \leftarrow M' \cup M_0$.

3.3. A full description of our algorithm

We are now ready to describe a linear-time algorithm for our problem.

1. If there exists $y \in Y$ with $\text{deg}_{G_D}(y) = 1$, apply Procedure 1 and let G'_D and M_0 be the output of Procedure 1. If there exists a vertex whose degree is equal to zero in G'_D, return NULL (there exists no feasible solution). Otherwise, put $G_D \leftarrow G'_D$ and go to Step 2.
2. Find a matching M in G_D covering all vertices of Y as described in the proof of Lemma 4, and put $M \leftarrow M \cup M_0$.
3. Using the matching M in G_D, compute a pair of arc-disjoint spanning r_1-in-arborescence T_1 and r_2-out-arborescence T_2 and return T_1 and T_2.

It follows from Lemmas 4 and 6 that the above algorithm can find a matching in G_D which covers all vertices of Y if one exists in $O(|A|)$ time. This completes the proof of Theorem 3.

4. An extension to multiple roots

In this section, we consider the case where we have multiple roots for in-arborescences and out-arborescences, respectively. Suppose that we are given a directed acyclic graph $D = (V, A)$, two disjoint finite index sets I_1 and I_2, and a root $r_i \in V$ for each $i \in I_1 \cup I_2$, where we allow $r_i = r_j$ for distinct i, j. We assume without loss of generality that $\delta_D(r_i) = \emptyset$ (resp., $\delta_D(r_i) = \emptyset$) holds for each $i \in I_1$ (resp., $i \in I_2$). Let R_1 (resp., R_2) be the set $\{r_i | i \in I_1\}$ (resp., $\{r_i | i \in I_2\}$). Then we consider the problem of discerning the existence of a set of arc-disjoint r_i-in-arborescences T_i ($i \in I_1$) and r_i-out-arborescences T_i ($i \in I_2$) such that for each $i \in I_1$ (resp., $i \in I_2$) the vertex set of T_i is $(V \setminus R_1) \cup \{r_i\}$ (resp., $(V \setminus R_2) \cup \{r_i\}$). In the same manner as in Section 2, we can see that there exist desired arborescences if and only if there exists a matching which covers all vertices of Y in a bipartite graph $G_D = (X, Y; E)$ defined as follows.

(i') Vertex set X is given by $X = \{x(a) | a \in A\}$, where $|X| = |A|$.

(ii') Vertex set Y consists of disjoint sets $Y_i^+ (i \in I_1)$ and $Y_i^- (i \in I_2)$. For each $i \in I_1$ (resp., $i \in I_2$), Y_i^+ (resp., Y_i^-) is given by $\{y_i^+(v) | v \in V \setminus R_1\}$ (resp., $\{y_i^-(v) | v \in V \setminus R_2\}$).

(iii') The edge set E consists of two sets E^+ and E^-. For each $a \in A$ with $h(a) \notin R_1$ (resp., $t(a) \notin R_2$) and $i \in I_1$ (resp., $i \in I_2$), we connect $x(a)$ and $y_i^+(t(a))$ (resp., $y_i^-(h(a))$) by an edge in E^+ (resp., E^-). For each $a \in A$ with $h(a) \in R_1$ (resp., $t(a) \in R_2$), we connect $x(a)$ and $y_i^+(t(a))$ (resp., $y_i^-(h(a))$) for $i \in I_1$ with $h(a) = r_i$ (resp., $i \in I_2$ with $t(a) = r_i$). The edge sets E^+ and E^- contain no other edge.

We can discard the existence of desired arborescences and find them if they exist, by computing a maximum matching in G_D. However, notice that $\text{deg}_{G_D}(x) \geq 3$ may hold for each $x \in X$, which is different from the case of the problem of finding a pair of an in-arborescence and an out-arborescence. It is left open whether we can find desired arborescences more efficiently than by using existing bipartite matching algorithms.

Acknowledgements

We are very grateful to András Frank for his useful discussions on the present topics and to the referees for their careful reading.

References

