Classification of Graded Lie Algebras with Two Generators

A. Fialowski

This article considers infinite-dimensional Lie algebras over a field of characteristic 0 with basis \(e_1, e_2, \ldots \) which satisfy the condition
\[
[e_i, e_j] = c_{ij} e_{i+j}.
\]
A complete description is given of such algebras with two generators. In particular, it follows from the proposed classification that if the number of independent relations between the generators of a Lie algebra of this type is finite, then it is equal to 2.

In this paper we classify the graded Lie algebras \(\mathfrak{g} = \bigoplus_{i=1}^{\infty} \mathfrak{g}_i \) over a field \(K \) of characteristic 0, for which \(\dim \mathfrak{g}_i = 1 \), with minimum possible number of generators. Obviously this number is equal to 2.

There are three well-known Lie algebras of the above type: \(L_1, n_1, n_2 \). The Lie algebra \(L_1 \) consists of vector fields on the real line with polynomial coefficients which vanish together with their first derivative at the coordinate origin [1]. The algebras \(n_1 \) and \(n_2 \) are maximal nilpotent subalgebras in Kac-Moody algebras \(A_1^{(1)} \) and \(A_2^{(2)} \), respectively [2].

The problem of classification of algebras such as \(L_1, n_1, n_2 \) is naturally related to the problem formulated by V. Kac in [3], which involves the classification of all simple graded Lie algebras \(L = \bigoplus_{i \in \mathbb{Z}} L_i \), where \(\dim L_i = 1 \).

In the algebra \(\mathfrak{g} = \bigoplus_{i=1}^{\infty} \mathfrak{g}_i \) we choose a basis of homogeneous elements \(e_i \in \mathfrak{g}_i \). The generators of \(\mathfrak{g} \) are \(e_1 \) and \(e_2 \). Note that \([e_1, e_2] \neq 0 \) and \([e_1, [e_1, e_2]] \neq 0 \). We specify the explicit form of the commutator in the algebras \(L_1, n_1, n_2 \) as follows.

\[L_1 : [e_i, e_j] = (j - i) e_{i+j}, \]
\[n_1 : [e_i, e_j] = a_{ij} e_{i+j}, \quad \text{where} \quad a_{ij} = \begin{cases} 1 & \text{if} \ j - i \equiv 1 \mod 3 \\ 0 & \text{if} \ j - i \equiv 0 \mod 3 \\ -1 & \text{if} \ j - i \equiv -1 \mod 3 \end{cases}, \]
\[n_2 : [e_i, e_j] = b_{ij} e_{i+j}, \quad \text{where the numbers} \quad b_{ij} \quad \text{depend only on the residue obtained when dividing} \ i \quad \text{and} \ j \quad \text{by} \ 8 \quad \text{according to the rule} \ b_{ij} + b_{ij'} = 0 \quad \text{if the numbers} \ i + i' \quad \text{and} \ j + j' \quad \text{are divisible by} \ 8. \]
The accompanying table gives the numbers \(b_{ij} \) (the remaining \(b_{ij} \) are determined from the relations \(b_{ij} = -b_{ji} \) and \(b_{ij} + b_{8-i,8-j} = 0 \)).

\[1\] Current address (1997): Department of Applied Analysis, Eötvös Loránd University, Múzeum krt. 6-8, H-1088 Budapest, Hungary; e-mail: fialowsk@cs.elte.hu
In addition to these three algebras, we will need two particular algebras and also a special family of algebras. These are:

m_1: The algebra in which $[e_1, e_i] = e_{i+1}$ for $i > 1$ and $[e_i, e_j] = 0$ for $i, j > 1$.

m_2: The algebra in which the commutator is set up as follows: $[e_i, e_j] = 0$ for $i, j > 2$, while $[e_1, e_j] = e_{j+1}$ for $j ≥ 2$ and $[e_2, e_j] = e_{j+2}$ for $j > 2$.

$g(\lambda_8, \lambda_{12}, \lambda_{16}, \ldots)$: A family of Lie algebras with countably many parameters $\lambda_{4k} \in \mathbb{K}P^1$. The commutator is defined as follows: $[e_1, e_4] = 0$, $[e_3, e_4] = 0$, $[e_i, e_j] = 0$ if i is even but not 2 and j is any positive integer. Furthermore, $[e_1, e_{4k-1}] = \alpha_{4k} e_{4k}$, and $[e_2, e_{4k-2}] = \beta_{4k} e_{4k}$, $k = 2, 3, 4, \ldots$.

where the α_{4k} and β_{4k} are the homogeneous coordinates of the point $\lambda_{4k} \in \mathbb{K}P^1$. The remaining commutators can be uniquely reconstructed from the above formulas. Their structural constants are homogeneous polynomials of α_{4k} and β_{4k}. See the Appendix for some explicit formulas for the commutators.

Example: For the algebra $g(1, 1, 1, \ldots)$ the commutators are

$[e_1, e_2] = e_3, \quad [e_1, e_3] = e_4$

$[e_1, e_{2k+1}] = [e_2, e_{2k}] = e_{2k+2}$ if $k ≥ 2$

$[e_2, e_{2k-1}] = e_{2k+1}$ if $k ≥ 2$

the other commutators are 0.

Theorem Let $g = \bigoplus_{i=1}^{\infty} g_i$ be an \mathbb{N}-graded Lie algebra, where $\dim g_i = 1$, with basis e_1, e_2, e_3, \ldots, generated by e_1 and e_2. Then g is one of the following.

a) Assume $[e_1, e_4] \neq 0$ and $[e_2, e_3] \neq 0$. If $[e_3, e_4] \neq 0$, then $g \cong L_1$ while if $[e_3, e_4] = 0$, then $g \cong m_2$.

b) Assume $[e_2, e_3] = 0$. If $[e_3, e_4] \neq 0$, then $g \cong n_2$ while if $[e_3, e_4] = 0$, then $g \cong m_1$.

c) Assume $[e_1, e_4] = 0$. If $[e_3, e_4] \neq 0$, then $g \cong n_1$ while if $[e_3, e_4] = 0$, then $g \cong g(\lambda_8, \lambda_{12}, \lambda_{16}, \ldots)$ for some choice of the $\lambda_8, \lambda_{12}, \lambda_{16}, \ldots$.

Proof: (sketch) The Jacobi identity yields a system of linear equations for the usual structural constants c_{ij} ($[e_i, e_j] = c_{ij} e_{i+j}$). The numbers c_{12} and c_{13} can be regarded as arbitrary but non-zero. To be specific, assume that $c_{12} = 1$. Then the coefficients c_{14} and c_{23} can no longer be chosen arbitrarily since they must satisfy a linear equation. We fix some solution of this equation after which c_{15} and c_{24} are determined uniquely. At the next step we obtain two equations for c_{16}, c_{25} and c_{34}, etc.
As an example we consider the case in which $c_{14} \neq 0$, $c_{23} \neq 0$, and $c_{34} \neq 0$. We can assume that $c_{13} = 2$, $c_{23} = c_{34} = 1$. Solving this system step-by-step we find that if $c_{14}c_{25} \neq 9$, then the system of equations for c_{ij} with $i + j = 16$ does not have a non-zero solution. If, however, $c_{14}c_{25} = 9$, then all the equations can be solved non-trivially and uniquely so we obtain an algebra that is isomorphic to L_1.

We can similarly consider the cases in which some of the numbers c_{14}, c_{23}, and c_{34} are zero.

Of interest are the relations that link the generators e_1 and e_2. It is easy to show that these generators should satisfy at least two independent relations of weights 5 and 7 of the form

$$\lambda[e_1, [e_1, [e_1, e_2]]] + \mu[e_2, [e_2, e_1]] = 0,$$

$$\alpha[e_1, [e_1, [e_1, e_2]]] + \beta[e_2, [e_2, e_1]] + \gamma[e_1, [e_1, [e_2, e_1]]] = 0.$$

In the algebras L_1, n_1, n_2, and m_2, the relations (*) make up a complete system of defining relations while for the algebras m_1 and $g(\lambda_8, \lambda_{12}, \lambda_{16}, \ldots)$ this system is infinite. Specifically, in the algebra m_1 we should add relations of weights 13, 17, 21, ... to (*); the relations between generators in the algebras $g(\lambda_8, \lambda_{12}, \lambda_{16}, \ldots)$ are not yet computed.

Corollary 1 If the number of relations between the generators of the Lie algebra g is finite, then g is isomorphic to one of the four algebras L_1, n_1, n_2, and m_2, and the number of relations is 2.

Let us consider a Lie algebra with generators e_1 and e_2 and relations (*). It turns out that for most points $(\lambda, \mu, \alpha, \beta, \gamma) \in \mathbb{C}^5$ this algebra is finite-dimensional. One can compute the following. If $6\lambda = \mu$, $120\alpha = 3\beta + 20\gamma$, then the Lie algebra is isomorphic to L_1; if $\mu = 0$, $\lambda = 0$, then it is isomorphic to n_1; if $\lambda = 0$, $\gamma = 0$, it is isomorphic to n_2; and if $\lambda = \mu$, $\alpha = \beta + \gamma$, it is isomorphic to m_2. If, however, $\lambda = 0$, $\alpha = 0$ or $\mu = 0$, $\beta = 0$, then the dimension of the space of weight i in the Lie algebra increases exponentially with i, and adding additional relations converts this algebra into one of the algebras of the family $g(\lambda_8, \lambda_{12}, \lambda_{16}, \ldots)$.

In conclusion, we should note that the cohomology of the Lie algebras L_1, n_1 and n_2 with trivial coefficients are known [4], [5]. In all cases, for $i > 0$ the i-th cohomology space is two-dimensional. It would be interesting to calculate the cohomology of the other algebras considered in this article.

The author is grateful to A.A. Kirillov for his attention.

References

Appendix

(added June 1997)

Here are some details for the structural constants of the algebras \(g(\lambda_8, \lambda_{12}, \lambda_{16}, \ldots) \). We compute \([e_i, e_j]\) for all levels \(i + j \leq 17 \). For these levels, we list only the (generically) non-zero brackets. Using a computer one can extend these much further.

\[
\begin{align*}
i + j &= 3 : & [e_1, e_2] &= e_3 \\
i + j &= 4 : & [e_1, e_3] &= e_4 \\
i + j &= 5 : & [e_2, e_3] &= e_5 \\
i + j &= 6 : & [e_1, e_5] &= [e_2, e_4] = e_6 \\
i + j &= 7 : & [e_2, e_5] &= e_7 \\
i + j &= 8 : & [e_1, e_7] &= \alpha_8 e_8, & [e_2, e_6] &= \beta_8 e_8, & [e_3, e_5] &= (\alpha_8 - \beta_8)e_8 \\
i + j &= 9 : & [e_2, e_7] &= e_9 \\
i + j &= 10 : & [e_2, e_9] &= e_{10}, & [e_1, e_9] &= (2\alpha_8 - \beta_8)e_{10}, & [e_3, e_7] &= (\alpha_8 - \beta_8)e_{10} \\
i + j &= 11 : & [e_2, e_9] &= e_{11} \\
i + j &= 12 : & [e_1, e_{11}] &= \alpha_{12} e_{12}, & [e_2, e_{10}] &= \beta_{12} e_{12} \\
& [e_3, e_9] &= (\alpha_{12} + (\beta_8 - 2\alpha_8)\beta_{12})e_{12}, \\
& [e_5, e_7] &= ((3\alpha_8 - 2\beta_8)\beta_{12} - \alpha_{12})e_{12} \\
i + j &= 13 : & [e_2, e_{11}] &= e_{13} \\
i + j &= 14 : & [e_2, e_{12}] &= e_{14}, \\
& [e_1, e_{13}] &= (3\alpha_{12} + (3\beta_8 - 5\alpha_8)\beta_{12})e_{14}. \\
& [e_3, e_{11}] &= (2\alpha_{12} + (3\beta_8 - 5\alpha_8)\beta_{12})e_{14}. \\
& [e_5, e_9] &= ((3\alpha_8 - 2\beta_8)\beta_{12} - \alpha_{12})e_{14} \\
i + j &= 15 : & [e_2, e_{13}] &= e_{15} \\
i + j &= 16 : & [e_1, e_{15}] &= \alpha_{16} e_{16}, & [e_2, e_{14}] &= \beta_{16} e_{16} \\
& [e_3, e_{13}] &= (\alpha_{16} - 3\beta_{16}\alpha_{12} - \beta_{16}\beta_{12}(3\beta_8 - 5\alpha_8))e_{16} \\
& [e_5, e_{11}] &= (-\alpha_{16} + 5\beta_{16}\alpha_{12} + 2\beta_{16}\beta_{12}(3\beta_8 - 5\alpha_8))e_{16} \\
& [e_7, e_9] &= (\alpha_{16} - 6\beta_{16}\alpha_{12} + \beta_{16}\beta_{12}(13\alpha_8 - 8\beta_8))e_{16} \\
i + j &= 17 : & [e_2, e_{15}] &= e_{17}
\end{align*}
\]