next up previous
Next: About this document ... Up: Superpolynomial Size Set-Systems with Previous: Open Problems

Bibliography

1
L. BABAI AND P. FRANKL, Linear algebra methods in combinatorics, Department of Computer Science, The University of Chicago, September 1992
(preliminary version 2 of the monograph)

2
D. A. M. BARRINGTON, R. BEIGEL, AND S. RUDICH, Representing Boolean functions as polynomials modulo composite numbers, Comput. Complexity 4 (1994), pp. 367-382.
Preliminary version appeared in Proc. 24th Ann. ACM Symp. Theor. Comput., 1992, pp. 455-461.

3
R. BEIGEL AND J. TARUI, On ACC, Comput. Complexity 4 (1994), pp. 350-366.

4
P. ERD´´OS, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), pp. 292-294.

5
P. FRANKL, Constructing finite sets with given intersections, Ann. Disc. Math. 17 (1983), pp. 289-291.

6
P. FRANKL AND R. M. WILSON, Intersection theorems with geometric consequences, Combinatorica 1 (1981), pp. 357-368.

7
J. KAHN AND G. KALAI, A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 60-62.

8
D. K. RAY-CHAUDHURI AND R. M. WILSON, On t-designs, Osaka J. Math. 12 (1975), pp. 735-744.

9
G. TARDOS AND D. A. M. BARRINGTON, A lower bound on the MOD 6 degree of the OR function, Comput. Complex. 7 (1998), pp. 99-108. Preliminary version appeared in Proceedings of the Third Israel Symosium on the Theory of Computing and Systems (ISTCS'95), 1995, pp. 52-56.


Vince Grolmusz
1999-11-08