Next: About this document ...
Up: Superpolynomial Size SetSystems with
Previous: Open Problems
 1

L. BABAI AND P. FRANKL, Linear algebra methods in combinatorics,
Department of Computer Science, The University of Chicago, September 1992
(preliminary version 2 of the monograph)
 2

D. A. M. BARRINGTON, R. BEIGEL, AND S. RUDICH, Representing
Boolean functions as polynomials modulo composite numbers, Comput.
Complexity 4 (1994), pp. 367382.
Preliminary version appeared in Proc. 24th Ann. ACM
Symp. Theor. Comput., 1992, pp. 455461.
 3

R. BEIGEL AND J. TARUI, On ACC, Comput.
Complexity 4 (1994), pp. 350366.
 4

P. ERD´´OS, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), pp. 292294.
 5

P. FRANKL, Constructing finite sets with given
intersections, Ann. Disc. Math. 17 (1983), pp. 289291.
 6

P. FRANKL AND R. M. WILSON, Intersection theorems with geometric
consequences, Combinatorica 1 (1981), pp. 357368.
 7

J. KAHN AND G. KALAI, A counterexample to Borsuk's
conjecture, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 6062.
 8

D. K. RAYCHAUDHURI AND R. M. WILSON, On tdesigns, Osaka J. Math.
12 (1975), pp. 735744.
 9

G. TARDOS AND D. A. M. BARRINGTON, A lower bound on the
MOD 6 degree of the OR function, Comput. Complex. 7 (1998), pp.
99108. Preliminary version appeared in Proceedings of the Third
Israel Symosium on the Theory of Computing and Systems (ISTCS'95),
1995, pp. 5256.
Vince Grolmusz
19991108