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Abstract

There is a function F : [c]<ω → {0, 1} such that if A ⊆ [c]<ω is
uncountable, then {F (a ∪ b) : a, b ∈ A, a 6= b} = {0, 1}. A corollary
is that there is a function f : R → {0, 1} such that if A ⊆ R is
uncountable, 2 ≤ k < ω, then both 0 and 1 occur as the value of f

at the sum of k distinct elements of A. This was originally proved by
Hindman, Leader, and Strauss under CH, and they asked if it holds
in general.

Here we solve a problem left open in the paper [2]. We prove that there
is a coloring with two colors of the finite subsets of R such that if A is an
uncountable subfamily of this set, then both colors occur as the color of a∪ b

for some a, b ∈ A, a 6= b. Consequently—and this is what Hindman, Leader,
and Strauss were interested in—there is a 2-coloring of R such that if A ⊆ R

is uncountable, then both colors occur as the color of a+ b for some a, b ∈ A,
a 6= b. In fact, this holds for k-sums in place of 2-sums. In [2] this was
proved under CH, and the authors raised the question if it holds without it.
The statement is a generalization of Sierpiński’s theorem, by which there is a
coloring of the pairs of R with two colors, with no monocolored uncountable
set ([5], see also e.g., in [1], Lemma 9.4.). The proof combines the main idea
of Sierpiński’s construction with some ideas in a current theory of Shelah,
Todorcevic, and others producing very complicated colorings of pairs of sets
(see e.g., [3], [4], [6]).

We just learned that the same result was independently proved by Dániel
Soukup and William Weiss (Toronto).
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Notation. Definitions. We use the notation and definitions of axiomatic
set theory. In particular, ordinals are von Neumann ordinals, and each car-
dinal is identified with the least ordinal of that cardinality. Specifically,
2 = {0, 1} and c denotes the least ordinal of cardinality continuum.

If S is a set, κ a cardinal, we define [S]κ = {x ⊆ S : |x| = κ}, [S]<κ =
{x ⊆ S : |x| < κ}. For n < ω, n2 denotes the set of all n → 2 functions.
Similarly, <ω2 =

⋃
{n2 : n < ω}, ω2 = {f : ω → 2}, and ≤ω2 = <ω2 ∪ ω2.

If f, g ∈ ≤ω2, then f ⊳ g denotes that f is a proper initial segment of g,
i.e., f = g|n 6= g for some n < ω. If f ∈ n2, x < 2, then f x̂ is that
function g ∈ n+12, such that f ⊳ g and g(n) = x. If n ≤ ω, then <lex is the
lexicographic ordering on n2, i.e., f <lex g iff there is i < n with f |i = g|i,
f(i) < g(i).

Theorem. There is a function F : [c]<ω → 2 such that if {aα : α < ω1} are

distinct finite subsets of c, i < 2, then there are α < β such that F (aα∪aβ) =
i.

Proof. Let {rα : α < c} ⊆ ω2 be distinct functions. For α 6= β set

∆(α, β) = min{n : rα(n) 6= rβ(n)}.

If a ∈ [c]<ω, |a| ≥ 2, let

N = max {∆(α, β) : α 6= β ∈ a} .

Let s ∈ N2 be lexicographically minimal such that there are β0, β1 ∈ a with
rβ0

|N = rβ1
|N = s, rβi

(N) = i (i < 2). Define

F (a) =

{
0, if β0 < β1,

1, if β1 < β0.

For the other sets a, i.e., when |a| ≤ 1, we define F (a) arbitrarily.

Claim. If A, B ⊆ c, |A| = |B| = ℵ1, then there are g ∈ <ω2 and ε < 2, such

that A′ = {α ∈ A : g ε̂ ⊳ rα} and B′ = {β ∈ B : g (̂1 − ε) ⊳ rβ} are both

uncountable.

Proof. For s ∈ <ω2 define M(A, s) = {α ∈ A : s ⊳ rα} and similarly
M(B, s) = {β ∈ B : s ⊳ rβ}.

Set
A∗ = {α ∈ A : ∃s ⊳ rα, |M(A, s)| ≤ ℵ0}
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and define B∗ analogously for B. A∗ is countable as the appropriate α 7→ s

mapping maps A∗ to the countable <ω2 such that each preimage is countable.
Similarly, B∗ is countable.

Pick α ∈ A−A∗, β ∈ B −B∗, α 6= β. If N = ∆(α, β), g = rα|N = rβ|N ,
g ε̂ ⊳ rα, g (̂1 − ε) ⊳ rβ, then

A′ = {γ ∈ A : rγ|(N + 1) = g ε̂}

and
B′ = {γ ∈ B : rγ|(N + 1) = g (̂1 − ε)}

are uncountable by the choice of α, β.

In order to show that the function F defined above is good, assume that
{aξ : ξ < ω1} ⊆ [c]<ω are different. Using the ∆-system lemma we can
assume that aξ = a ∪ bξ where a ∩ bξ = bξ ∩ bη = ∅ (ξ < η), |a| = ℓ, |bξ| = k.

Here ℓ can be zero, but k > 0. Let a = {γi : i < ℓ}, bξ = {γξ
j : j < k}

be the increasing enumerations. By shrinking, we can achieve that for each
j < k, {γξ

j : ξ < ω1} is of order type ω1. With further shrinking, we can

obtain that for each j < k, γ
ξ
j < γ

η
j holds for ξ < η. (Another possibility is

to use the Dushnik–Miller partition theorem ω1 → (ω1, (ω)k)
2.) Still more

shrinking and re-indexing gives that there is M < ω, such that rγi
|M = fi

(i < ℓ), rγξ
j
|M = gj (j < k) and the functions fi, gj are different.

We construct by recursion the uncountable sets Uj, Vj (j ≤ k) as follows.

U0 = V0 = ω1. Given Uj , Vj, we apply the Claim to A = {γξ
j : ξ ∈ Uj},

B = {γξ
j : ξ ∈ Vj}, and obtain the uncountable Uj+1 ⊆ Uj , Vj+1 ⊆ Vj ,

Nj < ω, gj ∈
Nj2, εj < 2 such that

rγξ
j
|(Nj + 1) = gj ε̂j (ξ ∈ Uj+1)

and
rγη

j
|(Nj + 1) = gj (̂1 − εj) (η ∈ Vj+1).

Set N = max{Nj : j < k}. Notice that N > M . Let gj be the <lex-
minimal element of {gj : Nj = N}.

We now have that if ξ ∈ Uk, η ∈ Vk, then F (aξ ∪ aη) = εj iff γ
ξ
j < γ

η
j iff

ξ < η. As we can choose ξ ∈ Uk, η ∈ Vk such that either of ξ < η or η < ξ

hold, both 0 and 1 are attained as F (aξ ∪ aη) for some ξ, η.
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Corollary. There is a function f : R → {0, 1} such that if A ⊆ R, |A| = ℵ1,

2 ≤ k < ω, then both 0 and 1 occur as f(a0 + a1 + · · · + ak−1) for some

distinct a0, a1, . . . , ak−1 ∈ A.

Proof. Fix a Hamel basis B = {bα : α < c} over Q for R. Each x ∈ R, can
uniquely be written as

x =
∑

α<ω1

λαbα

where each λα is rational and supp(x) = {α : λα 6= 0} is finite.
We define f(x) = F (supp(x)). We show that f is as required.
Assume first that k = 2. Let {xξ : ξ < ω1} be distinct reals. Set

aξ = supp(xξ) ∈ [c]<ω. By repeatedly shrinking the system, we can assume
that every aξ has the same number of elements, k, and the sets {aξ : ξ < ω1}

form a ∆-system, i.e., aξ ∩ aη = a (ξ 6= η). Let aξ = {γξ
i : i < k} be the

increasing enumeration of aξ and λ
ξ
i be the corresponding coefficients, that

is,

xξ =
∑

i<k

λ
ξ
i bγξ

i
.

By further shrinking the system we can assume that λ
ξ
i = λi and that there

is a set I such that a = {γξ
i : i ∈ I}, that is, the elements of a occupy the

same positions in the aξ’s.
If now ξ < η, then

supp(xξ + xη) = aξ ∪ aη

as
xξ + xη =

∑

i∈I

2λibγξ
i

+
∑

i/∈I

λibγξ
i

+
∑

i/∈I

λibγη
i
,

where the bτ ’s are different on the right hand side.
We can therefore apply the Theorem and obtain ξ0 < η0 and ξ1 < η1 such

that f(xξ0 + xη0
) = 0 and f(xξ1 + xη1

) = 1.
We now consider the case k ≥ 3. Assume that {xξ : ξ < ω1} are distinct

reals and i < 2. Define

yξ =
1

2
(x0 + · · ·+ xk−3) + xk−2+ξ

and apply the previous argument to {yξ : ξ < ω1}. It gives ξ < η such that
the value of f is i at

yξ + yη = x0 + x1 + · · ·+ xk−3 + xk−2+ξ + xk−2+η,
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the sum of k distinct elements of {xξ : ξ < ω1}.
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