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Abstract

There is a function F : [¢]<“ — {0,1} such that if A C [(]<¥ is
uncountable, then {F(a Ub) : a,b € A,a # b} = {0,1}. A corollary
is that there is a function f : R — {0,1} such that if A C R is
uncountable, 2 < k < w, then both 0 and 1 occur as the value of f
at the sum of k distinct elements of A. This was originally proved by
Hindman, Leader, and Strauss under CH, and they asked if it holds
in general.

Here we solve a problem left open in the paper [2]. We prove that there
is a coloring with two colors of the finite subsets of R such that if A is an
uncountable subfamily of this set, then both colors occur as the color of a Ub
for some a,b € A, a # b. Consequently—and this is what Hindman, Leader,
and Strauss were interested in—there is a 2-coloring of R such that if A C R
is uncountable, then both colors occur as the color of a+ b for some a,b € A,
a # b. In fact, this holds for k-sums in place of 2-sums. In [2] this was
proved under CH, and the authors raised the question if it holds without it.
The statement is a generalization of Sierpinski’s theorem, by which there is a
coloring of the pairs of R with two colors, with no monocolored uncountable
set ([5], see also e.g., in [1], Lemma 9.4.). The proof combines the main idea
of Sierpinski’s construction with some ideas in a current theory of Shelah,
Todorcevic, and others producing very complicated colorings of pairs of sets
(see e.g., [3], [4], [6]).

We just learned that the same result was independently proved by Déniel
Soukup and William Weiss (Toronto).
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Notation. Definitions. We use the notation and definitions of axiomatic
set theory. In particular, ordinals are von Neumann ordinals, and each car-
dinal is identified with the least ordinal of that cardinality. Specifically,
2 =14{0,1} and ¢ denotes the least ordinal of cardinality continuum.

If S is a set, k a cardinal, we define [S]® = {x C S : |z| = K}, [S]*" =
{z C S :|z] < k}. For n < w, "2 denotes the set of all n — 2 functions.
Similarly, <2 = [J{"2 : n < w}, “2 = {f : w — 2}, and =¥2 = w2 U2,
If f,g € =¥2, then f < g denotes that f is a proper initial segment of g,
ie, f = g|n # g for some n < w. If f € "2, x < 2, then 7z is that
function g € "2, such that f <1 g and g(n) = x. If n < w, then <y is the
lexicographic ordering on "2, i.e., f <j g iff there is i < n with f|i = g|i,
fa) < g(i).
Theorem. There is a function F : [¢|~% — 2 such that if {as : « < wi} are
distinct finite subsets of ¢, i < 2, then there are a < [ such that F(a,Uag) =
i.

Proof. Let {r, : a < ¢} C“2 be distinct functions. For o # 3 set
A, B) = minn : ra(n) £ ra(n)}

If a € [c]%, |a|] > 2, let
N =max{A(a,5) - # € a}.

Let s € V2 be lexicographically minimal such that there are 3y, 51 € a with
Tg,| N =15,|N =s, 15,(N) =i (i <2). Define

_J 0, if o < B,
F<“>—{ 1, it < fh

For the other sets a, i.e., when |a| < 1, we define F'(a) arbitrarily.

Claim. If A, B C ¢, |A| = |B| =y, then there are g € <“2 and € < 2, such
that A ={a € A: ge Qry,} and B ={f € B:g(1l—¢) <rg} are both
uncountable.

Proof. For s € <“2 define M(A,s) = {a« € A : s < r,} and similarly
M(B,s)={f € B:s<rg}.
Set
A ={ae A:3s <y, [M(A,s)] <N}



and define B* analogously for B. A* is countable as the appropriate a — s
mapping maps A* to the countable <“2 such that each preimage is countable.
Similarly, B* is countable.

Pickae A-A*" e B-B*, a# (. It N=A(a, ), g=1r.N =rs|N,
GE<L7ra, g1 —¢) <rg, then

A= {yeAin|(N+1) =g}

and
B ={yeB:n|(N+1)=g(l-2))

are uncountable by the choice of «, (. O

In order to show that the function F' defined above is good, assume that
{ag : & < wi} C [¢]J< are different. Using the A-system lemma we can
assume that a¢ = a U be where aNbe =b:Nb, =0 (£ <), |a] =1, |be] = k.
Here ¢ can be zero, but k > 0. Let a = {v; : i < {}, b = {7]5 1 < k}
be the increasing enumerations. By shrinking, we can achieve that for each
7 <k, {7]5 : & < wp} is of order type wy. With further shrinking, we can
obtain that for each j < k, fyf < 7;7 holds for £ < 1. (Another possibility is
to use the Dushnik—Miller partition theorem w; — (wy, (w)x)?.) Still more
shrinking and re-indexing gives that there is M < w, such that r,,|M = f;
(1<), ’I“,ng_|M = ¢; (j < k) and the functions f;, g; are different.

We construct by recursion the uncountable sets U, V; (j < k) as follows.
Up = Vo = wi. Given Uj, V}, we apply the Claim to A = {fyf 1 & e Ul
B = {fy]5 : £ € V;}, and obtain the uncountable U;1 C Uj, Vi1 €V},
N; <w, g; € Y92, £; < 2 such that

rel(Nj+1) = g;7e; (£ € Uj)

and
rol(N;+1) =g; (1—¢;) (n€ Vi)

Set N = max{N, : j < k}. Notice that N > M. Let g; be the <jx-
minimal element of {g,; : N; = N}.

We now have that if { € Uy, n € Vi, then F(ae Ua,) = ¢, iff yf» < j iff
¢ < n. As we can choose £ € Uy, n € Vi such that either of £ <norn < ¢
hold, both 0 and 1 are attained as F'(a¢ U a,)) for some &, 7. O



Corollary. There is a function f: R — {0,1} such that if A C R, |A| =Ny,
2 < k < w, then both 0 and 1 occur as f(ag + a1 + -+ + ag_1) for some
distinct ag, ay, ... ,a,_1 € A.
Proof. Fix a Hamel basis B = {b, : @ < ¢} over Q for R. Each z € R, can
uniquely be written as

= Aaba

a<wi

where each ), is rational and supp(z) = {a : A, # 0} is finite.

We define f(z) = F(supp(z)). We show that f is as required.

Assume first that £ = 2. Let {z¢ : £ < w;i} be distinct reals. Set
ag = supp(z¢) € [c]<“. By repeatedly shrinking the system, we can assume
that every a¢ has the same number of elements, £, and the sets {a¢ : £ < wi}
form a A-system, ie., agNa, = a (£ # n). Let az = {+* : i < k} be the
increasing enumeration of a¢ and )\f be the corresponding coefficients, that

is,
e =Y Aibe.
i<k
By further shrinking the system we can assume that )\f = )\; and that there
is a set I such that a = {'yf i € I}, that is, the elements of a occupy the
same positions in the a¢’s.
If now & < n, then

supp(ze + ) = as Uay,

ety =Y 2Nbe + ) Nibe+ Y Aiby,
i€l i1 i1
where the b,’s are different on the right hand side.
We can therefore apply the Theorem and obtain £, < 1y and & < 1, such
that f(zg, +2,,) =0 and f(xg +zy,) = 1.
We now consider the case k > 3. Assume that {z¢ : £ < w;} are distinct
reals and 7 < 2. Define

as

1
Ye = 5(900 + ot Tp3) + Thooge

and apply the previous argument to {ye : £ < wy}. It gives & < n such that
the value of f is 7 at

Ye +Yn=To+T1+ -+ T3+ Tp_21¢e + Th—244,

4



the sum of k£ distinct elements of {z¢ : & < wi}. O
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