Graph homomorphisms: definitions

LÁSZLÓ LOVÁSZ

June 2008

DRAFT

Contents

1 Graph parameters................. 1
2 Homomorphism numbers............. 2
3 Graph algebras.................. 2
   3.1 Quantum graphs.............. 2
   3.2 Partially labeled graphs... 3
   3.3 Colored graphs............. 3
   3.4 Connection matrices......... 3
   3.5 The algebras of partially labeled graphs and colored graphs 3
   3.6 Connectors and contractors.. 4
4 Graphons...................... 4
5 Graphings...................... 5
6 Distance of two graphs.......... 6
7 Internal metric................ 7
8 Edge coloring model............ 7

1 Graph parameters

A graph parameter is a real valued function defined on isomorphism types of graphs (including the graph $K_0$ with no nodes and edges). A simple graph parameter is defined only on isomorphism types of simple graphs (i.e., on graphs with no loops or multiple edges). A graph parameter $t$ is multiplicative if $t(G) = t(G_1)t(G_2)$ whenever $G$ is the disjoint union of $G_1$ and $G_2$. We say that a graph parameter is normalized if its value on $K_1$, the graph with one node and no edge, is 1. Note that if a graph parameter is multiplicative and not identically 0, then its value on $K_0$ is 1.
2 Homomorphism numbers

For two finite graphs $F$ and $G$, let $\text{hom}(G, H)$ denote the number of homomorphisms (adjacency-preserving maps) from $G$ to $H$. We often normalize these homomorphism numbers, and consider the homomorphism densities $t(F, G) = \text{hom}(F, G)/|V(G)||V(F)|$, which is the probability that a random map of $V(F)$ into $V(G)$ is a homomorphism. This definition can be extended to the case when $G$ has nodeweights $\alpha_v$ and edgeweights $\beta_{uv}$:

$$\text{hom}(F, G) = \sum_{\phi: V(F) \to V(G)} \prod_{u \in V(F)} \alpha_{\phi(u)}(G) \prod_{uv \in E(F)} \beta_{\phi(u), \phi(v)}(G).$$

We also define a certain “hardcore” version. Let $S(F, G)$ denote the set of those maps $\phi: V(F) \to V(G)$ for which $|\phi^{-1}(i) - \alpha_i(G)|V(F)| \leq 1$ for all $i \in V(G)$. Let

$$\text{hom}^*(F, G) = \sum_{\phi \in S(F, G)} \prod_{u \in V(F)} \alpha_{\phi(u)}(G) \prod_{uv \in E(F)} \beta_{\phi(u), \phi(v)}(G)$$

and

$$E(F, G) = \max_{\phi \in S(F, G)} \prod_{uv \in E(F)} \beta_{\phi(u), \phi(v)}(G).$$

Suppose that the edges of a graph $F$ are partitioned into two sets $E'$ and $E''$, called “positive” and “negative”. The triple $\hat{F} = (V, E', E'')$ will be called a signed graph. Then we define

$$\text{hom}(\hat{F}, G) = \sum_{\phi: V(F) \to V(G)} \prod_{u \in V(F)} \alpha_{\phi(u)}(G) \prod_{uv \in E'} \beta_{\phi(u), \phi(v)}(G) \prod_{uv \in E''} (1 - \beta_{\phi(u), \phi(v)}(G)). \quad (1)$$

If all edges are positive, then $\text{hom}(\hat{F}, G) = t(F, G)$. If $G$ is a simple unweighted graph and all edges of $F$ are negative, then $\text{hom}(\hat{F}, G) = \text{hom}(F, G)$ (where $\overline{G}$ is the complement of $G$, with loops). If $F$ is a simple graph on $[k]$ and $\hat{F}$ is defined on the complete graph on $[k]$

In general, $\text{hom}(\hat{F}, G)$ can be expressed as

$$\text{hom}(\hat{F}, G) = \sum_{Y \subseteq E''} (-1)^{|Y|} \text{hom}((V, E' \cup Y), G). \quad (2)$$

3 Graph algebras

3.1 Quantum graphs

A quantum graph is defined as a formal linear combination of graphs with real coefficients. Every signed graph $\hat{F} = (V, E', E'')$ will be viewed as the quantum graph

$$\sum_{Y \subseteq E''} (-1)^{|Y|}(V, E' \cup Y).$$

The definition of $\text{hom}(F, G)$ extends to quantum graphs linearly: if $f = \sum_{i=1}^{n} \lambda_i F_i$ and $g = \sum_{j=1}^{m} \mu_j G_j$, then

$$\text{hom}(f, g) = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_i \mu_j \text{hom}(F_i, G_j).$$

This extension is in line with (2).
3.2 Partially labeled graphs

A partially labeled graph is a finite graph in which some of the nodes are labeled by different integers. A k-labeled graph is a partially labeled graph in which the set of labels is [k]. A 0-labeled graph is just an unlabeled graph.

Let $G_1$ and $G_2$ be two partially labeled graphs. Their product $G_1 \times G_2$ is defined as follows: we take their disjoint union, and then identify nodes with the same label. Clearly this multiplication is associative and commutative, and the product of two $k$-labeled graphs is $k$-labeled. For two 0-labeled graphs, $F_1 F_2$ is their disjoint union.

3.3 Colored graphs

A colored graph is a finite graph whose nodes are colored by integers. A $k$-colored graph ($k \geq 1$) is a colored graph where the set of colors used is [k]. A 1-colored graph can be thought of as an uncolored graph.

Let $G_1$ and $G_2$ be two partially graphs. Their product $G_1 \times G_2$ is defined as follows: its nodes are all pairs $(u_1, u_2)$ where $u_1 \in V(G_1)$, $u_2 \in V(G_2)$, and $u_1$ and $u_2$ have the same color. The nodes $(u_1, u_2)$ and $(v_1, v_2)$ are connected by $m_1 m_2$ edges, where $m_i$ is the multiplicity of the edge $u_iv_i$ in $G_i$ ($i = 1, 2$). Clearly this multiplication is associative and commutative. For 1-colored graphs, we get the standard categorial product (weak product) of the two graphs. A colored quantum graph is defined as a formal linear combination of colored graphs with real coefficients.

3.4 Connection matrices

Let $f$ be any graph parameter and fix an integer $k \geq 0$. We define two (infinite) symmetric matrices $M(f, k)$ and $N(f, k)$.

The rows and columns of $M(f, k)$ are indexed by (isomorphism types of) $k$-labeled graphs. The entry in the intersection of the row corresponding to $G_1$ and the column corresponding to $G_2$ is $f(G_1G_2)$.

The rows and columns of $N(f, k)$ are indexed by (isomorphism types of) $k$-colored graphs. The entry in the intersection of the row corresponding to $G_1$ and the column corresponding to $G_2$ is $f(G_1 \times G_2)$.

We call the matrices $M(f, k)$ and $N(f, k)$ the left- and write-connection matrices of the graph parameter $f$. The ranks of these matrices, as a function of $k$, are called the left- and right-connection rank function of the parameter. (This function may have infinite values.) We call the graph parameter reflection positive (from the left or from the right) if all the corresponding connection matrices are positive semidefinite.

3.5 The algebras of partially labeled graphs and colored graphs

A partially labeled [k-labeled] quantum graph is defined as a formal linear combination of partially labeled [k-labeled] graphs with real coefficients.

Let $G_k$ denote the (infinite dimensional) vector space of all $k$-labeled quantum graphs. We can turn $G_k$ into an algebra by using $F_1 F_2$ introduced above as the product of two generators,
and then extending this multiplication to the other elements linearly. Clearly $G_k$ is associative and commutative. The graph $O_k$ on $k$ nodes with no edges is the multiplicative identity in $G_k$.

Every graph parameter $f$ can be extended linearly to quantum graphs, and defines an inner product on $G_k$ by

$$\langle x, y \rangle := f(xy).$$

Let $N_k(f)$ denote the kernel of this inner product, i.e.,

$$N_k(f) := \{ x \in G_k : f(xy) = 0 \, \forall y \in G_k \}.$$

Then we can define the factor algebra $G_k/f := G_k/N_k(f)$.

For $x, y \in G_k$, we write $x \equiv y \, (\text{mod } f)$ if $x - y \in N_k(f)$.

The parameter is reflection positive if and only if the inner product 3 is positive semidefinite on $G_k$ (equivalently, positive definite on $G_k/f$).

The notion of quantum colored graphs and the algebra of them can be defined analogously.

### 3.6 Connectors and contractors

For a 2-labeled graph $F$, let $F'$ denote the graph obtained by identifying the two labeled nodes. The map $F \mapsto F'$ maps 2-labeled graphs to 1-labeled graphs. We can extend it linearly to get an algebra homomorphism $x \mapsto x'$ from $G_2^0$ into $G_1$.

The graph parameter $f$ is contractible, if for every $x \in G_2$, $x \equiv 0 \, (\text{mod } f)$ implies $x' \equiv 0 \, (\text{mod } f)$; in other words, $x \mapsto x'$ factors to a linear map $G_2/f \to G_1/f$. We say that $z \in G_2$ is a contractor for $f$ if $f(xz) = f(x')$ for every $x \in G_2$. We say that $z \in G_2$ is a connector for $f$, if $z \equiv K_2 \, (\text{mod } f)$.

### 4 Graphons

Let $W$ denote the space of all bounded symmetric measurable functions $W : [0,1]^2 \to \mathbb{R}$ (i.e., $W(x,y) = W(y,x)$ for all $x, y \in [0,1]$). Let $W_0$ denote the set of all functions $W \in W$ such that $0 \leq W \leq 1$. Two functions $W, W' \in W$ are called isomorphic, if there is a third function $U \in W$ and measure preserving maps $\phi, \phi' : [0,1] \to [0,1]$ such that

$$W(x,y) = U(\phi(x), \phi(y)) \quad \text{and} \quad W'(x,y) = U(\phi'(x), \phi'(y)).$$

Equivalence classes of functions in $W_0$ under isomorphism are called graphons.

A function $W \in W$ is called a stepfunction, if there is a partition $S_1 \cup \cdots \cup S_k$ of $[0,1]$ into measurable sets such that $W$ is constant on every product set $S_i \times S_j$. The number $k$ is the number of steps of $W$.

For every weighted graph $G$, we define a stepfunction $W_G \in W_0$ as follows. Let $V(G) = [n]$. Split $[0,1]$ into $n$ intervals $J_1, \ldots, J_n$ of length $\lambda(J_i) = \alpha_i/\alpha_G$. For $x \in J_i$ and $y \in J_j$, let

$$W_G(x,y) = \beta_{ij}(G).$$
For every $W \in \mathcal{W}$ and simple graph $F = (V, E)$, define

$$t(F, W) = \int_{[0, 1]^V} \prod_{i \in E} W(x_i, x_j) \prod_{i \in V} dx_i$$

and for every weighted graph $H$ with $V(H) = [q]$ and $\alpha_H = 1$

$$E(W, H) = \inf_{(S_i)} \prod_{i, j = 1}^q \beta_{ij}(H)^{W(S_i, S_j)},$$

where $(S_1, \ldots, S_q)$ ranges over all partitions of $[0, 1]$ into measurable sets with $\lambda(S_i) = \alpha_i$, and

$$W(S_i, S_j) = \int_{S_i \times S_j} W(x, y) \, dx \, dy.$$

(4)

If $\hat{F} = (V, E', E'')$ is a signed graph, then we define

$$t(\hat{F}, W) = \int_{[0, 1]^V} \prod_{i \in E'} W(x_i, x_j) \prod_{i \in E''} (1 - W(x_i, x_j)) \prod_{i \in V} dx_i .$$

If $\hat{F} = (V, E', E'')$ is a signed graph, then we define

$$t(\hat{F}, W) = \sum_{Y \subseteq E''} (-1)^{|Y|} t((V, E' \cup Y), W).$$

(5)

5 Graphings

Let $G_d$ denote the set of connected countable graphs with all degrees bounded by $d$, rooted at a node, and $G'_d$, the set of these rooted graphs with an edge from the root also specified. Let $A_d$ denote the $\sigma$-algebra on $G_d$ generated by subsets obtained by fixing a finite neighborhood of the root, and $A'_d$, the analogous $\sigma$-algebra of subsets of $G'_d$. For every probability measure $\rho$ on $(G'_d, A'_d)$, we get a probability measure $\rho^*$ on $(G_d, A_d)$ by forgetting the specified edge. We say that $\pi$ fits $\rho$, if the Radon-Nykodim derivative $d\rho^*/d\pi$ is equal to the degree of the root for almost all graphs in $G_d$. We say that $\rho$ is symmetric, if the map $G'_d \to G'_d$ obtained by shifting the root node to the other endnode of the root edge is measure preserving. We say that $\pi$ is unimodular, if it fits a measure preserving $\rho$.

Let $G$ be a graph with node set $[0, 1]$, with all degrees bounded by $d$, and assume that for every (Lebesgue) measurable set $B$, its neighborhood $N(B)$ in $G$ is also measurable. For every set $A \subseteq [0, 1]$ and $x \in [0, 1]$, let $d_A(x)$ denote the number of neighbors of $x$ in $B$. We say that $G$ is measure preserving, if for any two measurable sets $A, B$,

$$\int_A d_B(x) \, dx = \int_B d_A(x) \, dx.$$

Let $\phi_1, \ldots, \phi_k$ be measure preserving involutions on $[0, 1]$, then the tuple $([0, 1], \phi_1, \ldots, \phi_k)$ is called a graphing.

From every graphing $([0, 1], \phi_1, \ldots, \phi_k)$ we get a measure preserving graph with bounded degree by connecting $x$ and $y$ in $[0, 1]$ if there is an $i$ such that $y = \phi_i(x)$. From every measure
preserving graph $G$ with bounded degree we get a unimodular measure on rooted graphs with the same degree bound by selecting an $x \in [0,1]$ uniformly at random, and considering the connected component of $G$, with root $x$. These constructions are surjective but not bijective (cf. Elek \[31\]).

6 Distance of two graphs

For an unweighted graph $G$ and sets $S, T \subseteq V(G)$, let $e_G(S, T)$ denote the number of edges in $G$ with one endnode in $S$ and the other in $T$ (the endnodes may also belong to $S \cap T$; so $e_G(S, S)$ is twice the number of edges spanned by $S$). For two graphs $G$ and $G'$ on the same set of nodes, we define

$$d_{\Box}(G, G') = \frac{1}{n^2} \max_{S, T \subseteq V(G)} |e_G(S, T) - e_{G'}(S, T)|.$$ 

Note that we are dividing by $n^2$ and not by $|S| \times |T|$, so (for simple graphs) the contribution of a pair $S, T$ is at most $|T| \times |S|/n^2$.

If $G$ and $G'$ are unlabeled unweighted graphs on different node sets but of the same cardinality $n$, then we define

$$\hat{\delta}_{\Box}(G, G') = \min_{\tilde{G}, \tilde{G}'} d_{\Box}(\tilde{G}, \tilde{G}'),$$

where $\tilde{G}$ and $\tilde{G}'$ range over all labelings of $G$ and $G'$ by $1, \ldots, n$, respectively.

Let $G$ and $G'$ be weighted graphs with (say) $V(G) = [n]$, $V(G') = [n']$, and assume that the sum of nodeweights is 1 (just scale the nodeweights of each graph). A fractional overlay of $G$ and $G'$ is a nonnegative $n \times n'$ matrix $X$ such that

$$\sum_{u=1}^{n'} X_{iu} = \alpha_i(G)$$

and

$$\sum_{i=1}^{n} X_{iu} = \alpha_u(G').$$

Let $X(G, G')$ denote the set of all fractional overlays. We define

$$\hat{\delta}_{\Box}(G, G') = \min_{X \in X(G, G')} \max_{S, T \subseteq [0,1]} \left| \sum_{(i,j) \in S \times T} X_{iu}X_{jv}(\beta_{ij}(G) - \beta_{uv}(G')) \right|.$$ 

This notion of a distance extends to graphons as follows. We consider on $W$ the cut norm

$$\|W\|_{\Box} = \sup_{S, T \subseteq [0,1]} \left| \int_{S \times T} W(x, y) \, dx \, dy \right|$$

where the supremum is taken over all measurable subsets $S$ and $T$, and the cut distance

$$\hat{\delta}_{\Box}(U, W) = \inf_{\phi} \|U - W^\phi\|_{\Box},$$

6
where $\phi$ ranges over all invertible measure preserving maps from $[0, 1] \to [0, 1]$, and $W^\phi(x, y) = W(\phi(x), \phi(y))$. If $G$ and $G'$ are weighted graphs, then

$$
\delta_\square(G, G') = \delta_\square(W_G, W_{G'}).$
$$

Similar construction can be applied to other norms, e.g., from

$$
\|W\| = \int_{[0,1]^2} |W(x, y)| \, dx
$$

we get

$$
\delta_1(U, W) = \inf_\phi \|U - W^\phi\|_1.
$$

## 7 Internal metric

Given a graphon $W$, we define $d_W(y, z) \ (y, z \in [0, 1])$ as the $L_1$ distance between the functions $W(., y)$ and $W(., z)$. We define the dimension of $W$ as the infimum of numbers $d > 0$ such that all of $[0, 1]$ but a set of measure $\varepsilon$ can be covered by $O(\varepsilon^{-d})$ sets of diameter at most $\varepsilon$ (measured in $d_W$).

## 8 Edge coloring model

Let $G$ be a finite graph. An edge coloring model is determined by a finite set $C$ and a mapping $h : \mathbb{Z}_+^C \to \mathbb{R}_+$, which we call the node evaluation function. Here $C$ is the set of possible edge colors; for any coloring of the edges, we think of $h(a)$ as the value of a node incident with $a(c)$ edges with the color $c$ ($c \in C$). In terms of statistical physics, an edge coloring is a state of the system, and $\log h(a)$ is the contribution of a node (incident with $a(c)$ edges with the color $c$) to the energy of the state.

To be more precise, for an edge-coloring $\phi : E(G) \to C$ and node $v$, let $a_{\phi, v}(c)$ denote the number of edges $e$ incident with $v$ with $\phi(e) = c$. So $a_{\phi, v} \in \mathbb{Z}_+^C$ is the “local view” of node $v$.

The weight of the assignment $\phi$ is defined by

$$
w(\phi) = \prod_{v \in V(G)} h(a_{\phi, v}),
$$

and the edge coloring parameter, by

$$
col(G, h) = \sum_{\phi : E(G) \to C} w(\phi).
$$

(It will be also useful to allow a single edge with no endpoints; we call this graph the circle, and denote it by $\bigcirc$. By definition, $\text{col}(\bigcirc, h) = |C|$.)

We can define edge-connection matrices that are analogous to the connection matrices defined before: Instead of gluing graphs together along nodes, we glue them together along edges. To be precise, we define a $k$-broken graph as a $k$-labeled graph in which the labeled nodes have degree one. (It is best to think of the labeled nodes not as nodes of the graph, but rather as points
where the $k$ edges sticking out of the rest of the graph are broken off.) We allow that both ends of an edge be broken off.

For two $k$-broken graphs $G_1$ and $G_2$, we define $G_1^* G_2$ by gluing together the corresponding broken ends of $G_1$ and $G_2$. These ends are not nodes of the resulting graph any more, so $G_1^* G_2$ is different from the graph $G_1 G_2$ we would obtain by gluing together $G_1$ and $G_2$ as $k$-labeled graphs. One very important difference is that while $G_1 G_2$ is $k$-labeled, $G_1^* G_2$ has no broken edges any more, and so it is not $k$-broken. This fact leads to considerable difficulties in the treatment of edge models.

For every graph parameter $f$ and integer $k \geq 0$, we define the edge-connection matrix $M'(f, k)$ as follows. The rows and columns are indexed by isomorphism types of $k$-broken graphs. The entry in the intersection of the row corresponding to $G_1$ and the column corresponding to $G_2$ is $f(G_1^* G_2)$. Note that for $k = 0$, we have $M(f, 0) = M'(f, 0)$, but for other values of $k$, connection and edge-connection matrices are different. We say that $f$ is edge reflection positive, if $M'(f, k)$ is positive semidefinite for every $k \geq 0$.

References


[11] E. Babson and D. Kozlov: Topological obstructions to graph colorings,


[14] I. Benjamini, O. Schramm, A. Shapira: Every Minor-Closed Property of Sparse Graphs is Testable,
http://front.math.ucdavis.edu/0801.2797


[17] B. Bollobas, C. Borgs, J. Chayes, O. Riordan: Percolation on dense graph sequences,

[18] B. Bollobas, S. Janson, O. Riordan: The phase transition in inhomogeneous random graphs,

[19] B. Bollobas, O. Riordan: Sparse graphs: metrics and random models,


[21] C. Borgs, J. Chayes, L. Lovász: Moments of Two-Variable Functions and the Uniqueness of Graph Limits,


http://arxiv.org/abs/math/0702004


[29] P. Diaconis and S. Janson: Graph limits and exchangeable random graphs,
http://eprintweb.org/S/authors/math/ja/Janson3


http://arxiv.org/abs/0711.2800

[33] G. Elek: The Strong Approximation Conjecture holds for amenable groups,
http://arxiv.org/abs/math/0511655

[34] G. Elek: The combinatorial cost,

http://arxiv.org/0705.2179


[37] D.C. Fisher: Lower bounds on the number of triangles in a graph, J. Graph Theory 13 (1989), 505–512.


[43] S. Gerke, A. Steger: The sparse regularity lemma and its applications (manuscript)


[50] H. Hatami: Graph norms and Sidorenko’s conjecture (manuscript)


[62] L. Lovász, A. Schrijver: Dual graph homomorphisms (manuscript)


[71] L. Lovász and B. Szegedy: Finitely forcible graphons (manuscript)


