1.1 Exercise. Let G_1 and G_2 be two simple graphs with $\Delta(G_1, G_2) = 0$. Prove that there is a simple graph G and $n_1, n_2 \geq 1$ such that $G_1 \cong G(n_1)$ and $G_2 \cong G(n_2)$.

1.2 Exercise. For a graphon W, define the following quantities analogous to the minimum degree and maximum degree of a graph:

\[\delta(W) = \min_{x \in [0,1]} \int_0^1 W(x,y) \, dy, \quad \Delta(W) = \max_{x \in [0,1]} \int_0^1 W(x,y) \, dy, \]

Prove that for any tree T on k nodes, $\delta(W)^k \leq t(T, W) \leq \Delta(W)^k$.

1.3 Exercise. We define a (random) graph sequence G_n as follows. We start with G_1 consisting of a single node. For $n \geq 2$, we obtain G_n from G_{n-1} by creating a new node, connecting it to node i with probability $1 - i/n$ for $1 \leq i \leq n - 1$, and connecting every pair of nonadjacent nodes with probability $2/n$ (all these probabilistic decisions are made independently). Prove that the sequence G_n tends to the graphon $W(x,y) = 1 - xy$ with probability 1.

1.4 Exercise. Starting with a single node, at each step we create a new node, flip a coin, and connect the new node either to all previous nodes, or to none of them, depending on the outcome of the coin flip. Prove that with probability 1, the sequence of graphs we obtain converges to the graphon

\[W(x,y) = \begin{cases} 1, & \text{if } x + y \leq 1, \\ 0, & \text{otherwise}. \end{cases} \]

1.5 Exercise. (a) Let K'_r denote the graph obtained by deleting an edge from the complete graph K_r on r nodes. Prove that for every graphon W,

\[t(K'_r+1, W) \geq \frac{t(K_r, W)^2}{t(K_{r-1}, W)}. \]

(b) Prove that

\[t(K_{r+1}, W) - t(K_r, W) \leq r(t(K_{r+1}, W) - t(K'_r+1, W)). \]

(c) Prove that

\[r \frac{t(K_r, W)}{t(K_{r-1}, W)} \leq (r - 1) \frac{t(K_{r+1}, W)}{t(K_r, W)} + 1. \]