• L. Lovász: Random walks on graphs: a survey, Combinatorics, Paul Erdös is Eighty (Volume 2), Keszthely (Hungary) (1993) pp. 1-46. pdf
  • L. Lovász and P. Winkler: Exact mixing in an unknown Markov chain, Electronic Journal of Combinatorics 2 (1995), paper R15, 1-14. pdf
  • L. Lovász and P. Winkler: Efficient Stopping Rules for Markov Chains, Proc. 1995 ACM STOC, 76-82. postscript
  • L. Lovász and P. Winkler: Mixing of Random Walks and Other Diffusions on a Graph, Surveys in Combinatorics, 1995 (ed. P. Rowlinson), London Math. Soc. Lecture Notes Series 218, Cambridge Univ. Press (1995) 119-154.pdf
  • L. Lovász, R. Kannan and M. Simonovits: Isoperimetric problems for convex bodies and a localization lemma [Disc. Comput. Geometry 13 (1995), 541-559.] postscript
  • L. Lovász, R. Kannan and M. Simonovits: Random walks and an O*(n^5) volume algorithm for convex bodies [Random Structures and Algorithms 11 (1997), 1-50.] pdf
  • L. Lovász and M. Simonovits: Random walks in a convex body and an improved volume algorithm, Random Structures and Alg. 4 (1993), 359-412.pdf
  • L. Lovász and P. Winkler: Reversal of Markov chains and the forget time, [Combinatorics, Probability and Computing 7 (1998) 189-204.] postscript
  • L. Lovász and A. Beveridge: Random walks and the regeneration time [J. Graph Theory 29 (1998) 57-62.] postscript
  • L. Lovász: Hit-and-run mixes fast [Math. Programming, series A} 86 (1999), 443-461.] postscript
  • L. Lovász and R. Kannan: Faster mixing via average conductance [Proc. 31st ACM STOC (1999), 282-287.] postscript
  • Fang Chen, L. Lovász and I. Pak: Lifting Markov Chains to Speed up Mixing [Proc. 31st ACM STOC (1999), 275--281.] postscript
  • J. Kahn, J.H. Kim, L. Lovász and V.H. Vu: The cover time, the blanket time, and the Matthews bound, [Proc. 41st IEEE Ann. Symp. on Found. of Comp. Sci. (2000), 467-475.] postscript
  • L. Lovász, S. Vempala: The Geometry of Logconcave Functions and an O*(n^3) Sampling Algorithm (Tech Report MSR-TR-2003-04) pdf
  • L. Lovász, S. Vempala: Hit-and-run is fast and fun (Tech Report MSR-TR-2003-05) pdf
  • L. Lovász, S. Vempala: Where to start a geometric random walk? (Tech Report MSR-TR-2003-30) pdf
  • L. Lovász, S. Vempala: Simulated annealing in convex bodies and an O*(n^4) volume algorithms (Tech Report MSR-TR-2003-05) pdf
  • Last modified November