
Quantum walk based search
methods and algorithmic

applications
M. Sc. Thesis

András Pál Gilyén

Advisor: Katalin Friedl
Department of Computer Science and Information Theory,

Budapest University of Technology and Economics

Faculty Advisor: Dömötör Pálvölgyi
Department of Computer Science

Eötvös Loránd University

Faculty of Science

Budapest, June 2, 2014

Acknowledgement

I would like to express my great appreciation to my advisor Katalin Friedl for the

discussions we had on this thesis. I am very grateful for her detailed comments on both

the content and the mathematical style.

I also would like to thank Ashley Montanaro who introduced me into this topic

during my studies at the University of Cambridge, and with whom I worked on an essay

providing a strong starting point for this thesis.

Finally I wish to acknowledge the help of Dömötör Pálvölgyi my faculty advisor.

CONTENTS iii

Contents

1 Introduction 2

1.1 Random Walks in classical Computer Science: Schöning’s algorithm . . . 2

1.2 Some basic concepts of quantum and reversible computing 3

1.3 Quantum Random Walks . 4

1.4 Grover Search . 7

1.5 Grover Search as random walk . 8

1.6 Amplitude Amplification and the speed-up of Schöning’s algorithm . . . 8

1.7 From classical Random Walks to Markov chains 10

2 Bipartite Walks and their quantisation 12

2.1 Classical Bipartite Walks . 12

2.2 Quantisation of Bipartite Walks . 12

3 Spectra of product of reflections 14

4 Hitting Times for classical Markov chains and their relation to the

corresponding Quantum Walk 17

4.1 Hitting Time for classical Markov chains and the Leaking Walk Matrix . 17

4.2 Hitting Time for the Quantum Leaking Walk 20

4.3 Relation between Classical and Quantum Hitting Times 23

4.4 A δε bound on hitting times . 23

5 Algorithmic implications of Szegedy’s quantisation method 26

5.1 The Detection Problem . 26

5.2 High level description of the implementation vs. the quantum query model 27

5.3 The Element Distinctness Problem as a consequence 29

5.4 Finding a marked element, quantum . 31

6 Implementation of the Quantum Walk Algorithm 33

6.1 Quantum data structures - challenges . 33

6.2 Elementary operations and their complexity 34

6.3 Subroutines and techniques used for the implementation 36

6.3.1 Reversible sorting network . 36

6.3.2 Distributing/collecting some data for/after bulk parallel processing 37

6.3.3 Generating uniform probability distributions 37

6.3.4 Usage of randomised algorithms as a subroutine in quantum

computations . 38

6.3.5 An application: qRAM . 38

6.3.6 Pseudo code notation for the subroutines introduced 39

6.4 Implementing the Element Distinctness Algorithm 41

6.4.1 Data structure and high level description of necessary operations . 41

CONTENTS iv

6.5 Implementation of Check . 42

6.6 Implementation of Update . 43

6.7 Implementation of Setup . 49

6.8 Summary . 54

7 The MNRS search 55

8 Several applications 57

Abstract

This thesis provides an introduction to the quantum walk based search method which is

the quantum analogue of the classical Markov chain based search. We develop the basic

theory of the Markov chain based search together with its quantisation due to Mario

Szegedy[Sz2]. We deeply analyse their relationship, and sketch some of the possible

algorithmic applications.

The thesis also addresses the question of the implementation, which is largely hidden

by the high level description. We show how to implement the quantum walk based search

algorithm in the case of the element distinctness problem. We implement the necessary

operations using only very basic data structures, mainly arrays. Also while we use a weak

and basic computational model we could still significantly reduce the exponent of the

polylog terms arising from counting non oracle calls. Another interesting achievement is

that we could parallelise the Setup operation reducing its circuit depth form O(N c) to

O(polylog(N)). Probably the most important tool we introduced for the implementation

is the use of reversible sorting networks, but we introduce some other tricks as well.

The optimal quantum query algorithm for the element distinctness problem was first

described by Andris Ambainis [Amb3] and provided the basis of the generalised method.

In this seminal paper Ambainis also addressed the question of implementation. However

that implementation method does not fully cast into the general framework which

was introduced later. The operations described by Ambainis use some involved data

structures, such as skip lists and hash table. Also it uses a strong computational model

for example, a qRAM query has cost only 1. In contrast with Ambainis’s single node

implementation method ours uses bipartite style approach fitting the general framework

of Szegedy. At first sight it may seem unnecessary since it results in a duplication

of a large amount of data stored during the walk steps, but in fact it simplifies the

implementation process.

On the structure of the thesis: Section 1 covers some background on quantum

walks and basic techniques related to the quantum walk based search method. Section

2-5 gives a comprehensive description of the general scheme introduced by Szegedy and

derives the main theorems showing the quadratic speed-up compared to the classical

case. These Sections roughly follow the structure of Szegedy’s original paper [Sz2], but

the proofs are restructured, so that I could state the main theorem in a slightly stronger

form with a much improved constant. Section 6 addresses the implementation issues

already mentioned. Finally, Section 7 gives a brief overview of the further generalised

scheme introduced by Frédéric Magniez, Ashwin Nayak, Jérémie Roland and Miklós

Sántha.

Quantum walk based search methods and algorithmic applications 2

1. Introduction

Random walks on graphs or more generally Markov chains are interesting processes

and worth exploring just for their beauty. Mathematicians have long been studying

them, and built a diverse theory of random processes. Based on the theory various

important practical applications were developed.

Random walks caught the attention of quantum information theorists as well. In the

90’s, when they started thinking about how to define the quantum analogue for them,

the topic rapidly became popular. Quantum random walks were constructed using

various approaches, and their behaviour showed striking differences from their classical

counterparts. Knowing that Random Walk based search is a highly successful paradigm

of Computer Science, researchers tried to use these differences to gain algorithmic

benefits for quantum computers. It was a long way to go, but finally quantum walk

based search became one of the main resources of the speed-up of quantum algorithms.

1.1. Random Walks in classical Computer Science: Schöning’s algorithm

To provide some intuition about how to use classical random walks to construct

search algorithms, we shortly describe Schöning’s famous algorithm [Sch]. This

algorithm provides the basis of the best known algorithm for solving the 3-SAT problem.

To indicate the importance of this problem we note that it is NP-complete. It means

that if we could solve 3-SAT efficiently, then it would also provide efficient solutions

to other important problems like the Travelling Salesman, Subgraph Isomorphism and

Hamilton Circle Finding Problems. The question of 3-SAT is surprisingly simple though:

given a ”well organised” Boolean formula, can we assign TRUE and FALSE values to

its Boolean variables such that the whole formula evaluates to TRUE?

For 3-SAT ”well organised” Boolean formula means that it is presented in 3-CNF

form. I.e. it should be given as a conjunction of clauses, where each clause is a

disjunction of at most 3 literals, where a literal is either a Boolean variable or its

negation.

3-CNF formula: F (x1, ..., xn) = (x1︸︷︷︸
variable

∨ x̄2︸︷︷︸
negation︸ ︷︷ ︸

literals

∨x3)∧(x̄1 ∨ x̄4 ∨ x5)︸ ︷︷ ︸
clause of 3 literals

∧ . . .∧(xj∨x̄k∨x̄l)

Suppose we have a formula F with n variables. Then we will denote an assignment with

b = (b1, b2, · · · , bn) where each bi is either TRUE or FALSE i.e. 1 or 0 correspondingly.

Then the evaluation of F according to b can be simply written as F (b).

Suppose that we have a Boolean formula F as above, then Schöning’s algorithm

works as the following:

• Pick a random assignment (or binary string) b0 ∈ {0, 1}n.

• Repeat 3n times:

– Check whether the actual assignment is a satisfying one: F (bi) = 1?

Quantum walk based search methods and algorithmic applications 3

∗ If yes then stop and output bi.

∗ If not then take the first clause which is not satisfied, and flip the value of

a randomly selected variable in the clause giving a new assignment b(i+1).

• Do this whole process
(
4
3

)n
times or until a satisfying assignment found. If after(

4
3

)n
repetition still have not found a satisfying assignment, then simply output

that F is not satisfiable.

The analysis of the random walk shows this process finds a good assignment with

high probability if there is any. Note that throughout this thesis we use the term with

high probability in the sense that the probability is greater than some universal constant

c independent of the parameters of the problem. We use this term just in cases when

only one sided error can occur. E.g. in this case it might happen that we say F is not

satisfiable, because we did not find any good assignment, but in fact there is one (false

negative). But we never say that F is satisfiable when it is in fact not (false positive).

Then in the case of one sided error by only constantly many repetition of the process

we can reach arbitrarily high probability, which explains the etymology of the term.

If the formula is O(poly(n) sized then the overall time complexity can be bounded

by O(1.334n), which is not fast enough to transform the above mentioned problems to

the easily solvable category. But we do not know a significantly better way to solve

it. (As far as I know the best algorithm currently known for 3-SAT is running in time

O(1.324...n).)

We may think about this algorithm as a random walk based search process on the

n-dimensional hypercube. The n dimensional hypercube has vertex set {0, 1}n, and two

vertex is connected whenever the corresponding binary strings differ at only one place.

We can also interpret satisfying assignments as marked vertices.

To see the main ideas behind consider the worst case, when there is only one marked

vertex v. With probability 1/2 we start no further than n/2 from v, as at the beginning

we select a vertex uniformly at random. Then in each cycle we step towards v with

probability at least 1/3. It is because v is satisfying, and so in every clause at least

one literal takes value TRUE according to the assignment described by v. But while

v 6= b we have at least one wrong clause for which every literal takes FALSE. Then with

probability at least 1/3 we flip the value of a variable for which the value of our current

assignment b differed from v. Then it can be shown that after 3n steps the probability

that we have found v is around (3/4)n. But it is also very likely that we moved in the

wrong direction many times, so if we have not already found v it is better to start again

from a random position.

1.2. Some basic concepts of quantum and reversible computing

We are going to use the standard notations and concepts of quantum computing

in this thesis. Due to limitations on the size we do not discuss the very basics in this

thesis. An excellent introduction may be found e.g. in [Jozs].

Quantum walk based search methods and algorithmic applications 4

We do not want to spend too much word dealing with the description of quantum

circuits, we rather use the fact that any classical circuit can be transformed into a

quantum circuit efficiently. First we describe how does the quantum version of a classical

circuit work: (We will denote the bitwise addition by ⊕.)

Definition (Quantised version of a classical circuit) Suppose we are given a

classical circuit that computes f(in). Then the quantum version of it acts on two

registers |in〉 |out〉, and do the following transformation: |in〉 |out〉 −→ |in〉 |out⊕ f(in)〉
in particular if the |out〉 register was in the 0 state at the beginning then we get the

actual value of |f(in)〉 in the output register.

It is well-known that the quantum version of any classical circuit consisting N gates

can be implemented using O(N) extra ”workspace” qubits and by O(N) quantum gates

[NC, Section 1.4]. To see an actual example check Figures 2,3 of Section 6. (Throughout

this thesis we will always assume that we start the quantum computation with all qubits

set to 0.)

1.3. Quantum Random Walks

The history of quantum random walks started with the quantisation of the

symmetric discrete random walk on the line. The classical process is straightforward,

we are walking on the integers staring from zero. Before each step we toss a coin, if it

is heads we take one step forward, if it is tails we take one step backward. The coin is

unbiased, so the probability of stepping to each direction is 1/2.

For the corresponding quantum version the natural state space would be |n〉 : n ∈ Z.

Then intuitively we would define one step of the walk as

|n〉 → a |n− 1〉+ b |n〉+ c |n+ 1〉 .

As we want to describe a quantum mechanical operation we should set the values of

a, b, c such that the transformation becomes unitary. The surprising fact is that only 3

choices of the values describe unitary evolution [Amb1]. Namely when one of a, b, c is

1, and the others are 0. The corresponding operations are shift to the left, identity and

shift to the right - not quite like a random walk. So in this case discrete random walk

do not naturally quantise on the vertex set - later it turned out that it is the case for

almost all graphs.

The solution to this problem was to introduce and additional coin state. In the case

of the line we amend the state space by one qubit splitting each position state to two

different states |n〉 |0〉 and |n〉 |1〉. One step of the walk consist of two phases, a Coin Flip

operation C and a Shift operation S. The Coin Flip is a local unitary transformation

on the coin state, usually the Hadamard transformation.

C : |n〉 |0〉 → d |n〉 |0〉 + e |n〉 |1〉
C : |n〉 |1〉 → f |n〉 |0〉 + g |n〉 |1〉

; H =
1√
2

(
1 1

1 −1

)
(1)

Quantum walk based search methods and algorithmic applications 5

The Shift corresponds to the actual step, we do a step according to the state of the coin.

S : |n〉 |0〉 → |n− 1〉 |0〉
S : |n〉 |1〉 → |n+ 1〉 |1〉

Now we can define one step of the quantum random walk as W = SC, for example

with C = H. Note that quantum random walk defined this way has a unitary evolution,

so the walk itself is not a random process, probability is introduced just by the final

measurement. So we will usually call the process just quantum walk, dropping the

expression ”random” from the name.

After applying W a few times to the starting state |0〉 |0〉 and measuring the position

state we get similar statistics to the classical case. However after running the process for

a longer period the interference accumulates, and we get very different results compared

to the classical case.

In the classical case the position after T steps is binomially distributed: B(T, 1/2).

We also know, that for large T -s B(T, 1/2) can be approximated by N (0, T/4). This

implies that the classical walk on the line is concentrated roughly in [−
√
T ,
√
T].

−80 −60 −40 −20 0 20 40 60 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Asymptotic Pobability
2�P

slow

After T=100 steps
Smoothed curve

Figure 1: Measurement statistics of the quantum walk after 100 steps [Kem], starting

from the initial state |0〉 |1〉 and using H as a coin flip operator. (Only probabilities for

even positions are plotted, since the probability of being at an odd positions is zero.)

Understanding that classical random walk on the line is fundamentally related to the

normal distribution, the quantum walk W we just defined shows striking new features.

Probably the most important two difference is the following: [Amb1]

• The maximum probability is reached for |n| ≈ T/
√

2. [We may interpret this as the

ability of the concentration of amplitude at a distant location due to constructive

interference.]

Quantum walk based search methods and algorithmic applications 6

• There are Ω(T) locations for which measuring n is Ω(1/T). [Compared to the

classical walk we can interpret this as quadratically faster spreading.]

Following similar approaches various versions of quantum walks were defined for

different graphs. For example quantum walks on regular graphs were introduced in an

early stage of the theory. Suppose we have a graph which is d-regular, then regularity

makes it possible to use a d-dimensional coin in a similar setting than in the case of

the line. Simply numbering the outgoing edges at each vertex of the graph makes it

possible to implement the Shift operation naturally. Let us denote the j-th neighbour of

v with nj(v) according to the enumeration introduced. Then the Shift operation would

act according to this numbering:

S : |v〉 |j〉 → |nj(v)〉 |j〉

And we could use for example diffusion operator (D) as a Coin Flip operation:

Dd =


−1 + 2

d
2
d

· · · 2
d

2
d

−1 + 2
d

. . . 22
d

...
.

...
2
d

2
d

· · · −1 + 2
d

 (2)

Understanding that coins represent somehow the edges of the graph, quantum walk

was finally defined for any undirected graph following similar logic. Let G = (V,E) then

we can define the state space of the walk as |v〉 |e〉 ∈ C|V |×|E|. Also we can define Shift

naturally: (let us denote the edge between vertices u, v by euv)

S : |v〉 |euv〉 → |u〉 |euv〉

The Coin Flip operation then would be some operation on the edges. Later in this

thesis we are going to follow similar logic for quantising random walk on a general

graph. However instead of using coin or edge space we are going to duplicate the vertex

space.

Simultaneously to the evolution of the theory of discrete quantum walks, continuous

time quantum walks were also studied on a wide range of graphs. The two approaches

were rather different, for example in the continuous case there were no need to introduce

coin states. In spite of the differences in the setting the behaviour of this two type of

quantum walk was pretty similar.

Regardless the type of the walk or the actual graph, the two main differences we

listed during the analysis of the discrete quantum walk on the line seemed to remain

the most important features from an algorithmic point of view. The two main types of

speed up gained by quantum walk based algorithms can be related to these:

• Exponentially faster hitting time - the ability of distant constructive interference

• Quadratic speed up in search problems - quadratically faster spreading

In this thesis we restrict our attention to the algorithmic implications of the

”quadratically faster spreading” phenomena in the discrete quantum walk model.

Quantum walk based search methods and algorithmic applications 7

1.4. Grover Search

Grover Search is an unstructured search method, meaning that it search for elements

without any extra information about the elements. Suppose we have a large database,

for which the elements are indexed for example with all the k bit length binary strings.

And there is a set of marked elements M we are looking for, but we have no idea

what indices belong to them. Then Grover Search can find a marked element with high

probability quadratically faster than it is possible classically.

To see an example of unstructured search imagine the case when we have a large

telephone book sorted alphabetically and that we are looking for the name of a person

given only his/her telephone number.

For a computation based example consider the case when we have a very large

number n = a · b where a, b are large prime numbers, and the marked set M is {a, b}.
Then we can easily check for any d ∈ Z whether d|n i.e. we can decide whether d ∈ M
knowing only n. We can even implement a quantum circuit which does efficiently

calculate it for superpositions of multiple qubits, and changes the value of some register

based on the result. But finding a, b knowing only n is very hard, no classical algorithm

is known to be able to do that in polynomial time. (However the famous Shor algorithm

can solve it efficiently using a quantum computer.)

Theorem 1 (Grover Search) Suppose we have quantum oracle access to the indicator

function of a marked set M ⊆ {0, 1}k, then we can find a marked element (which is a

binary string) using O(
√

2k/|M |) oracle calls.

Proof (Sketch) The quantum oracle describing M is given in the form of a quantum

circuit (or black box) denoted by B. B can mark qubits describing a binary string

b ∈ M , for now let us define this feature in the following form (which is basically

equivalent to the calculation of an indicator function in quantum sense, see e.g. [Jozs]):

B : |b〉 →

{
− |b〉 if b ∈M
|b〉 if b /∈M

(3)

Then Grover search simply iterates the process G = D2kB for O(
√

2k/|M |) times

starting from the uniform distribution over all bit strings |ψ0〉, and finally measure

the state.

The starting state

|ψ0〉 =
1√
2k

 ∑
all b∈{0,1}k

|b〉

 = Hk |0〉 (4)

can be easily prepared from |0〉 using a Hadamard transformation (1) on each qubit

(shortly denoted by Hk). Also we can observe that the diffusion operator D2k can

be interpreted as a reflection through the line corresponding ψ0: D2k = refψ0 =

2 |ψ0〉 〈ψ0| − Id. It also shows how to implement it: Id− 2 |ψ0〉 〈ψ0| = HkFHk where F

Quantum walk based search methods and algorithmic applications 8

is the flip operation which flips the amplitude of |0〉 and acts as Id on the orthogonal

complement of |0〉.
Using similar arguments it can be shown that G = refψ0refM⊥ is a product

of reflections. Also it follows that starting from |ψ0〉 we never leave the subspace

(ψ0,ΠM(ψ0)), where ΠM denotes the orthogonal projection to the subspace generated

by the marked binary strings. Restricted to this subspace G becomes a simple rotation

as it is a product of reflections on the plane. For small values of |M |/2k the rotation

angle is ≈
√
|M |/2k, which yields that after O(

√
2k/|M |) rotations our state gets close

to |ΠM(ψ0)/|ΠM(ψ0)|〉. Then this provides good chance to find a marked element after

measuring the sate. �

1.5. Grover Search as random walk

Before we go for further generalisations we show the connection between random

walks and Grover search:

A version of Grover Search can be viewed as a quantisation of a uniform random

walk on the complete graph Kn. If we add loops for each node and define the quantum

walk as we did for regular graphs then both the vertex space and the coin space becomes

n dimensional: |x〉 |y〉 ∈ Cn×n. Then the Shift operation can be simply defined as

|x〉 |y〉 ↔ |y〉 |x〉. So we may omit the Shift operation and simply apply the diffusion

operator alternately to the right and left registers.

We are going to generalise Markov chains following similar logic.

1.6. Amplitude Amplification and the speed-up of Schöning’s algorithm

Amplitude Amplification is simply a generalisation of Grover Search obtained by

replacing the starting state |ψ0〉 (4) with the output of an arbitrary quantum algorithm.

Suppose we have a quantum circuit C which, starting from the zero state can prepare

a state |φ〉 = C |0〉. If this state reveals a marked element with probability p after

measurement, then normally we would need to prepare and measure the state O(1/p)

times to get one marked with high probability. Amplitude Amplification reduces the

time of this process quadratically.

Theorem 2 (Amplitude Amplification) Suppose we have a quantum circuit C

together with its inverse C−1 and suppose that measuring |φ〉 = C |0〉 reveals a marked

element with probability at least p. If we have also access to another circuit B which

can check marked element as described in the Grover Algorithm (3), then we can find a

marked element with high probability using O(
√

1/p) calls to C,C−1 and B.

Proof (Sketch) We use the notations of the proof of the Grover Search. In the case

of Amplitude Amplification we use a modified Grover operator GC = refφrefM⊥ , and

start the process with state |φ〉. Following similar lines than in the proof of Grover

Search it can be shown that applying the modified operator O(
√

1/p) times we can find

an element with high probability after measuring the state. Considering that refφ can

Quantum walk based search methods and algorithmic applications 9

be implemented in the form −CFC−1 it yields a quadratic reduction in the number of

repetitive usage of C. (Note that quantum circuits are fundamentally reversible due to

their unitary nature, so implementing C−1 should be no harder than implementing C.)

�

More is true, to state the result concerning the exact version of Amplitude

Amplification we use the following notation: Let M be the subspace spanned by the

computational basis states corresponding to the marked binary string. Let us call M

the good subspace and M⊥ the bad subspace, then (see e.g. [Jozs, ES 3]):

Theorem 3 (Exact version of Amplitude Amplification) Suppose we have the

starting state for the AA process: |φ〉 = α |φg〉 + β |φb〉 where α and β are real and

positive, and |φg〉 and |φb〉 are the good and bad projections of |φ〉 re-normalised to unit

length. Suppose the indicator function f(x) = 0 resp. 1 for x good resp. bad, can be

computed. Suppose also that the value of α is known. Then using one extra workspace

qubit and a constant number of additional unitary gates the Amplitude Amplification can

be made exact, i.e. to output a state being a superposition of only marked computational

basis states.

To illustrate how powerful this Amplitude Amplification paradigm is, we show that

it can speed up Schöning’s algorithm quadratically. (This was first observed by Ambainis

[Amb2].)

We need to deal with classical randomness. A classical circuit which can use random

steps is usually defined as a standard circuit with an input register and a random bit

register. Then it generates the necessary probability distributions for itself based on

the assumption, that its random bit register contains independent uniform random bits.

Then it is an easy fact that Schöning algorithm can be efficiently implemented in such

a classical circuit model.

After having the quantum version of the above described circuit much of the work

is done. We should only feed its random bit registers with uniformly distributed random

bits. It can be easily done by using a Hadamard transformation for each qubit of the

random bit register. For the checking step we should only implement a conditional

phase flip controlled by the output qubits of the circuit, which is also an easy task.

As we already discussed the success probability is greater than c(3/4)n for some

c ∈ R+ constant, so using Amplitude Amplification we can solve the problem using

O(
√

4/3
n
) repetition, as we stated. If the formula is O(poly(n)) sized than it reduces

the overall running time to O(1.155n).

Corollary 4 For O(poly(n)) sized 3−CNF formulas there is a quantum algorithm that

solves 3− SAT in time O(
√

4/3
n
) with bounded one side error.

Having seen that Amplitude Amplification can speed up classical and quantum

algorithms in that generality, we might wonder if there is any need to consider the

possibility of quadratic speed up using random walks. However there is a part of the

algorithms that Amplitude Amplification can not enhance, namely the steps needed to

Quantum walk based search methods and algorithmic applications 10

prepare the state |φ〉. In the case of Schöning’s algorithm this part was insignificant

compared to the repetition number, but this is not always the case as we will see for

example in the case of the Element Distinctness Problem.

1.7. From classical Random Walks to Markov chains

Discrete Random Walk on a graph is a random process, consisting discrete steps.

Between each step we are resting at some node of the graph. At the beginning we start

at some node of the graph, often this starting position is also being chosen randomly

according to some initial distribution. Then at each step we go to a neighbouring

node (or stay at the node) according to some (not necessarily uniform) probability

distribution. We will only consider the case, when the individual steps are independent

of each other, and the transition probabilities are unchanged over time. This kind of

random walk can be descried as a stationary Markov chain with the states being the

nodes of the graph.

Definition (Stationary Markov Chain) A stationary Markov chain is a discrete

time stochastic process (Mi) : i ∈ N+
0 on a discrete state set X (which is going

to be always finite throughout this thesis), such that ∀i ∈ N+
0 : Mi ∈ X. The

probability of moving from one state x ∈ X to another y ∈ X in one step is

pxy = P (we step to y|we are at x) described by a transition matrix P indexed by the

elements of X: P = {pxy}x,y∈X . P is stationary i.e. unchanged over time, and fully

describes the dynamics of the chain: ∀x, y ∈ X ∀i ∈ N+
0 : P (Mi+1 = y|Mi = x) = pxy.

We consider only stationary Markov chains on finite state sets throughout this

thesis. For simplicity we will always use the plain term Markov chain, but we refer to the

stationary and finite case. Note that P acts from the right, so probability distributions

on X will be represented by row vectors.

We are going to use several definitions about Markov chains, we list them here in

advance for later reference.

Definition (Symmetricity) We say that a Markov chain is symmetric if P = P T .

Definition (Underlying graph) The underlying graph for a Markov chain is a

directed graph which have vertex set X, and the edges correspond to the transitions

which have non-zero probability. So replacing the non-zero elements of P with 1-s we

get the adjacency matrix of the underlying directed graph.

Note that symmetricity correspond to undirected graphs, and even stronger to walks for

which the the transition probabilities depend only on the edges, not on the endpoints.

Definition (Irreducibility) A Markov chain is said to be irreducible if the underlying

graph is strongly connected, i.e. every state is reachable from every other state.

Definition (Periodicity) A state x ∈ X has period k if any return to state x

must occur in multiples of k steps. Formally, the period of a state is defined as

gcd (n|(P n)xx > 0) A Markov chain is aperiodic if every state has period 1.

Quantum walk based search methods and algorithmic applications 11

For irreducible Markov chains every state has the same period. So we can also define

the period of an irreducible Markov chain.

Definition (Ergodicity) A Markov chain is said to be ergodic if it is irreducible and

aperiodic.

Definition (State transitivity) A Markov chain is state transitive if any x ∈ X can

be carried to any other y ∈ X by such a permutation of X that leaves the transition

matrix unchanged.

Definition (Stationary distribution) The stationary distribution of a Markov chain

denoted by τ is a non negative vector, for which the elements sum to 1, and satisfies:

τP = τ

An irreducible chain always have a unique stationary distribution which is also strictly

positive (see for example [Mey]). If the chain is symmetric then the vector having all

coordinates 1/|X| is always a stationary distribution.

Definition (Time reversed chain) The time reversal of an irreducible Markov chain

is denoted by P ∗ and is defined by the following equality:

τxpxy = τyp
∗
yx

Definition (Reversibility) An irreducible Markov chain is said to be reversible if

P = P ∗.

The transition matrix has non-negative elements, and the sum of the elements in

any row is 1. Such matrices are called stochastic matrices. Every stochastic matrix

describes some Markov chain, so we can identify a stationary Markov chain with its

stochastic transition matrix P . We will often call a stochastic matrix just Markov

chain. So the above concepts translate to definitions for (stochastic) matrices as well.

Quantum walk based search methods and algorithmic applications 12

2. Bipartite Walks and their quantisation

In the previous Sections we have seen that discrete random walks do not naturally

quantise on the vertex space. However Szegedy showed [Sz1, Sz2] that this is not the

case for bipartite walks.

2.1. Classical Bipartite Walks

A bipartite walk is a two phase walk on the finite and disjoint vertex sets X, Y . In

the first phase we start from X and do a transition to Y according to the probabilities of

the transition matrix P . In the second phase we do a transition from Y to X according

to an other matrix Q. Here P,Q are stochastic matrices: P ∈ R+
0
|X|×|Y |

, Q ∈ R+
0
|Y |×|X|

,

∀x ∈ X :
∑

y∈Y pxy = 1 and similarly ∀y ∈ Y :
∑

x∈X qyx = 1. We are going to denote

this bipartite walk by (P,Q). (For transition matrices we are working with row (density)

vectors so we apply them from the left, and we index the rows and columns of P,Q by

the elements of X, Y .)

One step of the walk in terms of probability distributions: If we start from an initial

distribution %X after the first phase we get the distribution %Y = %XP on Y and after

the second phase we get a new distribution on X: %′X = %YQ = %XPQ.

Note that every finite Markov chain M can be viewed as a bipartite walk. If

M is described by the transition matrix P on state space X, then we should simply

duplicate the state space X and set Q = P . One step of the resulting bipartite walk

then corresponds to a double step of M .

2.2. Quantisation of Bipartite Walks

As we indicated bipartite walks quantise naturally on the space of vertices, so the

quantised version of the bipartite walk (P,Q) takes place in the Hilbert space, labelled

by the elements of X and Y . We call the space of labels for X and Y correspondingly

left and right walk registers:

H = {|x〉 |y〉 |x ∈ X, y ∈ Y } ' C|X|×|Y |

We would like to define our walk in a way that one step (or phase) of it transfers

amplitudes only between states corresponding to neighbour vertices. This means that

the process mirrors the structure of the graph, i.e. we are in some sense ”walking” on

the graph. (The constraint to move amplitudes only along edges is often called the local

or spatial search problem.)

Szegedy defined one step of the walk using right and left transition states.

Definition (Left and Right Transition States)

∀x ∈ X : |rx〉 =
∑

y∈Y
√
pxy |x〉 |y〉

∀y ∈ Y : |ly〉 =
∑

x∈X
√
qyx |x〉 |y〉

(5)

Quantum walk based search methods and algorithmic applications 13

In the first phase of the quantum bipartite walk we flip the phase of the transition

states for every |rx〉. Assuming the quantum system is in state |ψ〉 = γ1 |rx〉⊥ + γ2 |rx〉
(where |rx〉⊥ is some orthogonal state to |rx〉) then we put the system into state

γ1 |rx〉⊥ − γ2 |rx〉. In other worlds we apply the unitary transformation (I − 2 |rx〉 〈rx|).
Since 〈tx|tx′〉 = δx,x′ these operators commute for all x ∈ X, and their product can

be written as
(
I − 2

∑
x∈X |rx〉 〈rx|

)
. The operation for the second phase is defined

symmetrically:
(
I − 2

∑
y∈Y |ly〉 〈ly|

)
.

Definition (Bipartite Walk Operator)

The walk operator describing one step of the quantised bipartite walk (P,Q) is defined

as

W(P,Q) =

(
I − 2

∑
y∈Y

|ly〉 〈ly|

)(
I − 2

∑
x∈X

|rx〉 〈rx|

)
=

(
2
∑
y∈Y

|ly〉 〈ly| − I

)(
2
∑
x∈X

|rx〉 〈rx| − I

)

Observe that
(
2
∑

x∈X |rx〉 〈rx| − I
)

is the reflection on the subspace spanned

by the transition vectors of X derived from P : T PR = Span(|rx〉 : x ∈ X) and

similarly
(

2
∑

y∈Y |ly〉 〈ly| − I
)

is the reflection on the other ”transition” subspace

TQL = Span(|ly〉 : y ∈ Y). Using these observations we can finally write our walk

operator in a cleaner form:

W(P,Q) = refTQ
L
· refTP

R
(6)

In the case when the bipartite walk (P, P) is a duplicated Markov chain we denote

the corresponding quantum walk operator WP = refTP
R
· refTP

L
. Note that in general

T PR 6= T PL .

Quantum walk based search methods and algorithmic applications 14

3. Spectra of product of reflections

The following theorem is at the core of the quadratic speed-up phenomena and

provides the basis for the analysis of the quantised walkW(P,Q). It is a higher dimensional

generalisation to the fact that the product of two reflections on the plane is a rotation.

The proof roughly follows the one described in [Sz2], however I have completed and

amended both the statement and the proof to fit the framework better. Note that this

theorem is a variant of a result due to C. Jordan [Jor], and may be derived from it.

Theorem 5 (Real Spectral Lemma) Let H be a Hilbert space, and let A and B

be matrices whose columns form orthonormal systems spanning the subspaces VA =

Span(A.1, . . . , A.n) and VB = Span(B.1, . . . , B.m). Let W = refB · refA = (2BB† −
I)(2AA†− I), then H can be decomposed to W invariant orthogonal subspaces in terms

of the discriminant matrix D(A,B) = A† ·B. Let (λl, (ul, vl) : 1 ≤ l ≤ h) be the system

of positive singular values in decreasing order with the corresponding (left,right) singular

vector pairs. Then λ1 ≤ 1, and let k be the largest index such that λk = 1. Then the

”busy” subspace Span(VA, VB) can be decomposed using these vector pairs:

(i) On VA ∩ VB = Span(Aul : 1 ≤ l ≤ k) = Span(Bvl : 1 ≤ l ≤ k) the operator W acts

as Id.

(ii) For every k + 1 ≤ l ≤ h let λl = cos(θl) then on the subspace Vl = Span(Aul, Bvl)

W acts as a rotation by 2θl, and in the basis (Aul, Bvl) W |Vl has real coefficients.

(iii) On VA ∩ V ⊥B the operator W acts as −Id. Let (ul|h+ 1 ≤ l ≤ n) be the system of

left singular vectors for D(A,B) then V ⊥B ∩ VA = Span(Aul|h+ 1 ≤ l ≤ n).

(iv) On V ⊥A ∩ VB the operator W acts as −Id. Let (vl|h+ 1 ≤ l ≤ m) be the system of

right singular vectors for D(A,B) then V ⊥A ∩ VB = Span(Bvl|h+ 1 ≤ l ≤ m).

The invariant subspaces above are pairwise orthogonal, and span the ”busy” subspace.

The ”idle” subspace V ⊥A ∩ V ⊥B = Span(VA, VB)⊥ is also invariant and W acts on it as

Id.

Moreover if D(A,B) ∈ Rn×m then all the above subspaces are spanned by real linear

combinations of the column vectors of A,B. In particular if A,B have real coefficients

in the computational basis then W can be transformed to the real Jordan normal form

by an orthogonal transformation of the computational basis.

Proof On the ”idle” subspace V ⊥A ∩V ⊥B (= Span(VA, VB)⊥) W acts as (−Id)·(−Id) = Id.

So we can concentrate on its orthogonal complement the ”busy” subspace Span(VA, VB).

Take the singular value decomposition of A†B = UΛV †, where U, V are unitary matrices

and Λ is a diagonal matrix with the singular values in the diagonal in decreasing order.

In other words Λ = diagn×m(λ1, λ2, . . . , λmin(n,m)). Now define Ã = AU, B̃ = BV .

Since U, V are unitary operators VA = VÃ, VB = VB̃ and we can express W equally

well using Ã, B̃: W = (2BB† − I)(2AA† − I) = (2BV V †B† − I)(2AUU †A† − I) =

(2B̃B̃†− I)(2ÃÃ†− I). Also the discriminant matrix becomes much simpler D(Ã, B̃) =

Quantum walk based search methods and algorithmic applications 15

U †D(A,B)V = Λ. Finally the column vectors for Ã, B̃ still form orthonormal systems:

In = A†A = U †A†AU = Ã†Ã, Im = B†B = V †B†BV = B̃†B̃.

Let denote Ã = (|ãi〉 , . . . , |ãn〉), B̃ = (|b̃i〉 , . . . , |b̃m〉). Using this formulation we

can alternatively write W = (2
∑m

j=1 |b̃j〉 〈b̃j| − I)(2
∑n

i=1 |ãi〉 〈ãi| − I), and the above

relations can be expressed in the following simple form:

〈ãi|ãj〉 = δi,j = 〈b̃i|b̃j〉 (7)

〈ãi|b̃j〉 = δi,jλi = 〈b̃j|ãi〉 (8)

Using (7,8) we can see that W |ãi〉 = − |ãi〉+ 2λi |b̃i〉 and W |b̃i〉 = −2λi |ãi〉+ (4(λi)
2−

1) |b̃i〉. Using the unitarity of W we see that 1 = 〈b̃i|b̃i〉 〈Wãi|Wãi〉 ≥ | 〈b̃i|W |ãi〉 |2 =

|2λi − 1|2 so λi ≤ 1 for every i.

(ii): For k + 1 ≤ l ≤ h Vl = Span(|ãl〉 , |b̃l〉) is two dimensional because 〈al|bl〉 6= 1,

and invariant as the above formulae for W |ãl〉 ,W |b̃l〉 show. WVl can be written as

(2 |b̃l〉 〈b̃l| − I)(2 |ãl〉 〈ãl| − I) which is a product of two reflections on the plane Vl. So it

is a (real) rotation by angle 2θl where cos(θl) = 〈al|bl〉 = λl.

(iii-iv): VA ∩ V ⊥B = Span
(
|ãi〉 | h+ 1 ≤ i ≤ n

)
and V ⊥A ∩ VB =

Span
(
|b̃j〉 |h+ 1 ≤ j ≤ m

)
is also apparent from (8) and it is also clear that W =

refB · refA acts as −Id on these subspaces.

(i): VA ∩ VB ⊇ Span
(
|ãl〉 = |b̃l〉 |1 ≤ l ≤ k

)
since 〈al|bl〉 = λl = 1 which means

|al〉 = |bl〉. The action of W = refB · refA on VA ∩ VB is obviously Id.

The relations (7,8) show the orthogonality of the above decomposition of

Span(VA, VB). For the proof completeness of the decomposition observe that

dim(Span(VA, VB)) = dim(VA) + dim(VB) − dim(VA ∩ VB) = n + m − dim(VA ∩ VB).

Also note that we have already described disjoint orthogonal subspaces of dimension

2 ∗ (h − k) + (n − h) + (m − h) + k = n + m − k. So n + m − dim(VA ∩ VB) ≥
n + m − k ⇔ dim(VA ∩ VB) ≤ k. It implies that equality holds everywhere,

VA ∩ VB = Span
(
|ãl〉 = |b̃l〉 |1 ≤ l ≤ k

)
and that our decomposition is complete.

For the real case note that if D(A,B) is real then U, V can be chosen to be real

orthogonal matrices.

Finally observe that the singular vector pairs of D(A,B) are the columns of U, V :

(U.i, V.i) corresponding to the singular values λi. Substituting |ãi〉 = AU.i and |b̃i〉 = BV.i
completes the proof.

Remark 6 If A,B from the Real Spectral Lemma has common columns, we can simply

remove them, the reduced matrices A′, B′ result in the same transformation W .

Proof Let C = Span(c1, . . . , cg) be the subspace spanned by the common columns of

A,B. On the invariant subspace C⊥ refA = refA′ and refB = refB′ . And on the invariant

subspace C refA = −refA′ , refB = −refB′ . So refArefB = refA′refB′ is unchanged on

the whole Hilbert space. The only thing happens we transfer vectors from VA ∩ VB to

V ⊥A′ ∩ V ⊥B′ .

Quantum walk based search methods and algorithmic applications 16

The following lemma is mine and is intended to fill a hole in the proof about the

quantum hitting time in [Sz2]. To figure out the proof I used the insight given by

the Real Spectral Lemma, that for any v ∈ V ⊥A every component of v in the invariant

”rotation subspaces” of W is also in V ⊥A .

Lemma 7 Let A,B, VA, VB as in the Real Spectral Lemma, then for W = WA,B =

refVBrefVA and u ∈ V ⊥A we have (W t + (W †)t)u ∈ V ⊥A .

Similarly v ∈ V ⊥B ⇒ (W t + (W †)t)v ∈ V ⊥B .

Proof Since W is unitary W † = W−1 = refVArefVB ,

also observe u ∈ V ⊥A ⇔ refVAu = −u:

(W t + (W †)t)u = W tu+ (W †)t(−refVAu) = refVBrefVA , . . . , refVBrefVA︸ ︷︷ ︸
t

u−

refVA refVBrefVA , . . . , refVBrefVA︸ ︷︷ ︸
t

u = (W t − refVAW
t)u = −refVA(W t − refVAW

t)u

where the last equality shows that (W t + (W †)t)u ∈ V ⊥A . The second case is given by

the symmetry: WA,B +W−1
A,B = refVBrefVA + refVArefVB = W−1

B,A +WB,A

Quantum walk based search methods and algorithmic applications 17

4. Hitting Times for classical Markov chains and their relation to the

corresponding Quantum Walk

This Section covers the main result of Szegedy. I present restructured, corrected

and amended versions of the proofs what also makes me able to state the main theorem

in a slightly stronger form. The proofs only roughly follow the ones in [Sz2], and I also

filled a gap (see Remark 13).

4.1. Hitting Time for classical Markov chains and the Leaking Walk Matrix

The problem is the following: We have a Markov chain described by the transition

matrix P on the state space X, and a set of marked items M ⊆ X. We start by picking

an element x ∈ X uniformly at random. The question is how long should we run our

random process to find an element of M .

Definition (Classical Hitting Time) The classical hitting time H(P,M) is the

expected number of steps needed to reach M

H(P,M) = E(Numer of steps done before reaching M)

where the expectation is both over the initial (uniform) distribution and over the random

process described by the Markov chain.

Note that this expression is called Average Hitting Time in the literature of Random

Walks, since it is an average over all the individual hitting times of the nodes of the

graph.

We can formulate the search process as a modified Markov chain. Before each step

we check whether x ∈ M , if yes we stay at x (forever), otherwise we do a transition to

a new state y according to the probabilities described by Pxy.

Definition (Leaking Walk Matrix) The transition matrix of the above described

modified Markov chain is the so called leaking walk matrix.

PL =

(
PM P ′

0 I

)
(9)

Where PM is the restriction of P to the subset X \M , and P ′ is similarly the restriction

of P to the (X \M)→M transitions.

From now on we are assuming P = P T throughout this Section, and introduce

several notations to simplify formulae. Let ex be the vector with all 0 coordinates

except for x where it has value 1. For any S ⊆ X let 1S =
∑

x∈S ex and 1 = 1X . For

a (row) vector v define ‖v‖1 =
∑

x∈X |vx|. If v is non negative then we can write it

‖v‖1 = v · 1T . Let ρ0 = 1
|X|1, and in general let us denote the probability distribution

of the walk after t steps with ρt, so that ‖ρt‖1 = 1 and the probability of being in the

set S is ρt1
T
S .

Quantum walk based search methods and algorithmic applications 18

Theorem 8 (Classical Hitting Time) Let P = P T be a symmetric Markov chain on

the set X. Then for any set of marked elements M ⊆ X:

H(P,M) =
∑
ci 6=0

c2i
1

1− λi
(10)

where the numbers (ci, λi) correspond to the decomposition of the vector
√

1
|X|1X\M of

the form
∑|X\M |

i=1 ci · vi according to an orthonormal eigenvalue system (λi, vi) of the

leaking walk matrix PM .

If P is irreducible as well then for every ∅ 6= M ⊆ X this expression is finite.

Proof We will use a neat formula for calculating expectation. Suppose X is a random

variable taking values in N+
0 . Then we can calculate its expectation as follows:

E[X] =
∞∑
i=0

iP (X= i) =
∞∑
i=0

∞∑
j=0

P (X= i& i>j) =
∞∑
j=0

∞∑
i=0

P (X= i& i>j) =
∞∑
j=0

P (X>j)

Note that this formula is correct even in the case when the expectation is infinite.

This formula and the notations we introduced makes the calculation of H(P,M)

formally simple:

E(Number of steps done before reaching M) =
∞∑
t=0

P (M is not reached after t steps) =

∞∑
t=0

ρt1
T
X\M =

∞∑
t=0

1

|X|
1(PM)t1TX\M =

∞∑
t=0

(√
1

|X|
1X\M

)
(PM)t

(√
1

|X|
1
T
X\M

)

Let û =
√

1
|X|1X\M . Since P is symmetric PM is symmetric as well so it can be

diagonalised using an orthogonal transformation, and its eigenvalues are real numbers.

Let ui : 1 ≤ i ≤ |X \M | be an orthonormal eigenvector system with the corresponding

eigenvalues λi. We can now express û =
∑|X\M |

i=1 ciui. We can continue our calculations:

H(P,M) =
∞∑
t=0

û(PM)tûT =
∞∑
t=0

|X\M |∑
i=1

c2iλ
t
i =

∑
ci 6=0

c2i
1

1− λi
(11)

Here the last equation needs some caution, to justify it we need to bound the eigenvalues

of PM first.

Since for all rows pMx. of PM ‖pMx. ‖1 ≤ 1 we get that for any vector v ∈ C|X\M |:

‖vPM‖1 =
∑

y∈X\M

∣∣vpM.y ∣∣ =

X\M∑
y

∣∣∣∣∣∣
X\M∑
x

vxp
M
xy

∣∣∣∣∣∣ ≤
X\M∑
x,y

∣∣vxpMxy∣∣ =

X\M∑
x

|vx|‖pMx. ‖1 ≤ ‖v‖1

(12)

which means that the eigenvalues of PM are bounded by 1 in absolute value.

Quantum walk based search methods and algorithmic applications 19

If |λ| = 1 for some v eigenvector then we have equality everywhere, in particular∑
x |vx|‖pMx. ‖1 = ‖v‖1 i.e. ‖pMx. ‖1 = 1 for all x such that vx 6= 0. Let S = {x ∈ X \M :

vx 6= 0}, since no cancellations can occur in (12) we have that ∀x ∈ S : 1 =
∑

y∈S p
M
xy.

It implies that the probability of an S → X \ S transition is 0 according to P . Since

M ⊆ X \ S it can not happen if M 6= ∅ and P is irreducible.

Returning to the final step of (11): if for all ci 6= 0 |λi| ≤ 1 then the sum is absolute

convergent, and we can use the 1
1−λi formula for the individual geometric series. The

sum has a (possibly infinite) limit anyway, because the summation on t contains only

non-negative terms. If there is a ci 6= 0 for an eigenvector with λi = 1, then the sum

must be infinite - just as the expression
c2i
0

appearing on the right hand side. If there

is a cj 6= 0 for an eigenvector with λj = −1 there must be also an eigenvector vi with

λi = 1, ci 6= 0, because we are working with probability distributions which can not

eventually became negative at some indices.

We justified (11) and thus completed the proof.

Remark 9 By looking at the proof we can say more precisely that the expression above

is finite iff ∀x ∈ X \M ∃ m ∈ M such that there is a path from x to m in the graph

corresponding to P .

Note that P and PM might have negative eigenvalues which can cause problems in

the analysis of (10) because 1
1−λ and 1

1−|λ| can differ in magnitudes, but the corresponding

singular values for λ,−λ are the same: |λ|. However intuitively we feel that for a

probability distribution
∑

ci 6=0 c
2
i

1
1−|λi| can not be significantly larger than

∑
ci 6=0 c

2
i

1
1−λi .

The heuristic argument behind is that the coefficient for any negative eigenvalue is

at most as big as the sum of coefficients for larger positive eigenvalues, otherwise

the probability density vector would eventually contain negative entries. The rigorous

version of the above argument provides the following lemma for the uniform distribution:

Lemma 10 Using the decomposition from Theorem 8 of û =
√

1
|X|1X\M =

∑|X\M |
i=1 ci·vi,

we have the following inequalities concerning the ci coefficients and the corresponding

eigenvalues of PM :∑
ci 6=0

c2i
1

1− |λi|2
≤
∑
ci 6=0

c2i
1

1− λi
≤ 2

∑
ci 6=0

c2i
1

1− |λi|2
(13)

Proof Following the proof of Theorem 8 and looking at (11) we see that

P (M is not reached after t steps) =
∑|X\M |

i=1 c2iλ
t
i. Since these probabilities are non-

increasing in t, we can conclude that for t ∈ N+
0

|X\M |∑
i=1

c2iλ
2t
i ≤

|X\M |∑
i=1

c2iλ
2t
i +

|X\M |∑
i=1

c2iλ
(2t+1)
i ≤ 2

|X\M |∑
i=1

c2iλ
2t
i

which after summing up for all t ∈ N+
0 yields the following geometric sequences

∞∑
t=0

|X\M |∑
i=1

c2iλ
2t
i ≤

∞∑
t=0

|X\M |∑
i=1

c2iλ
t
i ≤ 2

∞∑
t=0

|X\M |∑
i=1

c2iλ
2t
i .

Quantum walk based search methods and algorithmic applications 20

4.2. Hitting Time for the Quantum Leaking Walk

For a Markov chain P on state set X in the presence of a marked set M ⊆ X we define

the quantum leaking walk WPL
as the quantisation of the leaking walk matrix PL (9).

Before defining hitting time for the quantum case we should first find the quantum

analogue for the uniform starting distribution. A natural definition for the initial state

|φ0〉 can be given using the transition states of (5), which is independent of the marked

set M :

|φ0〉 =
1√
|X|

∑
x∈X

|rx〉

We define quantum hitting time in terms of this initial state and the quantised

leaking walk:

Definition (Quantum Hitting Time) For quantised walk WP and marked set M

we define the hitting time H(WP ,M) = T ′ to be the smallest number of steps T ′ such

that ∀T ≥ T ′ :

1

T + 1

T∑
t=0

∣∣W t
PL
|φ0〉 − |φ0〉

∣∣2 ≥ 1− |M |/|X| (14)

Szegedy accounted for this definition based on the observation that the hitting time

for classical Markov chains is typically in the order of the time when ρ0P
t becomes

significantly skewed towards M i.e. when ‖ρ0P t − ρ0‖1 becomes significantly large.

We are going to analyse H(WP ,M) using our Real Spectral Lemma. We will need

to deal with several trigonometric expression and not to interrupt the train of thought

later, we prove the following facts beforehand.

Proposition 11∣∣∣∣∣
T∑
t=0

cos(t2β)

∣∣∣∣∣ ≤ 1

2
+

1

2
√

1− cos2(β)
≤

√
1

1− cos2(β)
(15)

Proof To prove (15) we will use the following inequality:

|cos(2β + γ)− cos(γ)| ≤ 2|sin(β)| (16)

To show that this inequality holds let us fix β and look at the extremal values of

cos(2β + γ)− cos(γ) in γ by finding the roots of its derivative: sin(γ)− sin(2β + γ). If

β /∈ {nπ|n ∈ Z} it has two solutions modulo 2π: γ = π/2 − β and γ = 3π/2 − β; the

corresponding values of cos(2β + γ) − cos(γ) are 2sin(β),−2sin(β). (The β = nπ case

is trivial.)

Now we start proving (15) by calculating the sum:

T∑
t=0

cos(2tβ) =
T∑
t=0

e2itβ + e−2itβ

2
=

1

2

(
e2i(T+1)β − 1

e2iβ − 1
+
e−2i(T+1)β − 1

e−2iβ − 1

)
=

1

2

(
(e2i(T+1)β − 1)(e−2iβ − 1) + (e−2i(T+1)β − 1)(e2iβ − 1)

(e2iβ − 1)(e−2iβ − 1)

)
=

Quantum walk based search methods and algorithmic applications 21

=
cos(2Tβ)− cos(2(T + 1)β) + 1− cos(2β)

2− 2cos(2β)
=

1

2

(
1 +

cos(2Tβ)− cos(2Tβ + 2β)

1− (cos2(β)− sin2(β))

)
Now we apply (16) to the numerator and use in the denominator 1 = cos2(β) + sin2(β):∣∣∣∣∣
T∑
t=0

cos(t2β)

∣∣∣∣∣ ≤ 1

2

(
1 +

2|sin(β)|
2sin2(β)

)
=

1

2

(
1 +

1

|sin(β)|

)
=

1

2
+

1

2
√

1− cos2(β)
finally

√
1− cos2(β) ≤ 1⇒

√
1− cos2(β)

2
+

1

2
≤ 1⇒ 1

2
+

1

2
√

1− cos2(β)
≤ 1√

1− cos2(β)

We are ready to prove the following nice bound on the quantum hitting time:

Theorem 12 (Quantum Hitting Time)

H(WP ,M) ≤ 2
∑
c̃i 6=0

c̃2i

√
1

1− |λi|2

where M X and the c̃i coefficients correspond to the decomposition of
√

1
|X\M |1X\M =∑|X\M |

i=1 c̃iui according to the (ui, λi) orthonormal eigenvalue system of the symmetric

matrix PM .

Proof To start the estimation of H(WP ,M), we take a closer look at (14).∣∣W t
PL
|φ0〉 − |φ0〉

∣∣2 =〈W t
PL
φ0|W t

PL
φ0〉−〈W t

PL
φ0|φ0〉−〈φ0|W t

PL
φ0〉+〈φ0|φ0〉= 2−2〈W t

PL
φ0|φ0〉
(17)

where in the last equality we used the fact that WPL
and φ0 has real coefficients in the

computational basis.

WPL
is defined in terms of the modified right and left transition states, which are

identical on the set of marked elements ∀m ∈ M : |r′m〉 = |m〉 |m〉 = |l′m〉. The other

transition vectors of P are not influenced by the presence of M . By Remark 6 we may

view WPL
as the product of reflections on the subspaces spanned by these unchanged

transition vectors:

TMR = Span(|rx〉 : x ∈ X \M), TML = Span(|lx′〉 : x′ ∈ X \M); WPL
= refTM

L
· refTM

R

(18)

Inspired by this we break |φ0〉 into two parts |φ01〉 , |φ02〉: |φ01〉 =
∑

x∈X\M |rx〉,
|φ02〉 =

∑
m∈M |rm〉, so

〈φ01|φ01〉 = 1− |M |/|X| , 〈φ02|φ02〉 = |M |/|X| (19)

Using this decomposition we get that

〈W t
PL
φ0|φ0〉 = 〈W t

PL
φ01|φ01〉+ 〈W t

PL
φ01|φ02〉+ 〈W t

PL
φ02|φ01〉+ 〈W t

PL
φ02|φ02〉 (20)

Quantum walk based search methods and algorithmic applications 22

Using that |φ01〉 , |φ02〉 have real coefficients: 〈W t
PL
φ01|φ02〉 = 〈φ02|W t

PL
φ01〉 resulting in

〈W t
PL
φ01|φ02〉+ 〈W t

PL
φ02|φ01〉 = 〈((W †

PL
)t +W t

PL
)φ02|φ01〉 (21)

We would like to show that this equals 0. Observe that |φ01〉 ∈ TMR and

|φ02〉 ∈ (TMR)⊥. This condition compared with my Lemma 7 together with the reduced

form of WPL
(18) justifies that the right hand side of (21) is indeed 0.

Using the Cauchy–Schwarz inequality and (19): | 〈W t
PL
φ02|φ02〉 | ≤ |W t

PL
φ02||φ02| =

|φ02|2 = |M |/|X|. Putting this into (20), and using that (21) is zero we get the following

lower bound, after substituting into (17):∣∣W t
PL
|φ0〉 − |φ0〉

∣∣2 ≥ 2− 2 〈W t
PL
φ01|φ01〉 − 2|M |/|X|

This bound simplifies the estimation of H(WP ,M) (14):

1−|M |/|X| ≤
T∑
t=0

∣∣W t
PL
|φ0〉 − |φ0〉

∣∣2
T + 1

⇐ 1−|M |/|X| ≤
T∑
t=0

2− 2 〈W t
PL
φ01|φ01〉 − 2|M |/|X|
T + 1

⇔ −(1− |M |/|X|) ≤
T∑
t=0

−2 〈W t
PL
φ01|φ01〉

T + 1
⇔ T + 1

2
≥

T∑
t=0

〈W t
PL
φ01|φ01〉

1− |M |/|X|
(22)

It is time to use the Real Spectral Lemma of Section 3. To keep the notations

appropriate let us now the identify TMR , TML width the matrix formed by the transition

vectors of (18) as columns. Using that 〈rx|ly〉 =
√
pxy
√
pyx and that P = P T the

discriminant matrix of the Real Spectral Lemma D(TMR , TML) becomes (TMR)†TML = PM .

Now we should relate the orthogonal diagonalisation of PM = OTΛO to its singular

value decomposition. The relation is simple, we should only change the sign of the

negative diagonal elements of Λ (shortly denoted by |Λ|) and change the sign of the

corresponding rows of the orthogonal matrix on the right hand side resulting O′. The

corresponding singular value decomposition is PM = OT |Λ|O′. It means that the

orthogonal spectral decomposition of a vector according to PM = OTΛO is the same

as the decomposition according to the left singular vectors of PM = OT |Λ|O′ just the

singular values have opposite sign if the corresponding eigenvalue was negative.

Using the form |φ01〉 = TMR û, where just like before û =
√

1
|X|1X\M , we can further

decompose û =
∑|X\M |

i=1 ciui so that ui has singular value |λi|. This is essentially the

same decomposition as discussed in (11). We can finally write |φ01〉 =
∑|X\M |

i=1 ciT
M
R ui.

Now applying the Real Spectral Lemma of Section 3 and noting that the vectors TMR ui
lie in pairwise orthogonal WPL

invariant subspaces we get

〈W t
PL
φ01|φ01〉 =

|X\M |∑
i=1

c2i 〈W t
PL
TMR ui|TMR ui〉 =

∑
ci 6=0

c2i cos(2tθi) where cos(θi) = |λi| (23)

Using (15) we can bound the following sum:
∣∣∣∑T

t=0 〈W t
PL
φ01|φ01〉

∣∣∣ ≤ ∑ci 6=0 c
2
i

√
1

1−|λi|2

Noting the normalisation c̃i = ci/
√

1− |M |/|X| due to the fact that
∑|X\M |

i=1 c2i =

| |φ01〉 |2 = 1−|M |/|X| (19), and comparing this bound with (22) completes the proof.

Quantum walk based search methods and algorithmic applications 23

Remark 13 The original proof of this theorem (Lemma 6 in [Sz2]) is quite sketchy.

That proof implicitly uses that (21) is zero, however this is not even explicitly stated.

I could not find a immediate argument that derives this equality and is based on the

surrounding statements. Two relevant property listed there probably meant to prove this

equality are 〈φ01|φ02〉 = 0, and that these vectors have real coefficients. However this is

not enough, consider the following simple example, where U is a simple reflection:

Example

|ψ1〉 =

[
1

0

]
, |ψ2〉 =

[
0

1

]
, U =

[
0 1

1 0

]
⇒ U |ψ1〉 = |ψ2〉 , U |ψ2〉 = |ψ1〉

then 〈ψ1|ψ2〉 = 0 holds, but 〈Uψ1|ψ2〉+ 〈Uψ2|ψ1〉 = 〈ψ2|ψ2〉+ 〈ψ1|ψ1〉 6= 0

I used the stronger observation that |φ01〉 ∈ TMR , |φ02〉 ∈ (TMR)⊥ and introduced

Lemma 7 which made me able to prove that (21) is indeed zero.

4.3. Relation between Classical and Quantum Hitting Times

Now we would like to relate Classical and Quantum Hitting Times. I can state the

main theorem of [Sz2] in a slightly more general form an with an improved constant.

Theorem 14 For every symmetric Markov chain P on state set X, and for every

marked set M ⊆ X with |M | ≤ |X|/2 the Quantum Hitting Time is quadratically

smaller than the Classical Hitting Time:

H(WP ,M) < 3
√
H(P,M)

Proof We use the notations from the proof of the previous theorem. The upper bound

on the Quantum Hitting Time can be further bounden by Jensen’s inequality, using

that
√

is a concave function and that
∑|X\M |

i=1 c̃2i = 1:

∑
c̃i 6=0

c̃2i

√
1

1− |λi|2
≤
√∑

c̃i 6=0

c̃2i
1

1− |λi|2
≤

√
1

1− |M |/|X|

√∑
ci 6=0

c2i
1

1− λi
≤
√

2H(P,M)

The second inequality is due to Lemma 10 using the fact that c̃i = ci/
√

1− |M |/|X|
and the third inequality comes from Theorem 8 and using that |M |/|X| ≤ 1/2. Finally

using Theorem 12 and that 2
√

2 < 3 we get the sought inequality of the theorem.

Note that the amended proofs I presented in this thesis made me able to remove the

irreducibility and aperiodicity assumptions on P , as well as improved the constant,

which was around 100 in [Sz2].

4.4. A δε bound on hitting times

We already have nice expressions for both Classical and Quantum Hitting Times,

however they heavily depend on the actual marked set M . This makes us think, can

Quantum walk based search methods and algorithmic applications 24

we prove some sort of a uniform bound? The answer of [Sz1] is that if we have uniform

lower bound on the size of M , then we get a uniform upper bound for the hitting times.

Before stating the lemma we need some preparation.

Definition (Spectral Norm, Eigenvalue Gap) For a matrix P let the eigenvalues

be λi : 1 ≤ i ≤ k listed with multiplicity in decreasing order: |λ1| ≥ |λ2| ≥ . . . ≥ |λk|.
Then the spectral norm of P denoted by ‖P‖2 is |λ1|. The eigenvalue gap is defined as

|λ1| − |λ2|.

We will also need a simple linear algebraic theorem which is at the heart of the

theory for discrete time, finite Markov chains:

Theorem 15 (Perron-Frobenius theorem for positive matrices) Let P ∈
(R+)n×n then it has a unique largest eigenvalue λ ∈ R+ which is equal to the spectral

norm of P : λ = ‖P‖2. The corresponding eigenvector can be chosen to be positive

coordinate vise.

The proof is elementary, and can be found in many textbooks, for example in [Mey].

We can also apply a simple limiting argument to show that for non-negative matrices

there is a non-negative eigen-pair (λ, ρ) with λ being equal to the spectral norm. Now

let P be transition matrix describing our Markov chain. Then we can assume ρ is also

normalised such that ‖ρ‖1 = 1. Since ρ describes a probability distribution and P is

stochastic we have 1 = ‖ρP‖1 = λv implying λ = 1. So ‖P‖2 = 1, and the eigenvalue

gap of P is 1− |λ2|, where λ2 is the second largest eigenvalue of P (the eigenvalues are

again counted with multiplicity). It is easy to see that this eigenvalue gap controls the

speed of the convergence to the limiting distribution of P .

Lemma 16 Let P be a symmetric Markov chain on state set X, let δ be the eigenvalue

gap of P and M ⊆ X such that |M | > ε|X|. Then the spectral norm of PM is at most

1− δε/2.

Proof Let us denote |X| = n. Since PM is non-negative, we have a non-negative

eigenpair (λ, ρ), such that λ = ‖PM‖2. If λ = 0 we are done, else suppose that ρ has

unit length: |ρ| = 1. Since P is symmetric we have an orthonormal system of eigenvalues

(λi, vi) : 1 ≤ i ≤ |X| for P . We can further assume λ1 = 1 and v1 =
√

1/n1. Using this

we can decompose ρ: ρ =
∑n

i=1 αivi, where
∑n

i=1 α
2
i = 1 because of the orthonormality.

Further using that both ρ and P − PM are non negative, we have:

λ2 = |ρPM |2 ≤ |ρP |2 =
n∑
i=1

α2
iλ

2
i ≤ α2

1+
n∑
i=2

α2
i (1−δ)2 ≤ α2

1+(1−δ)
n∑
i=2

α2
i = 1−δ

n∑
i=2

α2
i

Now we should estimate
∑n

i=2 α
2
i . We use that ρ has at least εn zero coordinates:

α1 = 〈ρ,
√

1/n1〉 =
√

1/n〈ρ,1X\M〉 ≤ |ρ|
√

1/n|1X\M | ≤
√

1− ε

Hence
∑n

i=2 α
2
i = 1− α2

1 ≥ ε and finally λ2 ≤ 1− δε⇒ λ ≤ 1− δε/2

Quantum walk based search methods and algorithmic applications 25

Corollary 17 (A δε bound) For any symmetric Markov chain with eigenvalue gap δ,

if the proportion of marked elements is at least ε, then H(P,M) ≤ 2/δε and

H(WP ,M) ≤ 2/
√
δε

Proof For the classical case consider Theorem 8, for the quantum case compare

Theorem 12 with the expression in the last line of the previous proof: λ2 ≤ 1 − δε.

Note that this estimate might be trivial (∞), i.e. the eigenvalue gap δ can be zero

for example when the second largest eigenvalue is in fact −1. This occurs for example

when the chain is periodic, in such cases the Markov chain may still mix well. In such

case we can get rid of the negative eigenvalues by replacing P with the lazy walk matrix

(Id+ P)/2 to get a non trivial estimate on the hitting times.

Quantum walk based search methods and algorithmic applications 26

5. Algorithmic implications of Szegedy’s quantisation method

We have deeply analysed the relationship between the hitting times of classical

Markov chains and their quantised version. Now let us see how can we use it for

constructing and analysing quantum algorithms.

5.1. The Detection Problem

In the case of classical walks we get an element of M with high prob-

ability in running time 2H(P,M). It follows from the Markov inequality:

P (we did not reach M after 2H(P,M) steps) ≤ 0.5.

However in the quantum case we only now that
∣∣W t

PL
|φ0〉 − |φ0〉

∣∣2 becomes big in

average after H(WP ,M) repetitions. It does not directly imply that we also get an

element of M after a measurement. But it does make us able to decide whether there

is a marked set in H(WP ,M) time. First we define the corresponding problem:

Definition (Detection Problem) LetM⊆ 2X be a system of non-empty subsets of

X. Given that the marked set M is either empty or M ∈M decide which is the case.

To solve this problem in the classical case we are going to use the leaking walk PL,

where PL is the leaking walk corresponding to the (possibly empty) marked set M . In

the quantum case we use its quantised version WPL
. More precisely we are going to use

the controlled version of it: c-WPL
defined by

|0〉C |x〉 |y〉 → |0〉C (WPL
|x〉 |y〉)

|1〉C |x〉 |y〉 → |1〉C |x〉 |y〉

Where the first qubit |i〉C is an additional control bit. By linearity the operator is well

defined. For simplicity now assume that instead of M we are given directly by a ”black-

box” implementing c-WPL
. We will address the question of implementation in the next

Section.

Theorem 18 Let TMAX = MAX
M∈M

(H(P,M)) then we can solve the detection problem

classically within 2TMAX steps and quantumly within 3
√
TMAX steps with bounded one

side error.

Proof In the classical case we run P for 2TMAX steps, checking in each step whether

x ∈ M and say that M ∈ M if we find some marked element during the steps of

the random walk, otherwise we say M = ∅. If M ∈ M it is an easy consequence of

the Markov inequality that we find some m ∈ M with probability at least 1/2 - as we

observed at the beginning of the Section. It is also clear that if M = ∅ then this process

also output M = ∅, so the error is one-sided.

For the quantum case we construct a process using the controlled quantum walk

operator cc-WPL
. We amend the space of two walk registers |x〉 |y〉 with an additional

control qubit, and start our process from the state |φ0〉 defined like before, with the

Quantum walk based search methods and algorithmic applications 27

control bit set to zero. First we apply the Hadamard transformation (1) on the

control bit. After that we do the actual walk steps (c-WPL
)t for a randomly selected

1 ≤ t ≤ 3
√
TMAX and finally undo the Hadamard transformation:

|0〉C |φ0〉
H−→ 1/

√
2(|0〉C + |1〉C) |φ0〉

(c−WPL
)t

−→ 1/
√

2(|0〉C (WPL
|φ0〉) + |1〉C |φ0〉)

H=H−1

−→
1/2 |0〉C (WPL

|φ0〉+ |φ0〉) + 1/2 |1〉C (WPL
|φ0〉 − |φ0〉)

(24)

At the end of the process we measure the control bit, and the left walk register. If either

the control register is 1 or the element found in the left walk register is in M , then we

say M ∈M. Otherwise we say M = ∅.

If M ∈M we consider two sub-cases:

If |M | > 1/2|X| then we find an element in the left walk register with probability

at least 1/4. For this observe that the last step of (24) is a local transformation on the

control bit, so it does not affect the measurement statistics of the left walk register. In

the state just before the last step the states 1/
√

2 |0〉C (WPL
|φ0〉), 1/

√
2 |1〉C |φ0〉, do not

interfere since they are orthogonal. The probability that the measurement outcome of

the left walk register |φ0〉 yield some m ∈M is at least 1/2 since |M | > 1/2|X|. So the

overall probability of measuring some m ∈M in the left walk register is at least 1/4.

If |M | ≤ 1/2|X| then 3
√
TMAX ≥ H(WP ,M) according to Theorem 14. I.e. by

definition |W t
PL
|φ0〉− |φ0〉 |2 ≥ 1− |M |/|X| ≥ 1/2 averaged over all 1 ≤ t ≤ 3

√
TMAX so

|1/2 |1〉C (|φ0〉−WPL
|φ0〉))|2 ≥ 1/8 in average as well. This implies that the measurement

probability of 1 in the control register is at least 1/8 in this case.

We need to show that the error is one sided. Suppose that M = ∅. Then the

discriminant matrix for WPL
= WP is simply P . And as P = P T we have 1P = 1. Since

|φ0〉 was generated according to the uniform distribution 1/
√
|X|1 on the transition

states, using the Real Spectral Lemma from Section 3 we get that WP |φ0〉 = |φ0〉
resulting that the probability of measuring 1 in the control register is 0 in the case when

M = ∅.

Corollary 19 (The
√
δε rule) Let P be a symmetric Markov chain with eigenvalue

gap δ. If for all M ∈ M: |M | > ε|X| then we can solve the detection problem in time

O(1/
√
δε) with the quantum walk algorithm.

This is a consequence of Corollary 17.

5.2. High level description of the implementation vs. the quantum query model

The implementation of the actual process depends heavily on the Markov chain

we are quantising. To keep things simple but general enough we break down the

implementation of the process to the usage of 3 unified unitary operations:

Setup: Creates the starting state from the initial zero state according to the stationary

distribution τ of the Markov chain P :

S : |0〉 |0〉 → 1/
√
πx |x〉 |0〉

Quantum walk based search methods and algorithmic applications 28

Update: In fact it covers 4 different operators, one which generates the right transition

states, and its symmetric pair: (we use notations introduced at the beginning (5))

UR = |x〉 |0〉 → |rx〉
UL = |0〉 |y〉 → |ly〉

together with their inverses U−1R , U−1L .

Check: Checks whether the left (right) walk register contains an element of M , and

conditional on this changes the value of an additional register qubit |i〉M used for storing

this information temporarily:

CL : |x〉 |y〉 |j〉M → |x〉 |y〉 |j ⊕x∈M 1〉M
CR : |x〉 |y〉 |j〉M → |x〉 |y〉 |j ⊕y∈M 1〉M

where j ⊕x∈M 1 is the conditional binary addition, if x ∈ M it flips the value of j,

otherwise does keep the value of j.

Remembering that we need to implement the conditional walk operator we indicate

that we also have a control qubit. Using the above operators we can generate the starting

state of the process from the zero state: |0〉C |0〉 |0〉 |0〉M
URS−→ |0〉C |φ0〉 |0〉M

We will implement the reflections in the style of the Grover Amplitude Amplification

algorithm. To do so we need the controlled phase flip operator. It does flip the sign of

the amplitude for all zero vector on the right (left) walk register controlled by both the

control and marked qubits:

c-FR : |0〉C |x〉 |0〉 |0〉M → −|0〉C |x〉 |0〉 |0〉M
c-FL : |0〉C |0〉 |y〉 |0〉M → −|0〉C |0〉 |y〉 |0〉M

and acts as the identity on its orthogonal complement. (In fact the controlled flip

operator is just a flip operator acting on the larger space amended by the two control

registers.)

Using the reduced form of (18) we can implement the controlled walk operator

using the controlled reduced leaking reflections:

−c-refTM
R

= URCLc-FRCLU
−1
R

−c-refTM
L

= ULCRc-FLCRU
−1
L

c-WPL
= c-refTM

L
· c-refTM

R
= (−c-refTM

L
) · (−c-refTM

R
)

We are going to count only the calls to the operators above, and assume that they

are implemented by some quantum black box. This is the so called query model - a

query is an application of a unitary implemented by the black box. We will shortly

denote the costs of the 3 different type of queries S, U, C correspondingly. All other

operation is considered to be free.

The costs S, U, C do always depend on the particular problem, but this query model

does make the analysis of our search algorithms clear, simple and general. We can argue

for this model by that including all the steps we drop this way seem to never change

Quantum walk based search methods and algorithmic applications 29

significantly the complexity of the search algorithm we consider. There might be some

additional polylog(n) factor though.

We will sometimes use walks with some data stored at the vertices in order to

make checking easier. In this case we always maintain some data structure attached

to the vertices. So we are going to work with states |dx〉D |x〉 |y〉 |dy〉D. Then we do

everything according to the natural isomorphisms of the left |dx〉D |x〉 ↔ |x〉 and right

|y〉 |dy〉D ↔ |y〉 walk registers.

This isomorphisms connect the cases when we store some data and when we do

everything as before at an abstract level, implying that the overall analysis of the search

algorithm do not change. However the costs of the various operations might change

so in this case we could use the notation Sd, Ud, Cd for the costs of the corresponding

operations which also include the time needed to manipulate the data. For simplicity

we only use the notations S, U, C, but if there is a data structure involved then this

notation will refer to the costs Sd, Ud, Cd.

This trick of including some data in the description usually reduces the cost of

checking, but makes the update operator harder to implement: |dx〉D |x〉 |0〉 |0〉D →
|dx〉D |rx〉 |drx〉D (For simplicity we assume that the data belonging to the 0 vector is

also 0.)

5.3. The Element Distinctness Problem as a consequence

Szegedy originally defined the quantisation described in this thesis inspired by the

Element Distinctness Algorithm of Ambainis [Amb3]. Ambainis originally introduced

the quantum walk based search method for this problem in 2004.

This was the first search algorithm which did go beyond the Grover search. It also

shows why the
√
δε rule of Corollary 19 is useful. If we consider that ε is the proportion

of marked elements, then we may ask why is it interesting at all? Grover search should

solve the problem in 1/
√
ε time which is even better then the time 1/

√
δε of Corollary

19. However we show that this is not the case for element distinctness.

The question for the element distinctness problem itself is quite simple, we are

given numbers x1, x2, · · · , xn ∈[m] are they all distinct? Classically we can formulate

this question like this: we are given a function f :[n]→ [m] find out whether there is a

pair of indices 1 ≤ k, l ≤ n such that k 6= l but f(k) = f(l).

Classically we would need to check the value of the function on all the inputs in

order to be able to decide the question. Then sorting the values we did get would solve

the problem with n queries and in overall nlog(n) running time. If we would like to

solve it only with high probability we would still need to query a constant percentage

of the elements.

However we can perform better in the quantum case. In order to develop quantum

algorithms for solving the problem we should define it in terms of some unitary operator,

i.e. present as a quantum circuit. In the classical version we are given a black box

which, given the number in ∈ [n] encoded by some binary string calculates and outputs

Quantum walk based search methods and algorithmic applications 30

f(in) ∈ [m] again encoded as some binary string.

Then the corresponding quantum black box works just like the standard quantised

version of this classical circuit (see Section 1.2). Using this quantum black box we can

formulate the quantum version of the previous decision problem:

Definition (Element Distinctness Problem) Suppose we are given a unitary

operation Uf (in the form of a quantum black box) which for a given input string

|in〉 computes the value of f(in) and puts it into the output register, formally:

Uf : |in〉 |out〉 → |in〉 |out⊕ f(in)〉

Find out whether there is some k 6= l such that f(k) = f(l) i.e. Uf |k〉 acts on the

output register identically to Uf |l〉.
First we could try to solve it using Grover Search. For example we could form pairs

of inputs |φ1〉 |φ2〉 and do Grover Search starting from the uniform superposition over

all pairs. Then we could use two queries to find out whether f on a pair of inputs is

distinct. But if we have only one non-distinct pair then the proportion of pairs we are

looking for is 2
n2 resulting in an overall O(n) quantum algorithm, which is no better then

if we would simply query all possible inputs. Or we could try to use sets of r inputs.

Then the setup cost would be roughly r Then to decide if an r-tuple contains such a pair

we are looking would need r query. While in the presence of a unique sought pair the

proportion of good r-tuples would be
(
n
r−2

)
/
(
n
r

)
= r(r−1)

(n−r+2)(n−r+1)
≈ r2/(n−r)2, resulting

in O(r + n−r
r
· r)) = O(n) running time using Grover. In fact using a clever two-level

construction combined with Grover search it can be solved using O(n
3
4) queries [Buh],

but it is still far from the optimal solution.

The trick of Ambainis is that he uses a spatial search algorithm on the Johnson

graph. The Johnson graph is a graph with vertex set
(
n
r

)
, where two edges are connected

iff the corresponding r-tuples differ only in one element. Here the value of the locality

of the search is apparent: during the algorithm Ambainis stores the values of f for the

elements of the r-tuples, and since in every step we move between neighbouring vertices

i.e. the r-tuples change only by one element, one query suffices to update data. This

reduces the number of queries required by on step of the walk from r to O(1).

The walk he uses is a uniform walk on the Johnson graph i.e. the transition

probabilities on all edges are 1
r(n−r) . Since this graph is r(n − r)-regular the matrix of

this uniform walk is simply the adjacency matrix divided by r(n− r). The eigenvalues

of the adjacency matrix of the Johnson graph are studied for example in [Knuth] giving

that the eigenvalue gap δ = n
r(n−r) which simplifies to δ = Ω(1

r
) if r ≤ n/2 (see also

[Bel]). If there is a pair k 6= l but f(k) = f(l) then the proportion of good r-tuples is

in the order r2/n2 if r ≤ n/2 as we already calculated, i.e. ε ≥ r2/n2. Then Corollary

19 - the
√
δε rule tells us that running the walk for at most n/

√
r steps makes us able

to answer the element distinctness question with high probability. Considering that one

step of the walk did use O(1) queries, summing them up together with the setup cost

yields the overall number of queries: O(r + n/
√
r). This expression is minimised when

r = n
2
3 , and gives the O(n

2
3) bound on queries, proving:

Quantum walk based search methods and algorithmic applications 31

Theorem 20 (Ambainis) There is a quantum query machine deciding the element

distinctness problem with high probability using O(n
2
3) queries.

This upper bound on the problem is tight as meets the lower bound given by Aaronson

and Shi [ASh] in 2002.

Looking at the proof we see that it can be easily generalised to the case when

instead of pairs we are looking for k-tuples having the same value of f . The only thing

we should adjust is the proportion of marked r-tuples when we have at least one such

k-tuple, yielding Ω(rk/nk). Therefore we get an overall bound O(r +
√
nk/rk−1) on

queries optimised when r = nk/k+1. So we get the generalised version of the previous

theorem:

Theorem 21 (Ambainis) There is a quantum query machine deciding the element

k-distinctness problem with high probability using O(n
k

k+1) queries.

5.4. Finding a marked element, quantum

If we have good control over the structure of X then using binary search we can also

find an element using the detection algorithm as a subroutine. However it will introduce

an additional log(|X|)log(log(|X|)) factor in the time complexity. The log(|X|) factor

comes from the binary structure of the search, and the log(log(|X|)) factor comes from

the need for a more precise detection required to keep the summed errors low during

the whole process.

Szegedy showed [Sz2] that if the marked set consist of only one element, and the

Markov chain is also state transitive, then we can find the unique marked element with

good probability.

Theorem 22 (Finding a unique element) Let P be a symmetric, state transitive

Markov chain and suppose that there is a unique marked element z ∈ X. If T ≥
10
√

1
1−‖P{z}‖2

and we chose some t ∈ [1, T] uniformly at random then the probability

that measuring the second register of W t
PL
|φ0〉 gives z is Ω(|X|/H(P, {z})).

This theorem gives nice results for the d dimensional torus [n]d. If d ≥ 3 then the

classical hitting time is O(nd) whenever M 6= 0. Further if we have a unique marked

element z, then using at most O
(
nd/2

)
steps of the quantum walk we also find this

unique element with probability Ω(1).

A famous early result of Kempe et al. [SKW] about the hypercube becomes an

easy consequence as well. Kempe showed that searching for a unique element on the

hypercube can be solved in O(
√
n) steps. Historically it was one of the first positive

results about spatial quantum search. To prove this result using our machinery we first

introduce a theorem about hitting times [Lov1]:

Theorem 23 Let G = (V,E) be an undirected connected graph, and let P be the uniform

walk on it, i.e. the transition probability from any vertex v to any adjacent vertex is

1/d(v). Let H(s, t) be the expected number of steps needed to reach t starting from s, and

Quantum walk based search methods and algorithmic applications 32

let τ be the stationary distribution. Finally let 1 = λ1 > λ2 . . . > λ|V | be the eigenvalues

of P listed with multiplicity, then the following holds:

∑
t∈V

τtH(s, t) =

|V |∑
k=2

1

1− λk
(25)

The hypercube has a rich automorphism group, for example flipping the values on any set

of coordinates gives an automorphism. In particular if we select the set of coordinates

for which s and t differ, then we get an automorphism which interchanges s and t.

It shows that H(s, t) = H(t, s) Moreover the uniform walk on the hypercube is also

symmetric because it is a regular graph. So the left hand side of (25) coincides with the

classical hitting time for a unique marked element s in the case of the hypercube.

To bound the right hand side we need to examine the eigenvalues of the hypercube.

It can be easily checked that the d-dimensional hypercube has a set of mutually

orthogonal (eigenvector, eigenvalue) pairs which can be expressed in terms of the subsets

of [d]

∀S ⊆ [d] vS :=
∑

b∈{0,1}d

∏
i∈S

(−1)bieb, vSP =
d− 2|S|

d
vS; vS′ · vTS = δS′S

Using the exact form of the eigenvalues we can bound the hitting time as follows:

2d∑
k=2

1

1− λk
=

d∑
m=1

(
d

m

)
d

2m
≤ 2

d/2∑
m=1

(
d

m

)
d

2m
≤ d

d/8∑
m=1

(
d

m

)
+ 8

d/2∑
m=d/8

(
d

m

)

≤ d3−d/8
d/4∑

m=d/8

(
d

m

)
+ 8 · 2d ≤ (d3−d/8 + 8)2d ≤ c · 2d for some universal c ∈ R+

(26)

So we get that for any vertex v of the hypercube H(P, {v}) = Ω(n), where n = 2d. As

the hypercube is state transitive Theorem 22 implies that we can find a unique marked

vertex with high probability in time O(
√
n).

In the case of the Element Distinctness Algorithm Theorem 22 do not help much.

However the walk on the Johnson graph is state transitive, the problem is that the vertex

we are looking for is fundamentally not a single one, but a bunch of subsets containing

a non distinct pair.

These results make us feel, that the finding problem is much more complicated

in general than the detection problem. However there were much progress about this

question afterwards. In 2006 Magniez, Nayak, Roland and Sántha pushed forward the

unified approach of Szegedy by constructing their search algorithm which became known

as the MNRS search. The MNRS algorithm improved various aspects of Szegedy’s

approach. In particular it can find marked elements under more general conditions. In

the next Section we give an overview of their results.

Quantum walk based search methods and algorithmic applications 33

6. Implementation of the Quantum Walk Algorithm

In this Section we study the question of implementation of the walk algorithms

according to the generalised framework introduced in [MNRS]. In particular we show

how to implement Ambainis’s Element Distinctness algorithm along the lines of this

generalised framework. A possible implementation method was described in the original

article [Amb2], however I do not know about improvements on it. This original method

gave an O(log4(N)) time implementation of the walk steps, while we improve it to

O(log(N) log log(N)). More importantly our implementation method is conceptually

simpler and also fits well into the new general framework. We also introduce some

subroutines/techniques which may be applied to further problems as well.

In the Quantum walk based search one usually stores some data attached to the

states which makes easier to check whether a specific state is one we are seeking for. Then

the graph usually corresponds to some underlying structure where adjacent vertices

correspond to states which have similar data attached. Transitions between adjacent

states is preferred since it is simpler to keep track of the changes in the attached data.

This requirement of local transitions (spatiality) distinguishes the Quantum walk based

search from the unstructured Grover Search.

Dealing with the data attached to the vertex states is a crucial part of the whole

algorithm. To include the data structure into this picture elegantly one can simply treat

it as part of the (vertex)states, as discussed in 5.2 following [MNRS]. It results in some

sense in the duplication of the data stored, and is considered in the [MNRS] paper for

simplicity in the description. However we will show that this point of view is not only

useful at an abstract level but it may also make the implementation easier.

6.1. Quantum data structures - challenges

Keeping track of the changes in the attached data is an essential part of the quantum

walk based search algorithms. However implementing data structures in such quantum

algorithms can be challenging (see [Amb2]). There are three main difficulties for the

quantum data structure to deal with, which is not present in the classical setting:

• If we store some data then we need to store it exactly the same way regardless of

the previous operations we used to construct and modify it.

• All modification of the data structure should be reversible.

• All calculations should end after a constant number of steps, algorithms that work

only in good average time are not directly applicable.

The first requirement is in order to let interference occur: 0 = α |y〉 |dy〉−α |y〉 |dy〉
would normally interfere. But if the data is stored with slightly different structure, then

they will not cancel, however we would like them to do so. E.g. let the data stored

in some binary tree structure which differ in just the tree representation |t〉 6= |t′〉:
0 6= α |y〉 |dy〉 |t〉 − α |y〉 |dy〉 |t′〉

Quantum walk based search methods and algorithmic applications 34

The second requirement is a fundamental feature of quantum computing, and

together with to the first one is especially challenging. Even one of the most basic

operation of data structures: sorting is not allowed in its standard form.

The third requirement is because we want to work with superpositions. Even if

only a tiny bit of the state needs more calculation time we can not stop earlier. We

can not split operations according to superpositions. In other worlds we need an actual

hardware (quantum circuit) built in advance to implement the processes, where the

worst running time is the depth of the circuit.

6.2. Elementary operations and their complexity

We will need to use some elementary operations, so we shortly describe here some

examples and their complexity in the quantum case. As we already mentioned in Section

1.2 any classical circuit may be converted by a relatively low overhead.

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a1 == b1

a2 == b2

a3 == b3

a4 == b4

a5 == b5

a6 == b6

a1,2 == b1,2

a3,4 == b3,4

a5,6 == b5,6

a1,2,3,4 == b1,2,3,4

a == b

Some classical logical gates:

AND gate

d

c
c ∧ d

{
0 : c = 0 or d = 0

1 : c = 1 = d

OR gate

d

c
c ∨ d

{
0 : c = 0 = d

1 : c = 1 or d = 1

XNOR gate

d

c
c == d

{
0 : c 6= d

1 : c = d

Figure 2: Notation for some classical logical gates and a Boolean circuit built from them

which decides whether the two 6 bit numbers a, b are equal using 6 XNOR (NOT XOR)

gates and a binary tree of AND gates of depth 3 = dlog2(6)e. See also Figure 3.

More concretely we may assume the classical circuit consists of for example only

AND, OR and XNOR gates, since this is a universal set of logical gates. Then we

may replace these gates with their quantum analogue, where each new quantum gate

introduce a new output qubit. For an example consider the case when we want to

implement a circuit which decides whether two binary numbers are equal. Then the

Quantum walk based search methods and algorithmic applications 35

classical circuit may described as seen in Figure 2 and its quantised version as depicted

in Figure 3.

Some quantum logical gates:

|c〉 A
N

D

|c〉

|d〉 |d〉

|o〉 |o⊕ (c ∧ d)〉

|c〉

O
R

|c〉

|d〉 |d〉

|o〉 |o⊕ (c ∨ d)〉

|c〉 X
N

O
R

|c〉

|d〉 |d〉

|o〉 |o⊕ (c == d)〉

|a1〉 X
N

O
R

· · · X
N

O
R

|a1〉

|b1〉 · · · |b1〉

|o1〉

A
N

D

· · ·
A

N
D

|o1〉

|a2〉 X
N

O
R

· · · X
N

O
R

|a2〉

|b2〉 · · · |b2〉

|o2〉 · · · |o2〉

|o12〉

A
N

D

|o12〉

|a3〉 X
N

O
R

· · · X
N

O
R

|a3〉

|b3〉 · · · |b3〉

|o3〉

A
N

D

· · ·

A
N

D

|o3〉

|a4〉 X
N

O
R

· · · X
N

O
R

|a4〉

|b4〉 · · · |b4〉

|o4〉 · · · |o4〉

|o34〉 |o34〉

|o14〉 |o14 ⊕ (a14 == b14)〉

Figure 3: Some quantum (reversible) logical gates, and a quantum circuit built from

them which decides whether the two 4 bit numbers a, b are equal using 4 XNOR (NOT

XOR) gates and a binary tree of AND gates of depth 2 = dlog2(4)e. Compare with

Figure 2. It uses additional workspaces qubits |o1〉, |o2〉, |o3〉, |o4〉, |o12〉, |o34〉 which are

assumed to have value zero initially. Note that after the output |o14〉 is evaluated we

uncompute these workspace qubits by applying the circuit (except the last AND gate)

in reversed order. We need to uncompute these workspace qubits to avoid unwanted

entanglement.

This example also illustrates that this way of quantising a circuit does not change

the number of gates nor the circuit depth or at most doubles them if we want to

uncompute auxiliary workspace qubits. (Which we usually want to in fact.) The

auxiliary workspace qubits are reusable after uncomputing, and their number is not

greater then the number AND, OR, XNOR gates in the circle.

Following is a list of elementary operations and their complexities. The input is one

or two n bit binary number a, b. The calculation only changes the value of the output

Quantum walk based search methods and algorithmic applications 36

bit or output number, and the value is changed via binary addition ⊕. Also note that

we identify logical expressions with binary values true: 1, false: 0. Again see Figures

2,3.

outbit⊕= (a == b): Circuit size: O(n), depth: O(log(n)), workspace: O(n).

outbit⊕= (a > b): Circuit size: O(n), depth: O(log(n)), workspace: O(n).

outnumber⊕= (a+ b): Circuit size: O(n), depth: O(n), workspace: O(n).

outnumber⊕= (a− b): Circuit size: O(n), depth: O(n), workspace: O(n).

The following operation is reversible too but here we write the output with mod 2n

addition + corresponding to the group Z2n instead of the binary ⊕ corresponding to Zn2 :

outnumber+= a: Circuit size: O(n), depth: O(n), workspace: O(n).

outnumber−= a: Circuit size: O(n), depth: O(n), workspace: O(n).

We close the list with the easiest operation not needing any extra workspace qubits since

it may be done with bitwise application of c-NOT gates:

outnumber⊕= a: Circuit size: O(n), depth: O(1), workspace: 0).

c−NOT : |in〉 |out〉 → |in〉 |out⊕ in〉 (27)

6.3. Subroutines and techniques used for the implementation

6.3.1. Reversible sorting network

It is a remarkable result in computer science that there exists a sorting network for

any number N of elements which has depth O(log(N)) [AKSz]. Although simple sorting

networks are prohibited in quantum computation we can make them easily reversible.

Sorting networks are basically just a bunch of comparators arranged in a clever way.

The comparators operate and swap the numbers on the two adjacent lines whenever the

number on the top line is greater than the one on the bottom line. We can make this

operation reversible by introducing a flag bit for each swap gate. Then the reversible

(quantum) gate has two phases:

compare: Flip the value of the flag bit whenever the number on the top line is greater than

the other. (Comparison can be done with a circuit of depth O(log(1 + b)), if we

compare numbers of bit length b.)

c-SWAP: Swap the data on the two lines whenever the flag bit is set to 1.

a • min(a, b)

b • max(a, b)

Classical comparator

|a〉 com
p
are

S
W

A
P

|max(a, b)〉

|b〉 |min(a, b)〉

|i〉 • |i⊕ (a < b)〉

Note that the above described reversible sorting network has depth O(N log(N) log(1 +

b)) and need O(N(log(N) + b)) extra workspace qubits for the implementation. (b

is the bit length of the numbers and N is the size of the set to be sorted.) Usually

Quantum walk based search methods and algorithmic applications 37

log(N) = O(b), and so the extra workspace O(N ∗ b) is in the order of the original data

storage N ∗ b. On the other hand when b = O(log(N)) then the overall circuit depth is

O(N log(N) log log(N)).

6.3.2. Distributing/collecting some data for/after bulk parallel processing

We need several times to do a large number of parallel operations depending only

on a few qubits. This can be problematic since in one computational step only one gate

can access a particular qubit. In order to let the parallel computation access them in

one step we first need to distribute them to the gates which need to read them. If we

have k qubits each needed as the (parallel) input of M gates then we may distribute

the value of the qubits using a binary tree of c-NOT operation with the additional use

of O(k ∗M) workspace qubits initially in |0〉 state. After the parallel computation is

done we may uncompute the workspace qubits by reversing the tree. The binary tree

has depth O(log(M)), and we used O(k ∗ M) extra workspace qubits which is quite

reasonable overhead.

The converse operation will be also heavily used by our algorithms. Suppose we

have done some massive parallel computation and want to store its result in a predefined

register. For example we are interested whether a large set of numbers contains an even

number. Then we can calculate a flag bit for each number in the set indicating if the

number is even. Then we may collect the value of these indicators using a binary OR

tree. (See e.g. Figure 3)

A similar scenario is when we know that there is only one even number in the set,

and we want to collect the even number itself. Then we first calculate the flag as before,

but now we collect the numbers with k parallel binary tree of OR gates with the extra

condition that we only examine/consider a number in a leaf of the binary tree if its flag

was set 1. If there was exactly one number that had its flag set 1 then we successfully

collect the i-th bit of that number at the root of i-th tree. Finally we also uncompute

the tree except probably the root of it where we collected the info.

6.3.3. Generating uniform probability distributions

We will need to generate uniform probability distributions over some numbers

[1, ..., N]. If N = 2s for some s ∈ N then we can do it with the simultaneous

application of s Hadamard gates. Otherwise we may still proceed by generating a

uniform distribution over [1, ..., 2logdNe] and use the exact version of the Amplitude

Amplification (Theorem 3) to obtain a uniform distribution over [1, ..., N] – we only

need two well tuned controlled rotations in order to implement it. A more general

method using log(N) controlled rotations is described in [GR]. Assuming we have the

necessary controlled rotation gates this results in a circuit of depth O(log(N)) for the

generation of such uniform distributions.

Quantum walk based search methods and algorithmic applications 38

6.3.4. Usage of randomised algorithms as a subroutine in quantum computations

Randomised algorithms use some random bit feed as part of their input. Using

these random bits the algorithm then computes the result. Assuming the random bits

had the right distribution the results will have a nice distribution. From a generalised

viewpoint the randomised algorithm transforms the random bit feed distribution into

some other distribution over the result.

We will need to generate some non trivial distribution for which natural random

algorithms may be used. Since we can turn any randomised algorithm into a quantum

one this seems to be good enough for us – however one need to be careful. The random

algorithm usually entangles its random bit feed distribution with the result, i.e. we

usually get a state like this:
∑

l

√
pl |resultl〉 |random bit patternl〉. This would be ok

if we were to measure this state. The problem arises when we want to use this as a

subroutine of an algorithm, where we would in fact need the state
∑

l

√
pl |resultl〉.

Our trick is to partially transform the random bits to become a part of the result

states and cleverly distribute the remaining part of the random bit feed to obtain a

product state:
∑

l

√
pl |resultl〉 ⊗ |remaining random bit pattern〉. This will be enough

for us. (See the implementation of Setup below for an example.) One may also figure

out some uncomputing process for |remaining random bit pattern〉 to get the sought

state
∑

l

√
pl |resultl〉 (⊗ |0〉) exactly.

6.3.5. An application: qRAM

To see the power of the reversible sorting approach we mention that one can use

it for implementing a quantum random access gate. A quantum random access gate

(qRAM) implements the following transformation:

|d1, d2, . . . , dN〉 |k〉 |v〉 −→ |d1, d2, . . . , dk−1, v, dk+1, . . . , dN〉 |k〉 |dk〉

We are going to store the above state |d1, d2, . . . , dN〉 as an array, where the k-th element

will be |dk〉 amended with an extra flag qubit: (|dk〉 |fk〉). This flag is normally in the

0 state except while the qRAM operates. So the above state will be represented by

[(|d1〉 |0〉)(|d2〉 |0〉), · · · , (|dN〉 |0〉)].
Now suppose we want to read out the data from the k-th element of our array,

we may proceed as follows: (Assume k is given as some binary input |k〉 of bit length

log(N))

(i) For each index (position) in the array check whether index = k – if so flip the value

of the flag bit:

[|d1〉 |0〉 |d2〉 |0〉 · · · |dN〉 |0〉] |k〉 |v〉 →

[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉
k

|dk〉 |1〉 |dk+1〉 |0〉 · · · |dN〉 |0〉] |k〉 |v〉

Quantum walk based search methods and algorithmic applications 39

(ii) Sort the array with reversible sorting network using the flag bits for comparison:

[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉
k

|dk〉 |1〉
k

|dk+1〉 |0〉 · · ·
N

|dN〉 |0〉] |k〉 |v〉 →
[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉 |dk+1 |0〉〉

k

· · · |dN〉 |0〉
N−1

|dk〉 |1〉
N

] |k〉 |v〉

(iii) Read out (swap) the sought value from the last element of the array:

[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉 |dk+1〉 |0〉 · · · |dN〉 |0〉 |dk〉 |1〉] |k〉 |v〉
!

→

[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉 |dk+1〉 |0〉 · · · |dN〉 |0〉 |v〉 |1〉] |k〉 |dk〉

(iv) Unsort the array using the reversible sorting network:

[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉
k

|dk+1〉 |0〉 · · ·
N−1
|dN〉 |0〉

N

|v〉 |1〉] |k〉 |dk〉 →
[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉 |v〉 |1〉

k

|dk+1〉 |0〉
k+1

· · · |dN〉 |0〉
N

] |k〉 |dk〉

(v) Uncompute index = k indicator flags:

[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉 |v〉 |1〉 |dk+1〉 |0〉 · · · |dN〉 |0〉] |k〉 |dk〉 →
[|d1〉 |0〉 |d2〉 |0〉 · · · |dk−1〉 |0〉 |v〉 |0〉

k

|dk+1〉 |0〉 · · · |dN〉 |0〉] |k〉 |dk〉

Note that for the above task we can use a very basic, incomplete sorting network

which only finds the largest element. The total depth of the above implemented as

a circuit is O(log(N) + logm), where m is the bit length of the |di〉 data elements

stored in the qRAM. At first sight probably it is not obvious why we do not need depth

O(log(N) ∗ log(m)) instead, but with some little tricks we may parallelise the swaps

during the sorting process while still keeping the number of necessary workspace qubits

as low as O(log(N) ∗m). (For a direct implementation see [GLM].)

6.3.6. Pseudo code notation for the subroutines introduced

In order to be able to describe our algorithms shortly we introduce a sort of pseudo

code notation for the subroutines introduced in this Subsection together with some short

notation for other related operations.

First we need some notation regarding arrays. As introduced in the previous qRAM

example we will call the state |d1, d2, . . . , dN〉, where each di represents some register of

k qubits an array, denoted by d[] and we intuitively think of the registers as physically

lined up next to each other. The number of registers in the array is called the length

of the array, while the number of qubits in the registers k will be called the bitlength

of the array fields. To allocate some workspace qubits which are originally in the zero

state into an array a[] of length N and bitlength n we are going to use the following

notation: a(n)[N] ≡ 0. To merge two arrays d[], a[] and treat them as a logical unit we

are going to use the following notation: A[] = (a[], e = d[]). After this we may access

the elements as a[] = A.a[], d[] = A.e[] and A[i] = (a[i], d[i]) = (A.a[i], A.e[i]).

Quantum walk based search methods and algorithmic applications 40

Now we list the pseudo code commands and notations here.

c ≡ 0: This denotes that c is a/some unused or already uncomputed workspace

qubit(s) which have value 0 in all superpositions. (Except probably on a small error

term treated separately.)

out⊕= result(in): This simply denotes the output register of a calculation:

|in〉 |out〉 → |in〉 |out⊕ result(in)〉
e-w(k ∈ [K − 1]): This denotes element-wise operations, and means that the

operations in this block can be done parallely for the array indices in k ∈ [K − 1].

Note that if the block contains some operation like A.b[k]⊕= A.a[k] == A.a[k + 1]

that means we can do all the neighbour comparison parallely. More precisely in this

case we can do it in two steps first for even k-s then for odd k-s to avoid simultaneous

data access, which is not allowed in quantum computing. So in general e-w denotes

operations which may be implemented with a constant depth circuit.

distribute(c): This command is always at the beginning of an e-w(k ∈ [K]) block.

It means that we need the value of c for the parallel computations so first distribute

it, and undistribute immediately after the e-w(k ∈ [K]) block ends. As discussed in

Subsection 6.3.2 this operation uses O(n ∗K) workspace qubits and has circuit depth

O(log(K)), where n is the bitlength of c and K is the size of the parallel computation.

collect(A.a[]; bitwise OR |A.b[]): This command collects the values of A.a[]

using a binary tree of bitwise OR gates, but collects info only from indices i where

the flag qubit A.b[i] is set to 1, similarly to as described in Subsection 6.3.2. Note that

the condition |A.b[] may be omitted if we want to collect everything anyway. The

number of workspace qubits used is O(n ∗ K), while the circuit depth is O(log(K)),

where K is the length of the array A.a[], and n is the bitlength of its elements.

sort(A[]; A.a[], A.b[]): Sort the array A[] according to the fields A.a[] in case

of equality we also compare the A.b[] values and sort according to that. The workspace

qubits of the comparators remain in use until the block ends and the array is unsorted.

For the workspace an depth complexity see Subsection 6.3.1.

qRAM(A.a[]; j; v): Swaps A.a[j]←→ v, for detailed description and complexity

analysis see Subsection 6.3.5.

readArray(A.n[]; j): Works similarly to (and can be implemented easily using)

qRAM but it only reads the array: |A.n[], j, out〉 → |A.n[], j, out⊕ A.n[j]〉.
uncompute(lines): Uncomputes the specified lines. Be careful, only those

computations can be undone for which the necessary input fields: array elements and

variables are unchanged. The complexity is the same as the computation of lines.

contolledby(binary[]): Inside this block every operation is controlled by the values

stored in the binary[]. Even the comparators of sorting networks, so the sort will only

act on the subset where the binary[] has value pre-set 1. Complexity N/A.

|i〉 :=uniform([K]): Generates a uniform probability distribution on [K] and sets

the state of the register |i〉 =
√

1/K
∑K

j=1 |j〉. Note that it is only applicable/works

correctly if before the operation i ≡ 0. Workspace qubits needed O(1), depth if the

circuit O(log(K)) see Subsection 6.3.3.

Quantum walk based search methods and algorithmic applications 41

6.4. Implementing the Element Distinctness Algorithm

The question of the Element Distinctness Problem is the following: Given a

function f : [1, 2, 3, . . . , N] → [1, 2, 3, . . . ,M] decide whether there are two identifiers

1 ≤ i < j ≤ N such that f(i) = f(j) – or in other words whether f is injective.

The Element Distinctness Algorithm is based on a quantum walk on the

Johnson graph. The vertices of the Johnson graph correspond to fixed size subsets

of [1, 2, 3, . . . , N]. Two vertices v1, v2 are connected to each other whenever the

corresponding subsets S1, S2 have symmetric difference of size two (|S1 4 S2| = 2).

To describe sets of natural numbers flawlessly we introduce some notation [N] :=

[1, 2, 3, . . . , N],
(
[N]
K

)
:= {S ⊆ [N] : |S| = K}, S14 S2 := (S1 ∪ S2) \ (S1 ∩ S2).

The fixed size K of the subsets of [N] can be anything between 1 and N , but in

terms of query complexity the optimal value is N2/3. Here we will be concerned by the

cost of non query steps as well, and will do the implementation/analysis for a general

value of K = N q, where q ∈ (0, 1) is an arbitrary but fixed real number.

6.4.1. Data structure and high level description of necessary operations

To implement the Element distinctness Algorithm efficiently one needs to store the

the already queried function values along with the identifiers. Our basic data structure

is straightforward, we are going to store a subset of the possible identifiers [N] in a

sorted array of bunches of qubits. The array itself is just a whole lot of qubits which we

intuitively think of as being lined up next to each other. The array is going to have K

elements each of which consist of 3 segments of qubits: (|index〉 |id〉 |f(id)〉)
Suppose the set S consists of identifiers a1 < a2 < ... < ak < ... < aK then the

corresponding data array (shortly denoted by |AS〉) is a product state of K elements:

(Just the basis states; it may be in superposition so the whole state can be entangled.)

|AS〉 = [(|1〉 |a1〉 |f(a1)〉) (|2〉 |a2〉 |f(a2)〉) . . . (|k〉 |ak〉 |f(ak)〉) . . . (|K〉 |aK〉 |f(aK)〉)].
So the storage needed for this array of qubits is O(K(log(K) + log(N) + log(M)) =

O(Klog(K +N +M)), where M is the size of the range of f : [N]→ [M].

Later in the pseudo codes we are going to use the notation AS[] to emphasize that

it is an array. Also we are going to use the notation A.j[], A.n[], A.v[] for the sub

arrays containing respectively the index the number and the function value.

(Note that sometimes we will include the index of the elements in description and

sometimes we simply uncompute it depending on our needs. Also note that all the index

qubits can be calculated simultaneously e.g. with a circuit of depth 1 from 0 workspace

qubits, because they depend only on the actual location of the qubits, and thus can be

hard coded into circuit.)

Because we are going to work in a bipartite setting we will store a left and a right

data array describing two sets S1, S2. So a possible base state looks like:

|AS1〉` ⊗ |A
S2〉r

Quantum walk based search methods and algorithmic applications 42

Following the general implementation scheme of [MNRS] we basically need to

implement the following three operations: (See also Subsection 5.2)

Setup: Creates the starting uniform distribution on the left vertex set from the initial

zero state:

Setup : |0〉` |0〉r →
√

1(
N
K

) ∑
S∈([N]

K)

|AS〉` |0〉r (28)

Update: It covers 4 different operators. One that generates the right transition

states (UR), and its symmetric pair (UL) together with their inverses (U−1R , U−1L).

UR = |AS1〉` |0〉r →

√
1

K(N −K)

|S14S2|=2∑
S2∈([N]

K)

|AS1〉` |A
S2〉r

UL = |0〉` |A
S2〉r →

√
1

K(N −K)

|S14S2|=2∑
S1∈([N]

K)

|AS1〉` |A
S2〉r

Check: Checks whether the left (right) data array contains two identifiers with

the same function value, and conditional on this changes the value of an additional flag

qubit |b〉 used for storing this information temporarily:

CL : |AS1〉` |AS2〉r |b〉 → |AS1〉` |AS2〉r |b⊕S1
= 1〉

CR : |AS1〉` |AS2〉r |b〉 → |AS1〉` |AS2〉r |b⊕S2
= 1〉

where b⊕S= 1 is the conditional binary addition, if AS contains two identifiers with the

same value of f , it flips the value of b, otherwise keep the value of b.

For a more detailed description of these operators and their role see e.g. [MNRS].

6.5. Implementation of Check

This is the simplest operation, we just sort the left (right) array based on the

comparison of the stored function values A.v[]. After sorting we check each neighbour

data entries of the array to see whether they are equal. We store these boolean result

of the comparisons in some indicator array b[], from which we collect the info using

a binary tree of OR gates. Finally we uncompute everything except the one qubit

|oSA〉 containing the the info whether there were any duplicates in the array A.v[].

Quantum walk based search methods and algorithmic applications 43

Algorithm: Implementation of Check

Input: |AS[], oSA〉, where AS[] contains the description of S with a field

AS.v[] containing the function values corresponding to the elements of

S, and a qubit oSA for the output.

Result: |oSA〉 gets flipped iff there are indices j 6= k such that AS.v[j] = AS.v[k]

1 workspace variables: in brackets (bitlength), if array then [length of array]:

b(1)[K];

// Assign a one bit array b[] of some workspace (≡ 0) qubits to

AS[] and later use this extended array A[] for computation:

2 array initialization: A[] := (v[] = AS.v[], b[] ≡ 0);

3 sort(A[]; A.v) // A[] gets sorted according to the function values

4 e-w(k ∈ [K − 1]): if A.v[k] == A.v[k + 1] then A.b[k]⊕= 1;

5 oSA ⊕= collect(A.b[]; OR); // write the output using binary ⊕
6 uncompute(4)

7 unsort

Size and depth of the quantum circuit: At the initialization (line 2) we allocate K

qubits of the workspace. This is not an actual operation, just an indication that we are

going to use those qubits attached to our input array AS. Therefore this step has space

and time complexity 0 but reserves K workspace qubits.

The sort operation (line 3) has space complexity O(K log(M)) and time complexity

O(log(K) log log(M)), and reserves O(K log(K)) permanent qubits for storing the

permutation of the set.

The element-wise operations (line 4,6) have time complexity O(log(M)) since they

may be done parallely for all elements. More precisely we may do these operations in

two phases, first for even and then for the odd k-s to avoid simultaneous use of the same

qubits. Because checking the equality of two log(M) bit numbers may be done with a

circuit of depth O(log log(M)) and using O(log(M)) extra workspace qubits this parallel

operation has time complexity O(log log(M)) and space complexity O(K log(M)).

The implementation of collect (line 5) has time complexity O(log(K)) and space

complexity O(K).

Thus the circuit depth needed to implement this algorithm is O(log(K) log log(M))

and to achieve this we need to use O(K log(M)) extra workspace qubits. The query

complexity is 0 since we did not use any oracle call.

6.6. Implementation of Update

Suppose we store the set S1 = {a1, a2 . . . aK} described in our data array |AS1〉. We

need to generate uniformly at random a new set S2 such that |S14 S2| = 2, |S1| = |S2|.
We proceed by generating a random index i ∈ [K] and also a ”co-index” c ∈ [N −K].

Then we define S2 = S1 \ {ai} ∪ {bc}, where bc is the c-th largest element of N \ S1.

To proceed further we need to replace the transition description |i, c〉 with a proper one

|i, j, bc, f(bc)〉, where j is the index of the largest element of S1 being less than bc. This

Quantum walk based search methods and algorithmic applications 44

part of the process is described in the uniformComplementElements procedure. While

the whole operation we want to implement is:

|AS1[]〉` |0〉r |0〉w →

√
1

K(N −K)

|S14S2|=2∑
S2∈([N]

K)

|AS1[]〉` |A
S2[]〉r |0〉w (29)

Procedure: uniformComplementElements

Input: |AS[]〉 containing the description of S with fields AS.n[], AS.v[], such

that the values in A.n[] are stored in increasing order.

Result: A uniform distribution over the elements of the complementer set

[N] \ S : represented as |AS[]〉 1/
√
N −K

∑
bc∈[N]\S |j, bc, vbc = f(bc)〉,

where j is the index of the largest element of A.n[] being less than bc.

1 workspace variables: in brackets (bitlength), if array then [length of array]:

c(log(N)), bc(log(N)), j(log(K)), vbc(log(M)), j(log(K))[K], b(1)[K];

// First generate the uniform probability distribution over [N−K]

so later we only need to use reversible logical operations:

2 probability distribution initialization: |c〉 :=uniform([N −K]);

// Assign some arrays of workspace (≡ 0) qubits to AS[] and later

use this extended array A[] for computation:

3 array initialization: A[] := (n[] = AS.n[], v[] = AS.v[], j[] ≡ 0, b[] ≡ 0);

4 e-w(k ∈ [K]): A.j[k]⊕= k; // Generating the indices for later use

5 e-w(k ∈ [K − 1]): distribute(c)

// For simplicity we write k instead of A.j[k] here:

6 if A.n[k]− k − c < 0 & A.n[k + 1]− (k + 1)− c ≥ 0 then A.b[k]⊕= 1;

7 j⊕= collect(A.j[]; bitwise OR |A.b[]);

8 uncompute(4 - 6);

// If j=0 then we want to replace it with K. Since j=K can not

hold (note the range of 5) we proceed reversibly as follows:

9 flag≡ 0;// Use a workspace qubit originally in 0 state

10 flag⊕= (j == 0);

11 if flag == 1 then j⊕= K;

12 flag⊕(j == K);// Note that again flag≡ 0 since before line 10 j 6=K

13 bc⊕= (c+ j); // Now we know the c-th element of [N] \ S
14 vbc⊕= (f(bc)); // One oracle call to f

15 c⊕= (bc − j); // We uncomputed c, now c ≡ 0

First let us discuss the correctness of the procedure described in uniformComple-

mentElements. This we will call phase i-ii:

i) Generate two numbers i ∈ [K] and c ∈ [N −K] uniformly:

|AS1[]〉` |0〉r (|0〉)w → |AS1[]〉` |0〉r
(√

1
K(N−K)

|i〉 |c〉 |0〉
)
w

We may implement this step as described in 6.3.3.

Quantum walk based search methods and algorithmic applications 45

ii) Calculate the proper description of the element to be added to S1 originally

described by ”co-index” c. The proper description includes the actual identifier bc to

be added to S1 and also the index j of the element after which we would insert bc. Let

S1 = {a1 < a2 < . . . < aK} then formally j is the index for which aj < bc and bc < aj+1

or if aK < bc then j = K. Formally we want to replace the old description (|i〉 |c〉 |0〉)w
by (|i〉 |j〉 |bc〉 |f(bc)〉 |0〉)w.

To extract the value j from |AS1[]〉 we need some calculations. First observe that

(ak−k) is the number of elements preceding ak not in S1 i.e. (ak−k) = |([N]\S1)∩ [ak]|.
Thus ak < bc iff |([N] \ S1) ∩ [ak]| < c which we may rewrite as ak − k − c < 0. So

j is the largest index for which this holds. For now let us interpret (a mod N) to be

the representant in [0, 1, . . . , N − 1] rather than the whole congruence class. Using this

notation j = arg max(ak − k − c mod N) since 0 ≤ ak − k < N .

The above observations enable us to extract |j〉 from |AS1[]〉`. We first modify

identifiers of each element in |AS1[]〉`: |k〉 |ak〉 |f(ak)〉 → |k〉 |ak − k − c mod N〉 |f(ak)〉
then we sort the array using the modified identifiers resulting in a modified data array

denoted by |mAS1
c []〉`. According to the previous observations the last element of

|mAS1
c []〉` is |j〉 |aj − j − c mod N〉 |f(aj)〉 thus we get access to |j〉.

Observing that j = |S1 ∩ [bc]| we can conclude that bc = c + j. As we

have access to |j〉 now it is straightforward to implement (. . . |j〉 . . .)︸ ︷︷ ︸
|mAS1

c []〉`|0〉r

(|i〉 |c〉 |0〉)w →

(. . . |j〉 . . .)(|i〉 |j〉 |bc〉 |f(bc)〉 |c〉 |0〉)w with one query to f .

Finally we can put the whole process together:

|AS1[]〉` |0〉r (|i〉 |c〉 |0〉)w → |mAS1
c []〉` |0〉r (|i〉 |c〉 |0〉)w → |mAS1

c []〉` |0〉r (|i〉 |j〉 |bc〉 |f(bc)〉 |c〉 |0〉)w
→ |AS1[]〉` |0〉r (|i〉 |j〉 |bc〉 |f(bc)〉 |c〉 |0〉)w → |AS1[]〉` |0〉r (|i〉 |j〉 |bc〉 |f(bc)〉 |c⊕ (bc − j)〉 |0〉︸ ︷︷ ︸

|0〉

)w

The last step shows how to uncompute c using the observation that c = bc − j.

Quantum walk based search methods and algorithmic applications 46

Algorithm: Implementation of Update

Input: |AS1[]〉 containing the description of S1 with fields AS1 .n[], AS1 .v[],

such that the values in A.n[] are stored in increasing order.

Result: A uniform distribution over the neighbour sets as described in (29).

1 workspace variables: in brackets (bitlength), if array then [length of array]:

i(log(K)), j(log(K)), bc(log(N)), vbc(log(M)), flag(1), j(log(K))[K], b(1)[K];

// First generate the uniform distribution for the transitions so

later we only need to use reversible logical operations.

2 probability distribution initialization: |i〉 :=uniform([K]);

3 |j, bc, f(bc)〉 :=uniformComplementElements(|AS1[]〉); // Alg. above

// Assign some arrays of workspace (≡ 0) qubits to AS1[] and later

use this extended array A[] for computation.

4 array initialization 1: A[] := (n[] = AS1 .n[], v[] = AS1 .v[], j[] ≡ 0, b[] ≡ 0);

// Allocate some workspace (≡ 0) qubits for a second array B[].

5 array initialization 2: B[] := {n[] ≡ 0, v[] ≡ 0, j[] ≡ 0, b[] ≡ 0};
// Note that this array B[] is going to represent AS2[]

6 e-w(k ∈ [K]): A.j[k]⊕= k, B.j[k]⊕= k; // Generating the indices

7 e-w(k ∈ [K]): distribute(i, j)

8 switch k do

9 case (k == i) ; // Nothing hapens, this is the element we omit

10 case (i < k ≤ j) : B.n[k − 1]⊕= A.n[k], B.v[k − 1]⊕= A.v[k];

11 case (j < k ≤ i) : B.n[k + 1]⊕= A.n[k], B.v[k + 1]⊕= A.v[k];

// k >max(i, j) or (i 6=)k ≤min(i, j), indices agree in S1, S2:

12 otherwise : B.n[k]⊕= A.n[k], B.v[k]⊕= A.v[k];

13 endsw

14 end e-w

15 flag≡ 0, flag⊕= (j < i); // Flip the value of a workspace qubit if j < i

16 if flag == 1 then j+= 1; // This is not binary, but normal addition!

17 if readArray(A.n[]; j) ≥ bc then flag⊕= 1; // Now flag ≡ 0

18 qRAM(B.n[]; j; bc); // bc was replaced by A.n[j] ≡ 0

19 qRAM(B.v[]; j; f(bc)); // f(bc) was replaced by A.v[j] ≡ 0

20 e-w(k ∈ [K]): // If k− 1 = 0 or k + 1 = K + 1 consider term true:

21 if A.n[k] 6= B.n[k − 1] & A.n[k] 6= B.n[k] & A.n[k] 6= B.n[k + 1] & then

22 A.b[k]⊕= 1; // A.n[k] is not present in B.n[]

23 if B.n[k] 6= A.n[k − 1] & B.n[k] 6= A.n[k] & B.n[k] 6= A.n[k + 1] & then

24 B.b[k]⊕= 1; // B.n[k] is not present in A.n[]

25 i⊕= collect(A.j[]; bitwise OR |A.b[]); // Now i ≡ 0

26 j⊕= collect(B.j[]; bitwise OR |B.b[]); // Now j ≡ 0

27 uncompute(20 - 24); // From now on A.b[] ≡ 0,B.b[] ≡ 0

28 uncompute(6); // From now on A.j[] ≡ 0,B.j[] ≡ 0

Quantum walk based search methods and algorithmic applications 47

iii) The detailed description of Implementation of Update. Note that some step

are discussed in more detail than described in the pseudo code, e.g. step 0.)-1.) is not

divided to two parts in the pseudo code.

Here comes the rest: generating the set S2 from S1: |AS1[]〉` |0〉r (|i〉 |j〉 |bc〉 |f(bc)〉 |0〉)w →
|AS1[]〉` |AS2[]〉r (|0〉)w The difference of S1 and S2 is fully described by the information

|i〉 |j〉 |bc〉 |f(bc)〉 stored on the workspace, so we can reversibly transform this descrip-

tion to an actual array representation of S2. Technically we proceed by first generating

|AS2[]〉 from |AS1[]〉 using the description |i〉 |j〉 |bc〉 |f(bc)〉 then we uncompute these

workspace qubits by calculating the symmetric difference of S1 and S2. We divide this

phase into 4 steps:

|11〉 |1〉 |a1〉 |f(a1)〉
|0〉 |0〉 |0〉

|11〉 |2〉 |a2〉 |f(a2)〉
|0〉 |0〉 |0〉

...

|11〉 |i− 1〉 |ai−1〉 |f(ai−1)〉
|0〉 |0〉 |0〉

|00〉 |i〉 |ai〉 |f(ai)〉
|0〉 |0〉 |0〉

|01〉 |i+ 1〉 |ai+1〉 |f(ai+1)〉
|0〉 |0〉 |0〉

...
1→

|01〉 |j − 1〉 |aj−1〉 |f(aj−1)〉
|0〉 |0〉 |0〉

|01〉 |j〉 |aj〉 |f(aj)〉
|0〉 |0〉 |0〉

|11〉 |j + 1〉 |aj+1〉 |f(aj+1)〉
|0〉 |0〉 |0〉

...

|11〉 |K〉 |aK〉 |f(aK)〉
|0〉 |0〉 |0〉

(|i〉 |j〉 |bc〉 |f(bc)〉 |0〉)w

|11〉 |1〉 |a1〉 |f(a1)〉
|0〉 |a1〉 |f(a1)〉

|11〉 |2〉 |a2〉 |f(a2)〉
|0〉 |a2〉 |f(a2)〉

...

|11〉 |i− 1〉 |ai−1〉 |f(ai−1)〉
|0〉 |ai−1〉 |f(ai−1)〉

|00〉 |i〉 |ai〉 |f(ai)〉
|0〉 |ai+1〉 |f(ai+1)〉

|01〉 |i+ 1〉 |ai+1〉 |f(ai+1)〉
|0〉 |ai+2〉 |f(ai+2)〉

...
2→

|01〉 |j − 1〉 |aj−1〉 |f(aj−1)〉
|0〉 |aj〉 |f(aj)〉

|01〉 |j〉 |aj〉 |f(aj)〉
|0〉 |0〉 |0〉

|11〉 |j + 1〉 |aj+1〉 |f(aj+1)〉
|0〉 |aj+1〉 |f(aj+1)〉

...

|11〉 |K〉 |aK〉 |f(aK)〉
|0〉 |aK〉 |f(aK)〉

(|i〉 |j〉 |bc〉 |f(bc)〉 |0〉)w

|00〉 |1〉 |a1〉 |f(a1)〉
|1〉 |a1〉 |f(a1)〉

|00〉 |2〉 |a2〉 |f(a2)〉
|2〉 |a2〉 |f(a2)〉

...

|00〉 |i− 1〉 |ai−1〉 |f(ai−1)〉
|i− 1〉 |ai−1〉 |f(ai−1)〉

|00〉 |i〉 |ai〉 |f(ai)〉
|i〉 |ai+1〉 |f(ai+1)〉

|00〉 |i+ 1〉 |ai+1〉 |f(ai+1)〉
|i+ 1〉 |ai+2〉 |f(ai+2)〉

...

|00〉 |j − 1〉 |aj−1〉 |f(aj−1)〉
|j − 1〉 |aj〉 |f(aj)〉

|00〉 |j〉 |aj〉 |f(aj)〉
|j〉 |bc〉 |f(bc)〉

|00〉 |j + 1〉 |aj+1〉 |f(aj+1)〉
|j + 1〉 |aj+1〉 |f(aj+1)〉

...

|00〉 |K〉 |aK〉 |f(aK)〉
|K〉 |aK〉 |f(aK)〉

(|i〉 |j′〉 |0〉 |0〉 |0〉)w

Figure 4: Illustration of the process described in phase iii). The entries of the left

and right arrays are interleaved together. The three columns represent the state after

the 0th, 1st and 2nd steps accordingly. For better readability here we postponed the

uncomputation of the flags until the 2nd step.

0.) At the beginning for each element of the data-array AS1[] we assign two flag

Quantum walk based search methods and algorithmic applications 48

qubits. For the k-th element we set the value according to the four distinct possibilities:

(00) k = i – the element is omitted from S2

(01) i < k ≤ j – the index of the element is going to be smaller by 1 in S2 then in S1

(10) j < k < i – the index of the element is going to be greater by 1 in S2 then in S1

(11) k > max(i, j) or (i 6=)k ≤ min(i, j) – the indices are going to be the same in S1

and S2

Note that both (01) and (10) values can not be present in the same array as they

correspond to distinct cases i < j and i > j.

1.) Based on these flag qubits we do three controlled copy (bitwise addition)

operators, to write the k-th element of the left array to the (k − 1)-st, k-th or (k + 1)-

st place of the right array conditional on the flag values (01), (11) or (10). Here we

copy only the identifiers and the corresponding function values |ak〉 |f(ak)〉, but not the

possibly wrong indices. After the controlled copy we uncompute the flags.

2.) Now we calculate the position j′ where to insert the new element. If j < i

then j′ = j + 1 otherwise j′ = j. Let us denote with cj<i − NOT the conditional

flip operation conditioned on whether j < i, then we may implement this calculation:

|i〉 |j〉 |0〉 cj<i−NOT→ |i〉 |j〉 |f〉 → |i〉 |j′ = j + f〉 |f〉
cbc<aj′

−NOT
→ |i〉 |j〉 |0〉. Note that in the

last step we can not use cj<i − NOT because we have access to j′ only, which is not

enough. By looking only at the value j′ we can not distinguish the two cases j = i and

j = i− 1. However, we may recover whether j = j′ by checking bc < aj′ , because j was

defined as the largest index for which aj < bc hold. To check whether bc < aj′ we may

use our data array |AS1[]〉 as described in our qRAM implementation 6.3.5.

Now we generate all the indices of the right data array. This may be done with

a circuit of depth one, since the index of an element is directly related to its actual

(physical) location. Thus we may simply put a (NOT) gate where the indices have

binary value 1, and not do anything where this binary value is 0.

We are ready to swap |bc〉 |f(bc)〉) to the j′-th position – again we may proceed as

described in our qRAM implementation 6.3.5.

3.) Finally based on the symmetric difference of the right and left arrays we can

find the indices i, j′ where the two sets differ. Again we may calculate an indicator flag

showing whether the k-th element of one data array does not equal neither the (k−1)-st

or the k-th or (k + 1)-st element of the other data array. This will only mark the i-th

element of S1 and the j′-th element of S2. Based on these flag qubits we can sort the

data arrays so that i and j′ are going to be the last elements of the two data arrays.

Then we can erase the first two remaining registers for example by bitwise

addition (CNOT). I.e. we can implement the final step |AS1[]〉` |AS2[]〉r (|i〉 |j′〉 |0〉)w →
|AS1[]〉` |AS2[]〉r (|0〉)w

The phases i-ii-iii together implement the Update transformation using

O(N log(N)) extra workspace initially in the zero state and with O(log(N)) circuit

Quantum walk based search methods and algorithmic applications 49

depth using 1 query:

Uw
R : |AS1[]〉` |0〉r (|0〉)w →

√
1

K(N −K)

|S14S2|=2∑
S2∈([N]

K)

|AS1[]〉` |A
S2[]〉r (|0〉)w

6.7. Implementation of Setup

With the Setup (28) operation we aim to generate a uniform probability distribution

over all the
(
[N]
K

)
subsets. Also we would like to represent or store the subsets as data

arrays described in Section 6.4.1.

Classically this is not a hard task. Following a usual approach we could approximate

the uniform distribution on the cumbersome
(
[N]
K

)
set of subsets by reducing a larger

but simpler distribution over the integer sequences. Instead of generating K distinct

integers we could first generate a uniform sequence of L numbers which may contain

some repetitions. Then we could seek for the first K distinct numbers and move (sort)

them to the beginning of the sequence. We may not find K distinct ones but if do, then

we a get a uniform sequence of K distinct numbers, which we could finally sort in order

to get our increasing sequence representation of sets.

Classically the only question is the length of the sequence needed to get K distinct

numbers with high probability. This is the well known coupon collector’s problem.

Let us denote the position of the first occurrence of the K-th distinct number in the

sequence with WN
K , and let µN , σ

2
N be the mean and variance of this random variable.

If both K(N) and N − K(N) tends to infinity as N tends to infinity then a sort of

central limit theorem holds [BB]: (WN
K − µN)/σN tends to N (0, 1) in distribution,

where µN =
∑K(N)

i=1
N

N−i+1
and σ2

N =
∑K

i=1
(i−1)N

(N−i+1)2
. If K < N/2 then µN < 2K and

σ2
N < 2K2/N < K showing that a sequence of length c ·K (c > 2) fails to contain K

distinct elements with exponentially small probability in
√
K. Note that this may be

seen directly using the Chernoff bound.

Even in the worst case when K = N a sequence of length (log(N) + c)N fails to

contain all numbers from [N] with only exponentially small probability in c for large

enough N [ER]. But from the point of this algorithm the case when K = Ω(N) is

irrelevant, so from now on we assume that K < N/2 thus a sequence of length 3K

contains K disjoint numbers with high probability.

However this technique does not seem to work in the quantum setup. Since we carry

out reversible computational steps the unused part of the array containing the random

sequence is going to be still present on the workspace yielding unwanted correlations.

These correlations introduce entanglement that may prevent some interference during

the quantum algorithm as explained Section 6.1. If we do nothing else just move the

first instances of the first K distinct numbers to the beginning of the array then some

correlations are obviously present between the two parts of the array. For example, the

new (K+1)-st element will be more probably a number contained in the first K element

Quantum walk based search methods and algorithmic applications 50

of the array then one not contained there.

Algorithm: Implementation of Setup

Input: A bunch of workspace qubits originally in zero state

Result: A state very colse to the uniform distribution over
(
[N]
K

)
.

1 workspace variables: in brackets (bitlength), if array then [length of array]:

k(log(3K)), n(log(N))[3K], v(log(M))[K], j(log(3K))[3K], b1(1)[3K], b2(1)[3K];

// Allocate some workspace qubits for an array having length 3K

2 : array initialization 1: A[] := (n[] ≡ 0, v[] ≡ 0, j[] ≡ 0, b1[] ≡ 0, b2[] ≡ 0);

// First generate a uniform distribution over the sequences [N]3K:

3 e-w(i ∈ [3K]): |A.n[i]〉 :=uniform([N]);

/* The rest is plain reversible logic, thus we ignore |.〉 notation */

/* Lines 4-13: using the binary A.b1[] we mark all the elements

before the first occurrence of the K-th disjoint number. */

4 e-w(i ∈ [K]): A.j[i]⊕= i; // Generating the indices for later use

5 sort(A[];A.n[], A.j[]) // Sort with respect to (number, index)

6 e-w(i ∈ [3K]): if A.n[i− 1] == A.n[i] then A.b2[i]⊕= 1; // Duplicates

7 sort(A[];A.b2[], A.j[]) // Duplicates to the end of the list

8 k⊕= A.j[K]; //Index of the first occurrence of the K-th value

e-w(i ∈ [3K]): distribute(k): if A.j[i] ≤ k then A.b1[i]⊕= 1;

9 k⊕= A.j[K];// k uncomputed

10 unsort

11 uncompute(6);

12 unsort

13 uncompute(4);// A.j[] ≡ 0 again.

// From now on only do computation on elements of A[] before k:

14 controlledby(A.b1[])

15 sort(A[];A.n[]) // Sort with respect to the numbers

16 e-w(i ∈ [3K]) :

17 if A.n[i− 1] == A.n[i] then A.b2[i]⊕= 1; // Duplicates marked

18 if A.b2[i] == 0 then // We work only with non duplicates

19 foreach j in [c] do // For 3K ≤N2/3 c := 5

20 if A.n[i+ j] == A.n[i] then A.j[i+ j]⊕= i;

21 if A.j[i+ j] == i then A.n[i+ j]⊕= A.n[i];

22 end

23 end

24 end e-w

25 sort(A[];A.b2[], A.n[]) // Sort with respect to duplicates

26 e-w(i ∈ [K]): A.v[i]⊕= f(A.n[i]); // Oracle calls

We show that using some tricks we may eliminate these unwanted correlations. The

main idea is to ”divide and conquer”, i.e. we are going to split the set of all possible

sequences into small groups within each we transform the sequences such that we can

Quantum walk based search methods and algorithmic applications 51

eliminate the correlations.

Since we are going to work a lot with subsequences we introduce some handful

notations. Let n = (n1, n2, . . . , n3K) ∈ [N]3K be a sequence of 3K numbers from [N].

We denote the subsequence (n1, n2, . . . , nj) with n(j). The set consisting of the elements

of a (sub)sequnce n(j) will be denoted by {n(j)} and for the size of this set, i.e. the

number of distinct integers in n(j) we are going to use the notation |{n(j)}|.
Now we describe the correctness of the Implementation of Setup, but we not follow

the it word-by-word. In particular at the end of the algorithm we proceed slightly

differently to make easier the analysis of the process. Then the computationally preferred

pseudo code algorithm may be analysed along similar lines. See Remark 24

In the quantum setting we also start with first uniformly generating all sequence

of length 3K as described in Subsection 6.3.3. The difference is that now we work with

superpositions representing the uniform probability distribution. Thus we generate the

state:
1√
N3K

∑
[N]3K

|n1, n2, . . . , n3K〉

The second step is that we mark all elements (even possible duplicates) of the

sequence (n1, n2, . . . , n3K) up to the first occurrence of the K-th different element

(having index say k) with a flag qubit set to |b1 = 1〉. Then formally k is the unique

index for which |{n(j−1)}| = K−1 and nj /∈ {n(j−1)}. It is possible that such j does

not exists, but only in the case when {n1, n2, . . . , n3K} < K which has low probability

as we discussed in the classical setup. Now we group our sequences according to the

valuee of k they have. The good thing is, that knowing the value k the subsequence

before and after the k-th element remain independent, i.e. we may write our state as

1√
N3K

3K∑
k=K

∑
nk∈N

|{n(k−1)}|=K−1∑
n(k−1)∈([N]\nk)k−1

|n1, . . . , nk−1〉 |nk〉︸ ︷︷ ︸
|b1=1〉


 [N]3K−k∑

(nk+1,...,n3K)

|nk+1, . . . , n3K〉︸ ︷︷ ︸
|b1=0〉


+

1√
N3K

 [N]k−1∑
|(n1,...,n3K)|<K

|n1, . . . , n3K〉


We do not care what happens with wrong sequences appearing in the last sum since

they represent only a small portion of the whole state. We would like to decompose the

state consisting the good sequences into uncorrelated (or unentangled) parts. Since the

elements marked with flag |0〉 are already in a product state within the state of good

sequences we simply leave them unchanged i.e. from a computational point of view all

the operations from now on will be in fact controlled unitary operations controlled by

|b1j〉. What remains is to transform the first part of the above state into a nicer form.

We may split the above sum into several other summations:

|ψk〉 :=
∑
nk∈N

|{n(k−1)}|=K−1∑
n(k−1)∈([N]\nk)k−1

|n1, . . . , nk−1〉 |nk〉 =
∑
nk∈N

∑
S⊂([N]\nk

K−1)

|{n(k−1)}|=K−1∑
n(k−1)∈Sk−1

|n1, . . . , nk−1〉 |nk〉

Quantum walk based search methods and algorithmic applications 52

Now we mark the elements of the array state |ψk〉 when they are duplicates, i.e.

we assign a new second flag qubit |b2〉 to each element of the whole array. Formally

speaking we set flag qubit |b2j = 1〉 of the j-th element iff nj ∈ n(j − 1) (and the first

flag qubit is set to |1〉). We also assign a register ij (originally in zero state) for each

element of the array which will be used for describing duplicates. If the j-th element is

a duplicate then ij := min{`|sl = sj}. We store this value attached to the elements of

the array similarly to our data-array structure 6.4.1. So one element will consist of four

parts:

|nj〉 |b1j indicating j ≤ k〉 |b2j indicating duplicates〉 |ij index of first occurence if duplicate〉
Now we also erase the duplicates by subtracting the value of the i-th element of the se-

quence.

1 : |3〉 |1〉 |0〉 |0〉
2 : |3〉 |1〉 |0〉 |0〉
3 : |5〉 |1〉 |0〉 |0〉
4 : |3〉 |1〉 |0〉 |0〉
5 : |5〉 |1〉 |0〉 |0〉 →
6 : |3〉 |1〉 |0〉 |0〉
7 : |2〉 |1〉 |0〉 |0〉
8 : |3〉 |0〉 |0〉 |0〉
9 : |6〉 |0〉 |0〉 |0〉

w : |0〉

|3〉 |1〉 |0〉 |0〉
|3〉 |1〉 |1〉 |1〉
|5〉 |1〉 |0〉 |0〉
|3〉 |1〉 |1〉 |1〉
|5〉 |1〉 |1〉 |3〉 →
|3〉 |1〉 |1〉 |1〉
|2〉 |1〉 |0〉 |0〉
|3〉 |0〉 |0〉 |0〉
|6〉 |0〉 |0〉 |0〉

|0〉

|3〉 |1〉 |0〉 |0〉
|0〉 |1〉 |1〉 |1〉
|5〉 |1〉 |0〉 |0〉
|0〉 |1〉 |1〉 |1〉
|0〉 |1〉 |1〉 |3〉 →
|0〉 |1〉 |1〉 |1〉
|2〉 |1〉 |0〉 |0〉
|3〉 |0〉 |0〉 |0〉
|6〉 |0〉 |0〉 |0〉︸ ︷︷ ︸

pattern

|0〉

|3〉 |1〉 |0〉 |0〉
|5〉 |1〉 |0〉 |0〉
|2〉 |1〉 |0〉 |0〉
|0〉 |1〉 |1〉 |1〉
|0〉 |1〉 |1〉 |1〉
|0〉 |1〉 |1〉 |3〉
|0〉 |1〉 |1〉 |1〉
|3〉 |0〉 |0〉 |0〉
|6〉 |0〉 |0〉 |0〉

|w(p)〉

Figure 5: Illustration of the data array |nj〉 |b1j〉 |b2j〉 |ij〉 and the elimination of duplicates.

The parameters are K = 3, N = 6 and k = 7. The final step shows the result of the

subsequence → unsorted set + pattern transformation.

We are going to call the arrangement of the location of duplicates a pattern which

is now uniquely determined by the set of registers {|ij〉 : 1 ≤ j ≤ k}. Now we may sort

the array according the |b2〉 flags to move the elements of the set S = {n(k)} to the

first K positions of the array, but not yet changing its permutation σS described by the

order of their first appearance in n(k). The reversible sorting changes the value of some

workspace qubits represented in some workspace pattern |w(p)〉. Since we sort according

to the |b2〉 labels which are fully described by the previously defined duplicate pattern

we may treat |w(p)〉 as a function of this duplicate pattern as indicated by the notation.

Each subsequence n(k) of length k with |{n(k)}| = K is uniquely determined by the

pattern p the set S and its permutation σS. So we may write the by now transformed

|ψk〉 state in the following form:

|ψ′k〉 =
∑

S⊂([N]
K)

∑
σS∈[N !]

patterns∑
p

|sσ1 , . . . , sσK 〉︸ ︷︷ ︸
|b2=0〉

k−K
|0, . . . , 0〉︸ ︷︷ ︸
|b2=1〉

|p〉 |w(p)〉

Quantum walk based search methods and algorithmic applications 53

The key observation here is that each valid pattern, set and permutation describe a

valid n(k) subsequence so the above three sums are independent of each other. We may

finally sort the first K elements of the array according to the values, again introducing

some workspace qubit pattern |w(σS)〉 which depends on σS but is otherwise independent

of S. So using the independence of p, S and σ we may write the new sorted state as:

|ψ′′k〉 =

 ∑
S⊂([N]

K)

|s1, . . . , sK〉︸ ︷︷ ︸
|b2=0〉

 k−K
|0, . . . , 0〉︸ ︷︷ ︸
|b2=1〉

∑
σ∈[N !]

|w(σ)〉

(patterns∑
p

|p〉 |w(p)〉

)

Observing that S and σ are independent of k we may write the full state coming

from good sequences (for which |{n}| = K) as:

1√
N3K

 ∑
S⊂([N]

K)

|s1, . . . , sK〉︸ ︷︷ ︸
|b1=1〉|b2=0〉

⊗
∑
σ∈[N !]

|w(σ)〉



⊗

 3K∑
k=K

patterns(k)∑
p

|p〉 |w(p)〉

 k−K
|0, . . . , 0〉︸ ︷︷ ︸
|b1=1〉|b2〉=1

[N]3K−k∑
(nk+1,...,n3K)

|nk+1, . . . , n3K〉︸ ︷︷ ︸
|b1=0〉|b2=0〉


Remark 24

At the end of the Implementation of Setup we use an approximation. We only check for

some fixed amount of possible duplicates. We show that this is going to be good with

high probability. Let us assume, that for some 0 < l < 1 : 3K ≤ N l ≤ N/2. Then for a

fixed k ∈ [N] P (k is repeated more than c times) =
∑3K−c

i=1

(
3K
c+i

)
(1
N

)c+i(1− 1
N

)3K−(c+i) ≤∑3K−c
i=1 (3K)c+i(1

N
)c+i ≤ (3K

N
)c+1

∑∞
i=0(

3K
N

)i ≤ 2(3K
N

)c+1 ≤ 2N (l−1)(c+1). So by the union

bound we also have P (∃k ∈ [N] : k is repeated more than c times) ≤ N2N (l−1)(c+1). It

is enough for us if we bound this by say 2
N

. Now N2N (l−1)(c+1) ≤ 2
N
⇔

(l − 1)(c + 1) ≤ −2 ⇔ c ≥ 2
1−l − 1. Now by substituting l = 2

3
, we get c ≥ 5. So the

probability some k ∈ [N] is repeated more than 5 times is smaller 2
N

if 3K ≤ N2/3.

Note that we may be able to implement the corresponding step exactly and

efficiently using a parallel algorithm similar to the well known Parallel Rank Computing.

Finally note that we may eliminate the bad part of the sate coming from bad

sequences by the exact version of Amplitude Amplification 3, or calculate and indicator

based on ”goodness” and measure it repeating the process until we get the result 1.

Finally note that a perfect Setup operation would clean up the workspace, but here

we do not need to do that, since we only apply this operation once at the beginning.

Also the data-array
∑

S⊂([N]
K) |s1, . . . , sK〉 is in a product state with the workspace qubits,

thus we may measure all the workspace qubits to free up space – it will not ruin the

data-array because of the lack of entanglement.

Quantum walk based search methods and algorithmic applications 54

6.8. Summary

Looking at the pseudo code of the algorithms we see that the heaviest operations are

sorting and using our qRAM implementation. Note that trivially K < N < M and so

the arrays largest component is the one stores the function values. Thus we see that

our implementation of Update, Check and Setup requires an extra workspace of size

O(K log(M)). But we already need that order of space to store the function values for

the set of size K, so it does not change the magnitude of the number of qubits needed.

Setting K = N2/3 and again use that the heaviest operation is that of Check, where

we need to sort according the function values we get that the overall circuit depth is

O(log(N) log log(M)). Finally, assuming that M < N100 we get that the total circuit

depth is O(log(N) log log(N)).

Also note that if we allow simultaneous calls to the oracle then our implementation

of Setup becomes fully parallel.

Finally, note that this implementation is close to optimal, as a straightforward lower

bound shows. We store data of size at least N2/3 and as we need to access larger than

an exponentially small proportion of this data, one walk step should have circuit depth

> 1/2log(N) if we use bounded in degree gates. As we need to carry out ∼ N2/3 walk

steps this results in a lower bound of ∼ N2/3log(N) in the circuit depth.

Quantum walk based search methods and algorithmic applications 55

7. The MNRS search

The authors of the MNRS paper redefined the transition states of the quantised

walk WP . They used the time reversed walk for the second phase:

∀y ∈ X : |ly〉 =
∑

x∈X
√
p∗yx |x〉 |y〉 (30)

This change makes it also necessary to adjust the initial state in terms of the stationary

distribution τ of the chain P :

|φ0〉 :=
√
τx
∑
x∈X

|rx〉 =
√
τy
∑
y∈X

|ly〉

The second equality follows from the definition of the time reversed chain, and shows that

|φ0〉 is an eigenvector of WP . Note that these definitions coincide with the definitions

of Szegedy in the case when P is symmetric, but they allow us to extend several results

for reversible chains.

The discriminant matrix takes for example a nice form. D(P)xy =
√
pxy
√
p∗yx, using

the definition p∗yx = τx/τypxy we get that D(P)xy =
√
τxpxy1/

√
τy. We can write it in a

compact form D(P) = Diag(τ)PDiag(τ)−1, which shows that P and D(P) are similar

matrices. Further in the case when the Markov chain is reversible then D(P) = D(P)T .

It implies that the singular values of D(P) and the eigenvalues of P are the same up to

sign in the reversible case.

The other novelty in their approach is that they use WP directly instead of the

leaking walk operator. Basically they follow the logic of Amplitude Amplification, but

implement the reflection through the line of the starting state |φ0〉 differently.

They use the phase estimation algorithm to separate the eigenvectors of WP . If the

spectral gap of D(P) is δ then usingO(1/
√
δ) calls to WP the phase estimation algorithm

can separate the eigenvectors having non-zero imaginary part with high accuracy. After

the separation is done the algorithm can flip the amplitude of those eigenvectors, i.e.

flip the orthogonal complement of φ0 on the busy subspace. Finally uncomputing the

phase estimation does simulate the effect of refφ0 restricted to the busy subspace with

high accuracy as well. But the plane in which we would like to simulate the rotation

lies in this subspace, so it is enough for us.

O(1/
√
ε) repetition of the process provides a marked element with high probability

after measurement - just as in the case of Amplitude Amplification. Note that ε here is

the probability that an element is marked according to the stationary distribution τ .

If the Markov chain is reversible then the spectral gap of D(p) is the same as the

eigenvalue gap of P . So this algorithm extends the scope of our previous
√
δε rule

significantly.

Theorem 25 (MNRS search) Let P be a reversible Markov chain, and δ be the

eigenvalue gap of P . If for all M ∈ M the probability that an element is marked

greater then ε according to the stationary distribution τ of P then we can decide the

Quantum walk based search methods and algorithmic applications 56

detection problem with high probability with cost O(S + 1/
√
δ(U + C/

√
ε)) using the

MNRS search. If M is not empty we also find a marked element with high probability.

This theorem extends Szegedy’s results in many ways. It is applicable to a wider

class of Markov chains and it can also find a marked element with high probability.

Additionally note that the cost structure provided by Szegedy’s approach was similar,

but slightly worse: O(S + 1/
√
δε(U + C)).

Although this result extends the scope of Szegedy’s
√
δε rule, it fails preserving

the advance that Szegedy’s quantum random walk operated in time proportional to the

square root of the classical hitting time. This result only relates the running time to the

eigenvalue gap of the Markov chain, which can result in possibly larger running time,

as we have seen in the case of the hypercube.

Finally Krovi, Magniez, Ozols and Roland showed in 2010 [KMOR] how to find a

marked element in the presence of multiple marked elements quadratically faster then

the classical hitting time for any reversible Markov chain. They used an interpolation

between the leaking walk matrix PL and the unperturbed chain P to construct their

quantum walk.

Quantum walk based search methods and algorithmic applications 57

8. Several applications

First we show how the previous results imply that there is a spatial version of Grover

search for several graphs, which is essentially not disturbed by the spatial constraints.

This was observed by Szegedy in [Sz1].

Definition (Expander graph) A regular graph G = (V,E) is called expander with

expansion constant c ∈ R+ if it has the following property: for every S ⊂ V with

|S| ≤ |V |/2 it has |∂S \S| ≥ c|S|. (Here ∂S denotes the vertices which share a common

edge with some v ∈ S)

Expander graphs are easy to traverse, which yields that they have a large eigenvalue

gap for the uniform walk. The following theorem of [Lov2] formulates this fact: (Note

that in this theorem eigenvalues are sorted without taking the absolute values.)

Theorem 26 (Eigenvalue gap of expander graphs) If G is a d-regular expander

with expansion constant c, then the second largest eigenvalue for the uniform walk on G

is at most 1− c2/5d.

Note that this theorem is useful only in the case when d is small, science c is bounded

by 2 due to its definition.

Applying this theorem and using MNRS search with the modified walk (P + I)/2

gives the following corollary:

Corollary 27 (Local Grover Search) Let d0, c0 ∈ R+ fixed. For d-regular expander

graphs with expansion constant c, where d0 > d and c > c0 we have a local version

of Grover Search which finds a marked element in time O(1/
√
ε) if the proportion of

marked elements is at lest ε.

We finally list several problems which can be solved efficiently using quantum walk

based algorithms. All the complexities are discussed in the query model, and the input

will always be a quantum black box which implements a unitary operation corresponding

to the problem.

We have already discussed element distinctness, but now we also know how to find

marked elements:

Element Distinctness:

• Black box: Computes f on inputs corresponding to elements of [n]

• Question: Are there any i 6= j ∈ [n]× [n] such that f(i) = f(j)?

• Output: An (i, j) pair with i 6= j and f(i) = f(j) if there is any, otherwise reject.

• Query complexity: Can be solved with high probability using O(n2/3) queries.

The following problem is about to find a triangle i.e. a K3 in a graph G = (V,E).

The algorithm which solves it uses element distinctness as a subroutine.

Triangle Finding:

• Black box: For any pair u, v ∈ V × V tells whether there is an edge uv

Quantum walk based search methods and algorithmic applications 58

• Question: Is there any triangle in G?

• Output: A triangle if there is any, otherwise reject.

• Query complexity: Can be solved with high probability using O(n13/10) queries.

Matrix Product Verification:

• Black box: Tells any entry of the n× n matrices A,B or C.

• Question: Does AB = C hold?

• Output: If not then give i, j indices s.t. (AB)ij 6= Cij, otherwise accept.

• Query complexity: Can be solved with high probability using O(n5/3) queries.

Quantum walk based search methods and algorithmic applications 59

References

[AKSz] M. Ajtai, J. Komlós, E. Szemerédi: An O(n log n) sorting network, Proceedings of the 15th

Annual ACM Symposium on Theory of Computing, pages 1-9 (1983)

[Amb1] A. Ambainis: Quantum walks and their algorithmic applications, International Journal of

Quantum Information, pages 507-518. (2003)

[Amb2] A. Ambainis: Quantum search algorithms, SIGACT News Complexity Column, 35 (2):22-35.

(2004)

[Amb3] A. Ambainis: Quantum walk algorithm for element distinctness, Proceedings of the 45th IEEE

Symposium on Foundations of Computer Science, pages 22-31 (2004)

[ASh] S. Aaronson, Y. Shi: Quantum lower bounds for the collision and the element distinctness

problems, Proc. of the 43th IEEE Symposium on Foundations of CS, pg 513 - 519 (2002)

[BB] L.E. Baum, P. Billingsley: Asymptotic distributions for the coupon collector’s problem, Ann.

Math. Statist. 36, 1835-1839 (1965)

[Bel] A. Belovs: Applications of the Adversary Method in Quantum Query Algorithms, PhD Thesis,

University of Latvia (2013)

[Buh] H. Buhrman, C. Dürr, M. Heiligman, P. Høyer, F. Magniez, M. Santha, R. de Wolf: Quantum

algorithms for element distinctness, Proceedings of the 16th Annual IEEE Conference on

Computational Complexity, pp. 131-137. (2001)

[ER] P. Erdős, A. Rényi: On a classical problem of probability theory, Magyar Tud. Akad. Mat. Kutató

Int. Közl. 6, 215-220 (1961)

[GLM] V. Giovannetti, S. Lloyd, L. Maccone: Quantum random access memory, Phys. Rev. Lett. 100,

160501 (2008)

[GR] Lov Grover, Terry Rudolph: Creating superpositions that correspond to efficiently integrable

probability distributions, quant-ph/0208112, arXiv (2002)

[Jor] C. Jordan: Essai sur la géométrie à n dimensions, Bulletin de la Société Mathématique de France,

3:103–174 (1875)

[Jozs] R. Józsa: Quantum Computation Lecture notes, University of Cambridge (2014)

[Kem] J. Kempe: Quantum random walks - an introductory overview, Contemporary Physics, Vol. 44

(4), p.307-327. (2003)

[KMOR] H. Krovi, F. Magniez, M. Ozols and J. Roland: Finding is as easy as detecting for quantum

walks, ICALP’10, LNCS vol. 6198, pp. 540-551 (2010)

[Knuth] D. E. Knuth: Combinatorial matrices, Selected Papers on Discrete Mathematics, volume 106

of CSLI Lecture Notes, Stanford University (2003)

[Lov1] L. Lovász: Random Walks on Graphs: A Survey , Combinatorics, Paul Erdős Eighty (Volume

2), Keszthely (Hungary), pp. 1–46. (1993)

[Lov2] L. Lovász: Eigenvalues of graphs, www.cs.elte.hu/~lovasz/eigenvals-x.pdf (2007)

[Mey] C. Meyer: Matrix Analysis and Applied Linear Algebra Book and Solutions Manual, North

Carolina State University (2000)

[MNRS] F. Magniez, A. Nayak, J. Roland, M. Sántha: Search via quantum walk, Proc. 39th STOC,

ACM Press 575-584 (2007)

[NC] M. Nielsen, I. Chuang: Quantum Computation and Quantum Information, Cambridge University

Press. (2000)

[Sch] U. Schöning: A probabilistic algorithm for k-SAT and constraint satisfaction problems, Proc. of

the 40th IEEE Symposium on Foundations of Computer Science, pages 17-19. (1999)

[SKW] N. Shenvi, J. Kempe, K. Whaley: Quantum random-walk search algorithm, Physical Review

A, 67:052307 (2003)

[Sz1] M. Szegedy: Spectra of Quantized Walks and a
√
δε rule, quant-ph/0401053, arXiv (2004)

[Sz2] M. Szegedy: Quantum Speed-Up of Markov Chain Based Algorithms, Proceedings of the 45th

IEEE Symposium on Foundations of Computer Science, pages 32-41 (2004)

http://dl.acm.org/citation.cfm?id=808726
http://arxiv.org/abs/quant-ph/0403120
http://arxiv.org/abs/quant-ph/0504012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1366221
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1181975&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1181975&tag=1
http://projecteuclid.org/euclid.aoms/1177699813
http://arxiv.org/abs/1402.3858
http://arxiv.org/abs/quant-ph/0007016
http://arxiv.org/abs/quant-ph/0007016
http://www.renyi.hu/~p_erdos/1961-09.pdf
http://arxiv.org/abs/0708.1879
http://arxiv.org/abs/quant-ph/0208112
http://arxiv.org/abs/quant-ph/0208112
https://eudml.org/doc/85325
http://www.qi.damtp.cam.ac.uk/node/261
http://arxiv.org/abs/quant-ph/0303081
http://link.springer.com/content/pdf/10.1007%2F978-3-642-14165-2_46.pdf
http://link.springer.com/content/pdf/10.1007%2F978-3-642-14165-2_46.pdf
http://www-cs-faculty.stanford.edu/~uno/dm.html
http://www.cs.elte.hu/~lovasz/erdos.pdf
http://www.cs.elte.hu/~lovasz/eigenvals-x.pdf
www.cs.elte.hu/~lovasz/eigenvals-x.pdf
http://www.cambridge.org/aus/catalogue/catalogue.asp?isbn=9780898714548
http://dl.acm.org/citation.cfm?id=1250874
http://www.cambridge.org/9780521635035
http://www.cs.elte.hu/~lovasz/erdos.pdf
http://arxiv.org/abs/quant-ph/0210064
http://arxiv.org/abs/quant-ph/0401053
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1366222&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp%3Farnumber%3D1366222

	Introduction
	Random Walks in classical Computer Science: Schöning's algorithm
	Some basic concepts of quantum and reversible computing
	Quantum Random Walks
	Grover Search
	Grover Search as random walk
	Amplitude Amplification and the speed-up of Schöning's algorithm
	From classical Random Walks to Markov chains

	Bipartite Walks and their quantisation
	Classical Bipartite Walks
	Quantisation of Bipartite Walks

	Spectra of product of reflections
	Hitting Times for classical Markov chains and their relation to the corresponding Quantum Walk
	Hitting Time for classical Markov chains and the Leaking Walk Matrix
	Hitting Time for the Quantum Leaking Walk
	Relation between Classical and Quantum Hitting Times
	A bound on hitting times

	Algorithmic implications of Szegedy's quantisation method
	The Detection Problem
	High level description of the implementation vs. the quantum query model
	The Element Distinctness Problem as a consequence
	Finding a marked element, quantum

	Implementation of the Quantum Walk Algorithm
	Quantum data structures - challenges
	Elementary operations and their complexity
	Subroutines and techniques used for the implementation
	Reversible sorting network
	Distributing/collecting some data for/after bulk parallel processing
	Generating uniform probability distributions
	Usage of randomised algorithms as a subroutine in quantum computations
	An application: qRAM
	Pseudo code notation for the subroutines introduced

	Implementing the Element Distinctness Algorithm
	Data structure and high level description of necessary operations

	Implementation of Check
	Implementation of Update
	Implementation of Setup
	Summary

	The MNRS search
	Several applications

