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Non-Separable Detachments of Graphs

Bill Jackson* and Tibor Jordan**

Dedicated to the memory of Crispin Nash-Williams.

Abstract

Let G = (V,E) beagraphand r : V. — Z,. An r-detachment of G is a graph
H obtained by ‘splitting’ each vertex v € V into r(v) vertices, called the pieces of
vin H. Every edge uv € E corresponds to an edge of H connecting some piece
of u to some piece of v. An r-degree specification for G is a function f on V', such
that, for each vertex v € V', f(v) is a partition of d(v) into r(v) positive integers.
An f-detachment of G is an r-detachment H in which the degrees in H of the
pieces of each v € V are given by f(v). Crispin Nash-Williams [8] obtained
necessary and sufficient conditions for a graph to have a k-edge-connected r-
detachment or f-detachment. We solve a problem posed by Nash-Williams in
[2] by obtaining analogous results for non-separable detachments of graphs.

1 Introduction

All graphs considered are finite, undirected, and may contain loops and multiple edges.
We shall use the term simple graph for graphs without loops or multiple edges. Let
G = (V,E) beagraphand r : V — Z,. An r-detachment of G is a graph H obtained
by ‘splitting’ each vertex v € V' into r(v) vertices. The vertices v1, ..., Up(») Obtained
by splitting v are called the pieces of v in H. Every edge uv € E corresponds to an
edge of H connecting some piece of u to some piece of v. An r-degree specification is
a function f on V, such that, for each vertex v € V, f(v) is a partition of d(v) into
r(v) positive integers. An f-detachment of G is an r-detachment in which the degrees
of the pieces of each v € V are given by f(v).

Crispin Nash-Williams [3] obtained the following necessary and sufficient conditions
for a graph to have a k-edge-connected r-detachment or f-detachment. For X,Y
disjoint subsets of V(G), let e(X,Y’) be the number of edges of G from X to Y, e(X)
the number of edges between the vertices of X, b(X) the number of components of
G—Xand r(X) =) yr(x). Forv eV, we use d(v) to denote the degree of v.
Thus d(v) = e(v,V —v) + 2e(v).
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Section 2. Main Results 2

Theorem 1.1 (Nash-Williams). Let G = (V, E) be a graph andr : V — Z,. Then
G has a connected r-detachment if and only if e(X)+e(X,V —X) > r(X)+b(X) —
for every X C V.

Furthermore, if G has a connected r-detachment then G has a connected f-detachment
for every r-degree specification f.

Theorem 1.2 (Nash-Williams). Let G = (V, E) be a graph, r : V — Z,, and
k > 2 be an integer. Then G has a k-edge-connected r-detachment if and only if

(a) G is k-edge-connected,

(b) d(v) > kr(v) for each v €V,

and neither of the following statements is true:

(¢) k is odd and G has a cut-vertex v such that d(v) = 2k and r(v) = 2,

(d) k is odd, |V| =2, |E| =2k, G is loopless, and r(v) =2 for each vertexv € V.
Furthermore, if G has a k-edge-connected r-detachment then G has a k-edge-connected
f-detachment for any r-degree specification f for which each term df is at least k for
every v € V and every 1 <i <r(v).

Let G be a graph. A vertex v is a cut-vertez of G if |E(G)| > 2 and either v is
incident with a loop or G —v has more components than G. A graph is non-separable if
it is connected and has no cut-vertices. Nash-Williams proposed the following problem

n [2, p.145]:

“It might also be worth looking at the question whether one can give necessary and
sufficient conditions on a graph G and function r : V(G) — Z4 for the existence of a
non-separable r-detachment of G, i.e. an r-detachment of G which has no cut-vertices
- but of course it is not self-evident that a reasonable set of necessary and sufficient
conditions for this must even exist.”

In this paper we answer this question by showing necessary and sufficient conditions
for the existence of a non-separable r-detachment of a graph. We also solve the degree
specified version. We shall need the following slight strengthening of Theorem [1l.

Theorem 1.3. Let G = (V,E) be a graph, r -V — Z, and Vo = {v €V : r(v) >
2}. Then G has a connected r-detachment if and only if e(X) + e(X,V — X) >
r(X) +b(X) —1 for every X C V5.

Proof. Necessity follows from Theorem [[1. To see sufficiency suppose that G does
not have an r-detachment. By Theorem 1, e(X) + e(X,V — X) < r(X) + b(X) — 2
for some X C V. If x € X — V4, then r(z) = 1, and putting X’ = X — x we have
e(X") +e(X,V—-X") <r(X')+b(X") — 2. Hence we can construct X” C V5 with
e(X") +e(X"V —X") <r(X")+bX") —2. O

2 Main Results

Let G be a graph and N(G) = {v € V : d(v) > 4}. Givenr : V — Z,, let
Ni(G,r)={v e N(G) : r(v) =1}, and N»(G, ):{UGN( ) = r(v) > 2}
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Section 2. Main Results 3

Theorem 2.1. Let G = (V, E) be a graph with at least two edges and r -V — Z,.
Then G has a non-separable r-detachment if and only if

(a) G is 2-edge connected,

(b) d(v) > 2r(v) for allv eV,

(¢) e(v) =0 for allv e Ni(G,r), and

(d) e(X,V-=X—-y)+e(X) > r(X)+b(X+y)—1 forally € Ni(G,r) and X C No(G, 7).

The degree specified version is as follows.

Theorem 2.2. Let G = (V, E) be a graph with at least two edges, r :'V — Z,, and
let | be an r-degree specification, where f(v) = (f{, f3,..., [},)) and f{ = f3 > ... >
f;’(v), for each v € V. Then G has a non-separable f-detachment if and only if

(a) G is 2-edge connected,

(b) ' >2 forallveV and all 1 <i <r(v),
(c)e(X+v,V—-X—-v)+eX+v)—fl >r(X+v)+bX +v)—2 for allv e N(G)
and X C No(G, 1) —v.

Note that condition (¢) of Theorem P.2 implies that e(v) = 0 for all v € N;(G) by
taking X = (). We shall need the following lemmas. Since loops create complications
in notation, and since we only need the lemmas for loopless graphs, we add the
hypothesis to the lemmas that the graphs are loopless. Note however that they may
be applied to graphs with loops by subdividing their loops.

Lemma 2.3. Let G be a 2-edge-connected loopless graph and v € N(G). Define
r:V — Z,byr(v) =2 and r(u) = 1 for all u € V —v. Then there exists a
2-edge-connected r-detachment H of G such that, at least one of the pieces of v in
H, has degree two. Furthermore, if v is a cul-vertex of G, then there exists a 2-edge-
connected r-detachment H' of G such that, for the pieces vi,vo of v in H', we have
dp:(ve) = b(v), and neither vy nor vy is a cut-vertex of H'.

Proof. The first part of the lemma is easy and well known (it follows for example
from Theorem [[.2). To prove the second part, let Cy,Cs, ..., C, be the components
of G — v, where b = b(v). Let H' be an r-detachment of G such that H’ has exactly
one edge from vy to each component C;. Since G is 2-edge-connected, there is also
at least one edge from v; to each C;. To see that H' is 2-edge-connected, it suffices
to show that H' has a cycle containing vy, v,. (Since the 2-edge-connectivity of G
implies that every cut-edge of H' must separate v; and vy.) We can construct such
a cycle by choosing edges vix;, voy; in H' with x;,y; € C; and an z;y;-path in C; for
each i € {1,2}. The fact that neither v; nor vy is a cut-vertex of H’ follows easily
from the construction of H’. O

Let G be a graph. A block B of GG is a non-separable subgraph of G which is maximal
with respect to subgraph inclusion. We say that G is a block if G is a block of itself (or
equivalently, if G is non-separable). A vertex v € V(B) is an internal vertez of B (in
G) if v is not a cut-vertex of G. An end-block of G is a block which contains at most
one cut-vertex of G. Note that if G is separable then G has at least two end-blocks.
We say that G is a uv-block-path if G is connected with exactly two end-blocks, B;
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Section 2. Main Results 4

and Bs say, and u, v are internal vertices of B; and By, respectively, in GG. For edges
uzr,vz in a graph G, we define the graph G(ux,vz) obtained by switching uz and vz
by putting G(ux,vz) = G — {ux,vz} U {uz,vz}. Note that switching preserves the
degree sequence of G. We shall use the following lemmas to determine when switching
can be used to reduce the number of blocks in a detachment of G.

Lemma 2.4. Let G be a loopless graph and uzx,vz € E(G) such that uzx,vz belong to
vertex disjoint cycles in G. Suppose that G is either a block or a uv-block-path. Then
G(ux,vz) is a block.

Proof. Choose disjoint cycles C, Cy containing ux, vz, respectively. Then (C} —uz)U
(Cy — vz) U {uz,vz} induces a cycle in G(ux,vz) containing u,z, v, w. Since every
end-block of G — {ux, vz} contains either u, z, v or z as an internal vertex, it follows
that G(uz,vz) is a block. O

We shall use the following rather technical lemmas to show that, if a graph G has an
f-detachment with a unique cut-vertex y € N;i(G), then either G has a non-separable
f-detachment, or we can find a set X C Ny(G) such that r(X) + b(X + y) is large.

Let G be a graph, y € V(G), r : V — Z, with r(y) = 1, and f be an r-degree
specification for G. Let H be an f-detachment of G, W C V(H). and w,v €
V(H) — W. We say that u and v are W-separated in H if v and v belong to different
components of H — W. Define sequences of sets Ry, Ry,... C V(G), S1,S5,... C
V(H), and Wy C W, C ... C V(H), recursively, as follows. Let W, = {y}, and, for
1> 1, let

R, = {v € V(G) : at least two pieces of v are W;_;-separated in H},

Si ={v; € V(H) : v; is a piece of some v € R;},

and Wz = Sz U VVZ'_l.

It follows from these definitions that S; N S; = 0 = R, N R; for ¢ # j and W; =
{y}US1US,U...US;. Also note that S; = () for all : > 1 if y is not a cut-vertex of
H.

Lemma 2.5. Let H be a connected f-detachment of G. Let Z be a component of
H —W;_y for some i > 1 and uwv,wx € E(Z). Suppose Z(uv,wz) is connected. Then
H' = H(uv,wz) is a connected f-detachment of G and S,,(H') = S,(H) for all
1 <m <uq.

Proof. Since H and H' have the same degree sequence, H' is an f-detachment of
G. Furthermore H' is connected since H and Z(uv,wzx) is connected. We shall
show that S,,,(H') = S,,(H) for all 1 < m < ¢ by induction on i. If i = 1 then
Wo(H') = {y} = Wo(H). Since Z(uv,wz) is connected, we have Ri(H) = Ry(H’)
and hence S (H) = S1(H").

Suppose ¢ > 2. By induction, S,,(H") = S,,(H) for all 1 < m < i— 1. Thus
Wi_1(H") = W;_1(H). Since Z(uv,wx) is connected, we have R;(H) = R;(H') and
hence S;(H) = S;(H'). O
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Section 2. Main Results 5

Let H be a graph and y be a vertex of H and B be an end-block of H. We say
that H is a block-star centered on y if every block of H contains y. We say that H is
an extended block-star centered on y with distinguished end-block B if every end-block
of H, with the possible exception of B, contains y. Note that every block-star is an
extended block-star and every block is a block-star. An edge e of H is a cut-edge of
H if H — e has more components than H.

Lemma 2.6. Let G be a loopless graph, y € V(G), r : V. — Z, with r(y) = 1, and
f be an r-degree specification for G such that each term in f(v) is at least two for all
v € V(G). Suppose that G has an f-detachment which is a block-star centered on y,
and that H has been chosen amongst all such f-detachments so that by (y) is as small
as possible. Then each edge of H —y incident to a vertex in S; is a cut-edge of H —y
foralli > 1.

Proof. We proceed by contradiction. Suppose the lemma is false. Since the lemma
is vacuously true if y is not a cut-vertex of H we have by(y) > 2. Choose an f-
detachment K of G such that:

(i) bk (y) = bmu(y),
(ii) K is an extended block-star centered on y with distinguished end-block B.

(iii) for some edge v;z € E(B —y) and ¢ > 1 we have v; € S; and v,z is not a cut
edge of K —y,

(iv) each edge of K — y which is incident to a vertex of S, is a cut-edge of K —y
forall1<m<i-—1,

(v) subject to (i)-(iv), ¢ is as small as possible.

Note that K exists since if H is a counterexample to the lemma and we choose an
edge which is not a cut-edge of H —y and is incident to a vertex of .S; such that 7 is as
small as possible, then H will satisfy (i)-(iv). Our proof technique forces us to work
with extended block-stars rather than block-stars because the switching operations
we use preserve the property of being an extended block-star, but may not preserve
the property of being a block-star.

Since vz is not a cut-edge of K — y, vz is contained in a cycle C' of K — y. Let
By, By, ..., By be blocks of K such that y € V(By), V(B;) NV (By) # () if and only if
li—s| <1, B,=DB,and y & V(Bs) if t > 2. Then v,z € E(B,;) and C' C B,. Since
v; € S;, v; is a piece of some vertex v € R;. Thus we may choose another piece vy, of
v such that v; and v, are W;_;-separated in K.

Claim 2.7. ¢ > 2.

Proof. Suppose ¢ = 1. Then v; and v, are y-separated in K. Hence v; and vy
belong to different end-blocks B; and By of K. Choose an edge vpz € E(By). Since
K has minimum degree at least two, vz is contained in a cycle C’ in By. Since
y & V(C), C and C" are vertex disjoint. Applying Lemma P.4 to the block-path
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Section 2. Main Results 6

F = ByUB;U...UBy, we deduce that F(vjz,v;z) is a block. Thus H' = K (vjz, v;2)
is an f-detachment of G which is a block-star centered on y, and by (y) = by (y) — 1.
This contradicts the hypothesis that by (y) is as small as possible. O

Since vj, v, & S;—1 they are not W,_s-separated in K. Thus they both belong to
the same component Z of K — W;_,. In particular v, v;, are not y-separated in K so
v, € V(By) for some s, 1 < s < t. By (iv), V(C)NW;_5 = 0, and hence C C Z.
Let P’ be a path from v, to C' in Z. We may extend P’ around C' if necessary to
obtain a wvyvj-path P in Z which avoids the edge v;x. Let vyz be the edge of P
incident with v,. Since vj;, v, are W;_; separated but not W;_,-separated, we can
choose u € V(P) N S;_1.

Let K’ = K(v;x,vgz). We shall show that K’ contradicts the above choice of K.

Claim 2.8. (a) K’ is a connected f-detachment of G and S;(K') = S;(K) for all
1<m<i—1.
(b) u and v;z are contained in a common cycle of K’ —y.

Proof. (a) follows from Lemma P.J since P[z,v;] U (C' — v;z) U {zv;} is a connected
subgraph of Z(v;x, v;z).
(b) follows since P[z,v;] U {v;z} is a cycle in K’ —y containing u and v;z. O

Let F} = ByUByU...U B;. Since u € S;_1, (iv) implies that each edge of K —y
incident with u is a cut-edge of K —y. Thus there is exactly one edge from u to each
component of F; — {y,u}. Let X be the component of F; — {y,u} which contains
vj. Since u has a unique neighbour in X and w lies on the v;vi-path P in Fy — y,
vp € V(X). Furthermore C' C B, C X. Let Fy be the graph obtained from Fj by
adding a new edge yu and put F3 = F, — X.

Claim 2.9. I3 is a block.

Proof. Since F} — y is connected, F3 — y is connected. Thus if F3 were not a block
then we could choose an end-block B* of Fj3 such that y ¢ V(B*). Then B* would
be an end-block of K which did not contain y and was distinct from B = By, since
B; C X. This would contradict (ii). O

Since F3 is a block, we can choose a cycle C’" in F3 which contains vgz. Then
C" is vertex disjoint from C since C C X. Furthermore, F; is either a block or a
block-path with distinct end-blocks Fj and B;. Since vyz € E(F3) N E(C') and vz €
E(B;) N E(C), Lemma P.4 implies that Fy(v;z,vx2) is a block. Thus F(vjz, vgz) =
Fy(vjx, viz) —yu is either a block or a yu-block-path. Combining this with Claim P.§,
we deduce:

Claim 2.10. K’ = K(vjz,vzz) is an extended block-star, centered on y, with distin-
guished end-block B', where B’ is the block of Fy(vjx,vgz) which contains u. Further-
more br/(y) = b (y), w is an internal vertex of K', uw € S;_1(K') and u is contained
in a cycle of K' — vy which is contained in B'.
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Section 2. Main Results 7

Choose vz’ € E(B’ —y) such that v/’ is not a cut-edge of K’ —y, v’ € S,(K’) for
some p > 1 and p is as small as possible. Then p < ¢ — 1 since u € S;_1(K') NV (B').
To show that K’ contradicts our choice of K to minimise ¢, it only remains to show
that (iv) holds for K”:

Claim 2.11. Fach edge of K'—y which is incident to a vertex of Sy, (K') is a cut-edge
of K' —y foralll1 <m <p-—1.

Proof. Suppose the claim is false and let C* be a cycle of K’ — y which contains a
vertex of S,,(K’) for some m, 1 < m < p — 1. The minimality of P implies that
C* contains no edge of B’. Since u is an internal vertex of K’ contained in B’, and
u and v,z are contained in a cycle of K’ — y by Claim P.§(b), we may deduce that
vjz € E(B') and hence v;z ¢ E(C*). Since v, and = belong to different components
of K —{y,u}, every path from v, to x in K —y contains u. Thus every cycle of K’ —y
which contains v,x also contains u and hence is contained in B’. Thus vgz & E(C™).
Since vyz,v;2 ¢ E(C*) we have C* C K —y. Since S,,,(K’) = S,,(K) by Claim R.§(a),
the existence of C* now contradicts condition (iv) in the choice of K. O

This completes the proof of the Lemma. O

To simplify notation, we shall first prove Theorem P.1] for the special case when G
is loopless and N(G) is an independent set of vertices in G. The general case follows
easily from this special case by the simple procedure of subdividing every edge of G
and extending r by putting r(v) = 1 for each subdivision vertex v. Thus we shall
prove:

Theorem 2.12. Let G = (V, E) be a loopless graph with at least two edges and r :
V — Z,. Suppose that N(G) is an independent set of vertices in G. Then G has a
non-separable r-detachment if and only if

(a) G is 2-edge connected,

(b) d(v) > 2r(v) for allv €V, and

(c) e(X,)V—=X)>r(X)+bX+y)—1 forally € N\(G,7) and X C No(G,r).

Proof. We first prove necessity. Suppose H is a non-separable r-detachment of G.
Then H is 2-edge-connected and since ‘detaching’ vertices cannot increase edge-
connectivity, (a) holds. Since H has minimum degree at least two we also have (b).
Condition (c) follows from the easy part of Theorem [[.1], since H — y is a connected
7|y _,-detachment of G — y.

We next prove sufficiency. We proceed by contradiction. Suppose that the theorem
is false and choose a counterexample (G, ) such that

WG, )= INi(G, )+ D (d(v) —3)

vEN(G)

is as small as possible, and, subject to this condition, |V(G)| is as small as possible.
If N(G) = 0 then G has maximum degree at most three and, by (b), r(v) = 1 for
all v € V(G). Using (a) we deduce that G is a non-separable r-detachment of itself.
Hence we may suppose that N(G) # 0 and hence v(G,r) > 1.
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Section 2. Main Results 8

Claim 2.13. Suppose that U C V' such that e(U,V — U) = 2. Then either |U| = 1
or |V -U|=1.

Proof. Suppose |U| > 2 and |V —U| > 2. Let Uy = U and Uy = V — U. For
i € {1,2}, let G; be the graph obtained from G by contracting U; to a single vertex
u; of degree two. Define r; : V(G;) — Z, by putting r;(u;) = 1 and r;(v) = r(v) for
v € V(G;) — u;. Then (G, i) < vy(G,r) and |V(G;)| < |V(G)|. Since contraction
preserves edge-connectivity, G; satisfies (a). Clearly (G;,r;) also satisfies (b). Suppose
(G, r;) does not satisty (c). Then eq, (X, V(G;) — X) < ri(X) + bg, (X +y) — 2 for
some y € Ni(G;,r;) and X C No(Gy,1;). Since u; & N(G;), u; belongs to some
component of G; — (X +y), and X +y C V(G). Thus X,y contradict the fact that (c)
holds for G. Hence (c) holds for (G;,7;) and, by induction, G; has a non-separable ;-
detachment for ¢ = 1,2. Since e(U, V' —U) = 2, this implies that G has a non-separable
r-detachment. O

Claim 2.14. N;(G,r) # 0.

Proof. Suppose Ni(G,r) = . Choose v € No(G,r) such that r(v) is as large as
possible and d(v) is as small as possible. Define r, : V(G) — Z, by r,(v) = 2 and
ry(u) = 1 for all u € V —v. By Lemma P.3, we can construct a 2-edge-connected
ro-detachment H of G such that, for the pieces vy, vy of v in H, we have dy(vy) = 2.
Define v : V(H) — Z; by 7'(vy) = r(v) — 1, 7(ve) = 1, and r'(u) = r(u) for all
u € V(H) — {v,va}. Then ~v(H,r") < v(G,r). By construction (H,r’) satisfies
(a) and (b). If (H,r’) also satisfies (c), then, by induction H has a non-separable
r’-detachment H'. Clearly, H' is the required r-detachment of GG. Hence

en(X,V(H) = X) <r'(X) +bu(X +y) -2 (1)

for some y € Ny(H,r') and X C No(H,r'). Since N1(G,r) = 0 and dy(v2) = 2, we
must have y = vy, and 7/(vy) = 1. Thus r(v) = 2. The choice of v now implies

r(u) =2 for all u € N(G). (2)

In particular r'(X) = r(X) = 2| X|. The choice of v also implies that dy (u) = dg(u) >
dg(v) =dy(vy) +2for allu € N(G) —v. Thus ey(X,V(H) - X) > | X|(dg(vy) + 2).
Since H is 2-edge-connected, each component of H — (X + v1) has at least two edges
to X + v1. Thus 205(X + v1) < exg(X,V(H) — X) + dy(v1). Substituting these
inequalities into (), we deduce that dg(vi)(|X]| —1) < 2(]X| —2). Hence X = 0.
Now ([) implies that by (vy) > 2. Thus v; is a cut-vertex of H and hence v is a
cut-vertex of G.

By Lemma .3, we can construct a 2-edge-connected r,-detachment H’ of G such
that, for the pieces v}, v} of v in H', we have dp/(v2) = be(v), and neither v{ nor v}
is a cut-vertex of H'. Defining 7’ as above (i.e. 7'(v]) =r(v) —1 =1, r'(v}) = 1, and
r'(u) = r(u) for all u € V(H') — {v],v5}) we have v(H',7") < v(G,r), and (H',r")
satisfies (a) and (b). Thus we may again deduce that (H’,7’) fails to satisfy (c).
Hence ey (X, V(H') — X) < 7 (X) 4+ by (X + y) — 2 for some y € Ny (H',7") and
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Section 2. Main Results 9

X C No(H',r"). Since N1(G,r) = () we must have y = v} for some i € {1,2}. Using
(P), we may now deduce as above that X = () and hence v} is a cut-vertex of H'. This
contradicts the choice of H'. O

Choose y € N1(G, r) such that d(y) is as large as possible. Define r, : V(G) — Z,
by r,(y) = 2 and ry(u) = r(u) for all w € V —y. Clearly (G, r,) < 7(G,r), and
(G,r,) satisfies (a) and (b).

Claim 2.15. (G,ry) satisfies (c).

Proof. Suppose we have eq(X,V —X) < r,(X)+be(X+y')—2 for some y' € N1(G,ry)
and X C Ny(G,ry). Since (c) holds for (G, r) we must have y € X and

eg(X,V—X):T(X)—f‘bg(X—i—y,)—l. (3)

Let Cy,Cy,...,C, be the components of G — (X + /). Since (c) holds for (G,r),
we may apply Theorem [[.3 to deduce that G — ¢’ has a connected r’-detachment H,
where r’ = r|y_,. Let X* be the set of all pieces of vertices of X in H. Since (b)
holds for G, Theorem [T implies that H may be constructed to have the additional
property that dy(z;) > 2 for all x; € X*. Let H' be the detachment of G —y’ obtained
from H by ‘re-attaching’ all the pieces of v, for each v € V — X —¢/. Thus H' is a
connected r”-detachment of G — ¢/, where " (v) = r(v) for v € X and r”(v) =1 for
v € V—X —y. Using the fact that equality holds in (), we have exactly r(X)+b—1
edges in H' joining the vertices in X* and the components C7,Cy, ..., Cy. Since H'
is connected and |X*| = r(X), the graph T obtained from H’ by contracting each
component C; to a single vertex ¢;, is a tree. Since dr(z;) > 2 for all ; € X*, no
vertex of X* is an end-vertex of T'. Since r”’(y) = 1, we can label the unique piece of
y in H as y. We then have y € X* and dr(y) = dg(y). Thus T has at least dg(y)
end-vertices, all of which belong to {¢1,ca,...,¢}. Furthermore, if 7' has exactly
dg(y) end-vertices, then all vertices of T' other than y have degree one or two. Let
S ={C; : dr(¢;) =1,1 <i<b}. Then ey/(C;, V(H') — C;) =1 for all C; € S. Since
G is 2-edge-connected and r”(v) = 1 for all v € C;, there is at least one edge in G
from C; to ¢/ for each C; € S. Since |S| > dg(y), it follows that dg(y') > da(y). It
now follows from the initial choice of y that we must have dg(y') = |S| = dg(y), that
there is exactly one edge in G from ¢ to each C; € S and to no other vertices of G,
and that all vertices of T' other than y have degree one or two. Again, since r”’(v) = 1
for all v € C;, we have eq(C;, V(G) — C;) =2 for all 1 < ¢ < b. Using Claim R.13, we
deduce that |[V(C;)| =1 for all 1 <i <b. Thus V(C;) = {¢;}, H = H and since G is
loopless, dg(c;) = 2. By (b), r(¢;) =1 =1"(¢;) forall 1 <i<band H=T. Let G
be the graph obtained from H by adding y" and the edge y'c; for each C; € S. (Thus
G’ is obtained by adding an edge from gy’ to each end-vertex of 7'.) Then G’ is the
required non-separable r-detachment of G. 0

Since (c) holds for (G,r,), we may apply induction to deduce that G' has a non-
separable r,-detachment. It follows that G has an r-detachment H such that H is
a block-star centered on y. We may suppose that H has been chosen such that the
number of blocks of H is as small as possible. Let f be the r-degree specification for
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G given by H. Since G has no non-separable f-detachment, by (y) > 2. For i > 0,
let S; and W; be the subsets of V(H) defined as for Lemma P.6. Since the sets S; are
pairwise disjoint and H is finite, we may choose ¢ such that S;;1 = 0. Let X' = W, —y
and X = {z € V(G) : some piece of z in H belongs to X'}. By Lemma .G, every
edge z1v € E(H — y) with 1 € X’ is a cut-edge in H — y. Thus the graph F we
get from H — y by contracting each component of H — X’ — y to a single vertex is
a forest with by (y) components and by (X’ + y) + | X'| vertices. Using the facts that
X +y C N(G), and N(G) is an independent set of vertices in G, we deduce that
|E(F)| =eyg(X',V(H) — X’). Thus

en(X',V(H) = X') = bu(X' +y) +|X'| = bu(y). (4)

We have eg(X',V(H) — X') = eq(X,V(G) — X), |X'| = r(X) and by(y) > 2.
Furthermore, for each v € V(G) — X — y, all pieces of v in H belong to the same
component of H — X' —y, since S;11 = 0. Thus bg(X +vy) = by (X' +vy). Substituting
into (f]) we obtain eq(X,V(G) — X) < r(X) + bg(X + y) — 2. This contradicts
hypothesis (c) of the theorem and completes our proof. O

Proof of Theorem [2.1. Let G' be obtained from G by subdividing every edge of G.
Then G’ is loopless, N(G') = N(G) and N(G') is independent in G’. Extend r to r/
by putting r’'(v) = r(v) for all v € V(G) and r’(v) = 1 for all v € V(G') — V(G).
Then N1(G',7") = N1(G,r) and No(G',1") = No(G,r). We shall show that conditions
(a), (b), (¢) and (d) of Theorem R.1] hold for (G,r) if and only if conditions (a),
(b), and (c) of Theorem .12 hold for (G’,r’). Clearly Theorem P.J (a) and (b) hold
for (G, r) if and only if Theorem P.12 (a) and (b) hold for (G’,r’). Furthermore for
y € Ni(G,r) = Ni(G',r") and X C No(G,r) = No(G', "), we have r(X) = r'(X), and
ea(X,V = X —y) + ec(X) = bg(X +y) —eq(y) = ear(X,V = X) = ber (X +y). 1f
Theorem B.1 (¢) and (d) hold for (G, ), then eg(y) = 0 and the above equalities imply
that Theorem B.13 (c) holds for (G',7"). Suppose, on the other hand, that Theorem
P13 (c) holds for (G',7’). Taking X = ) we have bg/(y) < 1 for all y € N;(G'r’) and
hence eg(y) = 0 for all y € Ny(G,r). Thus Theorem P (¢) holds for (G,r). The
above equalities now imply that Theorem B.1 (d) also holds for (G, r). O

We shall next prove Theorem P.2. Given a graph G = (V,E) and X C V, let
['(X) be the set of vertices of V' — X which are adjacent to vertices in X and put
~v(X) = |T'(X)|. We shall use the following operation to adjust the degree sequence in
a detachment of a graph. For vertices z,y, z of G with xz € F(G), we define the graph
G(zz — yz) obtained by flipping xz to yz by putting G(zz — yz) = G — xz + yz.
The following lemma characterises when we may flip edges in a non-separable graph
and preserve non-separability.

Lemma 2.16. Let G = (V, E) be a non-separable graph and let z,y € V' be distinct
vertices of G. Let xzy,x29,...,x2 be distinct edges of G —y with t > 3. Then
G(xz; — yz;) is separable for all 1 < i <t if and only if there exist distinct components

C1,Cy,...,Cy of G —{x,y} with z; € V(C;) and e(x,C;) =1 for all 1 < i < t.
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Proof. Sufficiency is easy to see. To prove necessity first note that G(xz; — yz;)
has no loops for all 1 < ¢ < ¢ since GG is non-separable and z; # y. Suppose that
G(rz — yz) has a cut-vertex for all 1 < i < ¢. It is easy to see that flipping an edge
xrz; to yz; creates a cut-vertex if and only if there is a set W C V — z in G with
e(W,x)=1,v(W) =2, and z, € W,y € WUIL(W). We call W a certificate for z;.

Let us choose a minimal family F = {W,...,W,,} which contains a certificate for
z; for all 1 < i < t. Since e(W;,z) = 1 for 1 < i < m and by the minimality of F
we have t = m and I'(z) N W; N W, = 0 for all 1 < i < j < ¢. Furthermore, since
e(W;,z) =1 and G is non-separable, each WW; induces a connected subgraph of G.

First we show that W; N W; = 0 for 1 < i < j < t. Suppose that W; N W; # 0
holds for two distinct W;, W; € F. Since e(W;,z) = e(W;,x) = 1 and d(z) > 3, it
follows that Z := V — (W;UW;) —{z} is non-empty. The subgraphs G[W;] and G[W}]
are connected, hence we have that both I'(W;) N (W; — W;) and I'(W;) N (W, — W)
are non-empty. Since y(W;) = v(W;) = 2 and = € ['(W;) N I'(W;), this implies that
e(W; UW;, Z) = 0. Hence z is a cut-vertex in G, a contradiction.

Now suppose that y € W; holds for some 1 <1 < ¢. Since W; N W; = 0, we must
have y € I'(W;) for all W; € F — W,. Since x € I'(W;) and ¢ > 3, this implies
v(W;) > 3, a contradiction. Thus y € I'(W;) for all 1 < ¢ < ¢. This, and the facts
that yv(W;) =2 and z € I'(W;) for all 1 < 5 <, imply that C; = G[W;], 1 <i <t
are the required components of G — {x,y}. O

Corollary 2.17. Let t > 3 be an integer. Let G = (V, E) be a non-separable graph,
r,y € Voand xz; € E(G —y) for 1 < i < t. Ift > d(y) —e({z,y}) + 1, then
G(xz; — yz;) is non-separable for some 1 < i < t.

Proof. Suppose that for all 1 < i <t the graph G(zz; — yz;) is separable. We may
apply Lemma P.1G and deduce that b({z,y}) > t. Since t > d(y) — e({z,y}) + 1, it
follows that e(C,y) = 0 for some component C' of G — {z,y}. Thus z is a cut-vertex
in (G, a contradiction. O

Corollary 2.18. Let G = (V,E) be a non-separable graph and let z,y,w € V be
distinct vertices of G such that d(x) > 3 and xy,zw ¢ E. Then there exists a
z € I'(z) such that either G(xz — yz) or G(xz — wz) is non-separable.

Proof. Suppose that for all z € I'(z) the graph G(zz — yz) is separable. By Lemma
2.16 we have b({z,y}) = d(z). Let Cy,Cs,...,Cys) be the components of G — {x, y},
where w € V(C}). Then each neighbour of x other than the unique neighbour in
C} belongs to the same component of G — {z,w}. Thus Lemma P.16 implies that
G(zz — wz) is non-separable for some z € I'(x). O

Lemma 2.19. Let G = (V, E) be a non-separable graph and suppose that b({z,y}) =
d(x) > 3 for some pair x,y € V. Let w be a vertex in some component C' of G—{x,y}
with e(w,y) = e(w,z) = 0 and let z € T'(x) —C. Then either G(xz — wz)(wz' — y2’)
is non-separable for some z' € I'(w) or every edge incident to w in G is a cut-edge in

C.
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Proof. Let the components of G —{x,y} be C1, Cs, ..., Cy(yy and, without loss of gener-
ality, suppose that z € V(C4). Then Cy # C. We first observe that H := G(zz — wz)
is non-separable. This follows from the fact that, since d(x) > 3, there is a cycle con-
taining x and z in H. Thus we need to show that either there is flip from w to y
in H which creates no cut-vertices or C' has the required property. Suppose that
H(wz'" — y2') has a cut-vertex for every 2z’ € I'(w) N V(C). Using the facts that
dy(w) > 3, eg(w,y) =0, and y is a cut-vertex in H(wz — yz), we may apply Lemma
P.1d to deduce that by ({w,y}) = dy(w) = dg(w) + 1. This implies that every edge
incident to w in H is a cut-edge in H —y. Since z ¢ V(C) and H is obtained from G
by flipping zz to wz, and y ¢ V(C'), we may deduce that every edge incident to w in
G is a cut-edge in C. This proves the lemma. O

We next apply the above results to obtain some preliminary results on f-detach-
ments.

Lemma 2.20. Let G = (V, F) be a loopless graph and r : V(G) — Z,. Suppose that
G has a non-separable r-detachment H. Let f be the r-degree specification for G given
by f{) = d(”) ZfT(U) = 1:' and f(U) - (ffuf;a t 7f:(v)) where ff = ((d(?)) - 2T<U) +
4)/2], 3 = [(d(v) —2r(v)+4)/2], and f} =2 for allv € No(G,r) and 3 <i < r(v).
Then G has a non-separable f-detachment.

Proof. For each v € V, let vy, vs,..., v, be the pieces of v in H, where dg(v;) >
di(ve) > ... > du(vyw). Note that the pieces of v are independent in H since G is
loopless.

Suppose dg(v;) > 3 for some 3 < i < r(v). Using Corollary B.I§, we can construct
a new non-separable r-detachment by flipping an edge v;z to either v,z or vz for some
z € T'y(v;). Applying this operation iteratively, and relabelling v; and v, if necessary,
we may construct a non-separable r-detachment H’ of G on the same vertex set as H
with dg/(v1) > dp(ve) and dg(v;) = 2 for all v € No(G,r) and ¢ < 3 < r(v).

Suppose dy/(v1) > dg(ve) + 2. By Corollary R.17, we can construct a new non-
separable r-detachment by flipping an edge vz to vz for some z € T'g(vq). Ap-
plying this operation iteratively to H' we may construct the required non-separable
f-detachment G. O

Let S be the set of all sequences of integers of length r in decreasing order of
magnitude. Let >, be the lexicographic ordering on S, (hence f = (f1, fa, ..., fr) >
g =(91,92,-..,¢-) if and only if either f = g, or, for some 1 < i < 7r, fi = g1, fo =
92,5 ficr = gi1, fi > i)

Lemma 2.21. Let G = (V, E) be a loopless graph, v : V(G) — Z,, and f and g be
two r-degree specifications for G. Suppose that G has a non-separable f-detachment,
f(W) >r@) g(v) and g7 > 2 for allv € V and 1 < i < r(v). Then G has a non-
separable g-detachment.

Proof. We assume that, for each v € V' the sequences f(v) and g(v) occur in decreasing
order of magnitude. Note that > . (v)f} = dg(v) = ;_,(v)g! for all v € V. Given
an integer z let z* = z if z > 0, and otherwise let z* = 0. We may suppose that f has
been chosen to satisfy the hypotheses of the lemma and such that:
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(1) 01(f) = Xvev 2os<icrw)(fi — 9)" is as small as possible;
(ii) subject to (i), 62(f) = X ey D os<icrw) (9 — [7')" is as small as possible;

(iii) subject to (i) and (i), O5(f) = >,y (fI — ¢7) is as small as possible.

Let H be a non-separable f-detachment of G. Let vy, v, ..., v,,) be the pieces of v
in H, where dy(v;) = f/ for allv € V and all 1 <i < r(v).

Suppose 01(f) > 1. Then we may choose v € V such that f’ > ¢g¥ + 1 for some
3 <i<r(v). Then f? > 3 and by Corollary B.1§ there exists a z € I'y(v;) such that
either H(v;z — vy1z) or H(v;z — wvyz) is non-separable. In both cases, the resulting
non-separable graph H' is an f’-detachment of G for some r-degree specification f’
with f'(u) >,w) g(u) for all w € V and 6,(f’) = 61(f) — 1. This contradicts the choice
of f. Thus 0;(f) =0 and f’ < g} forallv € V and all 3 <i < r(v).

Suppose Oo(f) > 1. Then we may choose v € V such that ¢/ > f¥ + 1 for some
3 < i < r(v). We first consider the case when f{ > g¥ + 1. Then f > f¥ and by
Corollary R.17 there exists a z € T'y(v;) such that H(v;z — v;z) is non-separable.
The resulting non-separable graph H’ is an f’-detachment of G for some r-degree
specification f" with f'(u) >, g(u) for all u € V, 61(f') =0, and x(f") = 02(f) — 1.
(Note that f'(v) >, g(v) since 61(f) = 0 and hence either fy —1 > g{, or else
fr—1=g¢ and fy > ¢4 with equality only if f'(v) = g(v).) This contradicts the
choice of f and hence f} < gf. Since f(v) >,w) g(v), 61(v) = 0 and Oy(v) > 1, we
must have f{ = ¢} and f§ > g5 + 1. We can now obtain a contradiction as above by
using Corollary R.17 to show that there exists a z € I'y(vy) such that H(vez — v;2)
is non-separable. Thus we must have 0y(f) = 0 = 6;(f) and hence [’ = g for all
veVandall 3<i<r(v).

Suppose 05(f) > 1. Then we may choose v € V such that f > ¢y + 1. Then
f¥ > g4 > f¥ and by Corollary P.17 there exists a z € T'y(v;) such that H(viz — vy2)
is non-separable. The resulting graph H' is a non-separable f’-detachment of G for
some r-degree specification f’ with f'(u) >, g(u) for all u € V, 61(f") = 0 = 02(f'),
and 03(f’) = 05(f) — 1. This contradicts the choice of f and hence 05(f) = 0. Thus
f = g and the lemma is trivially true. O

We shall need one more lemma which is an extension of Lemma P_3.

Lemma 2.22. Let G be a 2-edge-connected loopless graph, v € N(G), andr : V —
Z be such that r(v) > 2 and r(u) =1 for allu € V —v. Suppose that v is a cut-vertex
of G and that b(v) > r(v). Then there exists a 2-edge-connected r-detachment H of G
such that, for the pieces vy, va, ..., Upwy of v in H, we have dy(v2) = bg(v) —2r(v) +4,
dp(v;) =2 for 3 <i <r(v) and neither vy nor vy is a cut-vertex of H.

Proof. We use induction on r(v). If (v) = 2 then the lemma follows from Lemma P.3.
Hence suppose r(v) > 3 and choose z,y € I'(v) belonging to different components
of G —v. Let G’ be the graph obtained from G by detaching v into two vertices v’
and v”, where dg(v") = 2 and T'e/(v") = {x,y}. It can be seen that G’ is 2-edge
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connected and bg/(v') = bg(v) — 1. The lemma now follows by applying induction to
(G',v',r") where r'(v') = r(v) — 1. O

As for Theorem E.1], we first prove Theorem P.2 in the case when G is loopless and
N(G) is independent.

Theorem 2.23. Let G = (V,E) be a loopless graph with at least two edges, r :
V(G) — Z., and let f be an r-degree specification, where f(v) = (f{, f3,.... f})
and f{' > f3 > ... = [, for allv € V. Suppose that N(G) is independent. Then G
has a non-separable f-detachment if and only if

(a) G is 2-edge connected,

(b) ¥ >2 forallveV and all 1 <i <r(v),

(c)e(X +v,V—-X—-v)—fl >r(X+v)+bX +v)—2 forallv e N(G) and all
X C No(G,r) —w.

Proof. We first prove necessity. Suppose that G has a non-separable f-detachment
H. It is easy to see that conditions (a) and (b) must hold for G. Choose v € N(G)
and X C No(G,r) —v. Let C1,Cy,...,Cy be the components of G — (X + v), where
b=b(X +v), and let C! be the subgraph of H induced by the pieces of all vertices of
C;. Let vy be the piece of v in H of degree f}. Let S be the set of all pieces of vertices
of X in H and all pieces of v other than v;. Then |S| = r(X 4+ v) — 1. Since G is
loopless and N(G) is independent, we have e(X +v, V — X —v) — f} edges in H joining
the subgraphs C1,C%, ..., C; and vertices in S. Since H is non-separable H — vy is
connected and hence we must have e(X + v,V — X —v) — f{ > b+r(X +v) — 2.
Thus (c) holds for G.

We next prove sufficiency. We proceed by contradiction. Suppose that (G,r, f)
satisfies (a), (b) and (c) and that G does not have a non-separable f-detachment.
We first use Theorem P.12 to show that G has a non-separable r-detachment. Since
(G, r) satisfies (a) and (b), it also satisfies Theorem P.19 (a) and (b). Furthemore, for
y € Ni(G,r) and X C Ny(G,r) we have f{ =d(y), r(X +y) = r(X) + 1, and, since
G is loopless and N(G) is independent, e(X +y,V — X —y) = e(X,V — X) + d(y).
Since (G, r) satisfies (c), it follows that (G, r) also satisfies Theorem B.12 (c¢). Hence
G has a non-separable r-detachment.

Applying Lemma P.20, G has a non-separable h-detachment, H for some r-degree
specification h satisfying hy > hy > hf = ... = h}j(v) = 2 for all v € V. We may
suppose that A has been chosen such that 0(h) = Y ., h{ is as large as possible.
If by > f7 for all v € V then h(v) >,@) f(v) for all v € V and by Lemma P.21), G
has a non-separable f-detachment. Hence we may suppose that A} < f; — 1 for some
v € V. Necessarily we must have v € Ny(G,r) and hy > f3 +1 > 3.

Let v1,va, ..., U be the pieces of v in H, where dy(v;) = h{ for 1 <i < r(v). If
H' = H(vyz — v12) is non-separable for some z € I'y(vy), then H' is a non-separable
h'-detachment of G with §(h’) > 6(h). This contradicts the choice of H. Applying
Lemma P.16, we deduce that by ({v1,v2}) = dg(ve) = h.

Claim 2.24. by ({v1,v2,..., V@) }) = hs +7(v) — 2.
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Proof. We have already shown that by ({vy,v2}) = dg(ve) = hY and hence the claim
holds for r(v) = 2. Suppose r(v) > 3 and choose i, 3 < i < r(v). Let z be a
neighbour of v, in H such that z, v; belong to different components of H — {vy,vo}. If
H" = H(vyz — v;2)(v;2/ — v12) is non-separable for some 2’ € I'y(v;), then H” is a
non-separable h”-detachment of G with 6(h”) > 6(h). This contradicts the choice of
H. Applying Lemma E.T9, we deduce that each edge of H incident to v; is a cut-edge
of H — {vy,ve} for all 3 < i < r(v). Since hY = 2 for 3 < i < r(v), it follows that
H — {v1,vs,..., 0,5} has h$ 4+ 7(v) — 2 components. O

Let L be the graph obtained from H by contracting {vi,vs ..., v} back to the
single vertex v. Then L is an {-detachment of G for the r’-degree specification for G
defined by r'(v) = 1, (v) = dg(v); and 7' (u) = r(u) and ¢(u) = h(u) for u € V —v.
Furthermore L is a block-star centered on v and by, (v) = hl + r(v) — 2.

Claim 2.25. Let L' be an (-detachment of G such that L' is a block-star centered on
v. Then br/(v) > by (v).

Proof. Suppose b (v) < br(v) — 1. By Lemma P.29, we can detach v in L' into
r(v) pieces vy, v5, ... v, such that, in the resulting graph H* we have dy-(v3) =

b (v) —2r(v) +4, dy-(v)) =2 for 3 < i < r(v), dg~(v]) > hY, and neither v} nor v}
is a cut-vertex of H*. Using Claim £.24, we have

di(vy) = br(v) — 2r(v) +4 = hy —r(v) +2 < hi.

Since H* is 2-edge-connected and dg+(v)) = 2 for 3 <i < r(v), v} is not a cut-vertex
of H* for 1 <4 < r(v). Thus, if H* had a cut-vertex z, then x would belong to some
component of L' — v, and x would be a cut-vertex of L’ distinct from v. Hence H* is a
non-separable h*-detachment of G for some r-degree specification h* for G satisfying
O(h*) > 0(h). This contradicts the choice of H. O

It follows from Claim P.25 that we may apply Lemma .G to (G, L,¢). Let S; and
W; be the subsets of V(L) defined as in Lemma P.G (but with respect to v). Since the
sets S; are pairwise disjoint and L is finite, we may choose ¢ such that S;;; = (). Let
X'=(W; —v)and X = {x € V(G) : some piece of x in L belongs to X'}.

By Lemma .6, every edge xju of L — v with z; € X’ is a cut-edge in L — v. Thus
the graph we get from L — v by contracting each component of L — X' — v to a single
vertex is a forest F' with by (v) components and |X'| 4+ br (X’ 4 v) vertices. Using the
facts that X +v C N(G), and N(G) is an independent set of vertices in G, we deduce
that I has e (X', V(L) — X') edges. Thus

er (X', V(L) — X') = bp(X' + ) + |X'] — by (v). (5)

We have e (X', V(L) — X') = eq(X +v,V(G) — X —v) —dp(v), | X' = r(X),
br(v) = hi + (r(v) — 2 = dg(v) — hy — (r(v) — 2), and dr(v) = dg(v). Furthermore,
for each u € V(G) — X — v, all pieces of v in L belong to the same component of
L — X' —wv, since S;y1 = 0. Thus bg(X + v) = b (X' + v). Substituting into (f) we
obtain eq(X +v,V(G) = X —v) = (X +v) + bg(X +v) + h{ — 2. Since b} < f —1,
this contradicts the fact that G satisfies (c). O
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Proof of Theorem [Z.3. Let G = (V, E) be obtained from G by subdividing every edge
of G. Then G is loopless, N(G) = N(G) and N(G) is independent. Extend r to 7 and
f to f by putting #(v) = r(v) and f(v) = f(v) for all v € V(G); #(v) = 1 and f(v) = 2
for all v € V—V. Then Ny (G, 7) = Ni(G,r), No(G, 7) = No(G, r). We shall show that
conditions (a), (b), and (c) of Theorem .2 hold for (G, r, f) if and only if conditions
(a), (b), and (c) of Theorem hold for (G, #, f). Clearly Theorem R.9 (a) and (b)
hold for (G, r, f) if and only if Theorem .23 (a) and (b) hold for (G, #, f). Furthermore
for v € N(GQ) = N(G) and X C Ny(G,7) = No(G,#), we have f2 = f2, r(X) = #(X),
and eq(X +v,V =X —v)+ea(X +v) —bg(X +v) = ea(X +v,V =X —v) —ba(X +v).
Thus Theorem P.7 (c) holds for (G,r, f), if and only if Theorem P.23 (c) holds for
(G, 7, f). O

We close this section by noting that our proofs of Theorems .1 and £.2 are con-
structive and give rise to polynomial algorithms which either construct the specified
detachment or construct a certificate that shows it does not exist.

3 Some Corollaries and Open Problems

Our first corollary extends Euler’s Theorem.

Corollary 3.1. Let G = (V, E) be a 2-edge-connected graph and v : V — Z, such
that d(v) > 2r(v) for allv € V and r(v) > 2 for allv € N(G). Let f be an r-degree
specification for G such that f(v) = (f{, f3, ..., [},)) and 2 < f? < [d(v)/2]—r(v)+2

forallv eV and all 1 <i <r(v). Then G has a nonseparable f-detachment.

Proof. Theorem P.1] implies that G' has a non-separable r-detachment (conditions (b)
and (c) of Theorem P21 hold vacuously for G since No(G) = ). The existence of a
non-separable f detachment now follows from Lemma 20 and Z.21. It can also be
derived from Theorem P72 O

The more difficult direction of Euler’s theorem follows from Corollary Bl by taking
r(v) = d(v)/2 in a graph in which all vertices have even degree. Our next corollary
is a result of Hakimi [I] which characterises the degree sequences of non-separable
graphs.

Corollary 3.2. Letd; > dy > ... > d, > 2 be integers with n > 2. Then there exists
a non-separable graph with degree sequence (dy,ds, ..., d,) if and only if
(a) di +ds + ...+ d, is even, and

Proof. We first prove necessity. Suppose there exists a non-separable graph H with
this degree sequence and let v; € V(H) have degree d; for 1 < i < n. Clearly (a)
holds. Since H is non-separable, H — v; is connected. Thus |E(H — vy)| > n — 2.
Hence dy = e(V —vy,v1) <ds +ds+ ...+ d, —2n+ 4.

Sufficiency follows by applying Theorem .2 to the graph G consisting of a single
vertex v incident to (dy + do + ... + d,,)/2 loops, by setting r(v) = n and f(v) =
(dy,da, ..., dy,). O
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Our next result considers the case when we only want to detach one vertex in a
graph. The special case when d(v) is even and r(v) = d(v)/2 gives a ‘splitting off’
result for non-separable graphs.

Corollary 3.3. Let G = (V,E) be a graph, w € V, and r : V — Z, such that
r(u) =m > 2 and r(v) = 1 for allv € V —wu. Let f be an r-degree specification
for G where f(u) = (f1, fas-- s fm), L = fo> ... > fu =2, and f(v) = d(v) for
veV —u. Then G has a non-separable f-detachment if and only if

(a) G is 2-edge-connected,

(b) e(v) =0 and b(v) =1 for allv € V — u,

(c) fot+ fs+ ...+ fn = b(u) +e(u) + m — 2, and

(d) e(u,V—v—u)+e(u) >m+blu,v)—1 forallveV —u.

Proof. The necessity of conditions (a)-(d) is easy to see. To prove sufficiency, we
suppose that G satisfies (a)-(d) and use Theorem P.2 to deduce that G has a non-
separable f detachment. It is easy to see that conditions (a) and (b) of Theorem
2.2 hold for G. To see that condition (c) of Theorem B.Z holds, let v € N(G) and
X C No(G) —v. Since No(G) = {u} we have (v,X) € {(v,0), (u,0), (v, {u})}.
Condition (c) of Theorem .2 holds for each of these three alternatives since conditions
(b), (c), and (d) of the corollary hold for G. Note that when (v, X) = (v,{u}) we
have

e(X4+v,V—-X—-v)+eX+0v)— ff =e({u,v},V—{u,v}) +e({u,v}) — d(v)

=e(u,V —v—u)+e(u),
since e(v) = 0 by condition (b) of the corollary. O

We next consider non-separable simple detachments.

Corollary 3.4. Let G = (V,E) be a graph and r : 'V — Z,. Then G has a non-
separable simple r-detachment if and only if

(a) G is 2-edge connected,

(b) d(v) > 2r(v) for allv eV,

(c)e(X,V-X—-y)+e(X) > r(X)+b(X+y)—1 forally € N1(G,r) and X C No(G, 1),
and

(d) e(u) < r(u)(r(u) —1)/2 and e(u,v) < r(u)r(v) for all u,v € V.

Proof. Necessity of (a),(b),(c) follows from Theorem P.1] while necessity of (d) is ob-
vious. To see sufficiency we use Theorem P.1 to deduce that G' has a non-seperable
r-detachment H. We may assume that H has as few parallel edges as possible. Sup-
pose that eg(uy,v1) > 2 for two vertices u; and vy of H. Let u; and v; be pieces in
H of the vertices u and v, respectively, of G, (allowing the possibility that u = v).
Then (d) implies that there exist distinct pieces u; of u and v; of v in H such that
er(u;,v;) = 0. Then H — uyvy + w;v; has one less parallel edge than H. O

It is an open, and perhaps difficult, problem to characterise when a graph has a
non-separable simple detachment for some given degree specification.

A graph G = (V, E) is said to be k-connected if |V| > k+1 and G — U is connected
for all U C V(G) with |U| < k — 1. Thus, if |V| > 3, then G is non-separable if and
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only if G is 2-connected and loopless. Our next result characterises when a graph has
a 2-connected r-detachment.

Corollary 3.5. Let G = (V,E) be a graph and r : V — Z, such that (V) > 3.
Then G has a 2-connected r-detachment if and only if

(a) G is 2-edge connected,

(b) d(v) > 2r(v) for allv eV,

(c)e(X,V-X—-y)+e(X) > r(X)+b(X+y)—1 forally € N1(G,r) and X C No(G, ).

Proof. This follows easily by applying Theorem R.1] to (G’,r) where G’ is the graph
obtained from G by deleting all loops incident to vertices in Ni(G, ). O

By Theorem [[.3, condition (c) of Corollary B.J is equivalent to the statement “G'—y
has a connected 7|y _,-detachment for all y € N(G) with r(y) = 17. It is conceivable
that Corollary B-J extends to k-connectivity as follows.

Conjecture 3.6. Let k > 2 be an integer, G = (V, E) be a graph, and r : V — Z,
such that v(V') > k+ 1. Then G has a k-connected r-detachment if and only if

(a) G is k-edge connected,

(b) d(v) > kr(v) for allv eV,

(¢c) G—y has a (k—r(y))-connected r|y_,-detachment for ally € V with r(y) < k—1.

Using Theorem [[1], it can be seen that the truth of this conjecture for j-connected
detachments for all 2 < j < k would be equivalent to the truth of the following
conjecture.

Conjecture 3.7. Let k be a positive integer, G = (V, E) be a graph, andr :V — Z,
such that r(V') > k+ 1. Then G has a k-connected r-detachment if and only if

(a) G =Y is (k—r(Y))-edge connected for allY CV with r(Y) <k —2,
(b) d(v)—e(v,Y) > (k—r(Y))r(v) forallve V and allY CV —v withr(Y)
(c)e(X,V-X-Y)+eX)>r(X)+bXUY)—1 forallY CV with r(Y)
and all X CV =Y.

Sk_2;
<k-1

Conjecture B.7 is true for k = 1,2 by Theorem [[1], and Corollary B.5, respectively.
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