
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS

TR-2005-06. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Primal-dual approach for directed vertex
connectivity augmentation and

generalizations

László A. Végh and András A. Benczúr

May 2005

EGRES Technical Report No. 2005-06 1

Primal-dual approach for directed vertex
connectivity augmentation and generalizations

László A. Végh? and András A. Benczúr??

Abstract

In their seminal paper, Frank and Jordán show that a large class of opti-
mization problems including certain directed graph augmentation ones fall into
the class of covering supermodular functions over pairs of sets. They also give
an algorithm for such problems, however that relies on the ellipsoid method.
Prior to our result, combinatorial algorithms existed only for the 0–1 valued
problem. Our key result is a combinatorial algorithm for the general problem
that includes directed vertex or S − T connectivity augmentation. The algo-
rithm is based on the second author’s previous algorithm for the 0–1 valued
case.

Our algorithm uses a primal-dual scheme for finding covers of partially or-
dered sets that satisfy natural abstract properties as in Frank and Jordán. For
an initial (possibly greedy) cover the algorithm searches for witnesses for the
necessity of each element in the cover. If no two (weighted) witnesses have a
common cover, the solution is optimal. As long as this is not the case, the wit-
nesses are gradually exchanged by smaller ones. Each witness change defines
an appropriate change in the solution; these changes are finally unwound in a
shortest path manner to obtain a solution of size one less.

1 Introduction

Edge connectivity augmentation problems form a subclass of survivable network de-
sign [17] where one is interested in the minimum number of edges needed to be added
to a graph to satisfy certain connectivity prescriptions. Algorithms for various aug-
mentation problems have a large and expanding literature [3, 4, 6, 8, 12, 16, 21, 22,
and many others].

?Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest,
Hungary H-1117. e-mail: veghal@cs.elte.hu. The author is member of the Egerváry Research
Group (EGRES) Supported by the Hungarian National Foundation for Scientific Research Grant,
OTKA T037547 and by European MCRTN ADONET, Grant Number 504438.

??Computer and Automation Institute, Hungarian Academy of Sciences, Lágymányosi u. 11.,
Budapest, Hungary H-1111, and Department of Operations Research, Eötvös University, Pázmány
Péter sétány 1/C, Budapest, Hungary H-1117 e-mail: benczur@sztaki.hu. The author is member
of the Egerváry Research Group (EGRES) Supported by OTKA T042481 and T042706.

May 2005

Section 1. Introduction 2

In this paper we give a combinatorial algorithm for directed vertex and edge con-
nectivity augmentation problems introduced by Frank and Jordán [12] as covering
supermodular functions over pairs of sets. They give an algorithm that uses the ellip-
soid method. Previously, combinatorial algorithms existed only for special problems
[9, 10] and for increasing connectivity by one [2, 11]. For the problem of increas-
ing directed vertex connectivity to target value k, the best previous combinatorial
algorithm has running time polynomial in n but exponential in k [13].

The central example of covering supermodular functions over pairs of sets is find-
ing the minimum number of directed edges that make a directed graph G k-vertex-
connected. We may consider all cuts of G with less than k vertices as set pairs (X, Y)
of the vertex set where X is the sink and Y is the source side of the cut (recall the
graph is directed). For a directed cut with sides X and Y , let

p(X, Y) = max{0, k − (|V | − |X| − |Y |)}

denote the number of vertices “missing” for a k-connected graph; for all other pairs
X, Y let p(X, Y) = 0. The graph becomes k-connected iff for all X and Y we add
at least p(X, Y) edges that lead from X to Y . The running time of our algorithm is
O(n5 ·min{k4, n2}) for this problem where k is the connectivity target. If we consider
the special case when the starting graph G is already k − 1 connected, then we can
give an even better running time bound of O(n3m).

The above demand function p satisfies the following crossing supermodular prop-
erty: whenever X ∩X ′ 6= ∅, Y ∩ Y ′ 6= ∅ and p(X, Y) > 0, p(X ′, Y ′) > 0,

p(X ∩X ′, Y ∪ Y ′) + p(X ∪X ′, Y ∩ Y ′) ≥ p(X, Y) + p(X ′, Y ′).

Another problem that falls into the class of covering set pairs is increasing directed
S − T vertex or edge connectivity to target value k by adding a minimum number of
edges between S and T [12]. For two possibly overlapping vertex sets S and T , the
S−T connectivity is the maximum number of directed vertex (or edge) disjoint paths
that connect vertices in S to vertices in T . Yet another remarkable problem of this
class is Győri’s rectangle cover problem [19, 14, 5].

In the heart of most results related to covering problems over set pairs we find
Dilworth’s theorem stating that the minimum number of chains that cover a partially
ordered set is equal to the maximum number of pairwise incomparable elements of
the set. Both the non-combinatorial algorithm [12] and certain combinatorial ones
[9, 10, 11, 5] start with a reduction to chain covers as in Dilworth’s theorem.

Similar to most results related to covering problems over set pairs [12, 9, 10, 11, 5] we
find Dilworth’s chain cover theorem in the heart of our new combinatorial algorithm.
However we circumvent the reduction to Dilworth’s theorem; instead we give a more
general algorithm that resembles the folklore Dilworth algorithm as described in [2].
The relation between supermodular functions over set pairs and Dilworth’s chain
covers is based on the following observation. It is easy to show that for each directed
edge (x, y) there is a unique set pair (X, Y) with X minimum and Y maximum and
another (X ′, Y ′) with Y ′ minimum and X ′ maximum with x ∈ X, X ′ and y ∈ Y, Y ′.
All other (X ′′, Y ′′) satisfy this property iff X ⊆ X ′′ ⊆ X ′ and Y ⊇ Y ′′ ⊇ Y ′. Thus

EGRES Technical Report No. 2005-06

Section 2. Poset properties of the Frank–Jordán set pairs 3

if we define a partially order with the above “skew” containment relation, we get
the problem of covering a partially ordered set by intervals, a direct generalization of
Dilworth’s problem.

Our algorithm is based on the unweighted one of [2] that directly generalizes a
Dilworth algorithm. In the weighted case we start out with a multichain version of
Dilworth’s problem where poset elements have weights and the total number of chains
containing an element must be at least its weight. We consider multiple copies of the
same chain instead of weighted chains; our algorithm is pseudo-polynomial in this
sense.

We construct an optimum interval cover by starting with an arbitrary (possibly
greedy) cover and gradually improve it in a primal-dual augmenting path manner that
mimics standard Dilworth algorithms. Algorithms for Dilworth’s theorem are based on
a reduction to the bipartite matching problem [15]. When we unfold the reduction of
Dilworth’s theorem to bipartite matchings, we find that the classical alternating path
matching algorithm translates into an algorithm that (i) maintains one element for
each chain as a candidate dual optimum; (ii) terminates with optimum if no element
occurs more than its weight and they are pairwise incomparable when multiple copies
are ignored; finally (iii) otherwise uses these elements to guard exchanges in chain
parts such that one of the chains eventually becomes unnecessary for the cover. Such
a direct Dilworth algorithm is described by Frank [7]. We remark that the current
best bipartite matching algorithm is given in [20] and for Dilworth’s problem in [5].

In the bulk of this paper we describe our algorithm that solves certain directed edge
augmentation problems via a reduction to covering a poset by weighted intervals where
poset elements are weighted by a supermodular function p. As shown in Section 2,
this covering problem is equivalent with that considered by Frank and Jordán [12].
Thus our algorithm applies among others to the task of increasing directed vertex
connectivity or directed S–T edge connectivity to a target value.

The rest of the paper is organized as follows. In Section 2 we give the main defi-
nitions and state the equivalence of our theorem with that of Frank and Jordán [12].
In Section 3 we first give an overview of the primal-dual procedure, then in sepa-
rate subsections show the key Procedures Pushdown and Reduce and in separate
subsections show their correctness. Finally in Section 4 we briefly elaborate on the
running times for the augmentation problems.

2 Poset properties of the Frank–Jordán set pairs

Frank and Jordán [12] introduce systems of set pairs closed under a certain “skew
intersection” operation defined next. Let two members (X−, X+) and (Y −, Y +) be
called dependent if both X− ∩ Y − and X+ ∩ Y + are nonempty; otherwise they are
independent. Observe that (X−, X+) and (Y −, Y +) are independent if and only if
they cannot be covered by the same edge. Then for all dependent pairs,

(X− ∩ Y −, X+ ∪ Y +), (X− ∪ Y −, X+ ∩ Y +) (1)

EGRES Technical Report No. 2005-06

Section 2. Poset properties of the Frank–Jordán set pairs 4

are also members of the set system. A function p over the system of set pairs satisfies
the crossing supermodular property if for all dependent (X−, X+) and (Y −, Y +) with
p(X−, X+) > 0 and p(Y −, Y +) > 0,

p(X− ∩ Y −, X+ ∪ Y +) + p(X− ∪ Y −, X+ ∩ Y +) ≥ p(X−, X+) + p(Y −, Y +)

They prove the following theorem:

Theorem 2.1 (Frank and Jordán [12]). Let p be a crossing supermodular function
over a system of set pairs closed under the operations (1). The minimum cardinality
of an edge multiset {e = (v1, v2)} such that for all (X−, X+) there exist p(X−, X+)
edges with v1 ∈ X−, v2 ∈ X+ is equal to the maximum sum of p-values for pairwise
independent elements in the system of set pairs.

We give an alternate proof of an equivalent form of this theorem stated as a poset
covering problem. The proof is via a combinatorial algorithm.

Definition 2.2. Consider a poset (P ,≤); let u, v ∈ P be called dependent if ∃m, M
with m ≤ u ≤ M and m ≤ v ≤ M ; otherwise they are independent. For all
dependent u and v ∈ P two operations ∨ and ∧ are uniquely defined as

s ∨ t = min{x : x ≥ s, x ≥ t};
s ∧ t = max{x : x ≤ s, x ≤ t}. (2)

We say that for a minimal element m and a maximal element M , the set {x : m ≤
x ≤ M} is the interval [m,M]. Let P satisfy furthermore the strong interval
property: for every interval [m, M],

u ∧ v ∈ [m,M] implies u ∈ [m, M] or v ∈ [m, M], (3)

and the same holds with u ∧ v replaced by u ∨ v.

The notion of a crossing supermodular function p over the poset follows similar to
set pairs: for all dependent x and y with p(x) > 0 and p(y) > 0 we require

p(x ∨ y) + p(x ∧ y) ≥ p(x) + p(y)

We say that I covers the function p if for every x at least p(x) intervals contain x.
An element v is called tight if we have equality.

Lemma 2.3. If x and y are two dependent tight elements with p(x) > 0, p(y) > 0,
then both x ∨ y and x ∧ y are tight.

Proof. Let g(x) denote the number of intervals covering element x. By the strong
interval property all intervals that cover x ∨ y or x ∧ y also cover x or y and if they
cover both, then they cover all four, hence g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y). The
proof is complete by

g(x ∨ y) + g(x ∧ y) ≥ p(x ∨ y) + p(x ∧ y) ≥
≥ p(x) + p(y) = g(x) + g(y) ≥ g(x ∨ y) + g(x ∧ y) (4)

implying equality everywhere. Here the first inequality follows since we have a cover;
the second is the definition of crossing supermodularity; and the equality follows by
the tightness of x and y.

EGRES Technical Report No. 2005-06

Section 2. Poset properties of the Frank–Jordán set pairs 5

Lemma 2.4. If x and y are two dependent tight elements with p(x) > 0, p(y) > 0,
and the interval [m, M] contains x, then it contains at least one of x ∨ y and x ∧ y;
in addition either y ≤M or m ≤ y.

Proof. Recall that by the proof of Lemma 2.3 we have equality everywhere in (4); the
last inequality hence turns to g(x)+ g(y) = g(x∨y)+ g(x∧y). By the strong interval
property all intervals that cover x∨y or x∧y also cover x or y and if they cover both,
then they cover all four. Hence the above equality implies the claim.

Given the notion of the cover problem for a poset with the strong interval property,
we next show its equivalence with the Frank–Jordán set pair cover problem. First we
show the equivalence of the poset properties as seen in Fig. 1.

Figure 1: The correspondence between set pairs and poset elements. The four pairs
on the right side can be covered by one edge, and the corresponding four elements are
contained in one interval.

Theorem 2.5. Let P ⊆ {(X−, X+) : X− ⊆ X−, X+ ⊆ X+} such that for all depen-
dent x = (X−, X+) and y = (Y −, Y +),

x ∧ y = (X− ∩ Y −, X+ ∪ Y +) ∈ P ,

x ∨ y = (X− ∪ Y −, X+ ∩ Y +) ∈ P .

For any x = (X−, X+) and y = (Y −, Y +) let x ≤ y iff X− ⊆ Y − and X+ ⊇ Y +.
Then P with operations ∨, ∧ and ≤ over P satisfies Definition 2.2. Furthermore
subfamilies

{(X−, X+) : v1 ∈ X−, v2 ∈ X+}

for pairs v1 ∈ X−, v2 ∈ X+ are either intervals themselves or contained by some
intervals of P. Furthermore for all intervals of P there exist v1 and v2 such that the
interval can be given in such a form.

Proof. Property (2) of Definition 2.2 follows directly by the properties of set union,
intersection and containment.

To show the relation of intervals and subfamilies defined by pairs of vertices, con-
sider vertices v1 and v2 first. Since all set pairs {(X−, X+) : v1 ∈ X−, v2 ∈ X+}

EGRES Technical Report No. 2005-06

Section 3. The algorithm 6

are dependent, we may take intersections and unions to find the unique minimal and
maximal pairs. The interval consisting of all pairs (X−, X+) between the minimal
and maximal satisfy v1 ∈ X−, v2 ∈ X+, hence v1 and v2 define a subset of an interval.

Now we show that a pair v1, v2 exist for all intervals [m, M] = [(m−, m+), (M−, M+)].
We take an arbitrary pair v1 ∈ m− and v2 ∈M+, and we show that this is an appro-
priate selection.

If Z = (Z−, Z+) ∈ [m,M], then m− ⊆ Z− and M+ ⊆ Z+, hence v1 ∈ Z− and
v2 ∈ Z+. Assume now we have some Z of this form with Z 6∈ [m, M], that is, either
m 6≤ Z or Z 6≤ M . Z is dependent of both m and M since v1 ∈ Z− ∩m− ∩M− and
v2 ∈ Z+ ∩m+ ∩M+, thus v ∧m and v ∨M exists. In the first case v ∧m < m, in the
second case v ∨M > M , both contradicting the extremity of m or M .

To show (3) of Definition 2.2, we take a pair v1, v2 defined as above for the interval
[m, M]. It suffices to show this edge covers either u = (X−, X−) or v = (Y −, Y +).
Notice v1 ∈ X− ∩ Y − and v2 ∈ X+ ∪ Y +. The former implies v1 ∈ X− and v1 ∈ Y −

while the latter implies v2 ∈ X+ or v2 ∈ Y +. The same holds with u ∧ v replaced by
u ∨ v, hence the claim follows.

Before giving our algorithm, we state our main result as a min-max formula.

Theorem 2.6. For a poset P as in Definition 2.2 and a crossing supermodular func-
tion p, the minimum number of intervals covering P is equal to the maximum of the
sum of p values for pairwise independent elements of P.

Theorem 2.5 implies that Theorem 2.1 is a special case of this theorem. Now we
show that Theorem 2.1 implies Theorem 2.6, hence they are equivalent. Given a poset
P as in Definition 2.2, let us define for all x ∈ P a representative element ϕ(x). For
a ∈ P let us define the pair δ(a) = (a−, a+) so that

a− = {ϕ(m) : m ≤ a, m ∈ P minimal} a+ = {ϕ(M) : M ≥ a, M ∈ P maximal}

It is easy to show that the function δ is a homomorphism for ∨, ∧ and ≤, and that the
function defined by p′(X−, X+) := max{p(a) : δ(a) = (X−, X+)} is crossing super-
modular. Hence applying Theorem 2.1 for p′ on the pairs of sets implies Theorem 2.6.

3 The algorithm

We give a brief overview of our algorithm for the 0–1 valued case first. The algorithm
starts out with a (possible greedy) interval cover I1, . . . , Ik. In Algorithm Pushdown-
Reduce we maintain a tight element ui ∈ Ii for each interval Ii as a witness for the
necessity of Ii in the cover. As long as the set of witnesses are non-independent or in
other words they do not form a dual solution, in Procedure Pushdown we replace
certain ui by smaller elements. By such steps we aim to arrive in an independent
system of witnesses. If witnesses are indeed pairwise independent, they form a dual
solution with the same value as the primal cover solution, thus showing both primal
and dual optimality. Otherwise the algorithm calls Procedure Reduce, a procedure
that exchanges interval endpoints so that we get an interval cover of size one less.

EGRES Technical Report No. 2005-06

3.1 The Pushdown step 7

Algorithm Pushdown-Reduce(I)
for j = 1, ..., k do

if Ij has no tight elements then
return reduced cover {Ii : i = 1, ..., j − 1, j + 1, ..., k}

u
(1)
j ← maximal tight element of Ij

do
for j = 1, ..., k do

u
(t+1)
j ← Pushdown(j, t, I)

t← t + 1

while exist j such that u
(t)
j < u

(t−1)
j

return optimal dual solution {u(t)
1 , ..., u

(t)
k }

In order to handle weighted posets, technically we need to consider multisets of
intervals and witnesses in our algorithm. We assume I1, . . . , Ik may contain the same
interval more than once and the same may happen to the set of witnesses. The next
lemma shows that if the witnesses are pairwise independent as a weighted set instead
of a multiset, then the solution is optimal.

Lemma 3.1. If for every i, j ui and uj are either independent or ui = uj, then the
elements {u1, ..., uk} give a dual optimal solution.

Proof. It suffices to show that if for some poset element y there exists an i with y = ui,
then there exist exactly p(y) such intervals Ij with uj = y. Since y = ui is tight, there
are exactly p(y) intervals Ij with y ∈ Ij. Consider such an uj now: ui and uj are
either independent or ui = uj, but the first case is impossible since both of them are
covered by Ij. Hence uj = ui for all p(y) values of j.

3.1 The Pushdown step

Our Algorithm Pushdown-Reduce (see box) tries to push witnesses down along
their intervals in iterations t = 1, 2, . . . until they satisfy the requirements of
Lemma 3.1; witnesses are superscripted by the iteration value (t). Given two in-
tervals Ii = [mi, Mi] and Ij = [mj, Mj] and two tight elements u ∈ Ii and v ∈ Ij,
we say that u may push v down (with regard to Ii) if u and v are dependent and
v 6≤Mi. Different scenarios when u may push v down are shown in Fig. 2.

As the motivation of pushing u
(t)
j down by u

(t)
i we give the following claim as a

relative easy consequence of Lemma 3.6; we omit the proof as it is not used elsewhere.
After pushing u

(t)
j down by u

(t)
i , for all subsequent t′ > t of the while loop of Al-

gorithm Pushdown-Reduce if the witnesses u
(t′)
j and u

(t′)
i for intervals i and j are

dependent then they must be equal. Hence all non-equal dependent pairs of witnesses
gradually disappear from the system.

EGRES Technical Report No. 2005-06

3.1 The Pushdown step 8

u v

u ∨ v

u ∧ v

Mi

mi mj

Mj

u v

u ∨ v

u ∧ v

Mi

u v

u ∨ v

u ∧ v

Mi Mj

mimj

Mj

mj mi

(a) (b) (c)

Figure 2: Different cases when u may push v down. By Lemma 2.4 mi ≤ v, and there
are three possible cases: (a) mj 6≤ u ≤Mj, (b) mj ≤ u 6≤Mj, and (c) mj ≤ u ≤Mj

While the above motivation considers the dual solution, namely it shows that the set
of witnesses becomes independent, we may also give a primal motivation of pushing v
down by u. If u is maximum tight in Ii, then we may hope that by replacing [mi, Mi]
by [mi, Mj] we still get a cover. In the examples of Figure 2 this holds for cases (a)
and (c). In this cover v is contained in the new interval while it was not contained in
the old, thus it may be replaced by a smaller witness.

While in cases (a) and (c) one could prove that if u may push v down, then u ≤Mj

(as in [2] for the case of increasing connectivity by one), in case (b) the argument fails
since we may have u /∈ [mi, Mj] and the actual proof of correctness will use a slightly
more complicated argument. This is the main reason why the analysis significantly
harder than in the case of unweighted poset covers. While the argument for replacing
[mi, Mi] by [mi, Mj] fails, we still push v down and proceed with the algorithm. Then
we use a backward analysis as in [2]; in the weighted case it turns out that, while this
fails to hold in general, if a particular interval exchange is performed corresponding
to a pushdown step, then the exchange is valid and in particular we have u ≤ Mj.
We prove this later in Lemma 3.9.

The next properties of elements that one may push the other down are required
both for the definition of the algorithm and later for the proof of correctness.

Lemma 3.2. If u, u′ ∈ Ii and v ∈ Ij are tight with u′ ≤ u and u may push v down,
then u′ may also push v down.

Proof. We only have to show that u′ and v are dependent. v 6≤Mi, since u may push
v down. Now by Lemma 2.4 we have that mi ≤ v. Hence the dependence of u′ and v
follows: a common lower bound is mi and a common upper bound is u ∨ v.

Lemma 3.3. Suppose u ∈ Ii, v ∈ Ij, v′ ∈ Ih are tight elements. Let v and v′ be
dependent. If u may push v ∨ v′ down, then it may also push either v or v′ down.

EGRES Technical Report No. 2005-06

3.2 Proof for termination without Reduce 9

Proof. Since u may push v ∨ v′ down, we have v ∨ v′ 6≤ Mi, hence by Lemma 2.4 we
have mi ≤ v ∨ v′. By the strong interval property either mi ≤ v or mi ≤ v′. By
symmetry let us consider the first case; in this case v and u are also dependent since
their common lower bound is mi and their common upper bound is u ∨ (v ∨ v′). If
v 6≤ Mi, then u may push v down. Suppose now mi ≤ v ≤ Mi. Since u may push
v ∨ v′ down, we have v ∨ v′ 6≤Mi and thus v′ 6≤Mi. Then by applying Lemma 2.4 for
v, v′ and [mi, Mi] it follows that mi ≤ v′, hence u and v′ are dependent. Finally by
v′ 6≤Mi we get that u may push v′ down.

Procedure Pushdown(j, t, I)
V ← {x : mj ≤ x ≤ u

(t)
j , x tight and ∀i = 1, . . . , k, u

(t)
i may not push x down}

if V = ∅ then
t∗ ← t;
return Reduce(j, t∗, I)

else return the maximal x ∈ V

The actual change of a witness u
(t)
j is performed in Procedure Pushdown (see box).

We select all tight elements x ∈ Ij, x ≤ u
(t)
j into a set V that cannot be pushed down

with elements u
(t)
i . If V is nonempty, we next show that it has a unique maximal

element; we use this element as the new witness u
(t+1)
j .

Lemma 3.4. In Procedure Pushdown either V = ∅ or else it has a unique maximal
element.

Proof. It suffices to show that if x, x′ ∈ V , then so is x ∨ x′ ∈ V . Obviously, x ∨ x′ is
tight and mj ≤ x ∨ x′ ≤ u

(t)
j . Suppose now that some u

(t)
i may push x ∨ x′ down. By

Lemma 3.3 u
(t)
i may push either x or x′ down, contradicting x, x′ ∈ V .

If we find no dependent pair of witnesses such that one may push the other down,
then we will show that the witnesses are pairwise independent or equal and thus the
solution is optimal. As long as we find pairs such that one may push the other down,
in the main loop of Algorithm Pushdown-Reduce we record a possible interval
endpoint change by pushing one witness lower in its interval; these changes are then
unwound to a smaller cover as shown in Section 3.3.

3.2 Proof for termination without Reduce

We turn to the first key step in proving the correctness: we show that if the algorithm
terminates without calling Procedure Reduce, then u

(t)
i are pairwise independent

or equal; in other words if none of them may be pushed down by another, then the
solution is optimal.

EGRES Technical Report No. 2005-06

3.3 The Reduce step 10

Theorem 3.5. If the algorithm terminates without calling Procedure Reduce, then
u

(t)
i and u

(t)
j dependent implies u

(t)
i = u

(t)
j .

The theorem is an immediate consequence of the next lemma. To see, notice that if
the algorithm terminates without calling Procedure Reduce, then in a last iteration
the while condition of Algorithm Pushdown-Reduce fails. However then there
may be no pairs i and j such that u

(t)
i may push u

(t)
j down.

Lemma 3.6. Assume that t1 ≤ t2, and u
(t2)
i and u

(t1)
j are dependent, and u

(t1)
j may

not push u
(t2)
i down. Then u

(t2)
i ≤ u

(t1)
j .

This lemma is used not only for proving Theorem 3.5 but also in showing the
correctness of Procedure Reduce in Section 3.3 via the next immediate corollary.

Corollary 3.7. If u
(t)
j and u

(t+1)
i are dependent, then u

(t+1)
i ≤ u

(t)
j .

In the proof of Lemma 3.6 we need to characterize elements that cause witness uj

move below a certain tight element y. Assume that for some tight y ∈ Ij and t we

have y 6≤ u
(t)
j . Since u

(1)
j is maximal tight, we may select the unique t0 with y ≤ u

(t0)
j

but y 6≤ u
(t0+1)
j . In step Pushdown(j, t0, I) we must have an u

(t0)
d that may push y

down. We will use this in the following special case:

Lemma 3.8. Assume that z is tight and dependent with u
(t)
j . Assume furthermore

that z 6≤ u
(t)
j and z ≤ Mj. Then there exists t0 < t and d such that u

(t0)
d may push

u
(t)
j ∨ z down. In addition u

(t0)
d may also push z down.

Proof. We apply the above observations for y = u
(t)
j ∨ z ∈ Ij. Since y is tight,

y ≤ u
(1)
j . And since z 6≤ u

(t)
j , we get y = u

(t)
j ∨ z 6≤ u

(t)
j . We select t0 with y ≤ u

(t0)
j but

y 6≤ u
(t0+1)
j ; then in step Pushdown(j, t0, I) we must have an u

(t0)
d that may push y

down.
For the second part of the claim observe that by Lemma 3.3 u

(t0)
d may push either

u
(t)
j or z down. The first choice is impossible, since then u

(t−1)
d could also push u

(t)
j

down by Lemma 3.2 and t − 1 ≥ t0. This latter contradicts the choice of u
(t)
j as the

maximum tight element that may not be pushed down in Pushdown(j, t− 1, I).

Proof of Lemma 3.6. u
(t2)
i ≤ Mj, since u

(t1)
j may not push u

(t2)
i down. If u

(t2)
i 6≤ u

(t1)
j ,

then the conditions of Lemma 3.8 hold with z = u
(t2)
i and t = t1. Thus we have some

t0 < t1 and d such that u
(t0)
d may push z = u

(t2)
i down. But then u

(t2−1)
d may also push

u
(t2)
i down by Lemma 3.2. This latter contradicts the choice of u

(t2)
i as the maximum

tight element that may not be pushed down in Pushdown(i, t− 1, I).

3.3 The Reduce step

So far we have proved that if the initial primal solution is optimal, then the algorithm
finds a dual optimum proof of this fact. Now we turn to the second scenario when

EGRES Technical Report No. 2005-06

3.3 The Reduce step 11

mj1mj2

Mj1Mj2

u
(1)
j2

q

u
(1)
j1

Figure 3: Procedure Reduce called with t∗ = 1. The two upright intervals are the
original ones with their tight elements shaded. These two intervals will be replaced
by the single bold interval. The new interval contains all tight elements of the old
ones since u

(1)
j2
≤Mj1 by Lemma 3.9.

Procedure Reduce-OneStep(j, 1, I)
j1 ← j;
q ← minimal tight element in [mj1 , Mj1]

j2 ← value ` 6= j1 such that u
(1)
` may push q down

return reduced cover {[mi, Mi] : 1 ≤ i ≤ k, i 6= j1, j2} ∪ {[mj2 , Mj1}.

one witness eventually disappears from the dual solution. In this case we unwind the
steps to find a cover of size one less in Procedure Reduce based on interval exchanges
at certain pairs of tight poset elements.

To illustrate the idea of Procedure Reduce, first we discuss the simplest case
t∗ = 1; the general case will then be reduced to this case by a special induction.
We summarize Procedure Reduce-OneStep for this particular scenario with steps
shown in Fig. 3. Since t∗ = 1, we have some j = j1 ≤ k such that Procedure Reduce
is called within Procedure Pushdown(j, 1, I). This means that

V = {x : mj1 ≤ x ≤ u
(1)
j1

, x tight and ∀` = 1, . . . , k, u
(1)
` may not push x down}

is empty. Let q be minimum tight in [mj1 , Mj1]; since q /∈ V , we must have some

` = j2 such that u
(1)
` may push q down. The algorithm selects such a j2 and returns

a reduced interval system

I − [mj1 , Mj1]− [mj2 , Mj2] + [mj2 , Mj1]. (5)

EGRES Technical Report No. 2005-06

3.3 The Reduce step 12

Procedure Reduce(j, t∗, I)
j1 ← j;
for t = t∗, ..., 1 do

s← t∗ + 1− t
q ← minimal tight element in [mjs , Mjs]

js+1 ← value ` 6= js such that u
(t)
` may push q down

mjs ← mjs+1

return reduced cover {[mi, Mi] : 1 ≤ i ≤ k, i 6= jt∗+1}.

In the proof of case t∗ = 1 we use the following general lemma for h = j1, u = u
(1)
` .

Lemma 3.9. Let q be the minimal tight element of Ih. If u ∈ I` may push q down,
then u ≤Mh.

Proof. Suppose by contradiction that u 6≤ Mh. Since u and q are dependent, by
Lemma 2.4 u ∧ q ∈ Ih. Since q is the minimal tight in Ih, we have q ≤ u ∧ q, hence
q ≤ u ≤M`, contradicting that u may push q down.

Lemma 3.10. If t∗ = 1, Procedure Reduce(j, t∗, I) returns an interval cover.

Proof. It suffices to show that [mj2 , Mj1] contains all tight elements of both [mj1 , Mj1]
and [mj2 , Mj2]; furthermore there is no common tight element in [mj1 , Mj1]∩[mj2 , Mj2].
In this case we may replace the intervals [mj1 , Mj1] and [mj2 , Mj2] by [mj2 , Mj1]

To prove, first let x ∈ [mj2 , Mj2] be tight; x ≤ u
(1)
j2

by maximality. When applying

Lemma 3.9 for h = j1, ` = j2, u = u
(1)
j2

we get u
(1)
j2
≤ Mj1 . This implies mj2 ≤ x ≤

u
(1)
j2
≤Mj1 , as required.

Next let x ∈ [mj1 , Mj1] be tight. q ≤ x for the minimal tight q of [mj1 , Mj1], and

since u
(1)
j1

may push q down, by Lemma 2.4 mj2 ≤ q. Thus we get mj2 ≤ q ≤ x ≤Mj1 ,
as required.

Finally assume that a common tight element x ∈ [mj1 , Mj1]∩ [mj2 , Mj2] exists; now

q ≤ x ≤Mj2 , contradicting the fact that u
(1)
j2

may push q down.

Our aim in Procedure Reduce (see box) is to repeatedly pick an interval [mjs , Mjs]
and try to find another interval [mjs+1 , Mjs+1] such that if we replace [mjs , Mjs] by
[mjs+1 , Mjs], then the minimum tight element of [mjs+1 , Mjs] increases. We ensure this
by defining

js+1 ← a value ` 6= js such that u
(t)
` may push q down,

where q is the minimum tight element of [mjs , Mjs], and t = t∗ + 1 − s. Applying

Lemma 3.9 for h = js, ` = js+1, u = u
(t)
js+1

we get u
(t)
js+1
≤ Mjs . Thus when replacing

[mjs , Mjs] by [mjs+1 , Mjs], the tight elements in [mjs+1 , Mjs+1] with x ≤ u
(t)
js+1

will no
longer be tight. The overall idea is seen in Fig. 4.

While the first step of the procedure is well-defined since we call Procedure Reduce
exactly when the minimal tight q ∈ Ij for j = j1 is pushed down by certain other

EGRES Technical Report No. 2005-06

3.3 The Reduce step 13

mj1mj2mj3

Mj1Mj2Mj3

u
(1)
j2u

(1)
j3

x
q

u
(2)
j1

u
(2)
j2

Figure 4: Procedure Reduce called with t∗ = 2. The three upright intervals are the
original ones with their tight elements shaded. The original three intervals will be
replaced by the two bold intervals using the marked witnesses. Note that the two
new intervals contain all tight elements of the old ones. While the number of intervals
covering certain non-tight elements (x in the example) may decrease, we prove that
they remain covered.

EGRES Technical Report No. 2005-06

3.3 The Reduce step 14

u
(t∗)
` , the existence of such an ` is by no means obvious for all the other iterations of

the main loop.
The existence of all further j` in Procedure Reduce as well as the correctness of

the algorithm is proved by “rewinding” the algorithm after the first iteration of Pro-
cedure Reduce and showing that each step is repeated identical up to iteration t∗−1.
The intuition behind rewinding is based on the resemblance of Procedure Reduce
to an augmenting path algorithm. In this terminology, instead of directly proving
augmenting path properties we use a special induction by executing the main loop
of the procedure step by step and after each iteration rewinding the main algorithm.
In the analogy of network flow algorithms, this may correspond to analyzing an aug-
menting path algorithm by choosing path edges backward from the sink, changing the
flow along this edge to a preflow, and at each step proving that the remaining path
augments the flow.

Let
I ′ = I − [mj1 , Mj1] + [mj2 , Mj1]. (6)

be the set of intervals after the first iteration of Procedure Reduce.

Theorem 3.11. For t∗ > 1 with input I ′ Algorithm Pushdown-Reduce performs
the exact same steps as with input I until iteration t∗−1 when Reduce(j2, t

∗−1, I ′)
is called.

By using the above theorem inductively for t∗, t∗ − 1, . . . , 1 we prove that Reduce
finds an interval cover of size one less than before. This completes the correctness
analysis of Procedure Reduce.

To prove Theorem 3.11 now we define elements that are no longer tight and elements
that become tight in the new cover:

Lemma 3.12. Let

Z1 = {x tight in I and x not tight in I ′},
Z2 = {x not tight in I and x tight in I ′}.

Then

Z1 ⊆ {x : x ∈ [mj2 , Mj1], x 6≥ mj1} (7)

Z2 ⊆ {x : x ∈ [mj1 , Mj1], x 6≥ mj2}. (8)

Hence the same elements are tight in Ij1 for I as in [mj2 , Mj1] for I ′.

Proof. We get I ′ from I by removing [mj1 , Mj1] and adding [mj2 , Mj1] instead. Hence
the elements of Z1 should be contained in the latter but not in the former, and similarly
the elements of Z2 should be in the former but not in the latter interval.

Next we show that the algorithm proceeds identical for I and I ′ for t < t∗. The
proof is based on the fact that the key elements used in defining u

(t)
i do not belong to

Z1 ∪ Z2.

EGRES Technical Report No. 2005-06

3.3 The Reduce step 15

Lemma 3.13. Let u
′(t)
i denote elements selected by Algorithm Pushdown-Reduce

with input I ′ with the convention that u
′(t)
j1

belongs to the modified interval [mj2 , Mj1].

Then for all t < t∗ we have u
(t)
i = u

′(t)
i .

Proof. By induction on t ≤ t∗ − 1 we will show u
′(t)
i = u

(t)
i . We show the inductive

hypothesis in three steps: we show for i = 1, . . . , k that

1. u
′(t)
i exists;

2. u
(t)
i /∈ Z1; and

3. u
′(t)
i /∈ Z2

The above three statements imply u
′(t)
i = u

(t)
i as follows. For t = 1 the maximal tight

elements are identical by 2 and 3 since u
′(1)
i tight in I implies u

′(1)
i ≤ u

(1)
i and we have

the opposite inequality when exchanging the role of the two elements. For general t
by induction on the step of defining u

′(t)
i , one can observe that element u

(t)
i belongs

to the set V of Procedure Reduce and the same holds when exchanging the role of
u
′(t)
i and u

(t)
i . Thus the two elements must be equal.

Assume first that u
(t)
i ∈ Z1. Then by Lemma 3.12 mj2 ≤ u

(t)
i ≤Mj1 and mj1 6≤ u

(t)
i .

Since mj2 ≤ u
(t+1)
j1

≤ Mj1 we have u
(t)
i and u

(t+1)
j1

dependent. Using Corollary 3.7

u
(t+1)
j1

≤ u
(t)
i , thus mj1 ≤ u

(t)
i , a contradiction.

Next we show that u
′(t)
i exists and mi ≤ u

(t)
i ≤ u

′(t)
i . We proved above that u

(t)
i /∈ Z1

and hence u
(t)
i remains tight in I ′. This immediately gives the result for t = 1. And

for t > 1 we use the consequence of the inductive hypothesis that u
(t−1)
h = u

′(t−1)
h for

all h. This yields u
(t)
i ∈ V for Pushdown(i, t − 1, I ′) that in turn implies that u

′(t)
i

exists and u
(t)
i ≤ u

′(t)
i .

Now we turn to the last part of the inductive hypothesis. Assume now that u
′(t)
i ∈

Z2. By Lemma 3.12 i 6= j1 and mj1 ≤ u
′(t)
i ≤Mj1 . Hence by applying Lemma 2.4 for I ′

we get that either u
(t+1)
j1

≤Mi or mi ≤ u
(t+1)
j1

. In both cases we derive a contradiction

with the definition of u
(t+1)
j1

in Procedure Pushdown(j1, t, I) by showing that certain

u
(t)
d may push u

(t+1)
j1

down.

Case I: u
(t+1)
j1

≤Mi. By Lemma 3.12 we also get mj2 6≤ u
′(t)
i , which in turn implies

u
(t+1)
j1

6≤ u
′(t)
i . Observe furthermore that u

(t+1)
j1

/∈ Z1, thus also tight in I ′. Combining

with u
(t+1)
j ≤Mi we may apply Lemma 3.8 for I ′, u

′(t)
i and z = u

(t+1)
j1

. By the lemma

there exists t0 < t such that an element u
′(t0)
d may push u

(t+1)
j1

down. By induction

u
(t0)
d = u

′(t0)
d , and by Lemma 3.2 u

(t)
d may also push u

(t+1)
j1

down.

Case II: mi ≤ u
(t+1)
j1

and u
(t+1)
j1

6≤ Mi. As we have seen above, mi ≤ u
(t)
i ≤ u

′(t)
i .

Thus u
(t+1)
j1

and u
(t)
i are dependent since their common lower and upper bounds are

mi and Mj1 , respectively. Hence in this case we have d = i: element u
(t)
i may push

u
(t+1)
j1

down. The proof is complete.

EGRES Technical Report No. 2005-06

Section 4. Running times 16

We complete the proof of Theorem 3.11 by the following lemma.

Lemma 3.14. When run with input I ′, Procedure Reduce is called in iteration t∗−1
with j = j2.

Proof. By Lemma 3.13 Procedure Reduce cannot be called before iteration t∗ −
1. Suppose by contradiction that u

′(t∗)
j2

exists. Since u
′(t∗)
j2
≥ mj2 , by Lemma 3.12

u
′(t∗)
j2

/∈ Z2, hence u
′(t∗)
j2
≤ u

(t∗)
j2
≤ Mj1 as in Lemma 3.13. We claim that u

′(t∗)
j2
∈ Z1,

contradicting the fact that u
′(t∗)
j2

is tight in I ′. For this we need to show mj1 6≤ u
′(t∗)
j2

.

Assume mj1 ≤ u
′(t∗)
j2

. This implies mj1 ≤ u
(t∗)
j2
≤ Mj1 , thus q ≤ u

(t∗)
j2

as q is

the minimal tight element of [mj1 , Mj1]. In this case u
(t∗)
j2

may not push q down,
contradicting the selection of j2 in Procedure Reduce.

4 Running times

In the application of our general algorithm to connectivity augmentation problems we
have to be careful since we typically have an exponential size poset implicitly given
as a set of (directed) cuts. We may either select an appropriate poset representation
or implement the steps of the algorithm with direct reference to the underlying graph
problem. We follow the second approach.

The steps of our algorithm can be summarized as follows. Procedure Pushdown
takes ∨ and ∧ of poset elements; compares poset elements (follows from taking ∨
and ∧, provided we are able to tell the identity of poset elements); and computes a
sequence of maximal tight elements. While the first two steps are trivial, we may,
in connectivity augmentation applications, implement the third one as a sequence of
BFS computations.

The key step in implementing Procedure Pushdown for the underlying graph
problems is the following reformulation of the main algorithm. We replace Proce-
dure Pushdown by an iterative method Procedure Alternate Pushdown (see
box) that selects a strictly descending sequence of tight elements y0 > y1 > . . . > y`

with y0 = u
(t)
j and y` = u

(t+1)
j or terminates by Procedure Reduce(j, t∗, I). In the

implementation for graph augmentation problems it is key to notice that in a single
iteration of Procedure Alternate Pushdown we only consider elements that may
be pushed down by u

(t)
i for a single value of i.

Lemma 4.1. Procedure Alternate Pushdown returns the same output as Proce-
dure Pushdown.

Proof. It follows straightforward from Lemma 3.3 that if Vh 6= ∅, then it has a unique
maximal element, hence yh for h ≥ 1 is well defined.

If Procedure Alternate Pushdown terminates by returning yh for some h, then
yh ∈ V for V as in Procedure Pushdown. Thus yh ≤ u

(t+1)
j . This shows that

if Procedure Pushdown terminates by calling Procedure Reduce, then so does
Procedure Alternate Pushdown.

EGRES Technical Report No. 2005-06

Section 4. Running times 17

Procedure Alternate Pushdown(j, t, I)
y0 ← u

(t)
j ; h← 0;

while exists i such that u
(t)
i may push yh down do

Vh ← {x : mj ≤ x ≤ yh, x tight and u
(t)
i may not push x down}

if Vh = ∅ then
t∗ ← t;
return Reduce(j, t∗, I)

else
yh+1 ← maximal x ∈ Vh;
h← h + 1

return yh

Consider now the case when V 6= ∅ in Procedure Pushdown. We show that
yh ≥ u

(t+1)
j for each h ≥ 0. By contradiction choose the smallest h with yh 6≥ u

(t+1)
j ;

thus yh−1 ≥ yh ∨ u
(t+1)
j > yh. By the definition of Vh u

(t)
i may push yh ∨ u

(t+1)
j

down. Using Lemma 3.3 again it may push either yh or u
(t+1)
j down, both leading

to contradiction. Now we can conclude that if Procedure Alternate Pushdown
terminates by returning yh, then both yh ≤ u

(t+1)
j and yh ≥ u

(t+1)
j hold, thus they are

equal.

To compute yh consider the set of intervals Jj,i = I − [mi, Mi] + [mi, Mj] with i as
in Procedure Alternate Pushdown. While Jj,i is not necessarily a cover of the
entire poset, the following still holds:

Lemma 4.2. The set of intervals Jj,i covers all the elements of Ij; furthermore in
Jj,i an element x ∈ Ij with x ≤ yh is tight if and only if x ∈ Vh.

Proof. For all x ∈ Ij we clearly have x ∈ [mi, Mj] if x ∈ Ii, hence the number of
intervals covering x cannot decrease in Jj,i. If x ≤ yh is tight and x /∈ Vh, then
mi ≤ x 6≤ Mi, thus the number of intervals containing x will in fact increase by
adding [mi, Mj] and x becomes no longer tight. On the other hand, if x ∈ Vh, then x
is either contained in both intervals [mi, Mi] and [mj, Mj] or in neither of them.

By the lemma our basic step consists of computing the maximum tight element of
an interval for certain set of covering intervals. To see, notice that the lemma implies
that yh+1 is the intersection of yh and the maximum tight element Q of Ij in Jj,i.

Furthermore at the beginning of the algorithm u
(1)
j is the maximum tight element of

Ij. Next we show the running time of a basic step for the case of directed vertex
connectivity augmentation.

We implement the above basic step of Procedure Alternate-Pushdown for graph
augmentation problems, we use the reduction of vertex connectivity augmentation to
poset covering as in Theorem 2.5. For each interval I = [mi, Mi] ∈ I we augment
the graph by an edge with tail in a vertex corresponding to mi and head in a vertex

EGRES Technical Report No. 2005-06

Section 4. Running times 18

corresponding to Mi. If J covers all poset elements in [m,M], then the minimum s–t
cut in the augmented graph has value at least k.

As the initialization of the algorithm we compute |I| maximum flows, one corre-
sponding to each interval in I. For interval [mj, Mj] we compute a maximum s–t
flow for s corresponding to mj and t corresponding to Mj. Since I is a cover, the
maximum flow value is at least k. If the s–t flow value is more than k, then [mj, Mj]

contains no tight elements and we remove from the cover. Otherwise u
(1)
j is the set

pair corresponding to the maximal value k cut that can be obtained by a breadth-first
search from t.

Lemma 4.3. Consider the task of finding the maximum tight element of an interval
Ij = [mj, Mj] for certain set of intervals Jj,i that cover Ij (the basic step). Using
the maximum flow computed at the initialization, this step requires O(1) breadth-first
search (BFS) computations.

Proof. We consider the maximum flow computed for [mj, Mj] at the initialization. We
add the edge corresponding to [mi, Mj] to the graph, and remove the one correspond-
ing to [mi, Mi]. If the flow contains the removed edge, then we remove the single flow
path containing it. We augment the resulting flow to a maximum flow by a single BFS
computation. By another BFS starting from the sink we either obtain the maximum
tight element or deduce that there are no tight elements and Procedure Reduce can
be called.

The number of basic steps is polynomial in the number of initial intervals j and
the length of a longest chain ` in the poset: we take j` basic steps for one Reduce
while the latter may happen O(j) times. For vertex connectivity problems ` = O(n),
giving O(j · n) basic steps for a single Reduce step.

The number of Reduce steps will be bounded using approximate augmentation
results. When we increase connectivity by only one, the approximate augmentation
result of Jordán [21] gives an initial solution containing at most O(k) more intervals
than the optimal solution where k is the connectivity of the input graph. This implies
at most O(k) Reduce calls. By Corollary 4.7 of [12], in this case there is an optimal
solution of cardinality at most n. These two results imply that j can be bounded by
n + k = O(n). Thus we need O(n3) basic steps and O(n) maxflow computations. A
basic step consists of O(1) BFS on a graph of O(n + m + j) = O(m) edges, thus the
running time for this case is O(n3m).

For the general case the non-polynomial algorithm of [13] can easily be turned to a
polynomial one that finds a solution with O(k4) more edges than the optimum. This
gives a running time O(k4 · n3(m + j)). A trivial bound on j is n2 since by adding a
complete graph the input graph becomes (n − 1)-vertex-connected, giving a running
time of O(n5 ·min{k4, n2}).

Conclusion

We have given a combinatorial algorithm for covering posets satisfying a special prop-
erty by the minimal number of intervals of the poset. As noticed by Frank and Jordán

EGRES Technical Report No. 2005-06

References 19

[12], the result can be applied for certain directed edge augmentation problems. The
existence of a strongly polynomial combinatorial algorithm, however, remains open.
Another major open problem regards the complexity of undirected augmentation; here
only approximate algorithms are known [22].

One may wonder of how strong the generalizational power of the interval cover-
ing problem. Two algorithmically equivalent problems, Dilworth’s chain cover and
bipartite matching, are special cases of interval covers; our algorithm generalizes the
standard augmenting path matching algorithm. One may ask whether the network
flow problem as different algorithmic generalization of matchings could also fit into
our framework. Or, extending the question of [23], can we at least tell the hierarchy
of hardness of the interval cover, Dilworth, (bipartite) matching and maximum flow
problems? We might also hope that ideas such as capacity scaling, distance labeling
and preflows [1] that give polynomial algorithms for network flows can be used in the
construction of a strongly polynomial algorithm for the interval covering problem.

Finally one may be interested in the efficiency of our algorithm for the particular
problems that can be handled. Here particular implementations and good oracle
choices are needed. We may want to reduce the number of mincut computations
needed by polynomial size poset representations. One might also be able to give
improvements in the sense of the Hopcroft–Karp matching algorithm [20].

References

[1] Ahuja, R.K., T.L. Magnanti and J.B. Orlin, Network Flows, Prentice Hall (1993).

[2] András A. Benczúr, Pushdown-Reduce: An algorithm for connectivity augmentation and poset
covering problems. Discr. Appl. Math, pp 233-262 vol 129 (2003)

[3] András A. Benczúr, Parallel and fast sequential algorithms for undirected edge connectivity
augmentation, Math. Prog. B 84(3):595–640 (1999) and Proc. 26th Annual ACM Symp. on
Theory of Comp., pp. 658–667 (1994)

[4] András A. Benczúr and David R. Karger, Augmenting undirected edge-connectivity in Õ(n2)
time, J. Alg. 37(1), pp. 2–36 (2000) and Proc. 9th ACM-SIAM Symp. on Discrete Algorithms,
pp. 500–509. (1998)

[5] Benczúr, A.A., J. Förster and Z. Király, Dilworth’s Theorem and its application for path
systems of a cycle—implementation and analysis. Proc. European Symp. Alg., Springer Lecture
Notes in Computer Science 1643:598–509 (1999)

[6] Cai, G–P. and Y–G. Sun, The minimum augmentation of any graph to a k-edge-connected
graph, Networks 19 (1989), pp. 151–172.

[7] Frank, A., Combinatorial algorithms, algorithmic proofs. Doctoral Thesis, Budapest, Eötvös
University (1976), in Hungarian

[8] Frank, A., Augmenting graphs to meet edge connectivity requirements, SIAM J. Discr. Math.
5(1), pp. 25–53 (1992), and Proc. 31st Annual IEEE Symp. on Foundations of Comp. Sci.
(1990)

[9] Frank, A., Finding minimum generators of path systems, JCT B 75 (1999), pp. 237–244.

EGRES Technical Report No. 2005-06

References 20

[10] Frank, A., Finding minimum weighted generators of a path system, Contemporary Trends
in Discrete Mathemaics (eds.: R.L. Graham, J. Kratochvil, J. Nesetril, and F.S. Roberts),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 49 (1999),
pp. 129–138.

[11] Frank, A., Finding minimum edge-coverings of pairs of subsets, EGRES Technical Report
Series (2001). Available at http://www.cs.elte.hu/egres/

[12] Frank, A. and T. Jordán, Minimal edge-coverings of pairs of sets, JCT B 65 (1995), pp. 73–110.

[13] Frank, A. and Jordán, T., Directed vertex-connectivity augmentation Math. Prog. 84, (1999),
pp. 537-553

[14] Franzblau, D.S. and D.J. Kleitman, An algorithm for constructing polygons with rectangles,
Information and Control 63 (1984), pp. 164–189.

[15] Ford, L.R. and D.R. Fulkerson, Flows in Networks, Princeton University Press (1962).

[16] Gabow, H.N., Efficient Splitting Off Algorithms for Graphs, Proc. 26th Annual ACM Symp.
on Theory of Comp. (1994), pp. 696–705.

[17] Goemans, M.X. and D.P. Williamson, The primal-dual method for approximation algorithms
and its application to network design problems, Approximation Algorithms for NP-hard Prob-
lems (Ed. D.S Hochbaum), PWS Publishing Co., Boston MA (1997).

[18] Grötschel, M., L. Lovász and A. Schrijver, The ellipsoid method and its consequences in com-
binatorial optimization. Combinatorica 1:169–197 (1981)

[19] Győri, E., A min-max theorem on intervals, JCT B 37 (1984), pp. 1–9.

[20] Hopcroft, J.E. and R.M. Karp, An n5/2 algorithm for maximum matching in bipartite graphs,
SIAM J. Comp. 2 (1973), pp. 225–231.

[21] Jordán, T., Increasing the vertex-connectivity in directed graphs, In: Proceedings of the First
Annual European Symposium on Algorithms, Bad Honnef, 1993, Springer Lecture Notes In
Computer Science, Vol 726, pp. 236-247, Springer-Verlag, New York/Berlin, 1993

[22] Jordán, T., On the optimal vertex connectivity augmentation, J. Combin. Theory Ser. B 63
(1995), pp. 8–20.

[23] Karger, D.R. and M.S. Levine, Finding Maximum Flows in Simple Undirected Graphs is Easier
than Bipartite Matching, 30th ACM Symposium on Theory of Computing (1998).

[24] Knuth, D.E., Irredundant intervals, ACM Journal of Experimental Algorithmics 1 (1996)

EGRES Technical Report No. 2005-06

	Introduction
	Poset properties of the Frank--Jordán set pairs
	The algorithm
	The Pushdown step
	Proof for termination without Reduce
	The Reduce step

	Running times

