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Recognizing conic TDI systems is hard

Júlia Pap ?

Abstract

In this note we prove that the problem of deciding whether or not a set of
integer vectors forms a Hilbert basis is co-NP-complete. Equivalently, deciding
whether a conic linear system is totally dual integral (TDI) or not, is co-NP-
complete. These are true even if the vectors in the set or respectively the
coefficient vectors of the inequalities are 0−1 vectors having at most three ones.

1 Introduction
Total dual integrality of systems of linear inequalities was introduced by Edmonds and
Giles [3] and plays an important role in polyhedral combinatorics. A linear system
Ax ≤ b with rational A and b is called totally dual integral (or TDI ) if for each
integer vector c, the dual system {min yTb : y ≥ 0, yTA = cT} has an integral optimal
solution provided the optimum is finite. Edmonds and Giles celebtated theorem states
that if Ax ≤ b is TDI and b is integer, then {x : Ax ≤ b} is an integer polyhedron. By
consequence the TDI property is a common framework to prove a bunch of min-max
relations in combinatorial optimization.

Giles and Pulleyblank [4] introduced a related notion, namely that of Hilbert bases.
A set of integer vectors is called a Hilbert basis if every integer vector in their cone can
be written as a nonnegative integral combination of them. That is, {v1,v2, . . .vm}
(vi ∈ Zn) is a Hilbert basis if int.cone(v1,v2, . . . ,vm) = cone(v1,v2, . . . ,vm) ∩ Zn,
where cone(v1,v2, . . . ,vm) denotes the cone generated by the vectors v1,v2, . . . ,vm

and
int.cone(v1,v2, . . . ,vm) (their integral cone) is the set of vectors {z ∈ Zn : z =∑m

i=1 λivi, (λi ∈ Z+)}.
The connection between Hilbert bases and TDI-ness was established by Giles and

Pulleyblank [4], who showed that for an integer matrix A, Ax ≤ b is TDI if and only
if for every minimal face F of {x : Ax ≤ b} the active rows in F form a Hilbert basis
where a row aT

i of A is called active in F if aT
i x = bi holds for every x in F . Giles and

Pulleyblank used this characterization to prove that for every rational polyhedron P
there exists a TDI system which describes P , with an integer constraint matrix.

The complexity of deciding whether a system is TDI or not, was open for a long
time. First Cook, Lovász and Schrijver [1] showed that if the dimension is fixed then
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this problem is polynomially solvable. Recently Ding, Feng and Zang [2] proved that
in general the problem is co-NP-complete, even if A is the incidence matrix of a graph.

In this note we strengthen this by answering a question about the complexity of
deciding TDI-ness of a conic system Ax ≥ 0. We prove that this problem is also
co-NP-complete, which, by the above result of Giles and Pulleyblank, is equivalent to
the following.

Theorem 1.1. The problem of deciding whether or not a set of integer vectors forms
a Hilbert basis is co-NP-complete even if the set consists of 0 − 1 vectors having at
most three ones.

Let H = (V,E) be a hypergraph. We call a hyperedge of H of size 2 a 2-edge and
one of size 3 a 3-edge. We say that H is a 2-3-hypergraph if each hyperedge is of
size 2 or 3. Let us denote by cone(H) and int.cone(H) the cone and integer cone of
the characteristic vectors of the hyperedges of H. Sometimes we will not distinguish
between a hyperedge and its characteristic vector. The binary vectors in Theorem 1.1
will consist of the characteristic vectors of a 2-3-hypergraph.

We will denote the set {1, 2, . . . i} by [i] for i ∈ N.
Related questions were studied in [5]. For a survey of the connection of Hilbert

bases to combinatorial optimization see [7].

2 Proof of Theorem 1.1
Proof. For the sake of completeness we sketch the proof of the problem being in co-
NP. Let S = {v1,v2, . . . ,vm} be a set of integer vectors which is not a Hilbert basis.
and let F be the minimal face of cone(S). It can be seen that int.cone(S ∩ F ) is
equal to the lattice generated by S ∩ F . Thus if there exists an integer vector in
F which can not be written as a nonnegative integer combination of vectors in S,
then the lattice generated by S ∩ F is a proper subset of F ∩ Zn, for which there is
a certificate, see [6]. If there does not exist such a vector then it can be seen that
there is an integer vector z in the zonotope of the vectors in S (that is in the set
{v : v =

∑m
i=1 λivi, 0 ≤ λi < 1}) for which z − vi /∈ cone(S) for all vi ∈ S \ F . In

this case, z is a certificate.
To prove completeness we reduce the 3-satisfiability (3SAT) problem to the

complement of this problem. Let X = {x1, . . . , xp} be the set of variables and C =
{c1, . . . , cq} be the set of clauses of an arbitrary 3SAT-instance.

Let the clause ci be c1i ∨ c2i ∨ c3i , where c
j
i ∈ X ∪ X̄ (j ∈ [3], X̄ denotes the set of

negated literals {x̄1, . . . , x̄p}).
We aim at constructing a hypergraphH = (V,E) (with |V | and |E| linear in p and q

and maximal edge size three) such that C is satisfiable if and only if the characteristic
vectors of the hyperedges of H do not form a Hilbert basis.

Let the groundset V of the hypergraph H be

V = {ui, vj, v̄j, w
l
k (i ∈ {0, 1, . . . p+ q}, j ∈ [p], k ∈ [q], l ∈ [3])},
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Figure 1: Part of hypergraph H where c1 = x̄1 ∨ xp ∨ x2

where we say that the nodes vj and v̄j correspond to the literals xj and x̄j, and nodes
w1

k, w2
k, w3

k correspond to the three literals of clause ck.
Let the hyperedge-set of H be E = E1 ∪E2 ∪E3 (in figure 1, the the black 2-edges

are in E0, the blue 2-edges in E1 and the 3-edges in E3), where

E1 = {u0up+q} ∪ {ui−1vi, ui−1v̄i, uivi, uiv̄i (i ∈ [p])}
∪ {up+k−1w

l
k, up+kw

l
k (k ∈ [q], l ∈ [3])},

E2 = {vjw
l
k : if clk = x̄j (j ∈ [p], k ∈ [q], l ∈ [3])}

∪ {v̄jw
l
k : if clk = xj (j ∈ [p], k ∈ [q], l ∈ [3])},

E3 = {upvjw
l
k : if clk = x̄j (j ∈ [p], k ∈ [q], l ∈ [3])}

∪ {upv̄jw
l
k : if clk = xj (j ∈ [p], k ∈ [q], l ∈ [3])}.

Notice that H− up is a bipartite graph.
We call a cycle a choice-cycle if its edges are in E1 and has length 2(p+q)+1. Such

a cycle uses exactly one of {vj, v̄j} for each j ∈ [p] and exactly one of {w1
k, w

2
k, w

3
k} for

each k ∈ [q]. A cycle is induced if its node set does not induce other hyperedges from
E.

Claim 2.1. C is satisfiable if and only if there exists an induced choice-cycle in H.

Proof. Suppose that τ : X 7→ {true, false} is a satisfying truth assignment for
C. Then the nodes ui (i ∈ {0, 1, . . . p + q}), and the nodes in {vj, v̄j : j ∈ [p]}
corresponding to the true literals, and for each k ∈ [q] one node from {w1

k, w
2
k, w

3
k}

which corresponds to a true literal induce a choice-cycle.
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On the other hand, if Q is an induced choice-cycle then the assignment

τ(xj) :=

{
true if vj ∈ V (Q)

false if v̄j ∈ V (Q)

satisfies C.

Using Claim 2.1 one can check that the satisfiability of C implies that {χe : e ∈ E} is
not a Hilbert basis: for an induced choice-cycle Q the incidence vector of its vertex-set,
χV (Q) is in cone(H) but is not in int.cone(H) because every nonnegative integer linear
combination which gives χV (Q) can only use the hyperedges of Q (C being an induced
cycle), and the characteristic vectors of these hyperedges are linearly independent so
there is a unique linear combination of hyperedges of Q that gives χV (Q) and that is
the all-1/2 vector.

It remains to prove that if C is not satisfiable then the incidence vectors of E form
a Hilbert basis. Let 0 6= z ∈ ZV ∩ cone(H). Since z ∈ cone(H), using Carathéodory’s
theorem, z =

∑
e∈E λeχe (λe ≥ 0 ∀e ∈ E), where {χe : λe > 0} are linearly indepen-

dent. We have to show that there exist λ′e ∈ Z+ (e ∈ E) for which z =
∑

e∈E λ
′
eχe.

It suffices to show that
∑

e∈E{λe}χe can be obtained as a nonnegative integer com-
bination of hyperedges ({ . } denotes the fractional part), so we can assume that
λe < 1 (∀e ∈ E).

Let us call a hyperedge e ∈ E positive if λe > 0 (these are exactly the hyperedges
with non-integer coefficient) and let us denote the set of positive hyperedges by E+.
For a hyperedge e, let t(e) denote e itself if it is a 2-edge and e \ {up} if it is a 3-edge,
and let G = (V,E ′) be the multigraph with E ′ = {t(e) : e ∈ E+}.

Claim 2.2. G is a cycle (and isolated nodes).

Proof. A node v ∈ V \ {up} can not be a leaf of G because then z(v) would be
non-integer.

If Q is a cycle in G then adding the vectors {χe : e ∈ E+, t(e) ∈ Q} with coefficients
+1 and -1 alternately regarding t(e) going round Q, starting at up if it lies on Q, we
get kχ{up} where k 6= 0 because of the linear independence of the positive edges.

From this and the linear independence of the positive edges it follows that there
cannot be two different cycles in G.

From the above observations and that H \ up is a bipartite graph it follows that
either G is a cycle or an even cycle and a path from up to a node v on the cycle
with no other common nodes. But this latter cannot happen either because then the
coefficients on the cycle could only be alternately λ and 1− λ for some 0 < λ < 1, so
zv would be non-integer.

Let us denote this cycle by Q. |V (Q)| is greater than 2 because if |V (Q)| = 2 then
in E+ vertex up would have degree one and hence zup would be non-integer. So by
Claim 2.2 the hypergraph of the positive edges looks like in Figure 2. The cycle Q
can be odd or even, and up can be on the cycle or not, but if it is not on Q then Q is
even since H− up is a bipartite graph.
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Figure 2: Structure of hypergraph (V,E+) if a) up ∈ V (Q) and b) up 6∈ V (Q)

Let us denote the edges of Q by h1, h2, . . . h|E(Q)|, beginning from up if it lies on Q.
We color a hyperedge e ∈ E+ red or green if t(e) has an odd resp. even index, and
we color a 2-edge vw red or green if the 3-edge upvw is already red resp. green. So
we colored every positive hyperedge and t(e) for every positive 3-edge e.

It follows from Claim 2.2 that there is a 0 < λ < 1 for which λe = λ if e ∈ E+ is
red and λe = 1− λ if e ∈ E+ is green. Thus z = χV (Q) + cχ{up} where c ∈ Z+.

Suppose there are r red and g green 3-edges.
If |Q| is even then (no matter whether up is on Q or not) c = rλ + g(1 − λ) ≤

max(r, g). Let us assume that r ≤ g (the other case is similar). Then z can be
obtained as the sum of characteristic vectors of only green hyperedges: we can take c
arbitrary green 3-edges and the |Q|/2− c green 2-edges disjoint from them (except in
up).

Thus we can suppose that |Q| is odd. In this case up is on Q and the two 2-edges in
E+ incident to it have coefficient λ so c = 2λ−1+rλ+g(1−λ) = (r+1)λ+(g−1)λ ≤
max(r + 1, g − 1).

All vectors of the form χV (Q) + c′χ{up} (where c′ ∈ {1, 2, . . . , r+1}) can be obtained
as the sum of (|Q|+1)/2 red hyperedges which are disjoint except in up. On the other
hand, all vectors of the form χV (Q) + c′′χ{up} (where c′′ ∈ {0, 1, . . . , g − 1}) can be
obtained as the sum of (|Q| − 1)/2 green hyperedges which are disjoint except in up.
Thus we may assume that z is not among these from which follows that z = χV (Q)

and g = 0.
If Q is a choice cycle then because of Claim 2.1 V (Q) induces a 3-edge ∆. It follows

from the construction of H that ∆ divides Q into three odd length paths so z can
be obtained by adding the characteristic vectors of ∆ and every second edge on these
paths.

If Q is not a choice cycle then there is an edge vw on Q for which upvw ∈ E. We
claim that there is one for which the two edge-disjoint paths on Q from up to v and w
are odd. If the two paths are even then each path either contains the edge u0up+q or
contains another edge v′w′ with upv

′w′ ∈ E. So in one of the two directions the first
edge from up with this property will have odd paths from up to its endnodes. Adding
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the characteristic vectors of this 3-edge and every second edge on the two odd length
paths yields z and the proof is complete.

2.1 Acknowledgments

I thank András Sebő for bringing the problem to my attention and for stimulating
discussions on the subject.

References
[1] W. Cook, L. Lovász, A. Schrijver, A polynomial-time test for total dual integrality

in fixed dimension, Mathematical Programming Study, 22 (1984), 64–69.

[2] G. Ding, L. Feng, W. Zang, The complexity of recognizing linear systems with
certain integrality properties, Math. Program. 114 (2008), 321–334.

[3] J. Edmonds, R. Giles, Total dual integrality of linear inequality systems, in:
Progress in Combinatorial Optimization (Jubilee Conference, University of Wa-
terloo, Waterloo, Ontario, 1982; W.R. Pulleyblank ed.), Academic Press, Toronto,
1984, 117–129.

[4] R. Giles, W. Pulleyblank, Total dual integrality and integer polyhedra, Linear
algebra and its applications 25 (1979), 191–196.

[5] M. Henk, R. Weismantel, On Hilbert bases of polyhedral cones, Results in Math-
ematics 32 (1997), 298–303.

[6] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986

[7] A. Sebő, Hilbert bases, Caratheodory’s theorem and combinatorial optimization,
Proc. of the IPCO conference, Waterloo, Canada (1990), 431–455.

EGRES Technical Report No. 2008-15


	Introduction
	Proof of Theorem 1.1
	Acknowledgments


