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Rigid and Globally Rigid Graphs with
Pinned Vertices

Tibor Jordán?

Abstract

We consider rigid and globally rigid bar-and-joint frameworks (resp. graphs)
in which some joints (resp. vertices) are pinned down and hence their positions
are fixed. We give an overview of some old and new results of this branch of
combinatorial rigidity with an emphasis on the related optimization problems.

In one of these problems the goal is to find a set P of vertices of minimum
total cost for which the positions of all vertices become uniquely determined
when P is pinned down. For this problem, which is motivated by the localization
problem in wireless sensor networks, we give a constant factor approximation
algorithm.

1 Introduction

A bar-and-joint framework (or simply framework) (G, p) in d-space is a graph G =
(V, E) and a map p : V → Rd. We also say that (G, p) is a d-dimensional realization of
G. We can think of the edges and vertices of G in the framework as rigid (fixed length)
bars and universal joints, respectively. An infinitesimal motion is a map x : V → Rd

satisfying
(p(vi)− p(vj))(x(vi)− x(vj)) = 0

for all edges vivj ∈ E. The initial velocities obtained by differentiating a smooth
motion of the (vertices of the) framework which preserves the edge lengths give rise
to an infinitesimal motion of (G, p). The rigidity matrix of the framework (G, p) is
the matrix R(G, p) of size |E| × d|V |, where, for each edge e = vivj ∈ E, in the row
corresponding to e, the entries in the two columns corresponding to vertices i and j
contain the d coordinates of (p(vi)− p(vj)) and (p(vj)− p(vi)), respectively, and the
remaining entries are zeros.

Example. The rigidity matrix of the framework of Figure 1 is as follows. The
rows correspond to edges ab, bc, ca, cd, in this order, and consecutive pairs of columns
correspond to vertices a, b, c, d.
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Section 2. Rigid frameworks with pinned vertices 2




0 −1 0 1 0 0 0 0
0 0 −1 0 1 0 0 0
−1 −1 0 0 1 1 0 0
0 0 0 0 −1 1 1 −1




Thus x (viewed as a vector in Rd|V |) is an infinitesimal motion if and only if
R(G, p)x = 0. Each translation and rotation of Rd gives rise to a smooth motion
of (G, p) and hence to an infinitesimal motion of (G, p). These rigid motions of Rd

give rise to a subspace of dimension
(

d+1
2

)
in the null-space of R(G, p). Hence

Lemma 1.1. [31, Lemma 11.1.3] Let (G, p) be a framework in Rd. Then

rankR(G, p) ≤ S(n, d), (1)

where n = |V (G)| and

S(n, d) =

{
nd− (

d+1
2

)
if n ≥ d + 2(

n
2

)
if n ≤ d + 1.

We say that a framework (G, p) is infinitesimally rigid in Rd if the rank of its rigidity
matrix R(G, p) is maximum, i.e. if equality holds in (1). A framework is rigid if it has
no non-trivial smooth motions. Thus infinitesimal rigidity is a sufficient condition for
rigidity. It is known that for “generic” frameworks the two notions are the same. We
refer the reader to [10, 31, 32] for more details on the theory of rigid frameworks.

a

b c

d

(a)

a

b c

d

(b)

a

b c

d

(c)

Figure 1: A framework in R2 on four vertices (left). The coordinates of the vertices
are as follows: p(a) = (0, 0), p(b) = (0, 1), p(c) = (1, 1), p(d) = (2, 0). Since 2|V | −
rankR(G, p) = 4, to fix the framework one needs tracks of co-dimension four in total,
which can be achieved by two one-dimensional tracks and a pin (middle) or two pins
(right).

2 Rigid frameworks with pinned vertices

Let G = (V, E) be graph and consider a d-dimensional realization (G, p) of G. We may
fix (G, p) in Rd by restricting the infinitesimal motions of its vertices to given subspaces
of Rd. Suppose that for all vertices v ∈ V we are given a subspace U(v) ⊆ Rd,
generated by a subset of the standard basis of Rd. We call U(v) the track of v and we
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Section 2. Rigid frameworks with pinned vertices 3

say that (G, p) is fixed by the given set of tracks if the only infinitesimal motion x of
(G, p) satisfying x(v) ∈ U(v) for all v ∈ V is the zero vector x = 0. In most cases we
shall be interested in the special case when each track is either zero- or d-dimensional.
We say that P ⊆ V is a pinning set if (G, p) is fixed by the tracks U(v) = {0} if
v ∈ P , U(v) = Rd if v /∈ P . We also say that the vertices in P are pinned down, or
that each vertex of P is a pin.

The following lemma establishes the connection between tracks (pins) that fix a
framework and its rigidity matrix (see also [26, Statement 8.2.1]). Note that each
track U(v) of dimension k, 0 ≤ k ≤ d, corresponds naturally to a subset of size k of
the d columns of the rigidity matrix which belong to v.

Lemma 2.1. Let (G, p) be a framework in Rd, let U = (U(v) : v ∈ V ) be a family of
tracks, and let RU be the matrix consisting of all columns of R(G, p) which correspond
to the tracks U(v), v ∈ V . Then
(i) U fixes (G, p) if and only if the columns of RU are linearly independent,
(ii) P is a pinning set if and only if the d|V −P | columns of R(G, p) indexed by V −P
are linearly independent.

One may ask for an optimal family of tracks that fixes a given framework by using
the least possible total restriction, i.e. an assignment U = (U(v), v ∈ V ) for which U
fixes (G, p) and ∑

v∈V

(d− dim U(v))

is minimum. By Lemma 2.1(i) an optimal family of tracks is easy to find by using a
greedy algorithm to identify a maximum size independent set of columns in R(G, p).
Furthermore, the optimum is unchanged if we restrict the matrix to a maximum size
set of independent rows (or if we consider the corresponding subgraph of G). It is
also clear that

min{
∑
v∈V

(d− dim U(v)) : U fixes (G, p)} = d|V | − rankR(G, p).

We obtain a much more difficult problem if we impose restrictions on the dimension
of the tracks. This is the case, for example, when we consider pinning sets. The
pinning number, pind(G, p), of (G, p) is defined to be the size of a smallest pinning
set for (G, p). For d = 2 Lemma 2.1(ii) implies that the smallest pinning set problem
can be formulated as a matroid matching problem in a linearly represented matroid
and hence pin2(G, p) can be computed in polynomial time by using the algorithm of
Lovász [21]. A combinatorial formula for pin2(G, p) was also given by Lovász [22].
Mansfield [25] proved that the problem of computing pin3(G, p) for a framework (G, p)
is NP-hard.

On the other hand, a recent result of Szabó [30] shows that there exist tractable
cases even in dimensions larger than two.

Theorem 2.2. [30] The following problem is polynomial time solvable. Given a frame-
work (G, p) in R3 and a partition V = V1 ∪ V2, find a family U = (U(v) : v ∈ V ) of
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Section 3. Rigid graphs with pinned vertices 4

tracks minimizing
∑

v∈V (d− dim U(v)) such that U fixes (G, p) and
(i) dim U(v) ∈ {0, 1, 3} for v ∈ V1, and
(ii) dim U(v) ∈ {0, 2, 3} for v ∈ V2.

The algorithm in [30] also uses Lovász’ matroid matching algorithm as a subroutine.
If we are also given a cost function on the vertices, we may look for a pinning set

of minimum total cost. Baudis et al [2] proposed an approximation algorithm for this
more general problem. For d-dimensional frameworks the approximation guarantee is
1 + 1

2
+ 1

3
+ ... + 1

d
. Their algorithm is based on a general result about minimum cost

spanning sets in d-polymatroids, see also Section 8.

3 Rigid graphs with pinned vertices

The rigidity matrix of a d-dimensional framework (G, p) defines the rigidity matroid
of (G, p) on the ground set E where a set of edges F ⊆ E is independent if and only if
the rows of the rigidity matrix indexed by F are linearly independent. A framework
(G, p) is generic if the set of coordinates of the points p(v), v ∈ V , is algebraically
independent over the rationals. Thus, since the entries of the rigidity matrix are poly-
nomial functions with integer coefficients, any two generic d-dimensional frameworks
(G, p) and (G, q) have the same rigidity matroid. We call this the d-dimensional
rigidity matroid Rd(G) of the graph G. We denote the rank of Rd(G) by rd(G). We
say that a graph G = (V, E) is generically infinitesimally rigid, or simply rigid, in
Rd if rd(G) = S(n, d). We say that a graph G = (V,E) is independent in Rd if E is
independent in Rd(G). It is not difficult to see that R1(G) is the cycle matroid of G.
It remains an open problem to find good characterizations for independence or, more
generally, the rank function in the d-dimensional rigidity matroid of a graph when
d ≥ 3.

Similarly, any two generic d-dimensional frameworks on G have the same pinning
number. Thus we may define the pinning number of G, pind(G), as the pinning
number of (G, p) of any generic framework (G, p) in Rd. It is easy to see that pind(G) ≤
pind(G, p) for all frameworks (G, p). The next lemma implies that computing the
pinning number of G is the same as finding a smallest complete graph whose addition
to G makes it rigid. For a set P ⊆ V (G) let G + K(P ) denote the graph obtained
from G by joining all pairs of non-adjacent vertices of P .

Lemma 3.1. Let G = (V,E) be a graph and P ⊆ V with |P | ≥ d. Let (G, p) be
a generic realization of G in Rd. Then P is a pinning set for (G, p) if and only if
G + K(P ) is rigid in Rd.

Proof: Let G′ = G + K(P ). First suppose that G′ is rigid and consider the rigidity
matrix R(G′, p). Since G′ is rigid, the only solutions u to the equation R(G′, p)u = 0
are from rigid congruences of Rd. Thus, since (G′, p) is generic, each non-zero solution
leaves at most (d − 1) vertices fixed i.e. has at most (d − 1) zero entries. Suppose
R(G[V −P ], p) has linearly dependent columns. Then we can find a non-zero solution
u′ to R(G[V − P ], p)u′ = 0. By extending u′ to u by putting 0 in the components
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Section 4. The two-dimensional rigidity matroid 5

corresponding to P we obtain a non-zero solution to R(G′, p)u = 0 with at least
|P | ≥ d zeros, a contradiction. Thus P is a pinning set by Lemma 2.1(ii).

Now suppose that P is a pinning set and order the columns of R = R(G′, p) so
that the columns of P come first and the rows of E ′′ = E(G′[P ]) come first. (Then
the upper right quarter is 0.) Hence r(R) ≥ r(R[P,E ′′]) + r(R[V − P, E − E ′′]) =
d|P | − (

d+1
2

)
+ d|V − P | = d|V | − (

d+1
2

)
(by using Lemma 2.1(ii) and that G′[P ] is

rigid and |P | ≥ d). Thus G′ is rigid. •

Next we show that in the pinning problem we may assume that G is independent.

Lemma 3.2. Let F ⊆ E be a maximal edge set of G = (V, E) for which H = (V, F )
is independent in Rd. Then
(i) each pinning set of G is a pinning set of H,
(ii) pind(H) = pind(G).

Proof: To prove (i) suppose, for a contradiction, that there exists a pinning set P of
G for which H +K(P ) is not rigid. Since G+K(P ) is rigid, we have rd(G+K(P )) >
rd(H+K(P )), which implies that there is an edge e ∈ E+E(K(P ))−(F+E(K(P ))) =
E−F for which F +e is independent, contradicting the maximality of F . This proves
(i), from which (ii) follows immediately. •

It follows from the observations above that the pinning problem in graphs (or in
generic frameworks) can be attacked by purely combinatorial methods provided good
characterizations for independent and rigid graphs are available. This is the case when
d = 2 and we shall discuss this approach in the 2-dimensional case in the forthcoming
sections.

Mansfield [25] proved that the problem of computing pin3(G) for a graph G is NP-
hard (see also [7] for a different proof), so the pinning problem in higher dimensions
seems untractable. The following related result, however, might be useful in a different
context as it points to a connection between high connectivity and rigidity in 3-space.
It may be considered as a first step towards the Lovász-Yemini conjecture [23], which
asserts that sufficiently highly connected graphs are rigid in 3-space (and hence their
pinning number is three).

Theorem 3.3. [14] Let G = (V, E) be a 10-connected graph. Then pin3(G) ≤ 3|V |
4

+4.

4 The two-dimensional rigidity matroid

In the rest of the paper we will be concerned with the case when d = 2 and suppress
the subscript d accordingly. In this section we first describe the characterization of
independent and rigid graphs and prove some additional structural results which may
also be useful in the solution of the pinning problem. For X ⊆ V let EG(X) denote the
set, and iG(X) denote the number of edges in G[X], that is, in the subgraph induced
by X in G. We say that a graph G is sparse if iG(X) ≤ 2|X| − 3 for all X ⊆ V
with |X| ≥ 2. It is easy to show, by using the 2-dimensional case of Lemma 1.1, that
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Section 4. The two-dimensional rigidity matroid 6

independent graphs are sparse. Laman [18] proved that this necessary condition is
also sufficient.

Theorem 4.1. [18] A graph G = (V, E) is independent if and only if G is sparse.

A cover of G = (V, E) is a collection X = {X1, X2, ..., Xt} of subsets of V , each of
size at least two, such that ∪t

1E(X) = E. The cover is said to be thin if |Xi ∩Xj| ≤ 1
for all i 6= j. The value val(X ) of the cover is

∑t
i=1(2|Xi| − 3).

Let X be a thin cover of G and let F ⊆ E be a set of edges for which H = (V, F )
is sparse. Then we have |F ∩ EG(Xi)| ≤ 2|Xi| − 3 for all 1 ≤ i ≤ t. Thus

|F | ≤ val(X ). (2)

We define a rigid component of a graph G = (V, E) to be a maximal rigid subgraph
of G. By the “plane gluing lemma” (see [31, Lemma 3.1.4]), which says that the union
of two rigid graphs with at least two vertices in common is rigid, it follows that the
vertex sets of the rigid components form a thin cover of G. In a sparse graph H we
call a set X ⊆ V (H) critical if iH(X) = 2|X| − 3 holds. It follows from the gluing
lemma that if X, Y ⊂ V (H) are critical sets in H with |X ∩ Y | ≥ 2 then X ∪ Y is
also critical (see also [13, Lemma 2.3]).

Lemma 4.2. Let G = (V,E) be a graph, let F ⊆ E be a maximal edge set in G for
which H = (V, F ) is sparse. Then the family X = {X1, X2, ..., Xt} of maximal critical
sets in H satisfies that
(a) X is a thin cover of G with |F | = val(X ),
(b) X is equal to the family of vertex sets of the rigid components of G.

Proof: (a) The maximality of the critical sets implies that |Xi ∩ Xj| ≤ 1 for all
1 ≤ i < j ≤ t. Since every single edge of F induces a critical set, it follows that
X = {X1, X2, ..., Xt} is a thin cover of H. Thus

|F | =
t∑
1

|EH(Xi)| =
t∑
1

(2|Xi| − 3).

To complete the proof we show that X is a cover of G as well. Choose uv ∈ E − F .
Since F is a maximal sparse subset of E, F + uv is not sparse. Thus there exists a
set X ⊆ V such that u, v ∈ X and iH(X) = 2|X| − 3. Hence X is a critical set in H.
This implies that X ⊆ Xi and hence uv ∈ EG(Xi) for some 1 ≤ i ≤ t.

(b) Clearly, G[Xi] is rigid for all 1 ≤ i ≤ t by Theorem 4.1. Suppose that H[C]
is not critical, where C is the set of vertices of some rigid component of G. Thus
|J | ≤ 2|C| − 4, where J = E(H[C]). Since G[Xi] is rigid, it follows from the gluing
lemma that X ′ = {Xi ∈ X : |Xi ∩C| ≥ 2} is a thin cover of G[C] with |J | = val(X ′).
Thus we can use (2) to deduce that for any subset F ′ ⊆ E(G[C]) which induces a
sparse subgraph on vertex set C we have |F ′| ≤ val(X ′) = |J | ≤ 2|C| − 4, contradict-
ing the fact that G[C] is rigid. This completes the proof of (b). •
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Section 5. Optimal families of tracks and smallest pinning sets 7

Lemma 4.2(a) shows that for the edge set of a maximal sparse subgraph and for its
maximal critical sets we have equality in (2). This implies the following rank formula
of the rigidity matroid, due to Lovász and Yemini, and shows that a maximum size
sparse edge set can be found greedily.

Theorem 4.3. [23] Let G = (V, E) be a graph. Then

r(G) = min{val(X ) : X is a thin cover of G}.
A maximum size sparse edge set (and the rigid components of a graph) can be

found in time O(n2), see e.g. [4].
We may simplify the min-max formula of Theorem 4.3 when the graph is obtained

from a sparse graph by ‘pinning’ a set of vertices. For a set X ⊆ V let e(X) denote
the number of edges with at least one end-vertex in X.

Lemma 4.4. Suppose that G = (V, E) is a sparse graph and let P ⊆ V with |P | ≥ 2.
Let G′ = G + K(P ). Then

r(G′) = min
P⊆Z

2|Z| − 3 + e(V − Z).

Proof: Let Z ⊆ V with P ⊆ Z and consider the thin cover Z = {Z ∪ {{u, v} : uv ∈
E − E(Z)}} of G′. Then r(G′) ≤ val(Z) = 2|Z| − 3 + e(V − Z).

To see that equality holds for some Z ⊆ V choose a maximal edge set F in G′

for which H = (V, F ) is sparse and P is a critical set in H. Such an F can be
constructed by extending the edge set F ′ of a minimally rigid subgraph of the com-
plete graph G′[P ]. Let X be the family of maximal critical sets of H. By Lemma
4.2(a) and Theorem 4.3 we have r(G′) = val(X ). Since P is critical in H, there
is a set Z ∈ X with P ⊆ Z. Thus, since G is sparse and all edges of K(P ) are
covered by Z, we have iG(X) = iH(X) = 2|X| − 3 for all X ∈ X − Z. Hence
r(G′) = val(X ) = 2|Z| − 3 +

∑
X∈X−Z iG(X) = 2|Z| − 3 + e(V −Z), which completes

the proof. •

5 Optimal families of tracks and smallest pinning

sets

Let G = (V, E) be a graph. First consider the problem of finding an optimal family
of tracks, U = (U(v) : v ∈ V ), which fixes (G, p) for a generic realization of G in R2.
As we have observed earlier, we may assume that G is independent (or equivalently,
that G is sparse). Thus |E| = 2|V | − k for some integer k ≥ 3. It is also clear that∑

v∈V (2 − dim U(v)) = k for an optimal family of tracks. The following algorithm,
due to Lee et al. [19], determines an optimal family of tracks in O(n2) time. It uses
k − 2 one-dimensional tracks (also called sliders) and one pin to fix (G, p). (For the
remaining vertices the tracks are two-dimensional.)

The algorithm works as follows. First identify the rigid components of G. Mark
one of the components, say C, as the base. For some edge uv in C assign a pin to
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Section 6. The network localization problem 8

u and a slider to v. This fixes the base. Then repeat the following until one rigid
component remains: pick an edge ij which leaves the base and assign a slider to j.
Update G by adding a new edge jk, where ik is an edge in the base. Replace the base
C by the rigid component of the updated graph containing uv.

The correctness of this algorithm follows from the fact that if C ′ is a rigid component
that shares vertex i with C then the only motion of C ′ with respect to C is a rotation
about i. Since the framework is generic, assigning a slider to j eliminates this motion
and hence the distance between j and k becomes fixed. Thus every iteration increases
the rank by one and therefore the algorithm will terminate with a rigid graph after
adding at most k − 3 sliders (not counting the pin and the slider added to fix the
original base). The algorithm, when applied to (a generic realization of) the graph of
Figure 1(a), may give the family of tracks shown by Figure 1(b).

We remark that combinatorial characterizations for the generic rigidity of bar-and-
slider frameworks (which are bar-and-joint frameworks equipped with sliders at given
joints) have been given in [19], and also in [17], where the authors consider the version
in which the directions of the slider lines are also given.

Next consider the pinning problem.

Lemma 5.1. [7] Let G = (V,E) be a sparse graph and let P ⊆ V with |P | ≥ 2. Then
P is a pinning set for G if and only if 2|X| ≤ e(X) for all X ⊆ V − P .

Proof: Suppose, for a contradiction, that P is a pinning set and 2|X| > e(X) for
some X ⊆ V − P and let Z = V − X. Then X = {Z ∪ {{u, v} : uv ∈ E − E(Z)}}
is a thin cover of G + K(P ) with val(X ) ≤ 2|Z| − 3 + e(X) < 2|V | − 3. Thus, by
Theorem 4.3, G + K(P ) is not rigid. Hence P is not a pinning set by Lemma 3.1, a
contradiction.

Now suppose 2|X| ≤ e(X) for all X ⊆ V − P . It follows from Lemma 4.4
that there is a thin cover X of G + K(P ) with P ⊆ Z for some Z ∈ X and
r(G + K(P )) = val(X ) = 2|Z| − 3 + e(V − Z). Since e(V − Z) ≥ 2|V − Z| this
gives val(X ) = 2|V | − 3. Hence G + K(P ) is rigid and, by Lemma 3.1, P is a pinning
set. •

Thus finding a smallest pinning set is equivalent to finding a largest set Y ⊆ V for
which e(X) ≥ 2|X| for all X ⊆ Y . This can be formulated as a matching problem in
an auxiliary graph (see Fekete [7]) and can be solved in O(n2) time. Fekete [7] also
provides a min-max formula for pin2(G). Makai and Szabó [24] deduce this formula
by using polymatroidal methods.

We note that Servatius, Shai, and Whiteley [28] consider a different version of the
pinning problem and provide a characterization and a decomposition result for the
so-called pinned isostatic graphs.

6 The network localization problem

In the network localization problem the locations of some nodes (called anchors) of a
network as well as the distances between some pairs of nodes are known, and the goal
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Section 6. The network localization problem 9

is to determine the location of all nodes. This is one of the fundamental algorithmic
problems in the theory of wireless sensor networks and has been the focus of a number
of recent research articles and survey papers, see for example [1].

u5

u1

u4

u3 u6

u2

u5

u1

u3 u6

u2
u4

Figure 2: The distance graph and the grounded graph of a network on six nodes,
including four anchor nodes. The anchor nodes are in boxes. The network is uniquely
localizable since it has at least three anchors and its grounded graph is globally rigid.
This is a smallest anchor set which can guarantee unique localizability for the given
set of distances.

A natural additional question is whether a solution to the localization problem is
unique. The network, with the given locations and distances, is said to be uniquely
localizable if there is a unique set of locations consistent with the given data. As
we shall see, the unique localizability of a two-dimensional network, whose nodes are
in generic position, can be characterized by using results from graph rigidity theory.
In this case unique localizability depends only on the combinatorial properties of
the network: it is determined completely by the distance graph of the network and
the set of anchors, or equivalently, by the grounded graph of the network and the
number of anchors. The vertices of the distance and grounded graph correspond to
the nodes of the network. In both graphs two vertices are connected by an edge if the
corresponding distance is explicitly known. In the grounded graph we have additional
edges: all pairs of vertices corresponding to anchor nodes are adjacent. See Figure
2. The grounded graph represents all known distances, since the distance between
two anchors is determined by their locations. Before stating the basic observation
about unique localizability we need some additional terminology. It is convenient to
investigate localization problems with distance information by using frameworks, the
central objects of rigidity theory.

Two frameworks (G, p) and (G, q) are equivalent if corresponding edges have the
same lengths, that is, if ||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all pairs u, v with
uv ∈ E, where ||.|| denotes the Euclidean norm in Rd. Frameworks (G, p), (G, q) are
congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u, v with u, v ∈ V . This
is the same as saying that (G, q) can be obtained from (G, p) by an isometry of Rd.
We shall say that (G, p) is globally rigid, or that (G, p) is a unique realization of G
in Rd, if every framework which is equivalent to (G, p) is congruent to (G, p). We
say that a graph G is globally rigid in Rd if every (or equivalently, if some) generic
realization of G in Rd is globally rigid.

The next observation shows that unique localizability and global rigidity are, in
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Section 7. Graphs with a connected rigidity matroid 10

some sense, the same.

Lemma 6.1. [1, 29] Let N be a network in Rd consisting of m anchors located at
positions p1, ..., pm and n − m ordinary nodes located at pm+1, ..., pn. Suppose that
there are at least d+1 anchors in general position. Let G be the grounded graph of N
and let p = (p1, ..., pn). Then the network is uniquely localizable if and only if (G, p)
is globally rigid.

Globally rigid graphs in R2 have been characterized by Jackson and Jordán [13],
relying on earlier results of Hendrickson [11] and Connelly [6]. We say that a graph
G is redundantly rigid in R2 if G− e is rigid in R2 for all e ∈ E(G).

Theorem 6.2. [13] Let (G, p) be a generic framework in R2. Then (G, p) is globally
rigid if and only if G is a complete graph on at most three vertices or G is 3-connected
and redundantly rigid.

Theorem 6.2 implies that global rigidity is indeed a generic property. It also implies
that global rigidity can be tested in O(n2) time.

We shall consider the minimum cost anchor set problem in which the goal is, given
the set of known distances in a network and a cost function on the nodes, to designate
a minimum cost set of anchor nodes which makes the network uniquely localizable.
Lemma 6.1 and Theorem 6.2 imply that for generic networks we may reformulate the
above problem in the following purely combinatorial form:

Given a graph G = (V, E) and a function c : V → R+, find a set P ⊆ V , |P | ≥ 3,
for which G + K(P ) is 3-connected and redundantly rigid, and c(P ) =

∑
v∈P c(v) is

minimum.

In the next sections first we shall show that a relaxed version (in which the requirement
is that the rigidity matroid of G + K(P ) must be connected) can be formulated as a
matroid optimization problem. Then, based on this formulation, we shall develop a
polynomial time approximation algorithm for the minimum cost anchor set problem.
Note that the complexity status of each of the above problems is still open.

7 Graphs with a connected rigidity matroid

Given a matroid M = (E, I), we define a relation on E by saying that e, f ∈ E are
related if e = f or if there is a circuit C in M with e, f ∈ C. It is well-known that
this is an equivalence relation. The equivalence classes are called the components of
M. If M has at least two elements and only one component then M is said to be
connected.

We say that a graph G = (V, E) is M-connected ifM(G) is connected. For example,
K3,m is M -connected for all m ≥ 4. The M-components of G are the subgraphs of G
induced by the components of M(G). It is easy to see that the M -components are
pairwise edge-disjoint induced subgraphs. Theorem 6.2 and the following result show
that M -connectivity is in between redundant rigidity and global rigidity.
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Section 7. Graphs with a connected rigidity matroid 11

Theorem 7.1. [13] Let G be a graph. Then
(a) if G is M-connected then G is redundantly rigid, and
(b) if G is 3-connected and redundantly rigid then G is M-connected.

Since the M -components of G are redundantly rigid by Theorem 7.1, the partition
of E(G) given by the M -components is a refinement of the partition given by the
rigid components, see Figure 3. The rigidity matroid of a graph G is the direct sum of
the rigidity matroids of either the rigid components of G or the M -components of G.
Furthermore, the vertex sets of the components in each of the above decompositions
form a thin cover of G with minimum value. This minimum value is equal to the rank
of R2(G) by Theorem 4.3.

s sss

s

s

s

s

ss

s

ss

s

s

v

w

x

y

z

Figure 3: This graph is rigid so has exactly one rigid component. It has five M -
connected components: each of the three copies of K4, and the remaining two copies
of K2.

The following lemma is easy to prove by standard matroid techniques.

Lemma 7.2. Let M = (E, r) be a matroid on ground set E with rank function r and
let E1, E2, . . . , Et be the components of M. Then
(i) r(E) =

∑t
1 r(Ei), and

(ii) if r(E) =
∑q

1 r(Fi) for some partition F1, F2, . . . , Fq of E and Ei is a component
of M for some 1 ≤ i ≤ t, then Ei ⊆ Fj for some 1 ≤ j ≤ q.

The next lemma shows how this general result can be formulated in terms of sub-
graphs and covers in the special case when the matroid is the rigidity matroid of a
graph. We say that a cover is non-trivial if it contains at least two sets.

Lemma 7.3. [9] G = (V,E) is M-connected if and only if val(X ) ≥ 2|V | − 2 for all
non-trivial covers X of G.
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7.1 M-connected graphs with pinned vertices 12

Proof: First suppose that G is M -connected. Then G is rigid, and hence val(X ) ≥
2|V | − 3 for all covers X of G by (the easy direction of) Theorem 4.3. Suppose
that val(X ) = 2|V | − 3 for some non-trivial cover X = {X1, X2, ..., Xq} of G. Let
Fi = E(G[Xi]), 1 ≤ i ≤ q. We have r(Fi) = 2|Xi|−3 for all 1 ≤ i ≤ q, as X is a cover
of G which minimizes val(X ). Thus r(E) = val(X ) =

∑q
1 r(Fi), which contradicts

Lemma 7.2(ii).
To prove the other direction suppose that val(X ) ≥ 2|V | − 2 for all non-trivial

covers X of G, but G is not M -connected. Let H1, H2, ..., Ht be the M -components of
G. Lemma 7.2(i) now implies that 2|V | − 3 ≥ r(E) =

∑t
1 r(E(Hi)) =

∑t
1(2|V (Hi)| −

3). Thus, since each edge of G belongs to some M -component and t ≥ 2, X =
{V (H1), V (H2), ..., V (Ht)} is a non-trivial cover of G with val(X ) ≤ 2|V | − 3. This
contradicts our assumption. •

7.1 M-connected graphs with pinned vertices

In the M-connected pinning problem the goal is to find a (smallest) set P ⊆ V for which
G + K(P ) is M -connected. The following lemma establishes the connection between
the feasible solutions of the M -connected pinning problem and the M -components of
G.

Lemma 7.4. [9] Let G = (V, E) be a graph, let H = {H1, H2, ..., Ht} be the M-
components of G, and let P ⊆ V with |P | ≥ 4. Then G + K(P ) is M-connected if
and only if

2|V | − 2 ≤ 2|Z| − 3 +
∑

Hi∈HZ

(2|V (Hi)| − 3) (3)

holds for all Z ⊂ V with P ⊆ Z, Z 6= V , where HZ = {Hi ∈ H : V (Hi)∩(V −Z) 6= ∅}.
Proof: First suppose that G + K(P ) is M -connected. Since every edge of G belongs
to an M -component of G and P ⊆ Z, it follows that {Z}∪{V (Hi) : Hi ∈ H, V (Hi)∩
(V − Z) 6= ∅} is a cover of G + K(P ). This cover is non-trivial, since Z 6= V . Thus
(3) follows from Lemma 7.3.

To prove the other direction suppose, for a contradiction, that (3) holds but G′ =
G + K(P ) is not M -connected. Let H′ = {H ′

1, H
′
2, ..., H

′
q} denote the M -components

of G′. Since complete graphs on at least four vertices are M -connected, and |P | ≥ 4,
it follows that G′[P ] is M -connected. Thus there is an M -component of G′, say H ′

1,
for which P ⊆ V (H ′

1). Let Z ′ = V (H ′
1) and HZ′ = {Hi ∈ H : V (Hi)∩ (V −Z ′) 6= ∅}.

Note that Z ′ 6= V .

Claim 7.5. Let X ⊆ V be a set of vertices. Then X = V (H ′
j) for some M-component

H ′
j of G′ with 2 ≤ j ≤ q if and only if X = V (H) for some H ∈ HZ′.

Proof: First consider an M -component H ′
j ∈ H′ with j ≥ 2 and let X = V (H ′

j).
Since P ⊆ Z ′ and H ′

1 is an induced subgraph of G′ which has no edge in common
with H ′

j, it follows that G[X] is M -connected and X ∩ (V −Z ′) 6= ∅. Thus X = V (H)
for some H ∈ HZ′ .
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Next consider an M -component Hi ∈ HZ′ of G and put X = V (Hi). G′[X] is clearly
M -connected. For a contradiction suppose that there is an M -component H ′

j of G′

with V (H ′
j) = Y ⊆ V for which X is a proper subset of Y . Then |Y ∩Z ′| ≥ |Y ∩P | ≥ 2

must hold. Since X ∩ (V − Z ′) 6= ∅, we have j ≥ 2. This contradicts the fact that
the M -components of G′ are pairwise edge-disjoint. Thus G′[X] is an M -component
of G′, which completes the proof. •

By using Claim 7.5 and Lemma 7.2(i), and by applying (3) with Z = Z ′, we obtain

2|V | − 3 ≥ r(G′) = 2|V (H ′
1)| − 3 +

∑
Hi∈HZ′

(2|V (Hi)| − 3) ≥ 2|V | − 2,

a contradiction. •

Let G = (V, E) be a graph and let H = {H1, H2, ..., Ht} be the M -components of
G. Let H(G) = (V, E) be the hypergraph which contains 2|V (Hi)| − 3 copies of the
hyperedge V (Hi) for each Hi ∈ H, 1 ≤ i ≤ t. Note that since the M -components are
rigid it follows from Lemma 7.2(i) that |E| = r(G) ≤ 2|V | − 3. By letting Y = V −Z
in Lemma 7.4 and using the above definitions we obtain:

Lemma 7.6. Let G = (V,E) be a graph, letH = {H1, H2, ..., Ht} be the M-components
of G, and let P ⊆ V with |P | ≥ 4. Then G + K(P ) is M-connected if and only if

2|Y |+ 1 ≤ eH(G)(Y ) (4)

holds for all non-empty subsets Y ⊆ V − P , where eH(G)(Y ) denotes the number of
hyperedges e ∈ E with e ∩ Y 6= ∅.

h5
3h4

3h3
3h2

3h1
3h2h1

u′′6u′6u′′5u′5u′4 u′′4u′3 u′′3u′2 u′′2u′1 u′′1

Figure 4: The bipartite incidence graph of L(G), where G is the graph of Figure 2.

A hypergraph F = (V,F) satisfying | ∪ F ′| ≥ |F ′| + 1 for all ∅ 6= F ′ ⊆ F is called
a hyperforest. Inequality (4) can be reformulated in terms of hyperforests as follows.
Let L(G) = (W,U) be the hypergraph obtained from the dual hypergraph of H(G) by
duplicating every hyperedge1. For a set X ⊆ V let U(X) denote the set of hyperedges
corresponding to X in L(G). Thus |U(X)| = 2|X|.

1Consider the bipartite incidence graph G∗ of H(G) and split each vertex u ∈ V into two vertices
u′, u′′. See Figure 4. Then we obtain the bipartite incidence graph of L(G) by interchanging the
color classes.
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Lemma 7.7. Let G = (V, E) be a graph and let P ⊆ V with |P | ≥ 4. Then P satisfies
(4) if and only if U(V − P ) is a hyperforest.

Lorea [20] proved that the edge sets of the subhypergraphs of a hypergraph H ′ which
are hyperforests form the family of independent sets of a matroid. A matroid arising
this way is called the circuit matroid of the hypergraph H ′ and will be denoted by
MH′ . We call a matroid which is the circuit matroid of a hypergraph a hypergraphic
matroid. Let M be a matroid on ground-set S and suppose that S is partitioned into
a set A of pairs. A subset M ⊆ A is a matroid matching if the union of the pairs in
M is independent in M. In the matroid matching problem the goal is to find a largest
matroid matching, see [27, Chapter 43]. Lovász [21] has shown that this problem may
require exponential time in general but can be solved polynomially if the matroid is
represented by a set of vectors in some linear space.

By the above discussion and Lemma 7.7 it follows that the problem of finding a
smallest set P for which G + K(P ) is M -connected can be formulated as finding a
largest matroid matching in the hypergraphic matroid ML(G), in which the doubled
hyperedges form the pairs. Hypergraphic matroids are known to be linear, but it is
not known how to find a suitable linear representation. The complexity status of the
matroid matching problem in hypergraphic matroids is still open. Nevertheless, this
formulation can be used to design a randomized algorithm, see [8], or a constant factor
approximation algorithm which works for the more difficult minimum cost version as
well.

To describe the approximation algorithm we need the following concepts. A 2-
polymatroid is a pair (S, f), where S is a finite ground set and f is a non-negative,
monotone increasing, integer-valued, and submodular function on the subsets of S,
for which f(s) ≤ 2 for all s ∈ S. A set X ⊆ S is spanning if f(X) = f(S).

Let G = (V, E) be a graph and X ⊆ V . Let us define b : 2V → Z+ by letting

b(X) = r∗(U(X)), (5)

where r∗ is the rank function of the matroid dual of the hypergraphic matroid ML(G).
Then (V, b) is a 2-polymatroid.

For a spanning set X ⊆ V we have r∗(U(X)) = b(X) = b(V ) = r∗(U(V )). Thus X
is spanning if and only if the set corresponding to U(V −X) is independent in ML(G).
Together with Lemmas 7.6 and 7.7 this implies:

Lemma 7.8. Let G = (V, E) be a graph and P ⊆ V with |P | ≥ 4. Then G + K(P )
is M-connected if and only if P is a spanning set of the 2-polymatroid (V, b).

8 Low cost anchor sets in uniquely localizable net-

works

Given a 2-polymatroid (S, f) and a cost function c : S → R, the minimum cost
spanning set problem is to find a spanning set X of the 2-polymatroid that minimizes
c(X) =

∑
s∈X c(s). Baudis et al. [2] verified that the GSS (Greedy Spanning Set)
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algorithm is a constant factor approximation algorithm for this problem. Algorithm
GSS starts with X = ∅ and, as long as f(X) < f(S) holds, adds a new element s to

X for which c(s)
f(X+s)−f(X)

is minimum.

Theorem 8.1. [2] Let (S, f) be a 2-polymatroid, let c : S → R be a cost function,
and let Xopt be a spanning set of minimum cost. Then

c(X) ≤ 3

2
c(Xopt),

where X is the spanning set output by algorithm GSS.

Lemma 7.8 and Theorem 8.1 give rise to a 3
2
-approximation algorithm for the min-

imum cost M-connected pinning problem. To see this it remains to note that by using
bipartite matching algorithms it is easy to test independence in ML(G) and evaluate
b(X) for some X ⊆ V in polynomial time.

To obtain an approximation algorithm for the minimum cost anchor set problem
(defined in Section 6) we also need a subroutine for the minimum cost 3-connected
pinning problem. Let H = (V,E) be a 2-connected graph. For some X ⊆ V let N(X)
denote the set of neighbours of X. We say that X ⊂ V is tight if |N(X)| = 2 and
X ∪ N(X) 6= V . The following lemma shows that a minimum cost set P ′ for which
H + K(P ′) is 3-connected can be found, in a greedy manner, in linear time.

Lemma 8.2. Let H = (V, E) be 2-connected and let P ′ ⊆ V . Then H + K(P ′) is
3-connected if and only if P ′∩X 6= ∅ for all minimal tight sets X of H. Furthermore,
the minimal tight sets of H are pairwise disjoint and can be found in linear time.

Recall that redundant rigidity and M -connectivity are the same for 3-connected
graphs by Theorem 7.1. Thus, by combining the approximation algorithm for the
minimum cost M -connected pinning problem and the algorithm for the minimum cost
3-connected pinning problem we obtain a constant factor approximation algorithm for
the minimum cost anchor set problem.

Theorem 8.3. There is a polynomial time 5
2
-approximation algorithm for the mini-

mum cost anchor set problem.

Proof: (sketch) Let c∗ denote the optimum value. By checking all feasible so-
lutions P ⊆ V with |P | = 3 we may suppose that the optimal solution has at
least four vertices. First we compute a close-to-optimal solution P for the mini-
mum cost M -connected pinning problem with c(P ) ≤ 3

2
c∗. Since G′ = G + K(P )

is M -connected, it is 2-connected. Then we compute an optimal solution P ′ for
the minimum cost 3-connected pinning problem on G′. Clearly, c(P ′) ≤ c∗. It
is also clear that G + K(P ∪ P ′) is 3-connected and M -connected. Furthermore,
c(P ∪ P ′) ≤ c(P ) + c(P ′) ≤ 5

2
c∗ holds. •

We remark that the above methods can be used to design a constant factor approx-
imation algorithm for the corresponding augmentation problem as well, in which the
goal is to add a smallest set F of new edges to G such that G + F is globally rigid.
We omit the details.
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Akadémiai Kiadó, Budapest, 1989.

[27] A. Schrijver, Combinatorial optimization, Springer 2003.

[28] B. Servatius, O. Shai, and W. Whiteley, Combinatorial characterization of the
Assur graphs from engineering, Preprint, 2008.

[29] A. M. So and Y. Ye, Theory of semidefinite programming for sensor network local-
ization, Math. Program. 109 (2007), no. 2-3, Ser. B, 367–384.

[30] J. Szabó, Matroid parity and jump systems: a solution to a conjecture of Recski,
SIAM J. Discrete Math. Vol. 22, No. 3, pp. 854-860, 2008.

EGRES Technical Report No. 2009-05



References 18

[31] W. Whiteley, Some matroids from discrete applied geometry. Matroid theory (Seat-
tle, WA, 1995), 171–311, Contemp. Math., 197, Amer. Math. Soc., Providence, RI,
1996.

[32] W. Whiteley, Rigidity and scene analysis, in: Handbook of Discrete and Computa-
tional Geometry (J. E. Goodman and J. O’Rourke, eds.), CRC Press, Second Edition,
pp. 1327-1354, 2004.

EGRES Technical Report No. 2009-05


	Introduction
	Rigid frameworks with pinned vertices
	Rigid graphs with pinned vertices
	The two-dimensional rigidity matroid
	Optimal families of tracks and smallest pinning sets
	The network localization problem
	Graphs with a connected rigidity matroid
	M-connected graphs with pinned vertices

	Low cost anchor sets in uniquely localizable networks
	Acknowledgement

