![]() |
For two integers $k>0$ and $\ell$, a graph $G=(V,E)$ is called $(k,\ell)$-tight if $|E|=k|V|-\ell$ and $|E(X)|\leq k|X|-\ell$ for all $X\sbse V$ for which $k|X|-\ell\geq 0$. Lee and Streinu provided an algorithm for testing $(k,\ell)$-sparsity when $\ell\geq 0$. We show how to modify this algorithm for instances where $\ell<0$.
Bibtex entry:
AUTHOR | = | {Kir{\'a}ly, Csaba}, |
TITLE | = | {An efficient algorithm for testing $(k,\ell)$-sparsity when $\ell<0$}, |
NOTE | = | {{\tt egres.elte.hu}}, |
INSTITUTION | = | {Egerv{\'a}ry Research Group, Budapest}, |
YEAR | = | {2019}, |
NUMBER | = | {QP-2019-04} |