
Unit 12. Curvature
==========================================================================================

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Curvature operator, curvature tensor, Bianchi identities, Riemann-Christoffel

tensor, symmetry properties of the Riemann-Christoffel tensor, sectional

curvature, Schur’s theorem, space forms, Ricci tensor, Ricci curvature,

scalar curvature, curvature tensor of a hypersurface.

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

If D is an affine connection on a manifold M, then we may consider the

operator

R(X,Y) = [D ,D ] - D :X(M)----------L X(M),X Y [X,Y]
where [D ,D ]=D qD -D qD is the usual commutator of operators. The mappingX Y X Y Y X
that assigns to the vector fields X,Y the operator R(X,Y) is called the

curvature operator of the connection. The assignment------------------------------------------------------------------------------------------
X(M)xX(M)xX(M)----------L X(M)

(X,Y,Z)9-----L R(X,Y)(Z)

is called the curvature tensor of the connection. To reduce the number of--------------------------------------------------------------------------------
brackets, we shall denote R(X,Y)(Z) simply by R(X,Y;Z). Thus, the letter R is

used in two different meanings, later it will denote also a third mapping,

but the number of arguments of R makes always clear which meaning is

considered.

Proposition. The curvature tensor is linear over the ring of smooth-------------------------------------------------------
functions in each of its arguments, and it is skew symmetric in the first two

arguments.

Proof. Skew symmetry in the first two arguments is clear, since-------------------------
R(X,Y) = [D ,D ] - D = -[D ,D ] + D = -R(Y,X).X Y [X,Y] Y X [Y,X]

According to this, it suffices to check linearity of the curvature tensor in

the first and third arguments.

Linearity in the first argument is proved by the following identities.

R(X +X ,Y) = [D ,D ] - D = [D +D ,D ] - D =1 2 X +X Y [X +X ,Y] X X Y [X ,Y]+[X ,Y]1 2 1 2 1 2 1 2
= [D ,D ] + [D ,D ] - D - D = R(X ,Y) + R(X ,Y).X Y X Y [X ,Y] [X ,Y] 1 21 2 1 2

and

R(fX,Y;Z) = ([D ,D ] - D )(Z) = fD D Z-D (fD Z)-D (Z) =fX Y [fX,Y] X Y Y X f[X,Y]-Y(f)X
= fD D Z - fD D Z - Y(f)D Z -fD Z + Y(f)D (Z) =X Y Y X X [X,Y] X
= f(D D Z - D D Z - D Z) = f R(X,Y;Z).X Y Y X [X,Y]
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Additivity in the third argument is clear, since R(X,Y) is built up of

the additive operators D , D and their compositions. To have linearity, weX Y
need

R(X,Y;fZ) = D D (fZ) - D D (fZ) - D (fZ) =X Y Y X [X,Y]
= D (Y(f)Z+fD Z)-D (X(f)Z+fD Z)-[X,Y](f)Z-fD Z =X Y Y X [X,Y]
= XY(f)Z+Y(f)D Z+X(f)D Z+fD D Z -YX(f)Z-X(f)D Z-Y(f)D Z-fD D Z-X Y X Y Y X Y X

-XY(f)Z+YX(f)Z - fD Z[X,Y]
= f(D D Z - D D Z - D Z) = f R(X,Y;Z).44444X Y Y X [X,Y]

The proposition is a bit surprising, because the curvature tensor is built up

from covariant derivations, which are not linear operators over the ring of

smooth functions.

We have already introduced tensor fields over a hypersurface. We can

introduce tensor fields over a manifold in the same manner. A tensor field T

of type (k,l) is an assignment to every point p of a manifold M a tensor T(p)

of type (k,l) over the tangent space T M. If d ,...,d are the basis vectorp 1 n
fields defined by a chart over the domain of the chart, and we denote by
1 ndx (p), ..., dx (p) the dual basis of d (p),...,d (p), then a tensor field is1 n

uniquely determined over the domain of the chart by the components
i ...i i i
1 k 1 kT (p)=T(p)(dx (p),...,dx (p);d (p),...,d (p)).
j ...j j j
1 l 1 l

We say that the tensor field is smooth, if for any chart the functions------------------------------
i ...i
1 kT are smooth. We shall consider only smooth tensor fields.
j ...j
1 l

Tensors of valency (1,0) are the vector fields, tensors of valency (0,1)

are the differential 1-forms. Thus, a differential 1-form assigns to every----------------------------------------------------------------------------------------------------
point of the manifold a linear function on the tangent space at that point.

Differential 1-forms form a module over the ring of smooth functions, which
1we denote by W (M).

Every tensor field defines a multi-F(M)-linear mapping
1 1W (M)x...xW (M)xX(M)x...xX(M) ----------L F(M)

and conversely, every such multi-F(M)-linear mapping comes from a tensor

field. (Check this!) Therefore, tensor fields can be identified with multi-
1 1F(M)-linear mappings W (M)x...xW (M)xX(M)x...xX(M) ----------L F(M).

Tensors of type (1,k), that is multi-F(M)-linear mappings
1W (M)xX(M)x...xX(M) ----------L F(M)

can be identified in a natural way with multi-F(M)-linear mappings

X(M)x...xX(M) ----------L X(M).
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By this identification, R:X(M)x...xX(M) ----------L X(M) corresponds to
~ 1 ~R:W (M)xX(M)x...xX(M) ----------L F(M), defined by R(w;X ,...,X )=w(R(X ,...,X )).1 k 1 k

Using these identifications, the curvature tensor is a tensor field of

valency (1,3) by the proposition. It is a remarkable consequence, that

although the vectors D Z(p) and D Z(p) are not determined by the vectorsX Y
X(p),Y(p),Z(p), to compute the value of R(X,Y;Z) at p it suffices to know

X(p),Y(p),Z(p).

Beside skew-symmetry in the first two arguments, the curvature tensor has

many other symmetry properties.

Theorem. (First Bianchi Identity). If R is the curvature tensor of a

torsion free connection, then

R(X,Y;Z) + R(Y,Z;X) + R(Z,X;Y) = 0

for any three vector fields X,Y,Z.

Proof. Let us introduce the following notation. If F(X,Y,Z) is a function------------------------- uJo uJoof the vector fields X,Y,Z, then denote by F(X,Y,Z) or F(X,Y,Z) the summ-----. m-----.XYZ
of the values of F at all cyclic permutations of the variables (X,Y,Z)

uJoF(X,Y,Z) = F(X,Y,Z) + F(Y,Z,X) + F(Z,X,Y).m-----.
uJoWe shall use several times that behind the cyclic summation we maym-----.

cyclically rotate X,Y,Z in any expression
uJo uJo uJoF(X,Y,Z) = F(Y,Z,X) = F(Z,X,Y).m-----. m-----. m-----.

The theorem claims vanishing of
uJo uJo uJoR(X,Y;Z) = (D D Z - D D Z - D Z) = (D D Z - D D Y - D Z)m-----. m-----. X Y Y X [X,Y] m-----. X Y X Z [X,Y]

uJo uJo uJo= (D [Y,Z] - D Z) = (D [X,Y] - D Z) = [Z,[X,Y]],m-----. X [X,Y] m-----. Z [X,Y] m-----.

but the latter expression is 0 according to the Jacobi identity on the Lie

bracket of vector fields. (At the third and fifth equality we used the

torsion free property of D.) 44444

The presence of an affine connection on a manifold allows us to

differentiate not only vector fields, but also tensor fields of any type.

Definition. Let (M,D) be a manifold with an affine connection. If--------------------------------------------------1w e W (M) is a 1-form, X is a vector field, then we define the covariant---------------------------------------------
derivative D w of w with respect to X to be the 1-form-------------------------------------------------- X --------------------

(D w)(Y) = X(w(Y)) - w(D Y), YeX(M).X X
In general, the covariant derivative D T of a tensor field---------------------------------------------------------------------------------------------------- X -------------------------------------------------------------------------------------1 1T:W (M)x...xW (M)xX(M)x...xX(M) ----------L F(M)

of valency (k,l) with respect to a vector field X is a tensor field of the
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same valency, defined by

(D T)(w ,...,w ;X ,...,X ) = X(T(w ,...,w ;X ,...,X )) -X 1 k 1 l 1 k 1 l
k

- S T(w ,...,D w ,...,w ;X ,...,X ) -1 X i k 1 li=1
l

- S T(w ,...,w ;X ,...,D X ,...,X ).1 k 1 X j lj=1
For the case of the curvature tensor, this definition gives

(D R)(Y,Z;W) = D (R(Y,Z;W)-R(D Y,Z;W)-R(Y,D Z;W)-R(Y,Z;D W).X X X X X

Theorem. (Second Bianchi Identity) The curvature tensor of a torsion free-----------------------------------
connection satisfies the following identity

uJo (D R)(Y,Z;W) = (D R)(Y,Z;W) + (D R)(Z,X;W) + (D R)(X,Y;W) = 0.m-----. X X Y ZXYZ
Proof. (D R)(Y,Z;W) is the value of the operator------------------------- X

D qR(Y,Z)-R(D Y,Z)-R(Y,D Z)-R(Y,Z)qD : X(M) ----------L X(M)X X X X
on the vector field W, hence we have to prove vanishing of the operator

uJo D qR(Y,Z)-R(D Y,Z)-R(Y,D Z)-R(Y,Z)qD .m-----. X X X XXYZ
First, we have
uJo uJoD qR(Y,Z)-R(Y,Z)qD = (D D D -D D D -D D )-(D D D -D D D -D D )=m-----. X X m-----. X Y Z X Z Y X [Y,Z] Y Z X Z Y X [Y,Z] XXYZ XYZ
uJo uJo(D D D -D D D -D D )-(D D D -D D D -D D )= D D - D D .m-----. X Y Z X Z Y X [Y,Z] X Y Z X Z Y [Y,Z] X m-----. [Y,Z] X X [Y,Z]XYZ XYZ
On the other hand,
uJo uJo uJo-R(D Y,Z)-R(Y,D Z) = R(D Z,Y) - R(D Y,Z) = R(D X,Z) - R(D Y,Z) =m-----. X X m-----. X X m-----. Y XXYZ XYZ XYZ
uJo uJoR(D X-D Y,Z) = R([Y,X],Z).m-----. Y X m-----.XYZ XYZ
Combining these results,

uJo D qR(Y,Z)-R(D Y,Z)-R(Y,D Z)-R(Y,Z)qDm-----. X X X XXYZ
uJo= D D -D D +R([Y,X],Z)m-----. [Y,Z] X X [Y,Z]XYZ
uJo= D D -D D +R([Z,Y],X)m-----. [Y,Z] X X [Y,Z]XYZ
uJo= D D -D D +D D - D D - Dm-----. [Y,Z] X X [Y,Z] [Z,Y] X X [Z,Y] [[Z,Y],X]XYZ
uJo= D = D = 0. 44444m-----. [[Y,Z],X] uJoXYZ [[X,Y],Z]m-----.

In the remaining part of this unit, we shall deal with Riemannian
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manifolds. If (M,<,>) is a Riemannian, manifold with Levi-Civita connection
~D, and R is the curvature tensor of D, then we can introduce a tensor R of

valency (0,4), related to R by the equation
~R(X,Y;Z,W) = < R(X,Y;Z),W >.

~R is the Riemann-Christoffel curvature tensor of the Riemannian manifold.------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------~To simplify notation, we shall denote R also by R. This will not lead to

confusion, since the Riemann-Christoffel tensor and the ordinary curvature

tensor have different number of arguments.

Levi-Civita connections are connections of special type, so it is not

surprising, that the curvature tensor of a Riemannian manifold has stronger

symmetries than that of an arbitrary connection. Of course, the general

results can be applied to Riemannian manifolds as well, and yield

R(X,Y;Z,W) = -R(Y,X;Z,W);
uJo R(X,Y;Z,W) = 0.m-----.XYZ

In addition to these symmetries, we have the following ones.

Theorem. The Riemann-Christoffel curvature tensor is skew-symmetric in the-----------------------------------
last two arguments

R(X,Y;Z,W) = - R(X,Y;W,Z).

Proof. By the compatibility of the connection and the metric, we have-------------------------
X(Y(<Z,W>)) = X(<D Z,W>+<Z,D W>) = <D D Z,W>+<D Z,D W>+<D Z,D W>+<Z,D D W>,Y Y X Y Y X X Y X Y
and similarly,

Y(X(<Z,W>)) = <D D Z,W>+<D Z,D W>+<D Z,D W>+<Z,D D W>.Y X X Y Y X Y X
We also have

[X,Y](<Z,W>) = <D Z,W > + <Z,D W >.[X,Y] [X,Y]
Subtracting from the first equality the second and the third one and applying

[X,Y] = XqY - YqX, we obtain

0 = <D D Z-D D Z-D Z,W>+<Z,D D W-D D W-D W>= R(X,Y;Z,W)+R(X,Y;W,Z). 44444X Y Y X [X,Y] X Y Y X [X,Y]
The symmetries we have by now imply a further symmetry.

Theorem. Assume that R is an arbitrary tensor of valency (0,4) having the-----------------------------------
following symmetry properties

R(X,Y;Z,W) = -R(Y,X;Z,W) = -R(X,Y;W,Z)
uJoand R(X,Y;Z,W) = 0.m-----.XYZ

Then

R(X,Y;Z,W) = R(Z,W;X,Y).

Proof. Let us apply the Bianchi identity for the following five-------------------------
arrangements

5



R(X,Y;Z,W) + R(Y,Z;X,W) + R(Z,X;Y,W) = 0

R(X,Y;W,Z) + R(Y,W;X,Z) + R(W,X;Y,Z) = 0

R(X,W;Z,Y) + R(W,Z;X,Y) + R(Z,X;W,Y) = 0

R(Y,Z;W,X) + R(Z,W;Y,X) + R(W,Y;Z,X) = 0

2R(Y,W;Z,X) +2R(W,Z;Y,X) +2R(Z,Y;W,X) = 0.

Changing the order of letters in the first two and last two places to the

alphabetical order, we obtain the following equalities.

-R(X,Y;W,Z) - R(Y,Z;W,X) + R(X,Z;W,Y) = 0

R(X,Y;W,Z) - R(W,Y;X,Z) + R(W,X;Y,Z) = 0

R(W,X;Y,Z) + R(W,Z;X,Y) - R(X,Z;W,Y) = 0

R(Y,Z;W,X) + R(W,Z;X,Y) - R(W,Y;X,Z) = 0

2R(W,Y;X,Z) -2R(W,Z;X,Y) -2R(Y,Z;W,X) = 0.

Adding these five equalities, we get the following equation after obvious

simplifications.

2 R(W,X;Y,Z) -2 R(Y,Z;W,X) = 0,

and this is the identity we wanted to prove. 44444

We know from linear algebra that a symmetric bilinear form is uniquely

determined by its quadratic form. More generally, when a tensor has some

symmetries, it can be reconstructed from its restriction to a suitable linear

subspace of its domain. For tensors having the symmetries of a curvature

tensor we have the following

Proposition. Let S and S be tensors (or tensor fields) of valency (0,4),------------------------------------------------------- 1 2
satisfying the following relations

S (X,Y;Z,W) = - S (Y,X;Z,W) = - S (X,Y;W,Z);i i iuJo S (X,Y;Z,W) = 0.m-----. iXYZ
Then if S (X,Y;Y,X) = S (X,Y;Y,X) for every X and Y, then S =S .1 2 1 2

Proof. Consider the difference S = S -S . S has the same symmetries as S------------------------- 1 2 1
and S , S(X,Y;Y,X) = 0 for all X,Y and we have to show S = 0.2
We have for any X,Y,Z

0 = S(X,Y+Z;Y+Z,X) = S(X,Y;Y,X) + S(X,Y;Z,X) + S(X,Z;Y,X) + S(X,Z;Z,X) =

= S(X,Y;Z,X) + S(X,Z;Y,X) +

+ (S(X,Y;Z,X) + S(Y,Z;X,X) + S(Z,X;Y,X))

= 2S(X,Y;Z,X).

Now taking four arbitrary vectors (vector fields) X,Y,Z,W and using

S(X,Y;Z,X) _ 0, we obtain

0 = S(X+W,Y;Z,X+W) = S(X,Y;Z,X) + S(X,Y;Z,W) + S(W,Y;Z,X) + S(W,Y;Z,W) =
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= S(X,Y;Z,W) + S(W,Y;Z,X),

i.e., S is skew symmetric in the first and fourth variables. Thus,

S(X,Y;Z,W) = S(Y,X;W,Z) = - S(Z,X;W,Y) = S(Z,X;Y,W),

in other words, S is invariant under cyclic permutations of the first three

variables. But the sum of the three equal quantities S(X,Y;Z,W), S(Y,Z;X,W)

and S(Z,X;Y,W) is 0 because of the Bianchi symmetry, thus S(X,Y;Z,W) is 0. 44444

Exercise. Let S be a tensor of valency (0,4) having all the curvature----------------------------------------
tensor symmetries, and let Q (X,Y) := S(X,Y;Y,X). Prove that Q (X,Y)=Q (Y,X)S S S
and

6S(X,Y;Z,W) = Q (X+W,Y+Z)-Q (Y+W,X+Z) +S S
+Q (Y+W,X)-Q (X+W,Y)+Q (Y+W,Z)-Q (X+W,Z)+S S S S
+Q (X+Z,Y)-Q (Y+Z,X)+Q (X+Z,W)-Q (Y+Z,W)+S S S S
+Q (X,Z)-Q (Y,Z)+Q (Y,W)-Q (X,W).S S S S

Definition. Let M be a Riemannian manifold, p a point on M, X and Y two--------------------------------------------------
non-parallel tangent vectors at p. The number

R(X,Y;Y,X)
K(X,Y) = ---------------------------------------------------------------------------2 2 21X1 1Y1 -<X,Y>

is called the sectional curvature of M at p, in the direction of the plane-----------------------------------------------------------------------------------------------
spanned by the vectors X and Y in T M.p

The name assumes that K(X,Y) depends only on the plane spanned by

the vectors X and Y. This is indeed so, since if x ,y and x ,y are two1 1 2 2
bases of a 2-dimensional linear space, then we can transform one of them into

the other by a finite number of elementary basis transformations of the form

x -----L ax , y -----L by, where ab$0; x -----L x+y , y -----L y ; x -----L y , y -----L x

and we have the following proposition.

Proposition. If M is a Riemannian manifold with sectional curvature K, X-------------------------------------------------------
and Y are tangent vectors at p e M, a and b are non-zero scalars, then

(i) K(X,Y) = K(X+Y,Y);

(ii) K(X,Y) = K(aX,bY);

(iii) K(X,Y) = K(Y,X).

Proof. (i) follows from-------------------------
R(X+Y,Y;Y,X+Y)=R(X,Y;Y,X)+R(X,Y;Y,Y)+R(Y,Y;Y,X)+R(Y,Y;Y,Y)=R(X,Y;Y,X)

and
2 2 2 2 2 2 2 2 41X+Y1 1Y1 -<X+Y,Y> = (1X1 +1Y1 +2<X,Y>)1Y1 - (<X,Y> +2<X,Y>1Y1 +1Y1 ) =

2 2 2= 1X1 1Y1 -<X,Y> .

(ii) follows from
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2 2R(aX,bY;bY,aX) = a b R(X,Y;Y,X)

and
2 2 2 2 2 2 2 21aX1 1bY1 -<aX,bY> = a b (1X1 1Y1 -<X,Y> ).

Finally, (iii) comes from the equalities R(X,Y;Y,X) = R(Y,X;X,Y) and
2 2 2 2 2 21X1 1Y1 -<X,Y> =1Y1 1X1 -<Y,X> .44444

Definition. Riemannian manifolds, the sectional curvature function of--------------------------------------------------
which is constant, called spaces of constant curvature or simply space forms.-------------------------------------------------------------------------------------------------------------------------------------------- -------------------------------------------------------
The space form is elliptic or spherical if K > 0, K is parabolic or Euclidean---------------------------------------- --------------------------------------------- --------------------------------------------- ---------------------------------------------
if K=0 and is hyperbolic if K < 0.--------------------------------------------------

Typical examples are the n-dimensional sphere, Euclidean space and

hyperbolic space. Further examples can be obtained by factorization with

fixed point free actions of discrete groups.

The following remarkable theorem sounds similarly to the theorem saying

that a connected surface consisting of umbilics is contained in a sphere or

plane (page 51).

Theorem (Schur). If M is a connected Riemannian manifold, dim M > 3 and-----------------------------------
the sectional curvature K(X ,Y ), X ,Y eT M depends only on p (and does notp p p p p
depend on the plane spanned by X and Y , then K is constant, that is, as ap p
matter of fact, it does not depend on p either.

Proof. By the assumption,------------------------- 2 2 2R(X,Y;Y,X) = f (1X1 1Y1 -<X,Y> )

for some function f. Our goal is to show that f is constant.

Consider the tensor field of valency (0,4) defined by

S(X,Y;Z,W) = f(<X,W><Y,Z>-<X,Z><Y,W>).

It is clear from the definition that S is skew-symmetric in the first and

last two arguments. S has also the Bianchi symmetry. Indeed,
uJo uJo uJoS(X,Y;Z,W)= f(<X,W><Y,Z>-<X,Z><Y,W>)= f(<Y,W><Z,X>-<X,Z><Y,W>)=0.m-----. m-----. m-----.XYZ XYZ XYZ
We also have R(X,Y;Y,X) = S(X,Y;Y,X), therefore R = S.

~Set S(X,Y;Z) = f(<Y,Z> X -<X,Z> Y). Then
~<R(X,Y;Z),W> =R(X,Y;Z,W) = S(X,Y;Z,W) = <S(X,Y;Z),W>,

that is,
~R(X,Y;Z) = S(X,Y;Z) for all X,Y,Z.

Differentiating with respect to a vector field U we get
~ ~ ~ ~ ~(D R)(X,Y;Z) = (D S)(X,Y;Z) = D (S(X,Y;Z))-S(D X,Y;Z)-S(X,D Y;Z)-S(X,Y;D Z).U U U U U U
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Since
~D (S(X,Y;Z)) = U(f)(<Y,Z> X -<X,Z> Y)+fD (<Y,Z> X -<X,Z> Y) =U U
= U(f)(<Y,Z> X -<X,Z> Y)+f(U<Y,Z> X + <Y,Z>D X -U<X,Z> Y -<X,Z>D Y) =U U
= U(f)(<Y,Z>X-<X,Z>Y)+

+f(<D Y,Z>X+<Y,D Z>X+<Y,Z>D X-<D X,Z>Y-<X,D Z>Y-<X,Z>D Y) =U U U U U U
= U(f)(<Y,Z>X-<X,Z>Y)+

~ ~ ~+S(D X,Y;Z)+S(X,D Y;Z)+S(X,Y;D Z),U U U
we obtain

~(D R)(X,Y;Z) = (D S)(X,Y;Z) = U(f)(<Y,Z>X-<X,Z>Y).U U
Using the second Bianchi identity, this gives us

uJo uJoU(f)(<Y,Z>X-<X,Z>Y) = (D R)(X,Y;Z) = 0.m-----. m-----. UUXY UXY
If XeT M is an arbitrary tangent vector to the manifold, then we can findp
non-zero vectors Y, Z=U e T M such that X,Y and U are orthogonal (dim M >p
3!). Then

uJo0 = U(f)(<Y,Z>X-<X,Z>Y) = X(f)<U,U>Y - Y(f)<U,U>X.m-----.UXY
Since X and Y are linearly independent, X(f)<U,U> = Y(f)<U,U> = 0. <U,U> is

positive, therefore X(f) = Y(f) = 0, yielding that the derivative of f in an

arbitrary direction X is 0. This means that f is locally constant, and since

M is connected, f is constant.44444

The curvature tensor is a complicated object containing a lot of

information about the geometry of the manifold. There are some useful ways to

derive some simpler tensor fields from the curvature tensor. Of course, the

simplification is paid by losing information.

Definition. Let (M,D) be a manifold with an affine connection, R be the--------------------------------------------------
curvature tensor of D. The Ricci tensor Ric of the connection is a tensor------------------------------------------------------------
field of valency (0,2) assigning to the vector fields X and Y the function

Ric(X,Y) the value of which at p e M is the trace of the linear mapping

T M ----------L T M,p p

Z 9-----L R(Z ,X(p);Y(p)), where Z e T M.p p p p

Proposition. The Ricci tensor of a Riemannian manifold is a symmetric-------------------------------------------------------
tensor

Ric(X,Y) = Ric(Y,X).

Proof. Let e ,...,e be an orthonormal basis in T M, where p is an------------------------- 1 n p
arbitrary point in the Riemannian manifold M. We can compute the trace of a
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linear mapping A:T M----------L T M by the formulap p n
strace A = <A(e ),e >.t i i
i=1

In particular,
n n
s sRic(X,Y)(p) = <R(e ,X(p);Y(p)),e > = R(e ,X(p);Y(p),e > =t i i t i i
i=1 i=1n n
s s= R(Y(p),e ;e ,X(p)> = R(e ,Y(p);X(p),e > = Ric(Y,X)(p).44444t i i t i i
i=1 i=1

Since the Ricci tensor of a Riemannian manifold is symmetric, it is

uniquely determined by its quadratic form X9-----L Ric(X,X).

Definition. Let X e T M be a non-zero tangent vector of a Riemannian-------------------------------------------------- p p
manifold M. The Ricci curvature of M at p in the direction X is the number--------------------------------------------------------------------------- p

Ric(X ,X )p pr(X ) = -------------------------------------------------- .p 21X 1p
XpFixing an orthonormal basis ------------------------------ = e ,e ,...,e we can express the Ricci2 1 2 n1X 1p

curvature as follows
n nRic(X ,X ) R(e ,X ;X ,e >p p s i p p i sr(X ) = -------------------------------------------------- = ----------------------------------------------------------------- = K(X ,e ).p 2 t 2 t p i1X 1 1X 1p i=1 p i=2

The meaning of this formula is that the Ricci curvature in the direction Xp
is the sum of the sectional curvatures in the directions of the planes

spanned by the vectors X and e , where e runs over an orthonormal basis ofp i i
the orthogonal complement of X in T M. It is a nice geometrical corollaryp p
that this some is independent of the choice of the orthogonal basis.

With the help of a scalar product, one can associate to every bilinear

function a linear transformation. For the case of the Riemannian metric and

the Ricci tensor, we can find a unique F(M)-linear transformation
---------------Ric:X(M)----------LX(M) such that

---------------Ric(X,Y) = <X,Ric(Y)> for every X,YeX(M).

Definition. The scalar curvature s(p) of a Riemannian manifold M at a-------------------------------------------------- -------------------------------------------------------------------------------- ---------------point p is the trace of the linear mapping Ric :T M----------L T M.p p
Let us find an expression for the scalar curvature in terms of the Ricci

curvature and the sectional curvature. Let e ,...,e be an orthonormal basis1 n
in T M. Thenp
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n n n
--------------- s --------------- s ss(p) = trace Ric = <Ric(e ),e > = Ric(e ,e ) = r(e ),t i i t i i t i

i=1 i=1 i=1
i.e. s(p) is the sum of Ricci curvatures in the directions of an orthogonal

basis. Furthermore,
n n n n
s s s ss(p) = r(e ) = K(e ,e ) = 2 K(e ,e ),t i t t i j t i j
i=1 i=1 j=1 1<i<j<n

j$i
that is, the scalar curvature is twice the sum of sectional curvatures taken

in the directions of all coordinate planes of an orthonormal coordinate

system in T M.p
To finish this unit with, let us study the curvature tensor of a

nhypersurface M in R . As we observed at the end of the previous unit, the
~ ~Levi-Civita connection D of a hypersurface can be expressed as D = Pqd,

where d is the derivation rule of vector fields along the hypersurface as

defined in Unit 5 (page 43), P is the orthogonal projection of a tangent
nvector of R at a hypersurface point onto the tangent space of the

hypersurface at that point. d is essentially the Levi Civita connection of
n nR , thus, as the curvature of R is 0,

d qd -d qd = dX Y Y X [X,Y]
for any tangential vector fields X,Y e X(M).

We have

~ ~ ~D D Z = P(d D Z) = P(d (d Z - <d Z,N >N )) =X Y X Y X Y Y

= P(d d Z) - P(X(<d Z,N>) N) - P(<d Z,N >d N )X Y Y Y X

= P(d d Z) - <d Z,N >d N ,X Y Y X

where X,Y,Z e X(M).

Similarly,

~ ~D D Z = P(d d Z) - <d Z,N >d N .Y X Y X X Y

Combining these equalities with

~D Z = P(d Z)[X,Y] [X,Y]
we get the following expression for the curvature tensor R of M

~ ~ ~ ~ ~R(X,Y;Z) = (D D Z - D D Z) - D Z =X Y Y X [X,Y]

= P((d d Z - d d Z) - d Z) - <d Z,N >d N + <d Z,N >d NX Y Y X [X,Y] Y X X Y

= <d Z,N >d N - <d Z,N >d N .X Y Y X

11



Since <Z,N > is constant zero,

0 = X(<Z,N >) = <d Z,N > + <Z,d N >X X

and

0 = Y(<Z,N >) = <d Z,N > + <Z,d N >.Y Y

Putting these equalities together we deduce that

R(X,Y;Z) = <Z,d N >d N - <Z,d N >d N = <Z,L(Y)>L(X) - <Z,L(X)>L(Y).Y X X Y

Comparing the formula

R(X,Y;Z) = <Z,L(Y)>L(X) - <Z,L(X)>L(Y)

relating the curvature tensor to the Weingarten map on a hypersurface with

Gauss’ equations proved in unit 7 we see that the curvature tensor R

coincides with the curvature tensor defined there. This way, the last

equation can also be considered as a coordinate free display of Gauss’

equations.

Further Exercises

Exercise 12-1. Consider tensors of valency (0,4) over an n-dimensional vector

space V that satisfy

S(X,Y;Z,W) = - S(Y,X;Z,W) = - S(X,Y;W,Z);
uJo S(X,Y;Z,W) = 0.m-----.XYZ

Prove that these tensors form a linear space and determine the dimension of

this space.

Exercise 12-2. Prove that if X and X are two nonparallel principal1 2
directions at a given point p of a hypersurface M, k ,k are the1 2
corresponding principal curvatures, then

K(X ,X ) = k k .1 2 1 2
What is the minimum and maximum of K(X,Y), when X and Y run over T M?p

n+1Exercise 12-3. Express the Ricci curvature of a hypersurface in R in a

principal direction in terms of the principal curvatures.

Exercise 12-4. Express the scalar curvature of a hypersurface in terms of the

principal curvatures.
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