
Paraméteres problémák a kombinatorikus

optimalizálásban és ezek távközlési
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Forewords

This thesis discusses mathematical problems having practical motivation and use. From

the mathematical point of view, the discussed topics belong to the field of combinatorial

optimization. A common feature of them is that the solutions are achieved by transform-

ing the optimization tasks to certain parametric problems having one or more parameters,

thus resulting in continuous optimization tasks. Various approaches are presented to solve

these special continuous optimization problems. The first applied technique is based on

Megiddo’s parametric search. This elegant method is discussed in detail because we be-

lieve it should also have several other applications in combinatorial optimization. We also

show how basic approximating algorithms in continuous optimization, such as the Newton

approximation or the subgradient method can help us finding optimal or approximating

solutions for discrete optimization problems in finite or often in strongly polynomial time.

As we mentioned above, a strong emphasis is put on practical applications. An impor-

tant goal of the thesis is to present complex real-life optimization tasks where nontrivial

mathematical considerations make it possible to find optimal or near optimal solutions

efficiently. Most of the applied research presented it the thesis was done in the Traffic

Analysis and Network Performance Laboratory at Ericsson Research, Hungary, thus the

practical problems this thesis deals with mainly come from the telecommunication industry,

but some of them have wider applicability. In order to demonstrate the practical usability

of the solutions, we also present case studies with experimental analysis of the proposed

exact and approximating solution.

Structure of the thesis

The starting point of the research presented in Chapter 1 was the papers of Frederickson

and Solis-Oba [FSO99, FSO98]. In their works the authors solved a kind of budgeted

inverse optimization problem on minimum spanning trees, and later extended it to arbitrary

matroids. These results called for a further extension to matroid intersections or even to

submodular flows. The algorithm proposed by Frederickson and Solis-Oba does not seem

to extend to these cases. Therefore an alternative and more general approach is presented

in Chapter 1. Strangely, although the presented framework is general enough to provide a

solution to several other known budgeted optimization problems of this type, the algorithm

and the proof of its correctness and strong polynomiality is actually simpler than the one
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of Frederickson and Solis-Oba. The results of this chapter has been published in [Jüt03]

and [Jüt05a].

The budgeted matroid intersection problem above is solved by essentially reducing it to

the following problem. We are given a (possibly very large) linear program and we know

a strongly polynomial combinatorial and linear (see Section 1.1.1) algorithm that solves

it. We are also given an additional linear constraint and the task is to solve this extended

problem in strongly polynomial time. The way how we solved this problem extends to the

case when we add any constant number of constraints (rows) or variables (columns) to the

original linear program. This latter problem was posed and solved by Plotkin, Norton and

Tardos in [NPT92]. Our solution described in Chapter 2 improves the running time from

O(T d+2) obtained in [NPT92] to O(T d+1), where T is the running time of the algorithm

for the basic linear program and d is the number of additional constraints and variables.

This chapter is based on [Jüt05c].

Solving network routing problems one often comes across the following problem. We

are given a directed graph G = (V, E), a cost function c : E −→ R+, a delay function

d : E −→ R+ on the edges of the graph, a resource (delay) constraint ∆ ∈ R+ a source

s ∈ V , a target t ∈ V , and the task is to find a path p for which d(p) ≤ ∆ and which

is of minimum cost among these paths. This problem is well known to be NP-hard. A

usual way to solve this problem is to apply Lagrange relaxation to the delay constraint.

In this way the problem turns to a maximization problem over a single variable. To solve

this dual problem a simple but practically very efficient method — referred as Handler-

Zang method in this thesis — has been developed independently by several authors [HZ80,

BG96, JSMR01]. However there was little known about its theoretical running time. In

Chapter 3 we prove that Handler-Zang method is strongly polynomial not only for the

shortest path case but also for any resource constrained optimization problem with linear

cost and resource (delay) functions. For the special case of shortest paths, a tighter running

time estimation is also presented in Section 3.3.2. This research was directly motivated by

a vital telecommunication problem, thus we present a practical evaluation of the method in

this scenario and also show some tricks to further improve its practical performance. The

application of this algorithm for telecommunication networks was published in [JSMR01].

This paper has several citations by authors working in telecommunication research. The

theoretical analysis of the algorithm was presented in [Jüt05b].

The techniques used in Chapter 3 also makes it possible to achieve some improvements
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on the known running time bounds for the Newton-Dinkelbach method for fractional opti-

mization problems. Namely, Chapter 4 shows that this method takes O(n2 log n) iterations

if both the cost and the weight function are linear. This improves the result obtained in

[Rad98] by a factor O(log n). Moreover, the proof is significantly shorter. We also show

that if the set of feasible solutions is given as the 0-1 vertices of the integer polyhedron

Q := {x ∈ Rn : Ax = b, x ≥ 0}, then the Newton-Dinkelbach method takes O(n log n)

iterations. This is a straightforward extension of the case of shortest paths in a directed

acyclic graph.

Chapter 5 is also a case study of a real life optimization problem coming from the

telecommunication industry, a planning problem of the access network of third generation

mobile systems. It presents a nontrivial application of Lagrange relaxation and branch-

and-bound technique to solve a hard optimization problem up to optimality on moderate

problem size, demonstrates how to use this method as a subroutine to solve larger problems,

and also shows how a careful combination of the bipartite b-matching and a Simulated

Annealing can also be used to solve this problem. The results presented in this chapter

has been published in [JOF05].
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Eötvös University of Sciences and at Traffic Analysis and Network Performance Laboratory

of Ericsson Research, Hungary. The author wishes to thank both organizations for the

support and the inspiring atmosphere.

The author would also like to acknowledge the useful ideas, valuable suggestions, com-
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Chapter 1

Budgeted Optimization Problems

A typical optimization problem in combinatorial optimization consists of minimizing (or

maximizing) a linear objective function over some combinatorial objects. Classical prob-

lems, like shortest paths, maximum flows, minimum cost circulations can all be interpreted

this way.

There are, however, results dealing with other type of optimization problems over the

same combinatorial objects. For example, it is well-known that if we are given a directed

graph G = (V, E), a capacity function w : E −→ R and two nodes s, t ∈ V , then the

minimum s—t cut can be found algorithmically in strongly polynomial time. Fulkerson

[Ful59] introduced and solved the so-called budgeted version of this minimum cut problem.

In this case we are also given a cost function c : E −→ R, and a budget constraint B > 0

and the task is to increase the capacity of the minimum s—t cut as much as possible by

increasing the components of the capacity function w individually with the following side

constraint. If we increase the capacity of an edge e by δ, it costs us δc(e) and the total

cost of capacity increments is bounded by B. Later R. K. Ahuja and J. B. Orlin [AO95]

gave a more efficient polynomial algorithm to this problem.

Other papers were also devoted to similar problems. Fulkerson and Harding [Har77,

FH75] solved the same budgeted version of the shortest s—t path problem. Later

G.N. Frederickson and R. Solis-Oba solved the budgeted version of the Minimum Spanning

Tree problem [FSO99]. In contrast with the budgeted versions of the minimum cut and

the shortest s—t path problem — which were both transformed essentially to the mini-

mum cost flow problem, the solution of the budgeted version of the minimum spanning

tree problem needed deeper considerations. Later they extended their method to arbitrary

7
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matroids in [FSO97, FSO98].

A natural extension of this result would be the problem of decreasing the maximum

weight common base of two matroids. The algorithm presented in [FSO98] does not seem

to extend to this case. As the main contribution of this chapter, we propose a different

approach that can solve this latter problem in strongly polynomial time. In contrast with

[FSO98], this solution does not depend on any substantial property of matroids or matroid

intersections, thus the same scheme can be also used to solve other budgeted optimization

problems including all the problems mentioned above.

Therefore it is worth considering the problem above in the following general form. (In

order to be consistent with [FSO97, FSO98], we use an equivalent form where the problem

is to decrease the weight of the maximum weight element.) We are given an underlying

set E and a combinatorial optimization problem called basic problem (e.g. the common

bases of two given matroids in the latter example). We assume that the convex hull P of

the feasible solution is a polyhedron. (This holds in the case of the problems mentioned

above.) Then, for a given weight function w : E −→ R, cost function c : E −→ R, and

budget constraint B > 0 the corresponding budgeted optimization problem is to compute

the value

α := min{max{(w − y)x : x ∈ P} : y ∈ RE, y ≥ 0, cy ≤ B} (1.1)

along with a minimizing vector y∗.

It will be pointed out that this problem essentially leads to the bounded version of the

basic problem, that is, the problem of finding a maximum weight element in the polyhedron

Pu := P ∩ {x ∈ RE : x ≤ u}, (1.2)

where u ∈ RE is an arbitrary given constraint vector. More exactly, the following will be

proved.

Theorem 1.1 If there exists an algorithm which is able to find a maximum weight element

in Pu along with a dual optimal solution (with respect to a linear programming description

of Pu) in time T for an arbitrary vector u and this algorithm satisfies the so called linearity

condition in u (see Section 1.1.1 for the precise definition), then there exists an algorithm

for solving Problem (1.1) in time O(T 2).

Note that the linearity condition of an algorithm does not refer to the running time, but

it is a restriction on what kind of operations can be made with the input. So, the meaning

of “linear algorithm” and “linear time algorithm” are very different.
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In Section 1.2, problem (1.1) will be reduced to a parametric problem using Lagrangian

relaxation, that is, we will show that problem (1.1) can be transformed to the maximization

of the function

L(λ) := max{wx : x ∈ Pλc} − λB (1.3)

with only one variable.

To do this maximization, one may use e.g. the binary search technique. This gives the

value of the optimal solution, but some more effort is still necessary to find the optimal

solution itself. In addition, the focus is on strongly polynomial time algorithms in this

chapter and binary search does not provide such an algorithm.

So, in Section 1.3 we show another way to construct an algorithm A′ to maximize L(λ)

and to find an optimal solution to (1.1) in strongly polynomial time. The algorithm is based

on N. Megiddo’s Parametric Search Method. This technique uses a separation subroutine,

and it considers this subroutine not only as a black-box but it also uses its inner structure to

construct the algorithm A′. An advantage of this technique is the straightforward bound on

the running time and that it can be used in very general context (see e.g. [NPT92, CM93]),

but the separation subroutine must satisfy the linearity condition. This assumption is not

a strong restriction in the sense that most combinatorial optimization problems that can

be solved in strongly polynomial time can also be solved with linear algorithms. Section 1.1

gives a sketch of Megiddo’s technique in general, the definition of linear algorithms and

shows some examples what can be and what cannot be computed by linear algorithms.

In Section 1.4 a slightly more general problem will be discussed, when the modification

of some components of the weight function can be prohibited.

In Section 1.5 the presented method will be applied to some already solved problems

and we will show two new applications. The first one is the budgeted optimization problem

of the minimum cost circulation problem and the second one extends the Frederickson’s and

Solis-Oba’s result [FSO99, FSO97, FSO98] to matroid intersections from single matroids.

Moreover, this method can be used for budgeted submodular optimization problems as

well.

1.1 Megiddo’s principle

Definition 1.2 A real number λ∗ is said to be given by a separation algorithm A(λ) if

A(λ) is able to decide whether λ < λ∗, λ = λ∗ or λ > λ∗ by answering −1, 0 or +1.
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Solving combinatorial problems, one often comes across the problem of computing the

explicit value of a number λ∗ ∈ R given by a strongly polynomial time separation algorithm.

Without any restrictions, only approximation-like algorithms can be given for this problem.

For example, it is easy to see that for λ∗ :=
√

2 there exists a separation algorithm using

only comparisons, additions and multiplications of rational numbers and the input number,

but λ∗ cannot be obtained through these operations.

Megiddo [Meg79] showed that, roughly, if one can avoid multiplications in the separa-

tion algorithm, then λ∗ can also be computed in strongly polynomial time. Namely, he

(implicitly) proved the following theorem.

Theorem 1.3 Suppose that we are given a λ∗ ∈ R through a separation algorithm A(λ).

If A is linear in λ and works in time T , then there exists an algorithm that runs in time

O(T 2) and computes the explicit value of λ∗.

The idea of this method is to simulate the steps of the execution of A on the input

λ∗ by using only the necessary partial information about the input in each step of the

algorithm. At the end of this procedure from these partial information we will be able to

determine the right value of λ∗.

For this, however, it is necessary to require the linearity of the algorithm. The precise

definition of this assumption comes in the next section, then the theorem will be proven

in Section 1.1.2.

1.1.1 Linear Algorithms

To define the notion of a linear algorithm we use a RAM machine which has an additional

storage called Limited Access Memory. It may store real numbers, but an algorithm

running on this machine has only limited access to this storage. Namely, it can reach the

contents of the LAM only through the following operations.

• It can write an element of the RAM or LAM into an element of the LAM,

• it can multiply an element of the LAM with an element of the RAM and store the

result in the LAM,

• it can add an element of the LAM to another element of the LAM and store the

result in the LAM,
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• it can compare two elements of the LAM.

However, for example, it cannot multiply two elements of the LAM and it cannot read

them (that is it cannot copy an element of LAM into the RAM).

Definition 1.4 Let A(x, y) be an algorithm where x and y are its input vectors. We say

that A is linear in x if it gets x in the LAM, and also puts the output in the LAM. The

algorithm has full access to the other part of the input, in other words it gets it in the

RAM.

It can be seen that most of the basic operations of data structures can be implemented

on a LAM machine, for example we can choose the minimal element of a set of numbers

stored in the LAM and we can also sort its elements. However if we put the elements of

the matrix into the LAM, we cannot compute its determinant, because we cannot avoid

the multiplications of two elements of the matrix (the determinant itself is a nonlinear

polynomial of the elements of the matrix).

The following claims are given to demonstrate the capability of linear algorithms.

Claim 1.5 There exists an implementation of Dijkstra’s algorithm to find a shortest s− t

path in a weighted directed graph G = (V, E, w) which is linear in the weight function.

Proof. During its execution, Dijkstra’s algorithm builds a shortest-path tree T from

the node s. First, T consists of only the node s. Then in each round it finds a node

v ∈ V \ V (T ) whose path constructed from a path in T and one additional edge has the

smallest weight, and it puts v and the last edge of the corresponding path to T . It can

be done, because we can calculate the weight of these paths in the LAM, and we can also

choose the path having the smallest weight using only comparisons. �

Claim 1.6 The strongly polynomial time Edmonds-Karp algorithm [EK72] for the MAX-

FLOW problem can be implemented in such a way that it is linear in the capacity function.

Proof. The algorithm starts with the zero flow and it repeats the following steps until

the maximum flow is found.

First, it constructs an auxiliary digraph from the original graph by comparing the

current edge-values of the flow with the edge-capacities and with zero. Then it looks for a

shortest source-sink path in this graph and increases the amount of the flow by modifying

its value on the edges of this paths, which can be done using a minimum calculation and

some additions. �
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Claim 1.7 Goldberg and Tarjan’s strongly polynomial time cycle canceling algorithm

[GT89] for the minimum cost circulation problem can be implemented in such a way that

it is linear in the cost function. It also can be implemented in such a way that it is linear

in the bounding vectors. In addition, these algorithms compute the corresponding linear

programming dual optimal solution.

Proof. This algorithm starts with an arbitrary feasible circulation, then in each iter-

ation an auxiliary digraph is constructed and the circulation is improved on the edges of

a minimum mean cycle of the auxiliary graph. All these can be done without multiplying

the elements of the cost function to each other and also without multiplying the elements

of the bounding vectors to each other. �

It is worth mentioning that there cannot exist a strongly polynomial time algorithm for

this problem which is linear both in the cost function and in the bounding vectors because

we cannot avoid multiplying the elements of the bounding vectors with their corresponding

costs.

A common generalization of maximum cost circulations, maximum cost bases of a ma-

troid, and maximum cost common base of two polymatroids are submodular flows [EG77].

One of its several equivalent definitions is the following. (See e.g. [Fuj91])

Definition 1.8 A family F ⊆ 2V is called a crossing family over the underlying set V

if for each crossing X, Y ∈ F (i.e., X, Y ∈ F , X ∩ Y 6= ∅, X\Y 6= ∅, Y \X 6= ∅, and

X ∪ Y 6= V ) we have X ∪ Y, X ∩ Y ∈ F . A function b : F −→ R on the crossing family F
is called crossing-submodular if for each crossing X, Y ∈ F we have the submodularity

inequality

b(X) + b(Y ) ≥ b(X ∪ Y ) + b(X ∩ Y ). (1.4)

Definition 1.9 Let G = (V, E) be a directed graph with a vertex set V and an edge set E.

Let f, g : E −→ R∪ {±∞} be a lower and an upper capacity function and let w : E −→ R
be a cost function. Let F ⊆ 2V be a crossing family with ∅, V ∈ F and b : F −→ R be

a crossing-submodular function with b(∅) = b(V ) = 0. The submodular flow problem is

described as follows.

max wx (1.5a)

f ≤ x ≤ g (1.5b)

%x(X)− δx(X) ≤ b(X) for all X ⊆ V, (1.5c)



1.1. MEGIDDO’S PRINCIPLE 13

where %x(X) and δx(X) are the sum of the components of x corresponding to the edges

entering X and leaving X, respectively.

Although the algorithm for finding a minimum cost submodular flow is quite complex,

the following claim is straightforward to check.

Claim 1.10 The strongly polynomial time algorithm for the minimum cost submodular

flow problem described in [Fuj91] can be implemented in such a way that it will be linear

in the bounding functions f and g. This algorithm also gives the corresponding linear

programming dual optimal solution. �

1.1.2 Parametric Search

In this section Theorem 1.3 is proven by giving an algorithm A′ (running on a plain RAM

machine) that computes the value of λ∗. The new idea of the Parametric Search developed

by Megiddo [Meg79] is that instead of making an independent “optimizer” algorithm that

repeatedly calls the separation algorithm A during its execution, A′ will “simulate” how A
would run on the value λ∗. Therefore we now give a scheme how to construct the algorithm

A′ from the linear separation algorithm A.

First, we replace each element of the LAM with a pair of real numbers called parametric

numbers. Addition and subtraction of these numbers are defined in the same way as the

usual vector addition and vector subtraction while the multiplications and divisions of

these numbers are avoided by the linearity assumption on the algorithm A. When a real

number x is put into an element of the LAM, it is converted to the parametric number

(x, 0). The multiplication of a real number c and a parametric one (x, y) is defined to be

(cx, cy).

The only undefined part of A′ is when it compares two values in the LAM, namely it

inquires about whether (x1, y1) ≤ (x2, y2) or not. In this case

• if y1 = y2, then we answer true if and only if x1 ≤ x2.

• if y1 > y2, then we call A with the value λ := x2−x1

y1−y2
. We answer true if and only if

A returns that λ∗ < λ.

• if y1 < y2, then we call A with the value λ := x2−x1

y1−y2
. We answer true if and only if

A returns that λ∗ > λ.
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If A happens to return that λ = λ∗, we stop, since we found λ∗.

The idea behind this construction is that a parametric number (x, y) corresponds to

the linear expression x + yλ∗. The algebraic operations are defined to be consistent with

the result of the same operations on the corresponding linear expressions.

A comparison (x1, y1) ≤ (x2, y2) means that x1 + y1λ
∗ ≤ x2 + y2λ

∗, which is equivalent

to λ∗ ≤ x2−x1

y1−y2
, λ∗ ≥ x2−x1

y1−y2
or x1 ≤ x2 depending on the sing of y1 − y2. So, we can make

decision by a simple comparison or using the original A with λ := x2−x1

y1−y2
as input.

Now, let us run A′ with the parametric number (0, 1) as the input.

Claim 1.11 A′ ((0, 1)) calls A with λ∗ during its execution.

Proof. Let us suppose that it is not so. In this case A′ returns with a value when it

terminates. A stored the return value originally in the LAM, so A′ returns a parametric

number, i.e. a linear function of λ.

During the execution each comparison involved in calling A gives us a half-line as a set

of possible place of λ∗. Let Λ be the intersection of these closed half-lines. Λ is a (closed)

interval and λ∗ ∈ Λ. On the other hand it is easy to see that for any λ ∈ Λ the steps of

A′ ((0, 1)) correspond to the steps of A(λ). So, the value returned by A′ is right for all

λ ∈ Λ. Moreover, it is a linear expression of λ and for λ∗ it is equal to 0. These, together

with the fact that the result is ±1 or 0 for all λ, yield that Λ should be equal to {λ∗}. But,

it is only possible if A was called with λ∗ during the execution of A′, contradicting to the

assumption. �

Finally, let T denote the running time of A. The running time of the main algorithm

is the sum of the time used by A′ itself and the time required by the comparisons. Each

comparison can be computed by a simple execution of A, the number of the comparisons

is at most T and the number of the steps are taken by A′ is O(T ). Thus the total time

required by the algorithm is O(T 2).

In special cases the running time can often be significantly improved in several ways.

See [Meg83] or [Rad98] for more detail.
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1.2 The Lagrangian relaxation of the problem

In this section we show how problem (1.1) can be transformed to a parametric problem.

Let

L(λ) = max
z∈Pλc

wz − λB (1.6)

and

L∗ := max
λ≥0

L(λ). (1.7)

Theorem 1.12 L∗ = α, where α is the optimal solution of the budgeted optimization

problem (1.1).

Proof. From now on let Ax ≤ b be a linear description of P , that is

P = {x ∈ Rn : Ax ≤ b}. (1.8)

It is worth mentioning that the inequalities defining P need not be given explicitly and

there is no constraint on the number of them.

By the Duality Theorem

max
x∈P

(w − y)x = min{πb : π ≥ 0, πA = w − y}, (1.9)

So, Problem (1.1) is equivalent to the following linear program.

min πb (1.10)

π, y ≥ 0

πA + y = w

yc ≤ B

From (1.6) and (1.7) it follows that

L∗ = max wz − λB (1.11)

λ ≥ 0

z ≤ λc

Az ≤ b,

which is the dual problem of (1.10). �
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1.3 Maximization of L(λ)

In this section we give an algorithm which maximizes the function L(λ) and gives an

optimal solution to (1.10).

First, using the Duality Theorem, we get that

L(λ) = min πb + λ(cy −B) (1.12)

π, y ≥ 0

πA + y = w.

Let Lopt denote the set of λ’s maximizing L(λ). Obviously Lopt is a (closed) interval.

For the sake of simplicity the following notation is used.

Definition 1.13 λ ≤ Lopt if and only if λ ≤ x for all x ∈ Lopt. λ ≥ Lopt, λ < Lopt and

λ > Lopt are defined similarly.

Claim 1.14 Let π0, y0 be an optimal solution to (1.12) for some λ ≥ 0. Then

• if cy0 > B then λ ≤ Lopt,

• if cy0 < B then λ ≥ Lopt.

Proof. Let us suppose that cy0 > B and λ′ < λ. Therefore

L(λ) = π0b + λ(cy0 −B) > π0b + λ′(cy0 −B) ≥ L(λ′), (1.13)

proving that λ′ 6∈ Lopt. The second implication can be proven similarly. �

Claim 1.15 Let π0, y0 be an optimal solution to (1.12) for some λ ≥ 0 and let cy0 = B.

Then it i s also an optimal solution to (1.10), that is y0 is an optimal decrement of the

weight vector w in Problem (1.1).

Proof. The feasibility of π0, y0 is clear. Let π∗, y∗ be an optimal solution to (1.10).

Then

α = π∗b ≤ π0b = π0b + λ(cy0 −B) ≤ π∗b + λ(cy∗ −B) ≤ π∗b = α (1.14)

implies the optimality. �
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If L(λ) = −∞ that is the polyhedron Pλc is empty, a certification of its emptiness is a

vector (π¬, y¬) for which

π¬, y¬ ≥ 0 (1.15)

π¬A + y¬ = 0

π¬b + y¬λc < 0.

Claim 1.16 Suppose that Pλc is empty for some λ ≥ 0 and let π¬, y¬ be a certification of

its emptiness (i.e. a solution to (1.15)). Then

• if cy¬ ≥ 0 then λ < Lopt,

• if cy¬ ≤ 0 then λ > Lopt.

Proof. π¬, y¬ is also certification of emptiness of Pλ′c for all λ′ ≤ λ or for all λ′ ≥ λ

depending on whether cy¬ ≥ 0 or not. �

Now, we are ready to prove

Theorem 1.1 (Restated) Let A(λ) be an algorithm linear in λ and with running time

T , and assume that it computes either L(λ) along with a dual optimal solution (1.12) or

a certification of the emptiness of Pλc if L(λ) = −∞. Then there exists an algorithm for

solving Problem (1.1) in time O(T 2).

Proof. Claim 1.15 shows that to solve Problem (1.1) it is enough to find a multiplier

λ∗ maximizing the function L(λ) and an optimal solution π∗, y∗ to (1.12) with λ∗ in place

of λ with the property that cy∗ = B.

We apply Megiddo’s Parametric Search for the maximization of the function L(λ), but

a small technical difficulty arises because we are not able to check directly whether or not

λ ∈ Lopt for an arbitrary λ.

Apart from the comparisons we construct A′ from A in the same way as in Section 1.1.

The only difference is when the algorithm makes a comparison which is involved in

calling A with the input λ := x2−x1

y1−y2
. In this case we do the following.

• If we get L(λ) = −∞, then we use Claim 1.16 to decide whether λ < λ∗ or λ > λ∗.

• If A happens to consider λ to be optimal, that is we get a solution πλ, yλ of (1.12)

such that cyλ = B, then by Claim 1.15 (πλ, yλ) is also an optimal solution to (1.10)

so the execution can be finished.
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• If cyλ > B, then by Claim 1.14 it means that λ < Lopt unless λ ∈ Lopt so we accept if

the question was λ ≤ λ∗ and reject if the question was λ ≥ λ∗.

• In the case when cyλ < B we give opposite answers.

For some technical reasons, the algorithm also has to take care to avoid the redundant

executions of A i.e. if the outcome of a comparison can be derived from the outcomes of

the previous ones, then we make decision based on the previous comparisons rather then

to call A once more.

Now let us run A′. During the execution each comparison which is involved in calling

A gives us a half-line as a set of possible values of λ∗. Let Λ be the intersection of these

closed half-lines. Λ is a (closed) interval and Lopt ⊆ Λ. Since we never made redundant

comparisons, intΛ 6= ∅. (intΛ is the set of the interior points of Λ.)

On the other hand it is easy to see that for any λ ∈ intΛ the steps of A′ correspond to

the steps of A(λ). So, at the end of its execution A′ gives us the optimum value, which

parametric number. Thus, it corresponds to a linear function of λ and it is equal to L(λ)

for all λ ∈ intΛ. Moreover, because of the continuity of L(λ), this holds for all λ ∈ Λ. A′

also gives us an optimal solution (π(λ), y(λ)) to (1.12) as two vectors of linear functions of

λ. These are right optimal solutions to (1.12) for all λ ∈ intΛ. Again, because of continuity,

it follows that they are right for all λ ∈ Λ.

From the above considerations it follows that one of the extrema of Λ maximizes the

function L(λ). Denote it by λo and let (πo, yo) be the solution A returned when it was

called with λo. Because Λ is a subset of the half-line defined by yo and λo maximizes L(λ)

over the set Λ, it follows that cyo−B and cy(λo)−B have opposite signs. So, there exists

a suitable coefficient 0 ≤ µ ≤ 1 such that cy∗ = B, where π∗ := µπo + (1 − µ)π(λo) and

y∗ = µyo + (1 − µ)y(λo). Since both (πo, yo) and (π(λo), y(λo)) are optimal solutions to

(1.12) with λo in place of λ, (π∗, y∗) is also an optimal solution. Finally, Claim 1.15 ensures

that (π∗, y∗) is an optimal solution to (1.10) as well. To sum up, y∗ is an optimal solution

to Problem (1.1).

The bound on the running time can be obtained in the same way as in Section 1.1.2.

�
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1.4 When some components of the cost are fixed

In this section we extend the problem (1.1), so that the modification of some components

of the weight function can be prohibited. The main benefit of this extension is that it

enables us to use auxiliary variables to define the polyhedron P for the basic problem.

Let P := {(x1, x2) ∈ Rn+m : Ax1 + Cx2 ≤ b}. So, we are looking for the optimal

solution to the problem

α := min {max {(w1 − y)x1 + w2x2 : (x1, x2) ∈ P} : y ≥ 0, cy ≤ B} (1.16)

As in Section 1.2 this can be transformed to the following linear program.

min πb (1.17)

π, y ≥ 0

πA + y = w1

πB = w2

yc ≤ B.

The corresponding Lagrangian relaxation of this problem is

L(λ) = min πb + λ(cy −B) (1.18)

π, y ≥ 0

πA + y = w1

πB = w2,

and by the Duality Theorem

L(λ) = max{w1z1 + w2z2 : (z1, z2) ∈ Pλ} − λB, (1.19)

where Pλ := {(x1, x2) ∈ P : x1 ≤ λc}. The following theorem can be proven similarly to

Theorem 1.12.

Theorem 1.17 L∗ = α, where

L∗ := max
λ≥0

L(λ). (1.20)

�
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Finally, the maximization of L(λ) can be done in the same way as in Section 1.3.

1.5 Applications

The algorithm presented in the previous sections can be used for a wide range of problems;

it is enough to check whether we are able to optimize on the corresponding bounded

polyhedron using an algorithm which is linear in the bounding vector (or more generally,

using an algorithm that uses λc as the bounding vector and which is linear in λ).

First, as an example, we show how Theorem 1.1 can be applied to Fulkerson’s and

Harding’s problem. Then, Section 1.5.2 and 1.5.3 present two new applications, the bud-

geted minimum cost circulation and the budgeted polymatroid intersection problem. The

latter one extends the problem examined in [FSO98].

Let us mention that the direct use of Theorem 1.1 gives worse running time than those

obtained in [AO95, FH75] and in [FSO98] for the budgeted maximum flow, minimum

source-sink path and matroid optimization problems. However, these running times can

be improved several ways in special cases. See [Meg83] and [Rad98] for these techniques.

1.5.1 Maximizing the minimum source-sink path

Fulkerson and Harding [FH75, Har77] solved the case of budgeted optimization problems

when we have a non-negative length and a cost function on the edges of a directed graph and

we want to increase the length of the minimum length path between two predefined nodes

as much as possible by increasing the lengths of the edges keeping the budget constraint.

The minimum length s− t path problem can be formulated as an uncapacitated mini-

mum cost flow problem. So, the computation of L(λ) is a capacitated minimum cost flow

problem, for which there exists strongly polynomial time algorithm which is linear in its

constraint vector. It also gives back the dual solution which is in the suitable form we need

in (1.12).

1.5.2 Increasing the Cost of the Minimum Cost Circulation

We are given a directed graph G = (V, E), a cost function c : E −→ R, a lower and an upper

bound l, u : E −→ R on its edges. Moreover we are given a cost function cm : E −→ R of

the modification and a budget constraint B > 0. The task is to find an increment of the
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cost function c within the budget constraint which increases the cost of the c-minimal cost

circulation as much as possible.

This problem can also be handled with the method because the corresponding paramet-

ric problem is a minimum cost circulation problem on the graph G with the cost function

c, lower bound l and upper bound uλ(e) := min(u(e), λcm(e)) which can be computed

by a strongly polynomial time algorithm which is linear in λ. The dual optimal solution

returned by this algorithm can be easily transformed to a solution of (1.12) in the same

way as it is discussed in the following section.

1.5.3 Polymatroid intersection and submodular flows

A natural extension of the problem examined in [FSO98] is the budgeted matroid intersec-

tion problem. In this case we are given two matroids M1 = (E, I1) and M2 = (E, I2) with

a common ground set, a weight and a cost function w, c : E −→ R and a budget constraint

B > 0 and we want to decrease the weight of the maximum weight common base of M1

and M2 as much as possible by decreasing independently the weight of the elements of the

ground set with the side constraint that the total cost of the decreasing must be at most

B.

The common generalization of this problem and the problem presented in Section 1.5.2

is the case of budgeted optimization problem when we are given a submodular flow problem

and we are looking for a modification of its cost function which increases the cost of the

minimum cost feasible flow as much as possible.

Namely, using the notation of Definition 1.9, we are given an additional cost function

c : E −→ R, a budget constraint B and the problem is to find

min{max{(w − y)x : x ∈ P} : y ≥ 0, cy ≤ B} (1.21)

where

P := {x ∈ RE : f ≤ x ≤ g , %x(X)− δx(X) ≤ b(X) for all X ⊆ V }. (1.22)

The corresponding bounded problem is



22 CHAPTER 1. BUDGETED OPTIMIZATION PROBLEMS

max wx (1.23a)

%x(X)− δx(X) ≤ b(X) for all X ⊆ V (1.23b)

x ≤ −f (1.23c)

x ≤ g (1.23d)

x ≤ u, (1.23e)

where f and g are the lower and the upper capacities and u is the bounding vector.

This is also a submodular flow problem with gu(e) := min(g(e), u(e)) in place of g.

Using Claim 1.10 we get a strongly polynomial time algorithm that is linear in u and

computes an optimal flow x and an optimal dual solution (π, z1, z2), that is a solution to

min
∑
X⊆V

πXb(X)− z1f + z2g
u (1.24a)

π ∈ R2V

, z1, z2 ∈ RE (1.24b)

π, z1, z2 ≥ 0 (1.24c)∑
X:e∈δ(X)

πX −
∑

X:e∈%(X)

πX − z1(e) + z2(e) = w(e) for all e ⊆ E, (1.24d)

where πX denotes the component of π corresponding to the subset X ⊆ V .

Although π is an exponential-size vector, the optimal solution computed by the al-

gorithm consists of at most |E| non-zero elements and it is given by the set of non-zero

coordinates and the corresponding values.

Finally, (π, z1, z2) can be transformed to a dual optimal solution (π, ν1, ν2, y) to (1.23),

where

ν1 := z1 (1.25a)

ν2(e) :=

{
z2(e) if x(e) = g(e)

0 otherwise
(1.25b)

y(e) :=

{
z2(e) if x(e) < g(e)

0 otherwise
(1.25c)



1.6. AN OPEN PROBLEM 23

To sum up, we get a strongly polynomial time algorithm for the bounded version of the

submodular flow problem, so Theorem 1.1 provides a strongly polynomial time algorithm

for the budgeted submodular flow problem (Problem (1.21)).

1.6 An Open Problem

Finally, we pose a natural problem to which no strongly polynomial time algorithm is

known.

The budgeted maximum matching problem is the following. We are given a graph

G = (V, E) a cost and a weight function c, w : E −→ R on its edges and a budget

constraint B and we are looking for a vector z ≥ 0, cz ≤ B which minimizes the weight of

the (w − z)-maximal weight matching.

If G is a bipartite graph, then the problem can be reduced either to the budgeted

minimum cost circulation problem or to the budgeted matroid intersection problem, so it

can be solved in strongly polynomial time, but the general case is still open.

According to Theorem 1.1 it would be enough to give a linear strongly polynomial time

algorithm to the following bounded maximum weight matching problem. We are given a

graph G = (V, E), a weight and a capacity function w, u : E −→ R on its edges and the

problem is to find

max{wx : x ∈ P , x ≤ u}, (1.26)

where P is matching polyhedron, that is, the convex hull of the incidence vectors of the

matchings of G.
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Chapter 2

LP Optimization with Additional

Variables and Constraints

Let us remind the theorem due to Megiddo[Meg79] presented in Section 1.1 with a little

bit more sophisticated running time estimation.

Theorem 1.3 (Restated) Suppose that we are given a λ∗ ∈ R through a separation

algorithm A(λ) which is able to decide whether λ < λ∗, λ = λ∗ or λ > λ∗ by answering

−1, 0 or +1. If A is linear in λ (see Definition 1.4), works in time T and takes at most q

comparisons, then we can determine the value of λ∗ in time O(Tq).

This theorem inspired a variety of applications, improvements, and extensions (see e.g.

[BP95, BDK93, Meg83, NPT92, Rad98]).

In higher dimension, a separation algorithm for a convex set P is a subroutine which

decides whether or not a given vector is in the set P , and if not, gives a hyperplane

that separates the given vector from P . As an extension of Khachian’s ellipsoid method

[Kha80], Grötschel, Lovász and Schrijver [GLS81], Karp and Papadimitriou [KP82] and

Padberg and Rao [PR81] independently showed that a linear object function can be max-

imized in polynomial time over any polyhedron (having only rational vertices with known

binary length) given by a separation algorithm. Unfortunately this method is not strongly

polynomial.

On the other hand Theorem 1.3 shows that in case when P ⊂ R, if we have a linear

strongly polynomial separation algorithm, then we can optimize in strongly polynomial

time. Using a similar idea, C. H. Norton, S. A. Plotkin and É. Tardos [NPT92] extended

25
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this result to any higher (but fixed) dimension. Namely, they proved the following theorem.

Theorem 2.1 ([NPT92]) Let a closed convex set P ∈ Rd be given through a separation

algorithm which is linear in its input, runs in time T and makes at most q comparisons.

Then there is an algorithm which in O(Tqd) time either finds a point x ∈ P maximizing

cx, or concludes that {cx : x ∈ P} is unbounded from above.

In [NPT92] the authors also prove the following important consequence of Theorem 2.1.

Theorem 2.2 ([NPT92]) Suppose that there exists an algorithm to solve the linear pro-

gram max{ax : Ax ≤ b} for arbitrary b, which runs in time T , makes at most q comparisons

and which is linear in b. Then for any fixed d, there is an algorithm which runs in O(Tqd+1)

time and solves the linear program max{ax + cz : Ax + Cz ≤ b} for any matrix C with d

columns.

The idea of the proof is to use Theorem 2.1 by transforming the problem to a maxi-

mization problem over a convex set in Rd+1 for which there exists a separation algorithm

constructed from the basic algorithm.

Turning to the dual formulation of a certain problem we get that constant number of

additional constraints can also be handled with this method, namely we get:

Theorem 2.3 ([NPT92]) Suppose that there exists an algorithm to solve the linear pro-

gram max{ax : Ax ≤ b} for arbitrary a, which runs in time T , makes at most q compar-

isons and which is linear in a. Then for any fixed d, there is an algorithm which runs in

O(Tqd+1) time and solves the linear program max{ax : Ax ≤ b, Cx ≤ c} for any vector c

and matrix C with d rows.

Note that there are no restrictions on the size of the linear program corresponding to

the basic problem. Also, it doesn’t have to be given explicitly, the only thing that we need

is the existence of a linear algorithm which is able to solve the basic problem. Since most

combinatorial optimization problems (such as matchings, b-factors or trees of a graph, flows,

circulations, submodular flows, matroids, intersections of a pair of matroids etc) have —

maybe exponentially large — linear programming descriptions, these theorems are quite

useful tools for designing strongly polynomial algorithms, in addition to the theoretical

importance that it widens the class of strongly polynomially solvable linear programs.

As an example, let us see the following problem introduced by Shahrokhi and Matula

[SM88].
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Problem 2.4 (Concurrent Multi-Commodity Flows) We are given a network G =

(V, E) with capacities c on its arcs, and a network of required demands R = (V, F ) with

demands r on the arcs of R. A feasible solution to this problem is a collection of non-

negative flows, fij for (i, j) ∈ F , all satisfying the same percentage of the corresponding

demands. The objective is to maximize this percentage.

This problem can be easily formulated as a multi-commodity flow problem and a single

additional column (see [NPT92]). The multi-commodity flow problem can be solved in

strongly polynomial time using the general result of É. Tardos[Tar86]. Denote the running

time of this algorithm by T . Since q ≤ T , Theorem 2.2 provides an O(T 3) time algorithm

to the concurrent multi-commodity flow problem.

In several other cases, the problem has also only a small number of additional variables

or constraints, typically one or two. In these cases any improvements in the exponent of

the running time can be useful.

In this chapter — by a more careful application of Megiddo’s technique, an algorithm

that reduces the running time from O(Tqd+1) to O(Tqd) is presented in Section 2.1. The

idea of the proof is to apply Megiddo’s technique directly instead of using Theorem 2.1,

which makes it possible to eliminate a redundant factor in the running time.

2.1 Eliminating the additional variables

Consider the following slightly more general problem.

max cx + dy (2.1a)

subject to

Ax + By ≤ b, Ly ≤ l, Ey = e. (2.1b)

Let R := {y ∈ Rk : Ly ≤ l, Ey = e}. We prove, that

Theorem 2.5 Suppose, that there exists an algorithm which solves the problem max{cx :

Ax ≤ b}, is linear in b, runs in time T and makes at most q comparisons. Then Problem

(2.1a)-(2.1b) can be solved in time O
(
(T + |L|+ |E|) qdimR), where |L| and |E| denotes

the size of the matrix L and E, respectively.
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We prove the theorem by induction on k := dimR. Let us suppose that the theorem

holds whenever dimR < k.

First let A(A, B, b, c, d, y) be the algorithm which gets the matrices A and B and the

vectors b, c, d and y, is linear in y and gives the optimal solution x∗ to the problem

L(y) := max cx + dy (2.2a)

Ax ≤ b−By (2.2b)

for any fixed y, together with the dual optimal solution, which is an optimal solution z∗ to

the problem

L(y) = min z(b−By) + dy (2.3a)

z ≥ 0 (2.3b)

zA = c. (2.3c)

Clearly, if we had an oracle which could give the second part y∗ of an optimal solution

to Problem (2.1a)-(2.1b), we could compute a (primal) optimal solution to the problem

using A. While an optimal place of y∗ seems hard to compute directly, the linearity of A
enables us to run it in such a way that at its each step it uses only an efficiently computable

partial information on the optimal place of y∗. These partial information are computed

using the following subroutine.

Claim 2.6 (Comparing subroutine) Let us be given a vector v ∈ Rk and a real number

α. Then, using the induction hypothesis, we can choose a true one from the following three

statements together with a certificate of its veracity.

“≤”: vy∗ ≤ α holds for any optimal solution (x∗, y∗) to (2.1a)-(2.1b),

“≥”: vy∗ ≥ α holds for any optimal solution (x∗, y∗) to (2.1a)-(2.1b),

“=”: there is an optimal solution (x∗, y∗) to (2.1a)-(2.1b) for which vy∗ = α.

Proof. First, using e.g. Megiddo’s linear time linear programming method[Meg84] we

check whether either vy ≤ α or vy ≥ α holds for all y ∈ R by maximizing/minimizing the

function vy over the set R. If one of these holds we return with “≤” or “≥” respectively

and with the dual solution of the corresponding linear program as a certificate. (Note

that Megiddo’s algorithm can also compute the the dual variables or the certificate of
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emptiness if the linear program is infeasible. See e.g. [Sch86] for more details). Then we

check whether

vy = α (2.4)

holds for all y ∈ R. If it holds, we return with “=” and also with the dual solution.

Otherwise, let R′ := {y ∈ R : vy = α}. Since dimR′ < dimR, we are able to compute

the primal and dual optimal solution to the system (2.1a)-(2.1b) and (2.4), so we have an

optimal solution zb, zl, ze, γ to the system

min zbb + zll + zee + γα (2.5a)

zbA = c (2.5b)

zbB + zlL + zeE + γv = d. (2.5c)

Then,

• If γ = 0 then zb, zl, ze is also a feasible dual solution to the system (2.1a)-(2.1b) so

the primal optimal solution is an optimal solution to (2.1a)-(2.1b), too. Thus we

answer “=” and the vectors zb, zl, ze.

• If γ < 0 then when we increase α, the optimal object value of (2.5a)-(2.5c) will strictly

decrease, implying that vy∗ ≤ α for all optimal solutions x∗, y∗ to (2.1a)-(2.1b). So

we answer “≤” and give zb, zl, ze, γ as the certificate of this fact.

• Similarly, if γ > 0 then we declare “≥” and also give zb, zl, ze, γ.

�

Now, let

Y := {y∗ : ∃x∗ such that (x∗, y∗) is an optimal solution to (2.1a)-(2.1b)}.

We make a new algorithm A′, which is a modification of A. The algorithm sometimes

calls the previous comparing algorithm. Whenever this subroutine is called with a vector

v and a number α it either finds an optimal solution to (2.1a)-(2.1b) together with the

dual solution (so we can stop) or states whether vy∗ ≤ α or vy∗ ≤ α holds for each

optimal y∗ ∈ R. We store these returned half-spaces. At a certain step of the algorithm

let Q := {y ∈ R : viy ≤ αi ∀i = 1, · · · , t}, where vi and αi define the half planes returned

by the comparing subroutine. Clearly, Y ⊆ Q.
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Similarly to the one dimensional parametric search shown in Section 1.1.2, we first

replace each element of the LAM with a pair of a real numbers and a k dimensional vector

called parametric numbers. What we have in mind is that the parametric number (β, v)

means the linear expression β+vy∗. Addition and subtraction of these parametric numbers

are made component-wise, while the multiplications and divisions of these numbers are

avoided by the linearity assumption on the algorithm A.

The only undefined part of A′ is when it makes comparisons, namely it inquires about

whether (β1, v1) ≤ (β2, v2) or not. It means whether β1 + v1y
∗ ≤ β2 + v2y

∗ or not, which is

equivalent to (v1 − v2)y
∗ ≤ β2 − β1. Our aim is to give an answer which holds all y∗ ∈ Y ,

whenever it is possible. For this, first we test with Megiddo’s linear-time algorithm whether

either this or its negation is a consequence of the previous answers. If it is, we make decision

according to this. If it is not, then we call the comparing subroutine with v := (v1 − v2)

and α := β2 − β1. If the result is

“=” , then the comparing subroutine found a primal and a dual optimal solution to the

system (2.1a)-(2.1b) so we can stop and return these data.

“≤” , then we consider (β1, v1) ≤ (β2, v2).

“≥” , then we consider (β1, v1) > (β2, v2).

Note that in the third case the decision is right only if there is no y∗ ∈ Y for which

(v1 − v2)y
∗ = β2 − β1.

Now, let us run A′(A, B, b, c, y′), where y′ is the vector of parametric numbers

ith

y′i := (0, (0, · · · , 0, 1, 0 · · · , 0)).
(2.6)

Let Q′ := {y ∈ R : y satisfies all previous decisions}, that is, the set of y ∈ R for

which A′(A, B, b, c, y′) certainly does the same as A(A, B, b, c, y). Our comparing method

ensures that Q′ 6= ∅ (that is the decisions are consistent), and Q′ = Q.

At the end of its running A′ returns a primal and a dual optimal solution xy, zy to

(2.2a)-(2.2b) as a linear function of y, i.e. it gives vectors x0, z0 and matrices X, Z, for

which xy := x0 + Xy and zy := z0 + yZ. These solutions must be right for all y ∈ Q′, so

they are also right for all y ∈ Q′ = Q, thus L(y) = cxy + dy for all y ∈ Q.

Obviously cxy + dy is a linear function in y, namely cxy + dy = cx0 + (cX + d)y.
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Claim 2.7 For all y′ ∈ Q, the functions fy′(y) := (d− zy′
B)y + zy′

b are equal to L(y) for

all y ∈ Q.

Proof. First, suppose that y′ ∈ rel intQ′ and y ∈ Q′. Then there exists ε > 0, such that

y1 := y′ + ε(y′ − y) ∈ Q′. Since zy is an optimal solution to (2.3a)-(2.3c), it follows that

fy′(y) ≥ fy(y) = L(y) and fy′(y1) ≥ fy1(y1) = L(y1). From this we get that

fy′(y) = fy′(y′) + zy′
B(y − y′) = L(y′) + zy′

B(y − y′) (2.7)

≥ L(y) = L(y′) + (cX + d)(y − y′), (2.8)

yielding that

zy′
B(y − y′) ≥ (cX + d)(y − y′). (2.9)

We get the same way that zy′
B(y1 − y′) ≥ (cX + d)(y1 − y′), followed by

zy′
Bε(y − y′) ≤ (cX + d)ε(y − y′). (2.10)

(2.9) and (2.10) together give that zy′
B(y − y′) = (cX + d)(y − y′), so fy′(y) = L(y). For

arbitrary y, y′ ∈ Q the claim follows from the continuity of zy and L(y). �

�

On the other hand Y ⊆ Q, so a vector y∗ maximizing the function L(y) (i.e. a y∗ ∈ Y)

can be obtained by maximizing the function (cX + d)y over the set Q = {y : Ly ≤ l, Ey =

e, V y ≤ a}, where the rows of V and a correspond to the calls of the comparing subroutine.

It can also be done with Megiddo’s linear time algorithm. Now, we call the original A with

the parameters A, B, b, c, y∗ and let x∗ and z∗ be the returned primal and dual solution.

Then x∗, y∗ is an optimal primal solution to the problem (2.1a)-(2.1b).

The only thing that we still have to do is to compute the dual optimal solution to

Problem (2.1a)-(2.1b). Namely, we need vectors z∗b , z
∗
l , z

∗
e for which

z∗b , z
∗
l ≥ 0 (2.11a)

z∗bA = c (2.11b)

z∗bB + z∗l L + z∗eE = d (2.11c)

z∗b b + z∗l l + z∗ee ≤ cx∗ + dy∗ (2.11d)

Let w := d−zy∗
B. According to Claim 2.7 y∗ is an optimal primal solution to the following

problem.

max wy (2.12a)
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V y ≤ a (2.12b)

Ly ≤ l (2.12c)

Ey = e. (2.12d)

Let zM
b , zM

l , zM
e be the optimal dual solution to the previous problem, that is the optimal

solution to the problem

min zM
1 a + zM

2 l + zM
3 e (2.13a)

zM
1 , zM

2 ≥ 0 (2.13b)

zM
1 V + zM

2 L + zM
3 E = d− zy∗

B. (2.13c)

Now, let us define the following vectors

z∗b :=
1

δ

(
zy∗ −

∑
i

zM
1 (i)

γi

zb
i

)
, (2.14)

z∗l :=
1

δ

(
zM
2 −

∑
i

zM
1 (i)

γi

zl
i

)
, (2.15)

z∗e :=
1

δ

(
zM
3 −

∑
i

zM
1 (i)

γi

ze
i

)
, (2.16)

where zb
i , z

l
i, z

e
i are the solutions to (2.5a)-(2.5c) corresponding to the rows of the matrix

V and δ := 1−
∑

i
zM
1 (i)

γi
. Note, that γi < 0 for each i. One can check, that (z∗b , z

∗
l , z

∗
e) is a

feasible solution to (2.11a)-(2.11c) and fulfills the complementary slackness condition, thus

(2.11d) also holds.

Finally, the running time of the algorithm is the sum of the time used by A′ it-

self and the time required by the comparisons made by it. Each comparison involves

the same optimization task, but over a set R′, the dimension of which is smaller

by at least one than that of R. So, by the induction hypothesis each comparison

runs in time O
(
|L|+ |E|+ (T + |L|+ |E|) qdimR−1

)
. and makes at most qdimR−1 com-

parisons. Since A′ makes at most q comparisons, the total running time is O
(
T +

q
(
|L|+ |E|+ (T + |L|+ |E|) qdimR−1

))
and the algorithm makes at most q · qdimR−1 com-

parisons, yielding the required running time. �



Chapter 3

On Resource Constrained

Optimization Problems

This chapter shows that a method that has long been used to solve Resource Constrained

Optimization Problems and found extremely effective in practice, is effective in the theo-

retical sense as well, it is proved to be strongly polynomial. In the special case of Resource

Constrained Shortest Path Problem a better running time estimation is also presented.

In order to define this class of problems, first let us consider an underlying set E, a cost

function c : E −→ R+ and an abstract optimization problem

min{
∑
e∈P

c(e) : P ∈ P}, (3.1)

where P ⊆ 2E denotes the set of the feasible solutions. We refer this problem a basic

problem in this chapter.

The corresponding constrained optimization problem is the following. Let d : E −→
R+ be another given weighting called delay, and ∆ ∈ R+ a given constant called delay

constraint. With these notations we are looking for the value

min{
∑
e∈P

c(e) : P ∈ P ,
∑
e∈P

d(e) ≤ ∆}. (3.2)

An important example for this is the Constrained Shortest Path Problem. Assume that

a network is given as a directed, connected graph G = (V, E), where V represents the set of

nodes, and E represents the set of directed links. Each link e ∈ E is characterized by two

nonnegative values, a cost c(e) and a delay d(e). With a given delay constraint ∆ ∈ R+

33



34 CHAPTER 3. RESOURCE CONSTRAINED PROBLEMS

and two given nodes s, t ∈ V the task is to find a least cost path P between s and t with

the side constraint that the delay of the path is less then ∆.

One can define the Constrained Minimum Cost Perfect Matching Problem and the

Constrained Minimum Cost Spanning Tree Problem in the same way.

Although their unconstrained versions are easy to solve, the three problems mentioned

above are NP-hard (see e.g. [GJ79]). A usual way to find near optimal solutions to these

problems is to get rid of the additional constraint by using Lagrangian relaxation. In

this way the constrained problem turns into a maximization of a one dimensional concave

function (see Section 3.1).

A simple way to find the optimum of the relaxed problem is to use binary search, which

is polynomial for integer costs and delays (see [Zie01]).

Instead of using binary search another simple and practically even more effective

method — described in Section 3.2 — has been found and applied independently by sev-

eral authors. After [HZ80] it is sometimes called Handler-Zang method. The same method

was used in [BG96] making some people call it BM method. Other papers aim at further

improving either on the running time in practical cases [JSMR01] or on the quality of the

found solutions [MZ00].

Although this method has been turned to be particularly efficient in practical applica-

tions, the worst case running time of this method was unknown for a long time.

Mehlhorn and Ziegelmann showed that for the Constrained Shortest Path problem the

Handler-Zang algorithm is polynomial for integer costs and delays. If c(e) ∈ [0, · · · , C] and

d(e) ∈ [0, · · · , R] for each e ∈ E, then it will terminate after O
(

log(|V |RC)
)

iterations.

They also presented examples showing that this running time is tight for small costs and

delays (i.e. if R ≤ |V | and C ≤ |V |).
One may observe that this problem can be transformed to an extension of the LCFO

(Least Cost Fractional Optimization) problem discussed by Radzik in [Rad93]. Moreover,

the strongly polynomial solution method proposed in [Rad93] turns out to be equivalent

with the Handler-Zang algorithm in this case, showing that the number of the iterations

made by the Handler-Zang algorithm does not depend on the range of the cost and the

delay functions, so this method is actually strongly polynomial if the basic problem can

be solved in strongly polynomial time. This also shows that Mehlhorn’s and Ziegelmann’s

bound on the running time is not tight for large costs or delays.

In this chapter first we show that the Handler-Zang algorithm takes O
(
|E|2 log(|E|)

)
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iterations for arbitrary constrained optimization problem. The proof is a more careful

application of the technique proposed in [Rad98], and improves the bound obtained from

[Rad93] by a factor O(log(|E|)).
For the Constrained Shortest Path problem an even better bound is shown in Sec-

tion 3.3.2, the number of iterations is proved to be O
(
|E| log2(|E|)

)
in this case.

3.1 Lagrangian Relaxation

Lagrange Relaxation [HK70, HK71] is a common technique for calculating lower bounds,

and finding good solutions to hard optimization problem. This section shows how it can

be applied to resource constrained optimization problems.

From now on we assume that there exists an algorithm A(c) which runs in time T and

solves Problem (3.1) for any given cost function c.

Intuitively the presented Lagrangian relaxation method is based on the heuristic of

minimizing cλ := c + λ · d modified cost function over P for an appropriate λ. For a given

(fixed) λ we can easily calculate the minimal solution pλ ∈ P of the basic problem. If

for λ = 0 we get that d(pλ) ≤ ∆, then we found an optimal solution for the constrained

problem as well. If d(pλ) > ∆ we must increase λ in order to increase the dominance of

delay in the modified cost function until the optimal solution with respect to cλ suits the

delay requirements.

Now, we show how the Lagrangian relaxation helps us to find the value of λ that gives

the best result. Moreover, the algorithm will give an upper bound on the badness of the

solution as a byproduct, based on the following well known Claim.

Claim 3.1 Let

L(λ) := min{cλ(p) : p ∈ P} − λ∆. (3.3)

Then L(λ) is a lower bound to problem (3.2) for any λ ≥ 0.

Proof. Let p∗ denote an optimal solution of (3.2). Then

L(λ) = min{cλ(p) : p ∈ P} − λ∆

≤ cλ(p∗)− λ∆

= c(p∗) + λ(d(p∗)−∆) ≤ c(p∗)
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proves the claim. �

To obtain the best lower bound we need to maximize the function L(λ), that is we are

looking for the value

L∗ := max
λ≥0

L(λ), (3.4)

and the maximizing λ∗. Now, some more properties of the function L(λ) are given.

Claim 3.2 L is a concave piecewise linear function, namely the minimum of the linear

functions c(p) + λ(d(p)−∆) for all p ∈ P. �

Claim 3.3 For any λ ≥ 0 and cλ-minimal solution pλ ∈ P, d(pλ)−∆ is a subgradient of

L in the point λ.

Proof. By the definition of subgradient one have to show that L(x) ≤ L(λ) + (x −
λ)(d(pλ)−∆) holds for any x, which is proved by the following calculation.

L(λ) + (x− λ)(d(pλ)−∆) =c(pλ) + λ(d(pλ)−∆) + (x− λ)(d(pλ)−∆)

=c(pλ) + x(d(pλ)−∆) ≥ L(x) (3.5)

�

This gives us the following

Claim 3.4 Whenever λ < λ∗, then d(pλ) ≥ ∆ and if λ > λ∗, then d(pλ) ≤ ∆ for each

cλ-minimal solution pλ. �

Claim 3.5 A value λ maximizes the function L(λ) if and only if there are solutions pc and

pd which are both cλ∗-minimal and for which d(pc) ≥ ∆ and d(pd) ≤ ∆. (pc and pd can be

the same, in this case d(pd) = d(pc) = ∆.) �

The Handler-Zang algorithm will give these solutions along with λ∗.

Claim 3.6 Let 0 ≤ λ1 < λ2, and pλ1 , pλ2 ∈ P λ1-minimal and λ2-minimal solutions. Then

c(pλ1) ≤ c(pλ2) and d(pλ1) ≥ d(pλ2).
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The inequality for d immediately follows from Claim 3.2 and Claim 3.3. The following

calculation proves the inequality for c.

c(pλ1) = L(λ1)− λ1(d(pλ1)−∆)

≤ L(λ2) + (λ1 − λ2)(d(pλ2)−∆)− λ1(d(pλ1)−∆)

= c(pλ2) + λ2(d(pλ2)−∆) + (λ1 − λ2)(d(pλ2)−∆)− λ1(d(pλ1)−∆)

= c(pλ2) + λ1(d(pλ2)− d(pλ1)) ≤ c(pλ2) (3.6)

�

These two latter Claims together means that the λ∗ that maximizes the function L(λ)

gives the best modified cost function, that is λ∗ is the smallest value for which there exists

a cλ∗-minimal solution pd which satisfies the delay constraint.

3.2 The Handler-Zang method

In this section the Handler-Zang algorithm is described (see Figure 3.1 for the pseudocode).

1. In the first step the algorithm sets λ = 0. It calculates an optimal solution with

respect to the modified cost function cλ. It means that the algorithm finds the c-

minimal solution. If this solution meets the delay requirement ∆, it is an optimal

solution of (3.2), and the algorithm stops.

2. Otherwise the algorithm stores the solution as the best solution that does not satisfy

the delay requirement ∆ (it is denoted by pc in the following), and checks whether an

appropriate solution exists or not: calculates the d-minimal solution. If the obtained

solution suits the delay requirement, a proper solution exists, so the algorithm stores

it as the best feasible solution found till now (denoted by pd). Otherwise there is no

solution that fulfills the delay requirement, so the algorithm stops.

In the further steps we obtain the optimal λ, through repeatedly updating either pc

or pd with a new solution.

3. Let us see the current solutions pc and pd. If for a certain λ, both pc and pd are

cλ-minimal, then using Claim 3.5, this λ maximizes L(λ). But it can be true only if

cλ(pc) = cλ(pd), from which we get that the only possible λ is

λ :=
c(pc)− c(pd)

d(pd)− d(pc)
. (3.7)
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So, we set it as the new candidate for the optimal solution. Then we find a cλ-minimal

solution r. If cλ(r) = cλ(pc) then pc and pd are also cλ-minimal, so we are done by

setting λ∗ = λ and returning pd. If cλ(r) < cλ(pc) then we replace either pc or pd with

r according to whether it fails or fulfills the delay constraint, and repeat this step.

procedure HanglerZang(s, t, c, d, ∆)

p1
c := A(s, t, c)

if d(p1
c) ≤ ∆ then return p1

c

p1
d := A(s, t, d)

if d(p1
d) > ∆

then return “There is no solution”

λ1
c := 0; λ1

d := ∞
i := 1

repeat

λi+1 :=
c(pi

c)−c(pi
d)

d(pi
d)−d(pi

c)

r := A(s, t, cλi+1)

if cλi+1(r) = cλi+1(pc) then return pi
d

else if d(r) ≤ ∆ then pi+1
d := r; pi+1

c := pi
c; λi+1

d := λi+1; λi+1
c := λi

c

else pi+1
c := r; pi+1

d := pi
d; λi+1

c := λi+1; λi+1
d := λi

d

end repeat

end procedure,

where A(c) returns a c-minimal solution to the basic problem.

Figure 3.1: The Handler-Zang algorithm

3.3 Running time of the algorithm

In the following we refer to the solutions and values computed by the algorithm according

to Figure 3.1.

First of all, obviously

d(p1
c) ≥ d(p2

c) ≥ d(p3
c) ≥ · · · > ∆ (3.8)
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and

d(p1
d) ≤ d(p2

d) ≤ d(p3
d) ≤ · · · ≤ ∆, (3.9)

and either d(pi
c) > d(pi+1

c ) or d(pi
d) < d(pi+1

d ) for any i. Since there are only finite number

of different solutions, the algorithm finds the optimal λ in finite number of steps.

In this section the following stronger result will be proved.

Theorem 3.7 The Handler-Zang algorithm terminates after O(|E|2 log |E|) iterations, so

the running time of the algorithm is O(T |E|2 log |E|). �

The proof presented below is based on the idea of the proof of the strong polynomiality

of the so-called Newton-method for fractional optimization problems[Rad98].

3.3.1 Strong Polynomiality

The bound on the running time is based on the following theorem of Goemans (published by

Radzik in [Rad98]) stating that a geometrically decreasing sequence of numbers constructed

in a certain restricted way cannot be exponentionally long.

Theorem 3.8 Let c = (c1, c2, · · · , cn) be an n dimensional vector with real components,

and let y1,y2, · · · ,yq be vectors from {−1, 0, 1}n. If for all i = 1, 2, · · · , q − 1

0 < yi+1c ≤
1

2
yic,

then q = O(n log n). �

For sake of completeness let us sketch the elegant proof of this theorem.

Proof. Assume that we are given a sequence y1,y2, · · · ,yq of vectors meeting with the

requirement of the theorem and let us consider the following system of linear inequalities.

(2yi+1 − yi)z ≤ 0 ∀i = 1, 2, · · · , q − 1 (3.10)

yqz = 1, (3.11)

where z is the vector of the variables. This system clearly has a solution, namely the vector

z :=
1

yqc
c (3.12)
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is an appropriate choice. The theory of linear programming says that then a basic solution

z′ must also be exists. It is also well-known that a basic solution is obtained as a solution

of linear equations forming from the coefficients of (3.10) and (3.11). From Cramer’s Rule

we get that the components of z′ is obtained as a quotient of two determinant, namely

z′i :=
det(Ai)

det(A)
, (3.13)

where all element of both Ai and A are integer with an absolute value no more than

3. Since det(A) is a nonzero integer, a rough estimation shows that |z′i| ≤ n! · 3n, thus

yi+1z
′ ≤ n · n! · 3n. On the other hand, yi+1z

′ ≤ 1
2
yiz

′ and yqz = 1, providing that

q ≤ log2(n · n! · 3n) = O(n log n) (3.14)

�

For the sake of simplicity let us introduce the following notations. ci
c := c(pi

c), ci
d :=

c(pi
d), di

c := d(pi
c), di

d := d(pi
d), Li

c := c(pi
c) +λi

c(d(pi
c)−∆) and Li

d := c(pi
d) +λi

d(d(pi
d)−∆).

Claim 3.9 Suppose that pi+1
c 6= pi

c. Then

ci
d − ci

c

di
c − di

d

≥ L∗ − ci
c

di
c −∆

. (3.15)

Proof. From the definition of the function L(λ) we get that for any λ ≥ 0,

L(λ) ≤ ci
c + λ(di

c −∆) (3.16)

and

L(λ) ≤ ci
d + λ(di

d −∆). (3.17)

By maximizing the value “L(λ)” subject to the above two conditions we get that

L∗ = max
λ≥0

L(λ) ≤ ci
c +

ci
d − ci

c

di
c − di

d

(di
c −∆), (3.18)

which is equivalent with (3.15). �

Lemma 3.10 Suppose that pi+1
c 6= pi

c. Then

L∗ − Li+1
c

L∗ − Li
c

+
di+1

c −∆

di
c −∆

≤ 1. (3.19)
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Proof.

Li
c = ci

c + λi
c(d

i
c −∆)

≤ ci+1
c + λi

c(d
i+1
c −∆)

= Li+1
c − λi+1

c (di+1
c −∆) + λi

c(d
i+1
c −∆)

= Li+1
c + (λi

c − λi+1
c )(di+1

c −∆)

= Li+1
c + (

Li
c − ci

c

di
c −∆

− ci
d − ci

c

di
c − di

d

)(di+1
c −∆)

≤ Li+1
c + (

Li
c − ci

c

di
c −∆

− L∗ − ci
c

di
c −∆

)(di+1
c −∆)

= Li+1
c + (

Li
c − L∗

di
c −∆

)(di+1
c −∆)

= Li+1
c + (Li

c − L∗)
di+1

c −∆

di
c −∆

,

followed by L∗ − Li
c ≥ (L∗ − Li+1

c ) + (L∗ − Li
c)

di+1
c −∆

di
c −∆

, which is equivalent with the

claim.

�

Corollary 3.11 Suppose that pi+1
c 6= pi

c. Then

(L∗ − Li+1
c )(di+1

c −∆)

(L∗ − Li
c)(d

i
c −∆)

≤ 1

4
. (3.20)

�

By the same token, the following can also be proved.

Corollary 3.12 Suppose that pi+1
d 6= pi

d. Then

(L∗ − Li+1
d )(∆− di+1

d )

(L∗ − Li
d)(∆− di

d)
≤ 1

4
. (3.21)

�

From Corollary 3.11, we get that

Corollary 3.13 Suppose that pi+1
c 6= pi

c. Then at least one of the followings are satisfied.

(a) L∗ − Li+1
c ≤ 1

2
(L∗ − Li

c),
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(b) di+1
c −∆ ≤ 1

2
(di

c −∆).

�

First note that both sequences di
c − ∆ and L∗ − Li

c are monotonically decreasing. So,

from Lemma 3.8 we get that (b) can be true at most O(|E| log |E|) times. To estimate

how much times (a) can be true, let

si
c := (L∗ − Li

c)(d
i−1
c − di−1

d ) = (L∗ − ci
c)(d

i−1
c − di−1

d )− (ci−1
d − ci−1

c )(di
c −∆) > 0, (3.22)

where γi := ci
d − ci

c and δi := di
c − di

d.

It can be seen from the definition, that si
c is monotonically decreasing and if (a) satisfies,

then

si+1
c ≤ 1

2
si

c. (3.23)

The second form of si
c shows that there exist vectors c ∈ R2(|E|+1)2 and yi ∈

{−1, 0, 1}2(|E|+1)2 such that si
c = yic for all i. Indeed, c is an appropriate choice if it

consists of the following constants.{
α·β ·ζ : α∈{1,2}, β∈{c(e) :e∈E}∪{L∗}, ζ∈{d(e) :e∈E}∪{∆}

}
Thus, using Lemma 3.8 we get that (a) can be true at most O(|E|2 log |E|) times. So,

the sequence p1
c , p

2
c , p

3
c , · · · consists of at most O(|E|2 log |E|) different solutions.

The same can be proved for the sequence p1
d, p

2
d, p

3
d, · · · , so we obtained that

Theorem 3.14 The Handler-Zang algorithm terminates after O(|E|2 log |E|) iterations.

��

3.3.2 Better Bound in Case of Constrained Shortest Path Prob-

lem

This section shows that in the case of Constrained Shortest Path Problem a better bound

can actually be proved.

In this case we are given a directed graph G = (V, E), two predefined nodes s, t ∈ V

and P denotes the set of s—t paths. Let n := |V | and m := |E|.
We use the notations of the previous section with the exception that from now on

we consider only the subsequences of p1
c , p

2
c , · · · and p1

d, p
2
d, · · · that contain each different
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path exactly ones. In the hope that it will not be confusing, the same notations are used

for these subsequences and also for the corresponding values ci
c, c

i
d, d

i
c, d

i
c, λ

i
c, λ

i
d, L

i
c and Li

d.

The monotonicity of these latter sequences still hold true of course, however one has to be

careful that λi+1
c is not necessarily equal to

ci
c−ci

d

di
d−di

c
. With these new notations the following

version of Claim 3.11 and Claim 3.12 holds.

Claim 3.15 For each i,
(L∗ − Li+1

c )(di+1
c −∆)

(L∗ − Li
c)(d

i
c −∆)

≤ 1

4
(3.24)

and
(L∗ − Li+1

d )(∆− di+1
d )

(L∗ − Li
d)(∆− di

d)
≤ 1

4
. (3.25)

�

The following claim can be easily seen.

Claim 3.16 For any i and λ ≥ λi+2
c ,

(ci
c − λ(di

c −∆))− L∗ ≥ L∗ − Li+1
c

or equivalently

ci
c − λ(di

c −∆) ≥ 2L∗ − Li+1
c

�

Definition 3.17 Let edge e be called i-essential if e ∈ pi
c ∪ pi+1

c ∪ pi+2
c ∪ · · · .

Lemma 3.18 Let k := d log2 n+1
2

e. Then for any i at least one of the followings hold.

(a) (di+k
c −∆) ≤ 1

2
(di

c −∆),

(b) there exists an i-essential edge e that is not (i + k)-essential.

Proof. Let us suppose that (a) does not hold, i.e.

(di+k
c −∆) >

1

2
(di

c −∆) >
1

2
(di+1

c −∆).

Since

(L∗ − Li+k
c )(di+k

c −∆) ≤ 1

2n
(L∗ − Li+1

c )(di+1
c −∆),
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we get that

(L∗ − Li+k
c ) ≤ 1

n
(L∗ − Li+1

c ).

Now, let us define the following auxiliary cost function on the edges.

c̃( ~uv) := cλi+k
c

( ~uv)− `(v) + `(v),

where

`(u) := min{cλi+k
c

(p) : p ∈ Ps,u}.

Note that c̃(e) ≥ 0 for each edge e and `(t) = Li+k
c +λi+k

c ∆. Moreover, c̃(p) = cλi+k
c

(p)−`(v)

for any p ∈ Ps,v.

Using Claim 3.16 we get that

c̃(pi
c) = cλi+k

c
(pi

c)− `(t) = c(pi
c) + λi+k

c d(pi
c)− `(t)

= ci
c + λi+k

c (di
c −∆) + λi+k

c ∆− `(t)

≥ 2L∗ − Li+1
c + λi+k

c ∆− `(t)

> n(L∗ − Li+k
c ) + L∗ + λi+k

c ∆− `(t)

= n(L∗ − Li+k
c ) + L∗ − Li+k

c = (n + 1)(L∗ − Li+k
c ).

Thus, there exists an edge e ∈ pi
c such that c̃(e) > L∗ − Li+k

c . This particular edge e is

of course i-essential. To finish the proof, we show that e is not (i + k)-essential. To the

contrary, suppose that e ∈ pj
c for some j ≥ i + k. Then

L∗ > cλj
c
(pj

c)− λj
c∆

≥ cλi+k
c

(pj
c)− λi+k

c ∆

= c̃(pj
c) + `(t)− λi+k

c ∆

≥ c̃(e) + `(t)− λi+k
c ∆

= c̃(e) + Li+k
c > L∗

shows the contradiction. �

Corollary 3.19 The length of sequence p1
c , p

2
c , p

3
c , · · · is O(m log2 m).

Proof. Let k := d log2 n+1
2

e and let us consider the sequence i = k, 2k, 3k, · · · . According to

the previous lemma, at these iteration, either the value di
c−∆ at least halves or the number
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of the essential edges decreases. Since di
c − ∆ is monotonically decreasing, Lemma 3.8

shows that it can be halved at most O(m log m) times. On the other hand, we have at

most m essential edges at the beginning, so the number of these steps is O(m log m+m) =

O(m log m). From this the statement follows, because k = O(log m). �

Again in the same way we get

Lemma 3.20 Let k := d log2 n+1
2

e. Then for any i at least one of the followings hold.

(a) (∆− di+k
d ) ≤ 1

2
(∆− di

d),

(b) there exists an i-d-essential edge e that is not (i + k)-essential,

where an edge e is called i-d-essential if e ∈ pi
d ∪ pi+1

d ∪ pi+2
d ∪ · · · . �

and

Corollary 3.21 The length of sequence p1
d, p

2
d, p

3
d, · · · is O(m log2 m). �

To sum up, Corollary 3.19 and Corollary 3.21 together gives the following. (The running

time of the Dijkstra algorithm for finding shortest path in a directed graph is O(m +

n log n).)

Theorem 3.22 In case of Constrained Shortest Path Problem, the Handler-Zang algo-

rithm terminates after O(m log2 m) iterations, thus the full running time of the algorithm

is O(m2 log2 m + mn log3 m). ��

3.4 Constrained Shortest Paths in Telecommunica-

tion Networks

The Constrained Shortest Path Problem has a particular importance in telecommunication

networks, especially in providing Quality of Service (QoS) guaranteed routing. An impor-

tant requirement of today and future telecommunication networks is that they must be

able to carry different kind of traffic — voice, video, web browsing etc. — simultaneously

on the same platform. The quality of the transport is described by several QoS parameters

such as the available/required bandwidth, delay, packet loss ratio, jitter (the measurement

of the unevenness of data transport) etc. Different types of traffic require very diverging
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transport characteristic. Therefore a fundamental problem of QoS enabled routing is to

choose a source-destination path with meets more than one QoS requirements.

The QoS parameters can be categorised into two types. For the bottleneck type pa-

rameters (e.g. the available bandwidth), the quality of a path is determined by quality of

the worst transport component on the path. In case of additive type parameters (e.g. the

delay), the quality of a path is the sum of the quality parameter of the every transport

component on the path. The bottleneck type parameters can be handled quite easily, we

can simply remove the inappropriate network elements from the graph representation of

the network when the routing path is computed. On the other hand, if we have more than

one additive constraints, the problem becomes NP-hard.

We can also formulate this as an optimization problem: we want to minimize one

of the QoS parameter while keeping another one under a certain limit. This is just the

same problem that was discussed in the sections before. In telecommunication context the

abstract parameter to be minimized is called “cost” while the second one is called “delay”,

therefore this problem is often referred as Delay Constrained Least Cost Path problem

(DCLC).

Note that the running time is a crucial point here, because a router has to compute

routing paths to a lot of destinations with several QoS constraint, and these paths must

be updated whenever the network state changes. Therefore an algorithm is practically

acceptable only if its running time is more or less comparable to the Dijkstra algorithm.

As an algorithm for the DCLC problem is a fundamental building block of QoS routing

methods, several attempts have been made to develop a method that is able to find good

solutions in reasonable time. In the next section we give a short overview on the proposed

solutions can be found in the literature — the Lagrange relaxation based method shown

in the first part of this chapter is of course one of them. Then, Section 3.4.2 shows

two improvements of the Handles-Zang method that can further improve its performance

(running time) in practical working scenarios. Finally, Section 3.4.3 compare this method

with the other existing solution through simulation.

Following the terminology of [JSMR01], we refer the routing method using Lagrange

relaxation and the Handler-Zang method as Lagrange Relaxation based Aggregated Cost

(LARAC) method.
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3.4.1 Related Work on Constrained Shortest Paths

In this section we give a survey on the different routing algorithms proposed in the liter-

ature. Up to our best knowledge there is no widely accepted algorithm that can give the

optimal solution of the DCLC QoS routing problem in polynomial time.

Widyono [Wid94] proposed a routing method that gives the optimal path —having the

lowest possible cost without violating the delay constraint—, unfortunately with an expo-

nential running time. The Constrained Bellman-Ford (CBF) routing algorithm performs

a breadth-first search, discovering paths of monotonically increasing delay while recording

and updating lowest cost path to each node it visits. It stops, when the highest constraint

is exceeded, or there is no more possibility of improving the paths. Since this extension

uses delay instead of hop-count, which is a continuous metric, the routing table which

contains entries for all possible delays can be very large, even of unrealizable size. As we

mentioned the CBF algorithm has an exponential running time. Widyono have not ana-

lyzed it conclusively, but stated that despite of its exponential nature, the performance of

the algorithm was reasonable in practice.

As a further development of the CBF algorithm, using a kind of scaling technique, the

authors of [Has92], [LO98], [RS00] and [LORS00] gave fully polynomial time approximation

schemes for the DCLC problem, namely they proved that for any ε > 0 there exists a

polynomial time algorithm that is able to find a path satisfying the delay constraint with

cost no greater than a factor of 1 + ε from the optimum. The running time of the best

known approximation scheme is O(nm log n log log n + nm
ε

) [LORS00] . Unfortunately, in

practical cases the running time of these methods for sufficiently small ε will be worse than

even of the CBF algorithm, which makes these results rather theoretical.

All other algorithms try to use some kind of heuristics. A very simple method proposed

by W. C. Lee [L+94] does not give optimal paths, but provides a simple heuristic solution to

the DCLC problem. The Fallback routing algorithm assumes that there are ranked metrics

in the network. First, the routing algorithm calculates the shortest path for the first metric

(i.e. cost), and then checks whether it can guarantee all the other QoS requirements. If the

path failed, the algorithm tries to find another one for the next metric, until an appropriate

path is found, or the routing fails for all the metrics. This algorithm is very simple, fast

and always gives an appropriate solution if it exists, but there is no guarantee of finding

the optimal route and we do not know anything about the quality of the found path.
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The algorithm proposed by Pornavalai [PCS98] improves the previous idea by combining

paths calculated on the different metrics, by first calculating the paths based on the metrics

from the source node to the others and from all the nodes to the destination, and then

trying all the possible combinations of them. There are two more algorithms improving

the idea of Fallback. Ishida et al. [IAK98] proposed a distributed algorithm in which the

nodes always choose the least cost path until it fulfills the delay requirements and from that

point they choose the path with the least delay. The Delay Constrained Unicast Routing

(DCUR) algorithm proposed by Salama [SRV97] is similar to it, but it can choose between

the least cost and least delay paths independently from the choice of the previous node.

These three algorithms have higher but still reasonable running time, and they are more

likely to find a solution closer to the optimum than it was in case of the Fallback algorithm,

but neither these algorithms have guarantees for the optimality of the path.

Cheng and Nahrstedt [CN98] give an algorithm to find a path that meets two require-

ments in polynomial time. The algorithm reduces the original problem to a simpler one by

modifying the cost function, based on which the problem can be solved using an extended

shortest path algorithm. The shortcoming of this method is that the algorithm has to use

high granularity in approximating the metrics, so it can be very costly in both time and

space, and it can not guarantee that the simpler problem has a solution if the original

problem has.

The last group of algorithms [Jaf84, BG96, dNvM98, GM03] is based on calculating a

simple metric from the multiple requirements. To do so, one can use a simple shortest-path

algorithm based on a single cost aggregated as a combination of weighted QoS parameters.

The main drawback of this solution is that the result is quite sensitive to the selected

aggregating weights, and there is no clear guideline on how the weights should be chosen.

To handle the problem of determining the weights for the aggregated cost solution, several

routing algorithms has been proposed. For example the algorithm proposed in [I+96] tries

to find an appropriate path based on a single cost of weighted link metrics. If it fails, it

tries to find another path by iterative changing the values of weights so as to get more

possible paths, until an appropriate path that guarantees QoSs can be found. The problem

with this solution is that if the path is correct for the aggregated cost, it does not mean

that it is correct for all of the user’s QoS requirements. In other words, information is lost

in the aggregation process.

Wang and Crowcroft [WC95] say that single (mixed) metric approach can not be suffi-
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cient for QoS routing. It can at best be an indicator in path selection but does not provide

enough information for making reliable quantitative estimation of whether the path meets

the requirements or not. For example, he proposes a mixed metric from delay, bandwidth

and loss probability. A path with a large value of B(p)
D(p)·L(p)

is likely to be a better choice in

terms of bandwidth, delay and loss probability. However, it is not sure that a path, which

minimizes the above expression, is suitable for any of the constraints (bandwidth, delay or

loss).

On the contrary we state that this problem can be solved, and there are algorithms

based on aggregated costs, which can find paths that meet the QoS constraints. Instead of

a static combination of cost and delay the presented Handler-Zang method is able to find

an aggregated cost adaptively for each route calculation.

3.4.2 Practical Improvements to LARAC algorithm

In this section we mention two important possibilities of improving LARAC.

Storing Former Results

In reality a router computes paths for a lot of destinations, instead of doing it for a single

one. The original LARAC algorithm can be improved by utilizing this fact, by reusing

results of previous calculations.

So, whenever we call Dijkstra algorithm with a certain λ we store its whole result, that

is, we store the cλ-minimal paths to all destinations. These paths form a tree, so we need

to store only m edges. Moreover we store the c-cost and the d-cost of these path.

The new method is very simple. The only difference is that when we are looking for a

path to a new destination, we are looking for the largest previously calculated λ1 for which

d(pλ1) ≥ ∆ and the smallest λ2 for which d(pλ2) ≤ ∆, and we initialize pc and pd with

these paths instead of c- and d-minimal ones.

Improved Stop Condition

We optimize the algorithm to gain faster running time, by giving up the requirements on

the minimality of the found path’s cost. When we compute a path for a given source-

destination pair, we calculate with different λ values. As the iteration number increases,
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so decreases the difference between the subsequent λ values, and the difference between

the cost of the paths also decreases.

So, let p0
c , p

1
c , p

2
c , · · · , pj

c be the series of paths (say from source s to destination t) that

do not satisfy the delay constraint, and let be p0
d, p

1
d, p

2
d, · · · , pk

d the series of paths that

satisfy the delay constraint.

Our aim is to stop the algorithm before it finds the optimal solution, but only when

can assure that the result is not far from the optimum.

The algorithm gives pk
d as the final solution, so we are interested in the difference

between cost of the tags of the pd-series and the last tag pj
d. Let us examine the running

algorithm in a certain intermediate iteration and let suppose that the current paths at the

end of this iteration are pa
c and pb

d. Because c(pa
c) < c(pk

d), we get that

c(pb
d)− c(pk

d) < c(pb
d)− c(pa

c). (3.26)

So, if the difference between c(pb
d) and c(pa

c) is small enough, then the difference between

c(pb
d) and c(pk

d) will be possibly negligible, in which case there is no need to continue the

running of the iteration.

We define an upper bound named Maximal Difference (MD), which shows in percentage

that how much difference is tolerated between the cost of the original solution (that would

be given by the original algorithm) and the cost of the new solution’s path (that is given

by the improved algorithm). Thus, if

c(pb
d) ≤ (1 + MD) ∗ c(pa

c) (3.27)

stands at the end of an iteration, then the algorithm can stop, since no further signifi-

cant improvement on the resulting path’s cost can be earned. Our tolerance toward the

minimality of cost is represented in the value of MD.

3.4.3 Practical Evaluations

We used simulations to evaluate the performance of the LARAC algorithm and other QoS

routing algorithms proposed in the literature. This section is structured as follows: we

survey the implemented algorithms and measurements in Section 3.4.3, then in Section

3.4.3 we give a description of the simulation environment. Finally in Section 3.4.3 we

introduce our simulation experiments.
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Implemented Algorithms and Measurements

We investigated the performance of the LARAC algorithm and compared it to the most

promising three algorithms selected from the ones surveyed in Section 3.4.1. The CBF

algorithm has been selected, because it gives the optimal solution, which can be a useful

measure for the other algorithms. The Fallback algorithm has been selected for its sim-

plicity; DCUR, because it was the most promising among the algorithms that compose

the constrained path from other paths obtained by simple shortest path algorithms. Since

LARAC can give the best solution that can be obtained with aggregated costs, we did not

implement any other algorithms of this category.

We compared the behavior of the implemented algorithms with the help of the following

measures:

• Average Number of Unreachable Nodes : It can happen that with a given delay con-

straint ∆ there is no path in the network to a certain destination. We need this

measure to know whether all the algorithms can find paths to the same number of

destination nodes.

• Average Cost : this attribute measures the average cost of the paths from a source

node to all the reachable destination nodes.

• Average Delay : It is the average delay of the paths from a source node to all the

reachable destination nodes.

• Average Number of Steps : This attribute measures the running time of the algo-

rithms. Since both Dijkstra and CBF works with a heap, the number of step rep-

resents the events when the algorithm changes the contents of the heap. It will not

give exact results, since the calculation of the number of steps is different for CBF

and the other algorithms that use Dijkstra, however complexity measurements based

on these calculations still provide us valuable feedback. For those algorithms that

execute Dijkstra several times during its calculations, the complexity measure gives

comparable results.

• Cost Inefficiency : this measure can be calculated from the optimal cost measure of

the CBF algorithm [GM03, SRV97]. It can be defined as:

δA :=
C(pA)− C(pCBF )

C(pCBF )
(3.28)
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where A stands for the algorithm for which the cost inefficiency is calculated. We

will use δA and maxδA to characterize comprehensively the results of an algorithms

provided for different delay constraints.

Simulation Environment

For the simulation we built 100 random networks with 40 nodes and an average node

degree of 4 (reflecting real network values [SRV97]). The results of the measurements

have been averaged. The topology of the networks was generated by a random graph

generator program [JO99]. The cost value on links varies from 1 to 15 based on uniform

distribution. The propagation delay on links is selected from three ranges to resemble delay

characteristics of a nationwide network e.g. in the US. The first range (1-5 ms) represents

short local links, the second range (5-8) represents longer local links, while the third range

(20-30 ms) represents continental links. The ratio of long local links was configured to be

20 percent, while the ratio of continental connections in networks was configured to be 5

percent.

In the simulations we changed the delay constraint ∆ and investigated its effect on the

found paths of different algorithms. Since the average number of unreachable nodes is the

same for all algorithms, the other measures of the routing algorithms are comparable.

Experiments

In Section 3.4.3 we first investigate the basic LARAC algorithms without the proposed

improvements described in details in Section 3.4.2, then Experiments of the improved

LARAC algorithm are presented in Section 3.4.3.

Comparison of the four algorithms As it was mentioned before an important result

of the simulation is that the average number of unreachable nodes is the same for all

algorithms. This means that all algorithms managed to find a path that satisfies the delay

constraint. However, in minimizing the other additive metric (i.e., cost) the algorithms

provide different results. In Figure 3.2 we can see the average cost of the paths found by

the algorithms. The LARAC algorithm found almost the same paths as CBF, while DCUR

found paths with higher cost, and the worst cost was achieved by Fallback. The result of

Fallback meets our expectations, however we could not tell before that DCUR is worse
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than LARAC, although it could be seen that DCUR can easily find paths with higher cost

than the optimal. Finally, LARAC’s lower bound for the optimal path cost is very close

to the results of CBF.
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Figure 3.2: Average cost

The maximum worst case cost max δA, and the average worst case cost δA of the algo-

rithms compared to the cost of the optimal CBF are the following (Table I):

Table 3.1: Maximum and Average cost inefficiency

Algorithm max δA δA

LARAC 102.9% 101.3%

DCUR 110.9% 104.7%

Fallback 117.4% 108.7%

LARAC lower bound 99.27% 99.7%

It can be seen in Figure 3.2 that at the first section of the curves (∆ < 15) the found

paths have very low cost, and after the cost of the path increases with the delay bound.

The explanation of this phenomenon is that it is impossible to find path for all source

destination pairs with a small ∆, and the found paths are short, thus the costs of them

are also small. As the delay bound increases the algorithms find more and more (longer)

paths, therefore the average cost of the paths increases. After the point where a path can

be found for all source destination pairs, the average cost of the paths will decrease with
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the delay bound, because the algorithms are able to find the paths with lower costs and

higher delay bounds.

This effect can be noticed on the delay curves (Figure 3.3) as well. We expected CBF

to have the highest delay, then LARAC, DCUR and Fallback. The result we got is almost

meets our expectations, but for surprise DCUR has the highest delay.
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In Figure 3.4 the average number of steps of the algorithms are compared. As we can

see all algorithms have a very characteristic curve for the number of steps.
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Figure 3.4: Average number of step

For the small delay constraints LARAC has an increasing running time, since as it can

find paths to more and more destinations, the number of Dijkstra executions increases. As
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it reaches the delay constraint that allows paths to all the nodes in the network, the number

of steps starts to decrease since minimum cost paths computed first can more likely satisfy

the looser delay bounds, thus eliminating the execution of the second Dijkstra algorithm

to get the minimum delay path. This is the reason why the average number of steps for

the LARAC algorithm approximates the number of step of a single Dijkstra algorithm for

high delay values.

Fallback has a decreasing characteristic as well, the difference is that it is linear in

the first section, and equals to the running time of 2 Dijkstra algorithms. After this first

section, the number of steps decreases to the number of steps of 1 Dijkstra, for similar

reasons as it was explained for LARAC.

We implemented the DCUR algorithm in a centralized manner for the simulations. For

this reason the running time of it would be huge (2n times the running time of a Dijkstra

algorithm), so in the figure an estimation is plotted for a distributed implementation. We

used the execution time of 2 Dijkstra algorithms for the running time estimation of the

distributed DCUR.

CBF has a totally different characteristic. Since the algorithm exit condition depends

only on the delay constraint, it increases with ∆. The last horizontal section shows, that

the algorithm stopped because all the paths from the heap has been already used.

Improvements to LARAC algorithm We investigated both optimization proposal’s

effect on the performance of the LARAC algorithm. The first optimization (storing former

results) aims at improving the running time of the basic LARAC algorithm. Based on our

simulations we can say that the gain on the routing step is quite significant. Under the

critical value of delay bound (which is 15 ms) up to 39% gain is earned.

The second optimization (improved stop condition) affects not only the running time

but also the cost of the found paths, since it modifies the exit condition of the algorithm.

Figure 3.5 and 3.6 show the average routing step of the algorithms and average cost

of the computed paths. As we can see on figure 3.5, the running time greatly decreases

as we increase the value of Maximal Difference (or shortly MD). Four different results are

presented, one for each of the different MD values. Table II summarizes the improvement

of the algorithms’ running time with the help of average iteration number. This provides us

the average number of times the Dijkstra algorithm was executed with a given algorithm.

As we can notice, the original LARAC algorithm had an average iteration number of 7.94,
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while the improved one with e.g., MD 40% this value decreased to 4.34.

Table 3.2: Summary of average iteration number and optimality of costs

Algorithm Average max δA δA
Iteration Number

LARAC 7.94 102.9% 101.3%

MD 20% 5.80 104.7% 101.5%

MD 40% 4.34 105.8% 102.4%

MD 80% 2.92 108.4% 104.6%

MD 100% 2.57 110.2% 105.4%

These values are very impressive, but the gain on routing steps is only one side of the

coin. We have to examine the average cost of the found paths as well. In Figure 3.7 and

in Table 3.4.3 the increase in cost is presented. When the MD value 40% was used, the

average cost inefficiency δA increased to 102.4%. Similarly at the MD value 80%, δA equals

to 104.6%. The gain on running time compared to the loss on the optimality of path

costs seems to be worthy. Moreover, our algorithm provides a good way of controlling the

trade-off between optimality of the path, and running time of the algorithm.
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Chapter 4

Fractional Optimization Problems

This chapter shows that some ideas in Chapter 3 can also be used to improve on the

running time estimation of the Newton-Dinkelbach method for the Fractional Optimization

Problems. The results presented here are joint work with Tomasz Radzik.

To define Fractional Optimization Problem, let X be a (finite) set of feasible solutions,

and c, w : X −→ R given functions. We assume that w(x) > 0 for all x and there exists x

for which c(x) > 0. With these notation, the problem is the following.

Problem 4.1 (F) Compute the value

α := max

{
c(x)

w(x)
: x ∈ X

}
(4.1)

and a maximizing solution x∗ ∈ X.

It is well know that the problem above is equivalent with solving Problem (P) below.

Problem 4.2 (P) Compute the value

α = min {λ : c(x)− λw(x) ≤ 0 ∀x ∈ X} . (4.2)

The parametric version of this problem is

Problem 4.3 (P(λ)) Compute the value

h(λ) := max {c(x)− λw(x) : x ∈ X} (4.3)

and find a maximizing xλ ∈ X.
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If is easy to see that function h : R −→ R is continuous (piecewise linear), monotonically

decreasing, convex, h(0) > 0 and α = min{λ : h(λ) = 0}.
There are two common ways to find this value in strongly polynomial time. First,

Megiddo’s parametric search method described in Section 1.1.2 can be applied (see

[Meg79]). In general, this provides an O(T 2) algorithm, where T is the running time

required to compute h(λ). In running time can often be significantly improved in special

cases using the technique presented in [Meg83, Rad98]. In fact, this technique provides

best worst case running time algorithm for most of the common fractional optimization

problems. unfortunately, the practical performance of this approach is less attractive.

Is is easy to see that w(xλ) is a subgradient of function h in the point λ. Therefore,

as an alternative approach, one can apply the Newton method to function h to solve

fractional optimization problems if there exists an efficient way to compute the value h(λ)

and the solution xλ for any given λ ≥ 0. The obtained algorithm called Newton-Dinkelbach

method [Rad98] is shown in Figure 4.1.

This algorithm is shown to be very efficient both theoretically and in practice. It is

shown in [Rad98] that if X consists of subsets of an underlying set E of size n and both c

and w are a linear function, then the Newton-Dinkelbach method terminates in O(n2 log n2)

iterations. In the special case when X is the set of s—t paths in a directed acyclic graph,

the number of iteration is O(n log n).

This chapter improves the running estimation to O(n2 log n) in case of linear objective

functions and extends the latter result to the case when X is given as the 0-1 vertices of

the integer polyhedron Q := {x ∈ Rn : Ax = b, x ≥ 0}.

4.1 General properties of Newton-Dinkelbach

Method

This section lists some basic properties of Newton-Dinkelbach Method. The first three

lemmas directly follows the convexity of the function h(λ).

Lemma 4.4 ([Rad98]) h1 > h2 > · · · > ht = 0. �

Lemma 4.5 ([Rad98]) 0 = λ1 < λ2 < · · · < λt = λ∗. �

Lemma 4.6 ([Rad98]) w1 > w2 > · · · > wt = 0. �
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procedure NewtonDinkelbach(c, w,P(λ))

λ1 := 0

i := 0

do

i := i + 1

xi := xλi

ci := c(xi)

wi := w(xi)

hi := h(λi) = ci − λiwi

λi+1 :=
ci

wi

while hi > 0

end procedure.

Figure 4.1: The Newton-Dinkelbach algorithm

Lemma 4.7 ([Rad98])
hi+1

hi

+
wi+1

wi

≤ 1.

Proof. The following calculation shows the inequality.

hi = ci − λiwi = c(xi)− λiw(xi) ≥ c(xi+1)− λiw(xi+1) =

= ci+1 − λiwi+1 = hi+1 + λi+1wi+1 − λiwi+1 =

= hi+1 +
ci

wi

wi+1 −
hi − ci

wi

wi+1 = hi+1 +
hiwi+1

wi

�

A trivial consequence of the Lemma above is the following.

Corollary 4.8 ([Rad98])
hi+1wi+1

hiwi

≤ 1

4
.

Lemma 4.9 ([Rad98]) ci − λwi ≤ −hi+1 holds for all i = 1, 2, · · · , t− 2 and λ ≥ λi+2.

Proof. Because wi > 0, it is enough to proof the claim for λ = λi+2. So,

hi+1 = ci+1 − λi+1wi+1 = (λi+2 − λi+1)wi+1 ≥ (λi+2 − λi+1)wi = λi+2wi − ci

finishes the proof. �
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4.2 The Case of Linear Objective Functions

Let E be a finite underlying set, n := |E| and assume that X ⊆ {0, 1}E and c and w are

linear functions, i.e.

c(x) :=
∑
e∈E

ce, xe (4.4)

and

w(x) :=
∑
e∈E

we, xe (4.5)

for some given vectors c, w ∈ RE. In this section we prove that the Newton-Dinkelbach

method terminates in O(n2 log n) iterations in this case.

Theorem 4.10 In the linear case, the Newton-Dinkelbach method terminates in

O(|E|2 log |E|) iterations.

Proof. As in Section 3.3, the bound on the running time is based on Theorem 3.8. Consider

the sequence

si := h2iw2i−1. (4.6)

Because of the monotonicity of hi and wi and Corollary 4.8,

si+1 = h2i+2w2i+1 ≤ h2i+1w2i+1 ≤
1

4
h2iw2i ≤

1

4
h2iw2i−1 ≤

1

4
si. (4.7)

On the other hand

si = h2iw2i−1 = (c2i − λ2iw2i)w2i−1 = (c2i −
c2i−1

w2i−1

w2i)w2i−1 = c2iw2i−1 − c2i−1w2i, (4.8)

showing that there exist c ∈ R|E|2 and yi ∈ {−1, 0, 1}|E|2 such that si = yic for all i.

Indeed, c is an appropriate choice if it consists of the following constants.{
α·β : α∈{c(e) :e∈E}, β∈{w(e) :e∈E}

}
.

Finally, applying Theorem 3.8 to the vector c, we get that the length of the sequence

si is O(|E|2 log |E|), resulting in the same bound on the number of iterations in Newton

Dinkelbach method. �



4.3. THE CASE OF LP DEFINED BASIC PROBLEMS 63

4.3 The Case of LP Defined Basic Problems

This sections shows that if X ⊆ {0, 1}E is defined as a set of the basic solutions of a linear

program, then Theorem 4.10 can be further improved.

Theorem 4.11 Let E be a finite underlying set, n := |E| and assume that X ⊆ {0, 1}E

is the set of vertices of the polyhedron Q := {x ∈ RE : Ax = b, x ≥ 0}. Then the

Newton-Dinkelbach method terminates in O(n log n) iterations.

Proof. By definition, xλ is an optimal solution of the problem

h(λ) = max{cλx : x ∈ RE, Ax = b, x ≥ 0}, (4.9)

where cλ := c−λw. Let yλ be an optimal solution of the corresponding dual linear program

min{yb : y ∈ Rq, yA ≥ cλ}, (4.10)

Let x1, x2, . . . , xt be the solutions found by the algorithm. An coordinated e ∈ E is

called essential in the iteration i if there exists j ≥ i such that xj(e) = 1. Theorem 4.11

follows from the following.

Claim 4.12 After making k := dlog ne+1, the number of the essential coordinates strictly

decreases.

Proof. From Corollary 4.8 we get that

hi+kwi+k ≤
1

n2
hi+1wi+1 (4.11)

It is enough to prove that there exist e ∈ E such that xi(e) = 1 but xj(e) = 0 for all

j > i + k. There are two cases.

wi+k ≤ 1
n
wi In this case there exists e ∈ E, xi(e) = 1 such that w(e) ≥ 1

n
wxi. From this

we get that

w(e) ≥ 1

n
wi ≥ wi+k > wj = wxj, (4.12)

from which xj(e) = 0 follows.

wi+k > 1
n
wi From this we get that wi+k > 1

n
wi+1, therefore hi+k < 1

n
hi+1. Let c̃λ :=

cλ − yλA. The linear complementary condition shows that c̃ ≤ 0.

cλi+k
xi = cxi − λi+kwxi = ci − λi+kwi ≤ −hi+1 < −nhi+k, (4.13)
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thus

c̃λi+k
xi = cλi+k

xi − yλi+k
Axi < −nhi+k − yλi+k

b = −(n + 1)hi+k. (4.14)

Then there exists e ∈ E, xi(e) = 1 such that c̃λi+k
(e) < −hi+k. Assume that

xj(e) = 1. Then

0 < hj = cλj
xj ≤ cλi+k

xj = c̃λi+k
xj + yλi+k

Axj ≤ cλi+k
+ hi+k < 0, (4.15)

therefore we get that xj(e) = 0, which finishes the proof.

�

�



Chapter 5

UMTS Access Network Topology

Design

The present chapter introduces two network design algorithms for planning UMTS (Uni-

versal Mobile Telecommunication System) access networks. The task here is to determine

the cost-optimal number and location of the Radio Network Controller nodes and their

connections to the Radio Base Stations (RBS) in a tree topology according to a number of

planning constraints. First, a global algorithm to this general problem is proposed, which

combines a metaheuristic technique with the solution of a specific b-matching problem.

It is shown how a relatively complex algorithm can be performed within each step of a

metaheuristic method still in reasonable time. Then, another method is introduced that

is able to plan single RBS-trees. It can also be applied to make improvements on each

tree created by the first algorithm. This approach applies iterative local improvements

using branch-and-bound with Lagrangian lower bound. Section 5.6 demonstrates through

a number of test cases that these algorithms are able to reduce the total cost of UMTS

access networks, also compared to previous results. Finally — for the sake of complete-

ness — Section 5.7 gives a short proof of the NP-hardness of the problem in the special

case when only a single tree with a given RNC node is planned.
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5.1 UMTS Architecture and Cost Model

UMTS [UMT98], [OP98] stands for Universal Mobile Telecommunication System; it is a

member of the ITU’s1 IMT-20002 global family of third-generation (3G) mobile commu-

nication systems. UMTS will play a key role in creating the future mass market for high

quality wireless multimedia communications, serving expectedly 2 billion users worldwide

by the year 2010.

One part of the UMTS network will be built upon the transport network of today’s

significant 2G mobile systems [Kal98], but to satisfy the needs of the future Information

Society new network architectures are also required. Since UMTS aims to provide high

bandwidth data, video or voice transfer, the radio stations communicating with the mobile

devices of the end-users should be placed more densely to each other, corresponding to

the higher frequency needed for the communication. Using the traditional star topology

of the radio stations, this would increase the number of expensive central stations as well.

To solve this problem, UMTS allows a constrained tree topology of the base stations,

permitting to connect them to each other and not only to the central station. This new

architecture requires new planning methods as well.

As shown in Figure 5.1 the UMTS topology can be decomposed into two main parts:

the core network and the access network. The high-speed core network based on e. g. ATM

or IP technology connects the central stations of the access network. These connections are

generally realized with high-capacity optical cables. The focus is on planning the access

network, the design of the core network is beyond the scope. The reader is referred to e.

g. [Mar97] on this topic.

The access network consists of a set of Radio Base Stations (RBS nodes) and some of

them are provided with Radio Network Controllers (RNC nodes). The RBSs communicate

directly with the mobile devices of the users, like mobile phones, mobile notebooks, etc.,

collect the traffic of a small region and forward it to the RNC they belong to using the

so-called access links, which are typically microwave radio links with limited length (longer

length connections can be realized using repeaters, but at higher cost) and capacity. In

1ITU is the abbreviation of International Telecommunication Union, an international organization

within the United Nations System where governments and the private sector coordinate global telecom

networks and services.
2IMT-2000 stands for International Mobile Telecommunications-2000 and it is the global standard for

third generation (3G) wireless communications, defined by a set of interdependent ITU Recommendations.
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CORE NETWORK

RBS

RNC

R

A B

inter−RNC and
core network links

access links

Figure 5.1: UMTS topology

traditional GSM configuration the RBSs are connected directly to an RNC station limiting

the maximum number of RBSs belonging to a certain RNC. To overcome this limitation the

UMTS technology makes it possible for an RBS to be connected to another RBS instead

of its RNC. However RBSs have no routing capability, they simply forward all the received

data toward their corresponding RNC station, therefore all traffic from an RBS goes first

to the RNC controlling it. For example if a mobile phone in region A on Figure 5.1 wants

to communicate with a device in region B, their traffic will be sent trough the RNC R.

Only the RNC station is responsible for determining the correct route for that amount of

traffic. It follows that the RBSs should be connected to the RNC in a tree topology. (There

are research initiatives to provide some low-level routing capability for the RBSs and to

allow additional links between RBSs, which may increase the reliability of the network.

These developments are quite in early stage, hence we only deal with tree topology.) As a

consequence, the access network can be subdivided into independent trees of RBSs, each

rooted at an RNC. These trees are called Radio Network Subsystems (RNS). Further

advantage of the tree topology compared to the star topology is that the links can become

shorter, which on one hand reduces the cost of the links, on the other hand it may require

less repeaters in the network, thus increase its reliability.

Moreover, there are some additional links connecting the RNCs to each other (inter-

RNC links) and to the core network. The planning of these links are beyond the scope of

this thesis, though a rough estimation of its cost can be built into the objective function

using the RNC cost.
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For technical reasons the following strict topology constraints have to be taken into

account:

• The limited resources of the RBS stations and the relatively low bandwidth of the

access links cause considerable amount of delay in the communication. In order to

reduce this kind of delay, the maximum number of the access links on a routing path

is kept under a certain amount by limiting the depth of a tree to a small predefined

value. This limit is denoted by ltree in our model. The usual value of ltree is 3.

• The degree of an RBS is also constrained. One simple reason is that the commercial

devices have only limited number of ports. Another reason is that too many close

RBSs can cause interference problems in their radio interface if their connections are

established through microwave links. Moreover the capacity of an RBS device also

limits the number of connectible RBSs. Therefore in our model there can be at most

dRBS RBSs connected directly to another RBSs on a lower level. It is typically a low

value, dRBS = 2 in the devices existing at the time this research was made.

• The degree of RNCs (the number of RBSs connected directly to a certain RNCs) is

also limited for similar reasons, it is at most dRNC , but dRNC is generally much larger

than dRBS.

The planning task investigated in present chapter is to plan cost-optimal access net-

work, that is to determine the optimal number and location of the RNCs and to find

the connections of minimal cost between RNCs and RBSs satisfying all the topological

restrictions.

The cost of a UMTS access network is composed of two variable factors: the cost of

the RNC stations and the cost of the links. For the exact definitions see Section 5.2.

As one may expect, this planning problem is NP-hard. The problem of finding a

minimal weight two-depth rooted tree in a weighted graph can be reduced to this problem.

Moreover, the problem remains NP-hard even in the special case of planning a single tree

with a fixed RNC node. See Section 5.7 for the proof of this claim.

A general UMTS network may contain even about 1000 RBSs, a powerful RNC de-

vice controls approximately at most 200-300 RBSs. This large number of network nodes

indicates that the planning algorithms have to be quite fast in order to get acceptable

results.
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Solving methods. One possible approach to the problem described above would be to

divide the set of input nodes into clusters and then create a tree with one RNC in each

cluster. However, this “two-stage” solution has some significant drawbacks: first, it is very

hard to give a good approximation to the cost of a cluster without knowing the exact

connections. Second, it would be also a strong restriction to the algorithm searching for

connections to work with static clusters of nodes created in the beginning.

For these reasons a “one-stage” approach is introduced: an algorithm which creates a

number of independent trees with connections simultaneously. The proposed method called

Global is based on a widely used metaheuristic technique called Simulated Annealing.

However, it is not straightforward to apply Simulated Annealing to this problem, since

the state space is very large and a reasonable neighborhood-relationship is hard to find.

To overcome these problems a combination of the Simulated Annealing and a specific b-

matching algorithm is proposed. To make this method efficient it will be shown how the

relatively complex and time-consuming b-matching method can be performed within each

step of a metaheuristic process in still acceptable time.

Then, a Lagrangian relaxation based lower bound computation method is presented for

the problem of designing a single tree with predefined RNC node. Using this lower bound

a branch-and-bound method is proposed to compute the theoretical optimal solution to

this problem for smaller but still considerable large number of nodes.

For bigger single-tree design tasks, a second heuristic method called Local is proposed

based on an effective combination of a local search technique and the branch-and-bound

procedure above. This Local algorithm can be used effectively either in circumstances

when only a single tree should be designed or to improve each trees provided by the Global

algorithm.

5.2 Problem Definition and Notation

This section gives a formal description of the problem investigated.

The access network is modeled as a directed graph G = (N, E), where N is the set of

the RBSs. Each edge in E corresponds to a link between its ends and directed toward the

corresponding RNC. On the other hand, this set E of directed edges determines the set of

RNCs as well: a node is RNC if and only if it has no outgoing edge.

In order to illustrate the logical structure of the network the notion of the level of nodes
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is introduced (Figure 5.2). Let all RNC nodes be on level 0, and let the level of an RBS

station be the number of edges of the path that connects it to its controlling RNC. The

level of a link is defined as the level of its end on the greater level-number. Other important

notation used in this chapter is shown in Table 5.1.

RBS

RNC

0. level

1. level

2. level

3. level

Figure 5.2: Logical structure of the network

N the set of RBSs

E the set of links

n the number of network nodes

ltree the maximal depth of the trees

LE
i , Li the set of nodes on the i-th level of the graph

Ei the set of links on the i-th level of the graph

lE(v), l(v) the level of the node v

lE(e), l(e) the level of the edge e

dRBS the maximal degree of an RBS

dRNC the maximal degree of an RNC

costRNC the cost of an RNC

Table 5.1: Some important notation

The input of the examined planning problem consists of the set N of RBSs, the cost

function clink of the links (described later), the installation cost costRNC of the RNCs and

the constraints dRNC , dRBS and ltree. Moreover we are given the set RR of places of required

RNCs and the set RP of places of possible RNCs. (It is useful since in many practical cases

already existing networks should be extended.)

The set E of links is a feasible solution to this input if
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• E forms a set of disjoint rooted trees, which cover the whole set N ,

• the depth of each tree is at most ltree,

• the degree of the root of each tree is at most dRNC ,

• the in-degree of each other node is at most dRBS,

• RR ⊆ LE
0 ⊆ RP . (By definition, LE

0 is the set of the RNC nodes.)

The total cost of the network is composed of the following factors.

• The cost of the RNC stations. The cost of one RNC, costRNC , means the installation

cost of that particular RNC. This constant may contain other factors as well, e. g.

the cost of the links between the RNCs can be included, assuming that it has a nearly

constant additional cost for every RNC.

• The cost of the access links. In this model the cost clink(i, j, l) of a link depends on

its endpoints i and j and its level l. A possible further simplification is to assume

that clink(i, j, l) = fl · clink(i, j), where fl is a constant factor representing the weight

of level l.

This kind of link-cost function has two applications. First, since access links closer

to the RNC aggregate more traffic, this is an elementary way to model the capacity

dependent costs by giving higher cost on the lower levels. Second, it can be used to

prohibit the usage of some links on some levels by setting their cost to an extremely

large value. Moreover, it makes it possible to force a node to be on a predefined level.

So, the task is to find a feasible connection E minimizing the total cost

|LE
0 | · costRNC +

∑
(ij)∈E

clink

(
i, j, lE

(
(ij)
))

(5.1)

5.3 Related work

Similar problems have already been examined by several authors, using different notation

according to the origin of their optimization tasks.
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By adding a new virtual root node r to the underlying graph and connecting the possible

RNC nodes to r the problem transforms to the planning problem of a single rooted spanning

tree with limited depth and with inhomogeneous degree constraints. There are some papers

in the literature dealing with planning of a minimal cost spanning tree with either of the

above constraints (see e. g. [DK97b, DK97a, ACG92]), but finding an algorithm handling

both requirements is still a challenge.

On the other hand, our problem can be considered as a version of facility location

problems. The problem of facility location is to install some “facilities” at some of the

possible places, so that they will be able to serve a number of “clients”. The objective

is usually to minimize the sum of distances between the clients and the corresponding

facilities while satisfying some side constraints, e. g. the number or capacity of facilities is

limited. See e. g. [Das95, Dre95] for more details on facility location problems and on the

known algorithmic approaches.

Facility location problems give a good model to the planning task of traditional GSM

access network topology, for it requires the design of one-level concentrators (for the star

concentrator location problem see e.g. [Gav91]). The case of multilevel concentrators is also

studied in the literature, though less extensively. In [SZ82, GSD01] the authors examined

a problem similar to ours, but without depth and degree constraint and with capacity

dependent cost functions. In [Cha98], the case of two-level concentrators is discussed, also

without degree constraints.

Finally, our problem can also be considered as an extension of the so-called hub location

problem. In this scenario we have a given set of nodes communicating with each other and

the amount of the traffic between the node pairs is given by a traffic matrix. Instead of

installing a link between every pair of nodes, each node is connected to only a single special

node called hub. The hubs are fully interconnected, so the traffic flow between two nodes

is realized on a path of length three, where the two intermediate nodes are hubs. The

task is to find an optimal placement of hubs, where the cost is composed of the cost of

the hubs and the capacity dependent cost of the links. There are several papers examining

hub location problems with various side constraints and optimization objectives. A good

review on this topic can be found e.g. in [Kli98].

A previous method that is able to a give solution to the problem presented in this

chapter can be found in [HSG00]. This algorithm called TreePlan finds the number and

the places of the RNC devices by Simulated Annealing metaheuristic and connects the
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nodes to the RNSs using an extension of Prim’s spanning tree algorithm which respects

the topological requirements on the tree. This algorithm was used as a reference method

in the experimental tests.

5.4 The Global Algorithm

The aim of this algorithm is to find the optimum places of the RNC nodes (i.e. to decide

which RBSs should be equipped with RNC devices) and to connect each RBS to an RNC

directly or indirectly as described in Section 5.2. The basic idea of the proposed approach

is the following.

Assuming that the level l(v) is known for each node v, the theoretically minimal cost

can be determined for that given level-distribution (see Section 5.4.2). The algorithm

considers a series of such distributions, determines the cost for each of them and uses

some metaheuristic method to reach the final solution. From among the wide range of

metaheuristic methods existing in the literature, Simulated Annealing was chosen for this

purpose, but some other local search methods could also be used, especially the so-called

Tabu Search scheme [Glo89, Glo90, AL97].

5.4.1 Using Simulated Annealing

In this section the application of Simulated Annealing ([SGJ83, AL97]) to the problem is

illustrated. To use Simulated Annealing to a specific optimization problem, an appropriate

state space S corresponding to the possible feasible solutions, a neighborhood-relation

between the states and a cost function of each state should be selected. The role of

neighborhood-relation is to express the similarity between the elements of the state space.

The neighborhood of a state s is typically defined as the set of the states that can be

obtained by making some kind of local modifications on s.

Then the Simulated Annealing generates a sequence of feasible solutions s0, s1, · · · ,

approaching to a suboptimal solution as follows. It starts with an arbitrary initial state s0.

In each iteration it chooses a random neighbor si+1 of the last solution si and calculates its

cost c(si+1), then decides whether it accepts this new solution or rejects it (i.e. si+1 := si).

This iteration is repeated until a certain stop condition fulfills.

If the cost of the new state c(si+1) is lower than c(si), the new state is always accepted.
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If it is higher then it is accepted with a given probability Paccept determined by the value of

the deterioration and a global system variable, the so called temperature T of the system.

In this case Paccept is also positive, however, it is an exponentially decreasing function of

cost deterioration.

In general, the state si+1 is accepted with probability

Paccept = min

{
1, exp

(
−c(si+1)− c(si)

Ti

)}
.

The temperature decreases exponentially during the execution, i.e the temperature Ti

in the i-th iteration is given by:

Ti = Ti−1 ∗ fact, T0 = const.

where fact is the so called annealing factor, which is a number close to 1, typically

0.99-0.9999. The values T0 and fact are declared in the beginning of the algorithm. The

short pseudo-code in Figure 5.3 illustrates the framework of Simulated Annealing.

For an effective Simulated Annealing the following criteria should be met. The state

space to be searched should be possibly small; each state should have lot of (meaningful)

neighborhoods, allowing to reach the optimum in a low number of steps; the cost of a state

should be determined relatively fast.

None of these criteria can be fulfilled easily in case of this planning problem. The most

obvious idea for the state space would be the set of all feasible connections. Two such

connections would be neighbors, if they can be reached from each other by changing one

edge. This solution violates the first two criteria: the state space is very large, and because

of the topological constraints, each state has only few neighbors and there are a lot of local

minima. Although the cost of a state can be calculated easily, since the exact connections

are given in every state, this solution is not usable. Instead, we propose following idea.

The state-space of Simulated Annealing is only the set of all possible distributions of

the nodes on the different levels of the graph. Thus a given distribution can be represented

as an n-dimensional integer vector s in S.

D = {0, 1, 2, .., ltree}, S = Dn

The state space with this selection will be much smaller than in the previous case.
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procedure Sim Ann(steps, factor, temp, s0)

{
curcost :=cost(s0);

oldcost :=curcost;

while (steps > 0)

{
Choose a random neighbor si+1 of si;

curcost := cost(si+1);

if(acceptable(curcost, oldcost, temp))

oldcost := curcost;

else si+1 := si;

i := i+1;

steps := steps - 1;

temp := temp * factor;

}
return sn;

}

Figure 5.3: Structure of the Simulated Annealing algorithm

Two level-distributions are neighbors if they can be reached from each other trough

one of the following slight modifications of the current distribution:

• moving an arbitrary node onto an adjacent level upwards or downwards

• swapping an arbitrary RNC with an arbitrary RBS, that is, moving an RNC to

another site

The price for the smaller state space is that the calculation of the cost of a state

becomes more difficult. Section 5.4.2 shows how the cost c(si) of a given state si ∈ S can

be calculated.

The initial state s0 of the Simulated Annealing algorithm can be any feasible state. Such

a state can be constructed easily by setting each possible nodes to RNC and connecting
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the other nodes arbitrarily fulfilling the criteria defined in Section 5.2. The fact that there

exists no feasible solution at all can be detected, as well.

5.4.2 Finding the Exact Cost for a Given Level-distribution si

Let us assume that the distribution of the nodes on different levels is known. In order

to find the optimal connections for this given distribution, the connections between the

adjacent levels have to be determined. The main observation is that the connections of the

different levels to their parents are independent, so the task of connecting the nodes of a

certain level can be performed separately for each level. (As there are ltree adjacent level-

pairs, the algorithm described now has to be run ltree times in each step of the Simulated

Annealing process.)

Generally, for each adjacent level-pair (Li and Li+1, i = 0, · · · , ltree − 1) a connection

has to be found so that

• all nodes in set Li+1 are covered

• the maximal degree k of the nodes in set Li is given. As already mentioned, k = dRNC

if i = 0, k = dRBS if i > 0.

This can be formulated as a special b-matching problem, which can be solved in strongly

polynomial time [AMO93, CCPS97].

Definition 5.1 (Bipartite b-matching problem) Let G(V, E) be a bipartite graph and

let low, upp : V −→ N be two predefined functions on the set of nodes. A subgraph M of

G is called b-matching if low(v) ≤ degM(v) ≤ upp(v) for each v ∈ V . We are also given a

cost function c : E −→ R on the edges. Then the bipartite b-matching problem is to find

a minimum cost b-matching in G.

Acceleration of the Algorithm

The quality of the solution found by the Simulated Annealing largely depends on the

number of iterations made by the algorithm. However we want to solve a b-matching

problem in each iteration, which is — although polynomially solvable — a very time

consuming task. Here follows a little trick that can accelerate a lot on the running time
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of the algorithm, actually this trick makes our Simulated Annealing/b-matching based

algorithm a competitive solution in practice.

The observation is that the b-matching problems we have to solve in each iteration is

quite similar to those solved at the previous iteration. Namely, the b-matching problems

to be solved is obtained from the problem instances solved at the previous iteration by

adding or deleting a node or by moving a node from one partite to the other.

The usual b-matching algorithm is a kind of primal-dual method, i.e. it maintains a

feasible dual solution, “partial” primal solution satisfying the so-called slackness condition

and at each iteration it improves either of them until the primal side becomes a “full”

solution. Instead of starting from scratch, we create a primal and dual solution with the

conditions above from the previous optimal solution. First we make the dual feasible

by increasing its values in a greedy way if necessary, then we remove the primal solution’s

edges that would break the duality slackness conditions. Since these solutions are hopefully

quite close to the optimum, the algorithm will stop much sooner. The details should be

straightforward for the readers familiars with the b-matching algorithms, let us skip then.

5.5 The Single-Tree Problem

In practical planning problems it is often the case that — for geographical, political or

economical reasons — the exact number and location of the RNC nodes and the set of

RBSs belonging to them is already known in the beginning.

For these reasons this section discusses the special problem where only one fixed RNC

and a set of RBS nodes are given. Of course the Global algorithm can solve this special

case, as well, but an alternative method called Local algorithm, which finds remarkably

better solutions, is introduced. Although this algorithm is slightly slower than the Global

algorithm, it is efficient for about 200-300 nodes, which is the typical number of RBSs

controlled by one RNC.

The Local algorithm is based on a branch-and-bound method that finds the exact

optimal solution for smaller inputs (up to 50-60 nodes). To sum up, the Local algorithm

can be used for the following purposes.

• Planning a tree of RBSs belonging to a fixed RNC.

• Improving the trees created by an arbitrary previous algorithm.
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• Determining the theoretical optimum for smaller inputs.

The simplified single-tree problem can be formulated as follows.

A single RNC and n−1 RBSs are given by their coordinates. Note that the problem of

positioning the RNC is omitted in this model. The task of the algorithm is to connect all

the RBSs directly or indirectly to the RNC. These connections should build a tree rooted

in the RNC. This tree has the following characteristics.

• The depth of the tree can be at most ltree.

• The in-degree of RBSs can be at most dRBS.

• The degree of the RNC is at most dRNC .

We remark that this simplified optimization problem is still NP-hard (see Section 5.7 for

the proof).

In the next section the branch-and-bound algorithm is described that finds the optimal

solution for smaller inputs and then it will be shown how it can help to solve the problem

for larger inputs.

5.5.1 Finding the Optimal Solution

The well-known branch-and-bound method is used to find the optimal solution to the

problem. The efficiency of the branch-and-bound method mainly depends on the algorithm

that computes a lower bound to the problem. It must run fast and — what is more

substantial — it should give tight bounds.

The most commonly used techniques are based on some kind of relaxation. The problem

is formulated as an ILP problem, and some conditions are relaxed.

One possible way to relax the problem is LP-relaxing. In this case we work with the LP

version of the given ILP-formulation by allowing also non-integer solutions, and compute

a lower bound for the original ILP optimization problem. The LP problem can be solved

efficiently, e.g. using the simplex method. A lot of software packages can do it automati-

cally, the bests (e.g. CPLEX) use many deep techniques to improve the running time of

the branch-and-bound algorithms [ILO01]. Unfortunately, in our case these packages fail

to find an optimal solution even for inputs having only 15 nodes. The reason is twofold.

Firstly, the ILP-formulation of the problem needs too many variables. Secondly, in this
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case, there is quite a large gap between the optimal solution and the lower bound provided

by the LP-relaxation.

In order to solve the problem for larger inputs two substantial improvements of this

technique are presented.

• First, Lagrange-relaxation is used instead of LP-relaxation. In this case it provides

significantly tighter lower bounds.

• The other improvement is that we seek with branch-and-bound not for the exact

connections but only for the levels of nodes. This significantly reduces the number

of the decision variables. After that the optimal connections can be computed as

described in Section 5.4.2.

These techniques enable us to find the optimal solution of practical examples having

up to 50–60 nodes. In case of 20–30 nodes the algorithm is very fast, it terminates usually

within some seconds and at most in some minutes.

In the following the problem is formulated as an ILP program, its Lagrange-relaxation

is introduced and finally the branch-and-bound technique is described. For the sake of

simplicity we examine the case when ltree = 3 and dRBS = 2, but it is straightforward to

extend it to the general one.

ILP-formulation

Before the formulation of the problem, some notation have to be introduced. Let N denote

the set of the nodes. Since ltree = 3, the nodes except the RNC can be classified as first-,

second- or third-level nodes. Let us introduce three sets of binary variables. The variable

ri indicates that the node i is connected directly to the RNC. The variable xij indicates

that the node j on the first level is connected to the node i on the second one. Finally, yij

indicate that the node j on the second level is connected to the node i sitting on the third

level.

Furthermore, the cost functions ci, cij and dij are given, where ci is the cost of a link

between node i and the RNC. The cost of a link between the nodes i and j is cij or dij,

depending on whether it is on the second or third level, respectively.

Thus, the ILP-formulation is the following:

min
∑
i∈N

ciri +
∑
i,j∈N

cijxij +
∑
i,j∈N

dijyij (5.2a)
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subject to

ri, xij, yij ∈ {0, 1} ∀i, j ∈ N (5.2b)

ri +
∑

j

xij +
∑

j

yij = 1 ∀i ∈ N (5.2c)

∑
i

ri ≤ dRNC (5.2d)∑
i

xij ≤ 2rj ∀j ∈ N (5.2e)∑
i

yij ≤ 2
∑

k

xjk ∀j ∈ N (5.2f)

(5.2a) is the object function to be minimized, (5.2c) expresses that each node resides

on exactly one level and that it is connected to the node above itself by exactly one edge.

(5.2d) is the degree constraint of the RNC, (5.2e) means that the degree of first-level nodes

is at most 2, whereas (5.2f) indicates that the degree of second-level nodes is at most 2.

Lower Bound Computation

For getting lower bound to Problem (5.2a)-(5.2f), the most straightforward way would be

to relax the integrality constraints (5.2b) and solve the obtained linear program. However,

experiments showed that this approach does not give sufficiently tight bounds to perform

a branch-and-bound scheme. Therefore Lagrangian-relaxation (see e.g. [Wol98, AMO93,

Das95] for more detail) is applied to obtain a better lower bound.

The straightforward way to do that would be to relax constraints (5.2d), (5.2e) and

(5.2f). Then the relaxed problem becomes very easy: for each node i, one must choose

the “cheapest” one from the variables ri, xij and yij according to a certain modified cost

function and set this to 1. However this approach would not lead to success because of

two reasons. Firstly, we had to introduce quite a lot (3|N |) Lagrange multipliers slowing

down the solution of the Lagrange dual problem. Secondly, the relaxed problem is also

an (integer) linear program with the property that optimal solutions are automatically

integers3. However, an easy observation shows that in this case the lower bound obtained

by the Lagrange relaxation is equal to that the LP-relaxation gives us. As we mentioned

above this lower bound is too weak for our purposes.

3More exactly, they can be chosen to be integer
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Therefore another kind of Lagrange relaxation is proposed, which needs less multipliers,

gives much tighter bounds, but the relaxed problem is more difficult to be solves.

Namely, the constraint (5.2c) is relaxed and built into the object function by using

Lagrange-multipliers (λ). Unfortunately the relaxed problem still does not seem to be

solvable efficiently, so we first modify the ILP formalization: we relax the binary assump-

tions on the variables yij, they are only expected to be non-negative integers. In order to

reduce the effect of this modification two redundant constraints are added to our formula-

tion.

yij ≤
∑

k

xjk ∀i, j ∈ N (5.2g)

y2
jiyki = yjiy

2
ki ∀i, j, k ∈ N (5.2h)

Inequalities (5.2c) and (5.2g) together imply that each yij is a binary variable. Equation

(5.2h) forces that the values yji of the links incoming to the node i are either equal or zero.

(If yji 6= 0 and yki 6= 0 then yji = yki.) Although equations (5.2h) are not linear, it will not

cause a problem because Claim 5.2 still holds.

Now, we are ready to relax equation (5.2c) and build it into the object function. Intro-

ducing a new variable λi called the Lagrange-multiplier for all nodes, the relaxed version

of our problem for a fixed multiplier is the following.

L(λ) := min
∑
i∈N

ciri +
∑
i,j∈N

cijxij +
∑
i,j∈N

dijyij+

∑
i∈N

λi

(
ri +

∑
j∈N

xij +
∑
j∈N

yij

)
−
∑
i∈N

λi (5.3a)
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ri, xij ∈ {0, 1}, yij ∈ Z ∀i, j ∈ N (5.3b)

yij ≥ 0 ∀i, j ∈ N (5.3c)∑
i

ri ≤ dRNC (5.3d)∑
i∈N

xij ≤ 2rj ∀j ∈ N (5.3e)∑
i∈N

yij ≤ 2
∑
k∈N

xjk ∀j ∈ N (5.3f)

yij ≤
∑

k

xjk ∀i, j (5.3g)

y2
jiyki = yjiy

2
ki ∀i, j, k (5.3h)

In spite of the non-linear constraint (5.3h), the following statement, which is well-known

for the linear case, still holds with the usual proof.

Claim 5.2 For any vector λ of the Lagrange multipliers, L(λ) is a lower bound of the

original problem.

Proof. Let rλ
i , xλ

ij, y
λ
ij be an optimal solution of system (5.3b)–(5.3h) and r∗i , x

∗
ij, y

∗
ij be an

optimal solution to system (5.2b)–(5.2f). Then

L(λ) =
∑

i

cir
λ
i +

∑
ij

cijx
λ
ij +

∑
ij

dijy
λ
ij +

∑
i

λi

(
rλ
i +

∑
j

xλ
ij +

∑
j

yλ
ij − 1

)

≤
∑

i

cir
∗
i +

∑
ij

cijx
∗
ij +

∑
ij

dijy
∗
ij +

∑
i

λi

(
r∗i +

∑
j

x∗ij +
∑

j

y∗ij − 1

)
=
∑

i

cir
∗
i +

∑
ij

cijx
∗
ij +

∑
ij

dijy
∗
ij

proves the claim. �

An easy computation shows that the object function (5.3a) is equal to

min
∑

i

cλ
i ri +

∑
ij

cλ
ijxij +

∑
ij

dλ
ijyij + Λλ, (5.4)

where cλ
i := ci + λi, cλ

ij := cij + λi, dλ
ij := dij + λi and Λλ := −

∑
i

λi.
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Claim 5.3 The optimal solution can be chosen in such a way that there are at most two

incoming edges with nonzero y variable for each node j ∈ N .

Proof. Obviously, it is not worth setting the yij nonzero if its cost is not less than zero. If

there is only one edge with negative cost then the best we can do is to set the corresponding

y variable to
∑

k xjk, otherwise the best solution is to set the y variables of the two edges

having most negative cost to
∑

k xjk. �

Now let us discuss the problem of computing L(λ) for a fixed λ value. First let us

assume that dRNC = ∞. Observe that

• if the modified cost cλ
i of a first-level node is negative4, we can connect it in order to

minimize the object function,

• even if its modified cost cλ
i is positive, it may be advantageous to connect it assuming

that we can link it with two second-level nodes, so that the modified total cost of

these three nodes is negative

• finally, we can connect it if we find two second-level nodes so that there are third-level

nodes, where the modified cost of the whole set of nodes is negative

This idea leads to the following dynamic programming algorithm. (Note that here we

work in the reverse direction.)

Theorem 5.4 For any given vector λ, the following algorithm finds an optimal solution

to (5.3a)-(5.3h) in linear time.

1. For each node j let i1 and i2 be the two nodes for which the values dλ
i1j and dλ

i2j are

the two most negative ones.

Let αj := min{0, dλ
i1j}+ min{0, dλ

i2j}.

2. Again, for each node j let i1 and i2 be the two nodes for which the values cλ
i1j + αi1

and cλ
i2j + αi2 are the two most negative ones.

Then let βj := min{0, cλ
i1j + αi1}+ min{0, cλ

i2j + αi2}.

4Note that we just relaxed the constraint that guarantees that every node will be connected to another

node or to the RNC, so we can reach the cost Λλ if none of them are connected. Therefore L(λ) should

be possibly less than Λλ.
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3. The cost of the optimal solution to Problem (5.3a)–(5.3h) is

L(λ) :=
∑

i

min{0, βi + cλ
i }+ Λλ. (5.5)

If dRNC < n, we have to take only the sum of the dRNC smallest (most negative)

values of min{0, βi + cλ
i }.

�

To obtain the best lower bound we have to look for the vector λ which maximizes the

function L(λ). That is, we are looking for the value

L∗ := max
λ

L(λ) (5.6)

Since the function L(λ) is concave (it can be seen from (5.3a) that L(λ) is the minimum

of some λ-linear functions), the well-known subgradient method can be used to find its

maximum. The details are omitted, good surveys of this method can be found for example

in [AMO93, BSS93, Das95].

In order to be able to apply the branch-and-bound method we need to solve a modified

version of this problem where the depth of some nodes are predefined. Even this case can

be handled easily, because for example if the depth of a node i must be equal to 2, then it

means that the variables ri, yik and xki must be avoided for all k. This can be performed

by setting their corresponding costs to a sufficiently large value. The other cases can be

handled similarly.

It is also mentioned that if all node levels are fixed, then the lower bound given by

the previous algorithm is tight, that is, it is actually equal to the optimal solution to

Problem (5.2a)–(5.2f). It follows from the fact that in this case the problem reduces to two

separate b-matching problems, for which total unimodularity holds [Sch86], so the optimal

object function value is equal to the value of the LP-relaxed version of Problem (5.2a)–(5.2f)

and in case of LP-programs the Lagrange-relaxation gives the optimal solution.

Branch-and-Bound

This section describes our implementation of the branch-and-bound method. Readers who

are not familiar with this technique are referred to e.g. [Wol98, AMO93, Das95].
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A set system (N1, N2, N3) is called partial level-distribution if Ni ⊆ N , i ∈ {1, 2, 3}
are pairwise disjoint subsets of the nodes. For this partial level-distribution, let LN1,N2,N3

denote the computed Lagrangian lower bound, when each node in Ni is fixed on level i.

The core of this method is the recursive procedure called SingleTree, the input of which

are the subsets N1, N2, N3 and a bounding number B. The procedure either states that

there is no solution cheaper than B for this partial level-distribution or it returns an optimal

solution.

Of course, the optimal solution can be obtained by calling SingleTree with the empty

level-distribution (∅, ∅, ∅) and B = ∞.

The procedure SingleTree works as follows. First, we choose a node

j ∈ N \ (N1 ∪N2 ∪N3), we fix it onto every level and compute the corresponding lower

bounds, that is we determine the values L1 = LN1∪j,N2,N3 , L2 = LN1,N2∪j,N3 and L3 =

LN1,N2,N3∪j. Then we examine these partial level-distributions in increasing order accord-

ing to their lower bounds. For each level-distribution, if the lower bound is less than B,

we fix the node j on the corresponding level and call SingleTree with the new Ni sets. If

it returns a new solution, then we update B with the cost of this solution and repeat this

with the other level-distributions. Finally, if some of these three calls of SingleTree return

a solution, we return the best one, otherwise we state that there is no solution with cost

less than B.

We also keep an eye on the number of nodes on each level, and if the topological

constraints are not fulfilled, we go to the next step automatically.

An easy modification of this method enables to give an approximation algorithm to our

problem. The idea is to skip a possible partial fixing not only if the lower bound is worse

than the best solution but also if they are close enough to each other. Namely an error

factor err is introduced and a partial fixing is examined only if the corresponding lower

bound is less than 1
1+err

B. This ensures that the resulted solution is worse at most by the

factor err than the optimum.

5.5.2 The Local Algorithm

The heart of the algorithm is the optimizer routine of the previous section which is able

to find the theoretical optimum for small networks. So in each step we select a subset

of nodes, find the optimal solution for this subproblem and get near the global optimum
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function SingleTree(N1, N2, N3, B)

{
if (2 · |N1| < |N2| or 2 · |N2| < |N3|) then return ∞
else {

if (N = N1 ∪N2 ∪N3) then return LN1,N2,N3

else {
j ∈ N \ (N1 ∪N2 ∪N3)

C1 := (N1 + j, N2, N3)

C2 := (N1, N2 + j, N3)

C3 := (N1, N2, N3 + j)

L1 := LC1 , L2 := LC2 , L3 := LC3

((L′
1, C

′
1), (L

′
2, C

′
2), (L

′
3, C

′
3)) := sort-by-L((L1, C1), (L2, C2), (L3, C3))

B∗ := B

if (L′
3 < B∗) then B∗ = min{B∗,SingleTree(C ′

3, B
∗)}

if (L′
2 < B∗) then B∗ = min{B∗,SingleTree(C ′

2, B
∗)}

if (L′
1 < B∗) then B∗ = min{B∗,SingleTree(C ′

1, B
∗)}

if (B∗ < B) then return B∗

else return ∞
}

}
}

Figure 5.4: The SingleTree algorithm

iteratively.

This idea is also motivated by the geometrical fact that the connections of distant nodes

do not affect each other significantly, i.e. every node is probably linked to a nearby one.

Therefore it is a good approximation of the optimum if the connections of small subsets of

close RBSs are determined independently.

The algorithm begins with an initial solution and in every step it forms a group of RBSs

(H), finds the optimal connections for H and approaches the global optimum by cyclical

local optimization. In Figure 5.5 the result of the first step can be seen. In the general

step we choose the next subset according to a strategy described in Section 5.5.2 and make

corrections to it. The algorithm terminates if it could not improve the network through a
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Figure 5.5: The first step of the Local algorithm. In this example it is assumed that dRNC

is high enough to put every node in L1 in the initial solution.

whole cycle.

This method is an effective implementation of the so-called best local improvement

method [AL97]. In this problem the state space is the possible set of connections. Two

states A and B are adjacent, if we can reach B from A by changing the connections inside

the set H. Note that this local search method does not use elementary steps, it makes

rather complex improvement to the graph. Since the typical size of H is 20–25 nodes, the

number of possible connections inside H is about 1020, i.e. each state has a huge number

of adjacent states. Therefore a local optimum can be reached from every state in few steps.

The power of the algorithm is that in spite of the large number of neighbors the optimizer

function chooses the best one in each step.

Finding an Initial Solution

The algorithm can be utilized to improve the solution given by a previous one, hence in this

case the starting solution is given. However, the algorithm can also work independently,

so it should be capable of finding an initial solution satisfying the conditions.

• The easiest way to do that is to put dRNC randomly chosen RBSs in the set L1,

dRNC · dRBS randomly chosen ones in set L2, etc. This trivial solution satisfies the

constraints.

• A more sophisticated way to find an initial solution is the following: as described in

Section 5.5.1 the core optimizer can be configured to return the theoretical optimum

or work with a predefined error rate (err). If err is high enough, the optimization

becomes very fast, but of course less effective. So by setting the error rate high in the
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first cycle (i.e. until every RBS is at least once picked in H) we could quickly find a

considerably better starting solution than the previously mentioned trivial one.

Selection of H

In each step of the algorithm a new set H is selected and given as input for the optimizer.

On the one hand, H should consist of close RBSs, on the other hand, it should contain

whole subtrees only5, each rooting in a first level RBS. This is important because during

optimization the connections in H will be changed, so otherwise it would be possible to

make unconnected RBSs.

3

7

2

4

5

6

1

Figure 5.6: The selection of H

To satisfy these conditions we select adjacent subtrees of the current network rooting in

a first-level node until a predefined upper bound (hmax) for the size of H has been reached.

The first-level RBSs are ordered according to their location (clockwise around the RNC).

An example for such a selection can be seen in Figure 5.6. The selection starts in every

step with another first-level node, which guarantees the variety of H.

Since the core optimizer solves an NP-hard problem, its speed is very sensitive to the

size of its input, i.e. |H|. Choosing the parameter hmax at the beginning of the algorithm,

we can set an upper bound for |H|. Of course the higher |H| is, the better the result will

be, but the slower the algorithm becomes.

5Of course the RNC is always in H.
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n TreePlan Global Iteration
Global

Global+Local
Global+Local

vs. TreePlan vs. TreePlan

100 4736 4363 19880 7.9% 4168 12.0%

200 9048 8757 20905 3.2% 8485 6.2%

300 13534 13274 20879 2.0% 12747 5.8%

400 18389 18040 19439 1.9% 17005 7.5%

500 23037 21943 22772 4.7% 21293 7.6%

600 27533 26662 29872 3.2% 25759 6.4%

1000 45686 43916 28596 3.9% 42645 6.7%

Table 5.2: Results of the algorithms (with dRNC = ∞) compared with TreePlan.

5.6 Numerical Results

In our empirical tests we used the TreePlan algorithm [HJS99, HSG00] as a reference

method since to our knowledge this is the only method in the literature that is able to

solve problems similar to ours.

First, the Global algorithm was executed on several test cases, then in a second phase

the Local algorithm was used to improve the results of the Global algorithm. (Note that

the Local algorithm can also be used to re-design the trees of any planning algorithms, e.g.

the Global algorithm.) Both results were compared to TreePlan.

Although our algorithms can work with arbitrary parameters, the values dRBS = 2 and

ltree = 3 are fixed in our test cases, for these values were the accepted values in the UMTS

architecture at the time this research was made. The cost of an RNC node, costRNC was

set to 500 during all tests, and length proportional link cost function was used. In order to

be able to compare the numerical results to those of TreePlan, dRNC was set to ∞ in the

comparative test cases. After these we present some tests on the Global algorithm with

different dRNC values.

The Global algorithm terminates if there is no new state accepted during a predefined

number of iterations (K) in the simulated annealing. This frees the tester to explicitly

set the number of iterations in the simulated annealing for different initial temperature

and annealing factor values. In the following results the annealing factor fact was set to

0.9995, the initial temperature T0 was 20000 and K was set to 2000.
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The results of our tests can be seen in Table 5.2. The first column is the size of the

network, then the total network cost planned by TreePlan and by the Global algorithm

is compared. The fourth column contains the number of iterations made by the Global

algorithm. In the sixth column the improvement of the Local algorithm on the Global

algorithm can be seen, and finally the total improvement vs. TreePlan.

In all of the test cases the Global algorithm alone can reduce the cost of the UMTS

network; moreover the Local algorithm was able to make further improvements on the

trees in every test. The size of these trees varied from 35 to 200, showing that the Local

algorithm is appropriate for practical sized problems. As one may expect the best results

can be found by the combination of the two new methods, which gave an improvement of

6-7%, in extreme cases even of 12% compared to the former approach, TreePlan.

Table 5.3 contains the cost of the same network of size 700 with different dRNC values

planned by the Global algorithm. Naturally the cost of the network should be monotonously

increasing with the decrease of dRNC , as the problem is more constrained. The results

clearly reflect this characteristic.

The execution times of the Global algorithm on a 400MHz PC6 running SuSE Linux 7.1

can be seen in Figure 5.7. (On the x axis the number of nodes, on the y axis the execution

time of an iteration in milliseconds can be seen.)

6Note that a PC with ten times higher computational capacity is widely available today. Moreover,

the C++ compilers has also shown a dramatic improvement considering the efficiency of the generated

executable machine code.

n dRNC Cost Time

700 100 30658 21m03s

700 50 30658 18m38s

700 25 30737 18m37s

700 10 31506 19m24s

700 5 36956 17m16s

700 3 45263 15m13s

700 2 56437 14m21s

700 1 80860 15m25s

Table 5.3: Results of the Global algorithm with different dRNC values.
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The number of iterations highly depends on the initial parameters and the termination

criterion of the Simulated Annealing. In case of the above tests the number of iterations was

in the range of 20-30.000. Of course, our algorithms are slower than the former approach

according to the more complex computation. However, in a typical network design process

one would run the planning algorithm a couple of times only, hence an execution time of

about 2.5 hours for a network with 1000 nodes (which is the size of usual UMTS networks)

should be acceptable.

We also tested the Local algorithm separately. The subgradient method applied in the

tests was as in e.g. [Das95]. Our objective was to estimate the difference of the results of the

Local algorithm and the optimum. Therefore we calculated the lower bound of several test

instances as described in Section 5.2 and compared it to the result of the Local algorithm.

We considered 4 problem sizes each with 10 different networks. Table 5.4 presents the

average/minimum/maximum difference between the lower bound and the Local algorithm

with hmax = 24. This means, that the Local algorithm gives around 5-7% approximation

of the optimum value in average for practical examples of 25-200 nodes.
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Figure 5.7: The circles indicate the execution times of a single iteration of the Global

algorithm. The dotted line shows the function f(n) = 5.588 · 10−5 · n2.24.
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n AVG(%) MIN(%) MAX(%)

25 2.60 1.01 8.04

50 5.88 4.35 7.65

75 5.42 3.79 8.55

100 6.44 5.35 8.36

150 6.87 5.89 8.35

200 6.79 5.87 7.83

Table 5.4: The percentage of the difference between the lower bound and the result of the

Local algorithm.

n Optimum Local algorithm

40 1190.8 1190.8

40 1244.9 1244.9

40 1232.3 1232.3

40 1209.9 1216.3

50 1668.0 1677.1

Table 5.5: Comparing the Local algorithm with hmax = 21 to the optimum for small inputs.

Following test shows, that in small problems the actual difference is even smaller.

Namely one may sets hmax to n to get the global optimum. This is of course feasible

for smaller n values only. Table 5.5 shows the results of comparing the Local algorithm

with hmax = 21 with the optimum value—also computed with the Local algorithm with

hmax = n. The table shows 4 different networks with 40 nodes and one network with 50

nodes. One can clearly see that for small inputs the Local algorithm gives almost always

optimum.

5.7 NP-hardness of the single-tree problem

Claim 5.5 Let G(V, E) denote an undirected connected complete graph, RNC ∈ V be a

given vertex, and dRNC ∈ N+. Moreover we are given the function c : E → R+ determining

the cost of the edges. Then the problem of finding a minimal cost spanning tree with the
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following properties is NP-hard:

• every node can be reached from the RNC in a path of length at most 3,

• every node except the RNC has degree at most 3,

• RNC has degree at most dRNC.

Proof. We show a Karp-reduction of the well-known NP-complete 3–uniform set covering

problem (referred as Problem [SP5] in [GJ79]) to this one. The input of the 3–uniform set

covering problem is an integer number l and a class of sets H := {X1, X2, · · · , Xn} over an

underlining set H (|H| ≥ 3), such that

Xi ⊆ H, |Xi| = 3 ∀i ∈ {1, ..., n}

and
n⋃

i=1

Xi = H.

The problem is to determine whether there exist at most l sets in H still covering H.

This problem is reduced to the single-tree problem as it follows. First, |H| nodes are

defined corresponding the elements of H and six additional nodes ai, bi, ci, di, ei, fi are

defined for each element Xi of H. Moreover, an RNC node is also defined.

The link cost function c is defined as follows: only the edges illustrated in Figure 5.8

have finite cost, the others have infinite, i. e. so large that they will surely not be in the

minimal spanning tree (because there exists a spanning tree without these edges). The

thin edges in every subgraph have cost 0, and the thick edge has cost 1. There is a natural

one to one mapping between the sets Xi and the thick edges. Obviously the cost of a

spanning tree in G arises only from thick edges, i. e. it is always an integer number.

It is going to be shown that the cost of the minimal cost spanning tree satisfying the

above criteria is equal to the minimal number of sets covering H completely.

A trivial observation is that every path of length at most 3 between a vertex v ∈ H

and the RNC must contain exactly one thick edge. Furthermore, through a particular

thick edge at most the vertices of its set Xi can be reached through paths of length at

most three. As a consequence of these, the sets corresponding to the thick edges of a given

feasible tree will cover all vertices in H.
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Figure 5.8: The subgraph associated with each set Xi
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(a) The part of the spanning tree belonging to the

Xi sets not in the minimal covering set. The cost

is 0.
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RNC

1
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(b) The part of the spanning tree belonging to the

Xi sets in the minimal covering set. The cost is

1.

Figure 5.9: Spanning tree with cost r.

On the other hand, let us suppose that Xi1 ∪ Xi2 ∪ · · · ∪ Xir = H. To prove the

other direction, we show a spanning tree with cost r. In each subgraph belonging to a set

Xi a subtree is constructed according to Figure 5.9(a) or Figure 5.9(b) with cost 0 or 1

depending on whether the set Xi is among the covering ones.

The union of these subtrees covers every vertex in G, since the covering set covers

every vertex in H and the V \H vertices are covered by the subtrees in both cases. It may

happens that this union contains cycles, but by simply neglecting the superfluous edges a

spanning tree is obtained with cost at most r.

�
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[JHO+00] Alpár Jüttner, János Harmatos, Dániel Orincsay, Balázs Szviatovszki, and
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[JSMR01] Alpár Jüttner, Balázs Szviatovszki, Ildikó Mécs, and Zsolt Rajkó. Lagrange
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logical design of MPLS networks. In GLOBECOM, San Antonio, Texas, USA,

November 2001.
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in fixed dimension. Journal of Algorithms, 13(1):79–98, 1992.
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