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Introduction

The theory of Hilbert space operators witnessed a major progress with the work of J.
von Neumann when he started to use systematically the notions of adjoints, graphs, and
functions of operators. One reason behind his success was the observation that bounded
sesquilinear forms and bounded linear operators on a complex Hilbert space are, in fact,
the same. He applied these techniques with great success to the theory of unbounded self-
adjoint operators, as well. Later, however, forms have come back into favour in certain
situations. Namely, in the unbounded case, closed, positive forms provide a convenient
way to define positive self-adjoint operators via the form representation theorem. The
basic applications of this idea have been manifested in the Friedrichs extension of densely
defined positive symmetric operators and the form sum construction of two appropriate
positive self-adjoint operators. The form sum of two positive self-adjoint operators was
later connected to the convergence of Trotter’s product formula by a result of Kato.
This dissertation presents a collection of my results from this circle of ideas.

The present dissertation is based on the author’s papers [14] , [15] , [21], [22]. Papers
[14] and [15] consist of results of a joint research with Balint Farkas at the Department
of Applied Analysis, ELTE. Paper [22] is the result of a joint research with Roman
Shvidkoy originating at the Internet Seminar Workshop, Blaubeuren, 2001. Paper [21]
contains results of the author accomplished during his stay at the University of Ulm
with the Marie Curie Host Fellowship. Many other related results are also included.
References are given to the best of the author’s knowledge.

In Chapter 1 we describe a factorization theorem for positive self-adjoint operators
establishing a connection between form methods and operator methods. This construc-

tion is due to Z. Sebestyén. It has been applied successfully to many problems both in



bounded and semibounded case. Some recent applications, related to subsequent results
of the dissertation, are also included.

In Chapter 2 we apply the basic construction of Chapter 1 to the addition problem
of positive, symmetric operators. We arrive at a generalized notion of the form sum
construction. A commutation property of this sum with bounded operators is proved.
We also describe some pathological phenomena concerning the addition of positive self-
adjoint operators.

In Chapter 3 we consider closed, positive forms on reflexive Banach spaces. We
examine which of the Hilbert space results can be carried over to this general case.

In Chapter 4 we describe the result of Kato which gives a connection between the
form sum of two operators and Trotter’s product formula. We apply this result to the
special case when one of the semigroups is replaced by a bounded orthogonal projec-
tion (which can be regarded as a degenerate semigroup). The convergence of Trotter’s
formula for projections is then further investigated. Some positive results and coun-
terexamples are given.

Chapter 5 contains a similarity result which will be needed subsequently in the
characterization of the convergence of Trotter’s product formula for projectons. This
general similarity result is of independent interest.

Finally, Chapter 6 contains the characterization of the convergence of Trotter’s for-
mula for projections in terms of properties of the generator. The result proves, in a

sense, the converse of Kato’s result.
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Chapter 1
Factorization of positive operators

This chapter is of introductory character. It describes the basic construction, due to
7. Sebestyén, which will be indispensable in the course of Chapters 2 and 3. Some
applications of the construction, which are closely related to results of Chapters 2 and
3, are also included. In most cases only the outline of the proof is presented, while

references are made as to where the detailed proof can be found.

1.1 Factorization over an auxillary Hilbert space

Let H denote, here and throughout this dissertation, a complex Hilbert space. The
space of bounded linear operators on H will be denoted by B(H). Let A be a positive,
self-adjoint operator (bounded or unbounded), i.e. A = A* and (Az,z) > 0 holds true
for all x € dom A, the domain of the operator A.

We construct an auxillary Hilbert space in order to factorize the operator A. Define
a new scalar product [ , | on the range of A by [Az, Ay] := (Az,y). It is well defined
because if x1,2,41,y2 € dom A and Azy = Azy, Ay; = Ays then we have (Azy,y;) =
(Azg,y1) = (22, Ayr) = (we, Ays) = (Axg,ys). Also, it is positive definite because
(Az,z) = 0 implies A2z = 0 and therefore Az = 0. Hence ran A, the range of the
operator A, equipped with the scalar product [, | is a pre-Hilbert space. The completion
space of this pre-Hilbert space will be denoted by H 4.
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There is a natural (identification) mapping J of ran A (as a subspace of H,) into the
original Hilbert space H defined by Jx = = (z € ran A). As the operator J : Hy — H
is densely defined, the adjoint J* : H — H 4 exists. For x € dom A we have

(J(Ay), 2)| = |(Ay, 2)| < (Ay,y)? (Az, )2 = [Ay, Ay (Az,z)2

which means that z € dom J*. Hence J* is also densely defined, and therefore J** exists.
Furthermore, for x € dom A, (J(Ay),z) = (y, Az), hence J*x = Ax. The operator
J*J* : H — H is positive, self-adjoint by von Neumann’s theorem. Furthermore, for
all z € dom A, J*J*(z) = J*(Az) = J(Ax) = Az, that is, the operator J*™*J* is a
positive self-adjoint extension of A. This means that J**J* = A since A is self-adjoint
itself.

We remark that it is not necessary to consider the operator J** at this point. The
operator J.J* is a positive symmetric extension of A, therefore JJ* = A holds also. In
Section 1.2, however, we will need the operator J** instead of J. For the sake of unified
treatment the operator J** is introduced already at this point.

The factorization J**J* = A implies, by general theory, that dom J* = dom A%,
where A2 is the unique positive self-adjoint square root of the operator A. Moreover,

for all y € dom J* we have
|AZy|[? = [[Jy|* = sup {|(Az,)|* : = € dom A, (Az,z) < 1} (1.1)

Therefore we can identify the closed quadratic form corresponding to A in terms of the
auxillary operator J*. This fact highlights one major advantage of this construction: it
establishes a connection between the ’form approach’ and the ’operator approach’.

This factorization argument, with appropriate modifications, has led to various re-
sults concerning positive operators. Some of the applications of this argument are in-
cluded here, and some other will appear in Chapters 2 and 3.

Assume first that A is bounded. The following theorem is taken from [25|. It
illustrates the advantages of the definition of the auxillary Hilbert space H,, and, at

the same time, the factorization of A over H 4.
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Theorem 1.1.1 Let A € B(H) be a positive, self-adjoint operator on the Hilbert space
H. Assume that B € B(H) has no negative real numbers in its spectrum, and that the
product AB is self-adjoint. Then AB is automatically positive.

Proof. We only include the sketch of the proof, see [25] for details.

Define an operator B : Hy — Hy by B(Azx) := A(Bz), (dom B = ran A C H,). It
is not hard to show that B is well-defined, symmetric, and bounded on ran A C H, (cf.
Lemma 2.2.1 and 2.2.2). The continuous extension to H, is also denoted by B. Tt is
easy to prove that the inclusion of spectrums Sp B C Sp B holds (cf. Theorem 2.2.3).

Furthermore, the factorization A = J**J* shows that AB = J*BJ* holds:
J*BJ*z = J*B(Az) = J* A(Bz) = ABz for all z € H.

By assumption, the spectrum of B does not contain negative reals. Therefore we
see from the inclusion of the spectrums that B is positive, self-adjoint. Hence, the
factorization AB = J**BJ* gives the desired result. 0

Remark In |25] the result above is stated for bounded positive operators A only. How-
ever, the proof applies to the case of unbounded, positive, self-adjoint operators A, as
well. Indeed, (B*A)* = AB, therefore (B*A)** = B*A = AB, by the assumption that
AB is self-adjoint. This means that B*A is essentially self-adjoint, and is a core of AB.
Hence, it is enough to prove that B*A is positive. This, however, follows from the fact
that B*A C J*BJ*.

1.2 Operator extensions

Next, we turn to the application of the factorization construction in the theory of pos-
itive, self-adjoint extensions of positive symmetric operators. The statements of the

following theorem appeared in [3| and [26].

Theorem 1.2.1 Let a : H — H be a positive linear operator defined on a (not neces-
sarily dense) subspace D := dom a. The following are equivalent:

(i) a can be extended to a positive, self-adjoint operator A in H.
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(ii) The set D, (a) :={y € H : sup{|(az,y)|* : z € D, (ax,x) <1} < oo} is dense in
H.

The operator a has a bounded positive extension A on H if and only if D, (a) = H,
which occurs if and only if there exists a constant m > 0 such that ||ax||?* < m(az,x)
for all x € D. In this case there exists a bounded positive extension of a whose norm is

inf{m : |laz||* < m(az,x), x € D}.

Proof. The proof relies on slight modifications of the basic factorization argument
presented at the beginning of the chapter. We only include the main points of the
argument here, see [26] for full details.

The implication (i) — (ii) follows from the inclusions dom A C D, (A4) C D, (a)
which clearly holds for any positive, self-adjoint extension A of the given operator a.

For the proof of (ii) — (i) the auxillary space H, is defined analogously as at the
beginning of the chapter.
The scalar product [az,ay] := (azx,y) is well defined on ran a because a is symmetric.
The positive definity of [ , ] follows from the positivity of a and the assumption that
D, (a) is dense: indeed, if (az,z) = 0 for some = € D, then for all y € D, (a) we have
(az,y) = 0, therefore ax = 0. Define J : H, — H as before: domJ := rana, and Jx = z.
It is clear from the definition of adjoint operators that dom J* = D, (a) C H. Tt is also
clear that D C dom J* and J*x = ax for all z € D. Now, dom J* = D, (a) is assumed to
be dense, therefore J** exists. Finally, it is easy to check that the positive, self-adjoint
operator ax = J™J* is an extension of a. Indeed, J**J*z = J**(az) = J(ax) = az for
allz € D.

Also, we see from the factorization that
dom ax? = dom J* = D, (a), (1.2)

1 x
laxczy||* = |7*y||* = sup {|(az,y)|* : = € dom a, (az,z) < 1} (1.3)

holds. Furthermore, the operator J is bounded if and only if there exists a constant
m > 0 such that ||az||* < m(ax,z) for all z € D
The statements concerning bounded positive extensions of a, as described in [26] in

detail, are fairly straightforward from the construction above. U
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We introduce the classical partial ordering of positive, self-adjoint operators as fol-

lows:

Definition 1.2.2 Let A and B be positive, self-adjoint operators on H. We say that
A < B if and only if dom B2 C dom A2 and (A2z,A2z) < (B2z,B2x) for all z €
dom B3.

The construction in the proof of the theorem above distinguishes itself by being the

smallest positive self-adjoint extension of a (see [26]):

Corollary 1.2.3 Let a : H — H be a positive linear operator defined on a (not nec-
essarily dense) subspace D = dom a. Assume that a posesses at least one positive,
self-adjoint extension. Then the set of all positive, self-adjoint extensions of a contains
a smallest element. The smallest extension is provided by the construction of Theorem
1.2.1, i.e. ag = J=J*.

Proof. Let A; be any positive self-adjoint extension of a. Then
sup {|(az,y)|* : x € dom a, (ax,z) < 1} < sup {|(A1z,y)|* : € dom A}, (Ajz,2) < 1}

and this implies the statement, because the left hand side is the form of ax and the
right hand side is the form of A;. 0J

This extension, in the case when a has positive lower bound, was first constructed

by von Neumann. Later, it was studied in detail by Krein [20]. Hence the following

Definition 1.2.4 Let a : H — H be a positive linear operator defined on a (not
necessarily dense) subspace D := dom a. Assume that a posesses at least one positive,
self-adjoint extension. Then ayx = J**J*, the smallest positive extension of a, is called

the Krein-von Neumann extension of a.

Next we turn to the case when dom a is dense in /. We show that a slight modifi-
cation of the factorization argument leads to the Friedrichs extension of a. The detailed

proof of the following result can be found in [24] and [23].
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Theorem 1.2.5 Leta: H — H be a positive linear operator defined on a dense subspace
D := dom a. Then the set of positive, self-adjoint extensions of a contains a largest

element, the Friedrichs extension of a.

Proof. This theorem is well known. The customary construction of the Friedrichs
extension is via the form representeation theorem. The densely defined, positive form
tlx,y] := (ax,y) is shown to be closable, and the Friedrichs extension of a is defined as
the positive self-adjoint operator associated with the closure of . The maximality of the
Friedrichs extension is an easy consequence (see [13] pp. 89, 90). It is also a consequence
of this construction that the Friedrichs extension is the only positive selfadjoint extension
of a such that the domain of its square root is the same as the domain of the closure of
the form ¢.

Here we give a factorization of the Friedrichs extension in the spirit of Theorem 1.2.1.
First we note that doma C D, (a) always holds, hence D, (a) is dense in H, therefore it is
possible to construct the auxillary Hilbert space H,. We define an operator Q) : H — H,
by dom @) = D and Qx = ax for all x € D. It is not hard to show that J C Q*, and
that ap := Q*Q** is a positive self-adjoint extension of a. We have to show that ap
is, in fact, the Friedrichs extension of a. It is enough to show that dom aé = dom .
This follows from dom aé =domQ* =domQ = {y € H : I(x,) C D, ||z, —y| —
0, (a(zy — ), Ty — Ty) — 0} = dom . 0O

We can deduce from the constructions above, that the closed form corresponding to
the Friedrichs extension ar is a restriction of the closed form of the Krein-von Neumann
extenswn ar. Indeed, Q" C J* therefore (aF:B aFy) Q% x, QY] = [J*x, Jy] =
(aKx a; y) for all z,y € dom aF This simple observation relies on the fact that @ C J*.

In a similar manner, it is a natural idea to examine all restrictions Ry := J*[L
of the operator J* to each subspace dom a C £ C dom J*, and define the operators
A = R;R}*. It is easy to see (cf. |7] Proposition 4.1.) that each A is a positive
self-adjoint extension of a, and the closed form corresponding to A, is a restriction of
the form of ax. Also, if doma C L C M C dom J* then A, > A, holds.

The next theorem gives a characterization of the set of positive self-adjoint extensions
Ag (see [7] Theorem 4.4.):
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Theorem 1.2.6 Let a be a densely defined, positive operator in H, and let A denote a
positive self-adjoint extension of a. The following are equivalent:

(i) A= R;Ry for some doma C £ C dom J*

(i) A is an extremal extension of a in the sense that inf{(A(x —y),z —y) : y €
doma} =0 for all x € dom A.

(111) The form associated to A is a restriction of the form associated to ay.

Proof. For the proof we refer to [7] Theorem 4.4. O

For further (function-theoretic) investigations of the class of extremal extensions of
a, and some applications we refer to [7].

Now, we turn to an interesting commutation property of the Krein-von Neumann
and the Friedrichs extensions of a. These results give the basis behind Theorem 2.2.4
in Chapter 2. We remark that the same property is not known to hold for all extremal

extensions of a.

Theorem 1.2.7 Let a : H — H be a positive linear operator defined on a subspace
D :=doma, and assume D, (a) is dense in H. Let B and C' be bounded linear operators

on H leaving D invariant and such that
aBr = C*ax, aCx = B*ax
forall z € D. Then
agBr = C*agr, axCrx = B*agx
holds for all x € dom ay.
If D is dense (ensuring the eristence of ar), then
apBr = C*apx, apCxr = B*apx

holds for all x € dom ap.

Proof. These results are non-trivial. The statement concerning the Krein-von Neumann
extension appeared in [26]. It also follows from Theorem 2.2.4 in Chapter 2 on setting
a=b.

The statement concerning the Friedrichs extension appeared in [24]. O
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Problem 1.2.8 Is the same commutation property enjoyed by all extremal extensions
Aﬁ ofa?

The author remarks that the proof employed in the cases of ax and ar does not
apply, and it is a conjecture of the author that counterexamples exist.

Finally we demonstrate the different extensions introduced above by a particular
example (see the discussion in [2| and [7]).
Example Let H := L*[0,1] and a := —% with dom a := W?[0,1]. Then a is closed,
positive, with lower bound 72, and defect index dim(ker a*)=2. In fact,
ker a*=span {1,z}. The Friedrichs extension of a is simply the Dirichlet-Laplacian:

dom ay = Wy?[0,1] N W?22[0,1] and the corresponding closed form is given by

1 1 1
(a%u,a}v):/ o' (z)v'(x)dw
0

1
for all u,v € dom a = W,*[0,1]. The Krein-von Neumann extension of a corresponds

to the closed form

(a3, aZv) = / o ()0 (@)dz — (u(1) — u(0))(v(1) — v(0))

1
for all u,v € dom a2 = W'?[0,1]. The domain of ay is characterized by the folowing

boundary conditions:
dom ax = {u € W*?[0,1] : v/(0) = v/(1) = u(1) — u(0)}

From the form of ax we see that ax is not the same as the Neumann-Laplacian ay
and, furthermore, that the Neumann-Laplacian is not an extremal extension of a.

In fact, all extremal extensions of a (except for ar and ag) are characterized by the
following boundary conditions (see |7]):

Let ¢ := (c1,¢9) € C? be a vector of norm 1, and define a, := —% with

doma, := {u € W*?[0,1] : cou(0) = cru(1), c1(u'(0)—u(1)4+u(0)) = G (u'(1)—u(1)+u(0))}.



Chapter 2
Form sum constructions

This chapter deals with the addition problem of two positive (not necessarily self-adjoint)
operators. The results of this chapter are taken from [14].

The addition problem of unbounded self-adjoint operators is highly non-trivial and
has been investigated with several approaches (see e.g. [10] and [13]). In the case when
both operators are positive (or semi-bounded) self-adjoint, the form sum construction is
distinguished by Kato’s result [18] on the convergence of Trotter’s product formula. This
chapter is devoted to the construction and investigation of a generalized form sum of
two positive, symmetric operators. The construction is based on the method described
in Chapter 1, and it reveals an ’operator approach’ to the form sum construction.

Given two positive, selfadjoint operators A and B in the Hilbert space H, we may
form the operator sum A + B on dom A N dom B. However, the intersection of the
domains may be zero-dimensional, and in general nothing can assure us that the sum
will be a selfadjoint operator. The so-called form sum construction handles this problem
if dom A2 Ndom Bz is dense in H. Define qu(z) = (A2z, A2x) and qg(z) = (B2z, B2x)
two closed forms; their sum ¢4 + ¢p is a closed form on dom A3 N dom B%, therefore
the representation theorem provides a selfadjoint operator C', such that C' and A + B
coincide on dom A Ndom B [13|. The usual notation for the form sum of A and B
is A + B. In Section 2.1, we give a new construction of a generalized form sum of

positive, symmetric operators. Section 2.2 deals with commutation properties of this
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construction. In the last section we give some examples concerning the form sum, and
describe the relation between other extensions of operator sums.

We use the notations of Chapter 1. Throughout this chapter, unless otherwise stated,
a, b will denote positive, symmetric operators in the Hilbert space H, with not neccesarily
dense domains. The characterizing properties 1.2, 1.3 of the KREIN-VON NEUMANN

extension will be used frequently in this chapter.

2.1 The form sum

In the following we propose a new construction for the additon of two positive, symmetric
operators. We show that in case of selfadjont operators this construction supplies the
form sum of the operators.

Let a and b be two positive, symmetric operators, and suppose that D, (a) N D, (b)
is dense in H. This implies, a fortiori, that D, (a) and D, (b) are dense, so that the
auxillary Hilbert spaces H,, H, are possible to construct, and the corresponding KREIN-
VON NEUMANN extensions ax and by exist (cf. Theorem 1.2.1). Consider the space
H, & H,, and the operator

J:H,® H, — H, with dom J =rana ®ranb, J(ax @ by) = ax + by. (2.1)

It is easy to prove that J* is densely defined, in fact, D, (a) N D, (b) = dom J*. To see
this, let * € dom a,y € dom b and u € D, (a) N D, (b), then

|(J(az @ by), w)* = |(az, u) + (by, w)|* < 2|(az, u)* + 2|(by, u)|* <
2my, (az, ) + 2n,(by, y) < mlax & by, ax ® by|,

with m = 2max(m,, n,). This shows that © € dom J*, hence D, (a) N D, (b) C dom J*.

For the reverse, let © € dom J* and z € dom a, then
[(az,u)|* = |(J(az ® 0),u)|* < m[ax @ 0, ax ® 0] = m|ax, ax] = m(azx, x),

with a suitable m > 0, therefore u € D, (a). Similarly, we obtain that u € D, (b). Thus
we have shown that D, (a) N D, (b) 2 dom J*.
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We see that J** exists. Now, we calculate J* on domandomb. Let u € domaNdomb

and x € dom a,y € dom b, then
(J(az @ by), u) = (az,u) + (by,u) = [az, au] + by, bu] = [az & by, au & bul,

consequently J*u = au @ bu.
According to the VON NEUMANN theorem J**J* is positive and selfadjoint. We

claim that J**J* is an extension of a 4+ b. Indeed, let u € dom a N dom b, then
J* T 'u = J"(au @ bu) = J(au & bu) = au + bu = (a + b)u.

In order to prove that our construction is a generalization of the form sum of selfad-

joint operators, we need the following lemma on the KREIN-VON NEUMANN extension.

Lemma 2.1.1 If a,b are positive, symmetric operators, and D, (a) and D, (b) are dense
in H, then D, (a ®b) is dense in H ® H and

ax ®bx = (a®b)k.

Proof. First we show that (a @ b)x exists. It is enough to prove that D, (a & b) =
dom (ax @® b)? since the latter is dense in H @& H.

We observe first that (ax ®bg)z = (ai@b%{), indeed both are positive and selfadjoint
with the same square ax @ bg.

Now, using the definition, we can write:

{z®y : Ime, [((a®b)(udv),zdY)]* < my,((a®b)(udv), udv), Yudv € doma & b} =
{z®y:Imey, |(au,z) + (bv,y)]> < may((au,u) + (bv,v)),Vu @ v € dom a @& dom b}.

Also, we know that
dom (ax ® bg)? = dom (a} ®bE) = (2.3)

dom alé( ® dom b]%( =D, (a) ®D. (b) =

{z:3m, |(au,2)|* < my(au,u),Vu € doma}®{y : Im, |(bv,y)]> < m,(bv,v),Yv € domb}.
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Putting v = 0 and respectively v = 0 in 2.2, we see that

VI

D, (a®b) C dom (ax @ bk)2.

To show

N|=

D, (a @ b) D dom (ax @ bk)?2,

we let m,, = 2max(m,, m,), and use 2.2, 2.3 and the convexity of the function a — o
on R,. We have seen consequently that D, (a®b) = dom(ax ® bx)z. So the KREIN VON
NEUMANN extension of a & b exists, and we know that D, (a & b) = dom (a & b)%

To see that (a @ b)x = ax ® bi, we have to check that

[NIES

1
dom (a & b)} = dom (ax @ by)

and furthermore that
1
(ax @ bx)2 2] = ||(a @ b)}2|?
holds for all z € dom (a & b)%{

The equality of the domains follows from the above argument.
1
Now, we prove the required identity. Let z @&y € dom (a & b)}.. Then

1

l(ax @bx)2 (x@)|* = [0k @)@ @) = llaga @bEylP = llagl® + [by]? (2.9
1
Now we calculate |[(a @ b)2(z @ y)||?. The inequality
1
la® )i eyl < lagal? + lbgyl? (2.5)

follows immediately from the minimality of the KREIN-VON NEUMANN extension and
the fact that ax @ bk is a positive, selfadjoint extension of a @ b.

To see the reverse inequality, we consider the following. We can assume that HaixHQ—i-
Hb y||> > 0, therefore we let

1
2 2 b 2
A 1 R 1

1
lagee |2 + by lagee]? + [bul>

Then

sup{|((ai@b§<)(u@v), (aé@bi)(m@y})ﬁ :u € doma, v € domb, (agu,u)+(bgv,v) < 1} >
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11 1
sup{|(azu,azr) + (b2v,b%y)|* : u € dom a,v € dom b, (agu,u) < t, (bgv,v) <1 —t}

Now multiplying v and v by a suitable o, a,, € C of absolute value 1, we continue:

1

11 1
sup{|(azu,azx) + (bxv,b%y)|* : u € doma, v € domb, (axu,u) < t, (bgv,v) < 1—t} =

1 1 1 1
sup{(|(aju, afa)]+](b5v, b)) : u € doma, v € domb, (e, u) < ¢, (bgev,v) < 1t} =
1 1 1 1
(sup{|(afu, aZa)| : u € doma, (axu,u) < th+sup{|(bEv, by)| : v € domb, (bv, v) < 1—#})? =

1 1 1 1 1 1
thage ) + 2v/t(1 = Ollagllofyl + (1 = Ologyll* = lagl* + lozyl*.  (2.6)

We have used that

11
sup{|(aZu,az)|* : u € doma, (agu,u) <t} = sup{|(axu,z)|* : v € doma, (axu,u) <t} =

1 1

1 11 11
tllazz||* = sup{|(a}u,aiz)|* : u € dom a}, (a}u,afu) < t}

and the same for by. Putting together 2.4, 2.5 and 2.6 we obtain:
1 1
l(ax ® bx)2 (z @ Y)|I* = (@ ® b) (= ® y)|*

completing the proof. O]

With the help of Lemma 2.1.1 we are able to prove that the constructed operator
J**J* is indeed a generalization of the notion of the form sum of two positive self-adjoint

operators.

Theorem 2.1.2 Let a and b be positive, symmetric operators such that D, (a) N D, (b)

15 dense in H, and let J be as in 2.1, then the form sum of ax and by is J**J*, i.e.
[057¢ —|— bK = J*J".

Proof. Again we prove that dom (ax + bg)? = dom (J**J*)z, and (ax + bx)zz =
(J**J*)2z for each = € dom (ax + bg).

We know that dom (ax + bx)% = dom aZ N dom bZ., and dom (J**J*)% = dom J* =
D, (a)ND.(b), as we have seen in the argument following 2.1. Moreover doma%( =D, (a)

1

and dom b? = D, (b), which implies the desired equality of the domains.
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Using Lemma 2.1.1, we have that

|7 T)za]|* = [T, ) =
sup{|[au @ bv, J*7]|* : u € dom a,v € dom b, [au ® bv,au & bv] < 1} =
sup{|(au + bv,z)|* : u € dom a,v € dom b, (au, u) + (bv,v) < 1} =
sup{|((a @ b)(u @ v),r @ z)*:u®v € doma®domb, ((a Db)(udv), (udv)) <1} =
I(a® Do ® )| = (i © bi) @ ® DI = laja]® + |bgal®
Therefore
|77 al? = lajol® + el

which is, by definition, equal to ||(ax + bx)2||% The theorem is proved. O

The following theorem is an immediate consequence of Theorem 2.1.2, because for

any positive, selfadjoint operator a, the KREIN-VON NEUMANN extension ax and a

coincide.

Theorem 2.1.3 If a and b are positive, selfadjoint operators with dom a2 N dom b2

dense in H, then the corresponding operator J**J* is just the form sum of a and 0.

The previous theorem shows that the following notation is consistent with the notation
for the form sum construction. From now on we will use a + b for the above constructed
operator J**.J*, even if a, b are positive, symmetric operators. We reformulate Theorem
2.1.2 as follows.

Theorem 2.1.4 If a and b are positive, symmetric operators with D, (a) ND, (b) dense
in H, then a + b= ax + bg.

Remark Considering the extensions of direct sum of operators, an analogous statement
can be proved for the FRIEDRICHS extension, as for the KREIN-VON NEUMANN exten-
sion in Lemma 2.1.1. Namely, if a, b are densely defined, positive, symmetric operators,
then

ar ®br = (a®b)p.
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For the proof we only have to check the equality of the domains of the square root

operators.
1
dom (a®b) ={r®dyec H®H :3r, Dy, € domadb,x, Dy, — =Dy,

((a@b>(xn@yn_xm@ym)vxn@yn_xm@ym) _>O}:
{rdye H® H : Iz, € doma,y, € domb, x, — z,y, — ¥,

(a(ajn - mm)7$n - mm) + (b(yn - ym)a Yn — ym) - O} =
{r € H:3x, €edoma,z, — z,(a(r, — Tpm),Tp — Tpy) — 0}

1 1
®{y € H: Jy, € domb,y, — Y, (b(Yn — Ym), Yn — Ym) — 0} = dom a} & dom b},

2.2 Commutation properties

In this section we prove certain commutation properties of the generalized form sum.
Theorem 2.2.4 is the analogue of Theorem 1.2.7. The ideas used in this section are
essentially taken from [26], where the commutation property is proved for the KREIN-
VON NEUMANN extension. In turn, the first part of Theorem 1.2.7 follows from Theorem
2.2.4 on setting a = b. The situation is as follows: given E, F' € B(H) and two positive,
symmetric operators a and b, with D, (a) and D, (b) dense in H, such that both F and
F' leave dom a and dom b invariant. Suppose furthermore that the following equations

hold for all x € dom a and y € dom b:
E*ar =aFx, Frar=aFzx, FE'by=0Fy, F*by=0Ey.

We remark that throughout this section it is illuminating to think of the less general
case of £ = F (cf. Theorem 1.1.1).
Now, we define E and F on H, & H, as follows.

A

dom F =rana @ranb, E(ax & by) = aEx & bEy,

and

dom F =rana @ ranb, F(ax @ by) = aFx & bFy.



CHAPTER 2. FORM SUM CONSTRUCTIONS 21

It is obvious that £ and F leave ran a ® ran b invariant. The following lemma shows

that both F and F are well-defined and continuous on a dense subspace of H, & H,.

Lemma 2.2.1 With the notations abowve, E and F are well defined, and E Fe B(H,®
Hy).

Proof. The proof of this lemma could be considerably shortened by referring to the
result [Theorem 2 in [26]]. However, for the sake of completeness we include the detailed

proof.
[ﬁ(ax@by),ﬁ(am@by)] = [aFx ® bFy,aFx & bFy| = [aFz,aFz] + [bFy, bFy| =

(aFz,Fz) + (bFy, Fy) = (E*ax, Fx) + (E*by, Fy) = (ax, EFz) + (by, EFy) =
laz, aEFz| + [by, bDEFy] = [ax & by,aEFx & bEFy] <
l[ax @ by, ax & by]%[aEF:v S VEFy,aEFr ® bEFy]% =

[ax ® by, ax ® by)z [EF (azx ® by), EF(ax @ by)]2 (2.7)

Substituting EF for F, and repeating the argument in 2.7, we obtain

A A

[EF(ax ® by), EF (azx @ by)] < [az & by, ax ® by]2 [(EF)*(az @ by), (EF)*(az & by)]2

From this, by induction:

2™ ~ 27
2

[F(az@by), F(ar@by)] < [ax@by, ax@by) =77 [(EF) T (axby), (EF) T (az@by))" =

0z © by, az & by' " [a(EF) % w & b(EF) ¥y, a(BF) %2 © b(EF) % 47 =
laz ® by, az @ by~ [(F*E*) T ax ® (F*E*) % by, a(EF) T2 @ b(EF) T y|# =
laz & by, ax @ by "2 (ax @ by, (EF)*'z & (EF)*"y)7™ <
0 @ by, az & by]'~F lax & by | [(EF)”'z & (EF)”'y|| =
[0 & by, az & by]'~* |lax & by | = | (EF)*" & (BF)*)(@ @ y)|** <
a2 & by, az & by law @ byl | (EF) @ (BF)” || | &y =

laz ® by, ax @ by]"~ 7 ||az ® by|| 7 |(EF ® EF)?" || ||z @ y| =
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If we take the limit n — co, we obtain:
[F(az & by), F(ax @ by)] < r(EF & EF)[ax & by, ax & by),

where r(EF @ EF) stands for the spectral radius of EF @& EF. This proves both
statements for F. The proposition for E can be proved analogously. (To be very
precise, we have shown that E and F are continuously defined on a dense subspace of

H, & H,, but they are automatically extended to the whole space.) 0

Now, we compute the adjoints of £ and F in B(H, ® Hy):

~

Lemma 2.2.2 E* = F and F* = E.

Proof. It is enough to prove [* = E, as E, F € B(H, ® Hy). We check that F*z = Ex
on the dense subspace ran a @ ranb. Let ax & by € ran a @ ran b, then for all au & bv €

ran a @ ran b
[au & bv, F*(az @ by)] = [F(au @ bv), ax & by] = [aFu & bFv, ax & by] =

[aFu,ax]+[bFv,by] = (aFu,x)+(bFv,y) = (E*au, x)+(E*b,y) = (au, Ex)+(bv, By) =
[au, aEx] + [bv, bEy] = [au & bv, aEx & bEy] = [au & bv, E(ax & by)],
and that was to be proved. 0]

Before proving the commutation preserving property of the generalized form sum
we make a short observation in the case when a = b and £ = F. Note, that in the
special case when £ = F Lemma 2.2.2 means that E is a bounded selfadjoint operator
on H, ® H,. Furthermore, in the case when @ = b and £ = F holds, we can replace the
auxillary space H, & H, by simply H,, and define E(az) := a(FEx) with dom F = ran a.
In this case, the arguments above show that E is a bounded self-adjoint operator on H,.
We can relate the spectrum of E to the spectrum of E (see [25] for the bounded case,

and [15] for a more general case).

Theorem 2.2.3 The spectrum Sp (E) is contained in Sp (E) NR.
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Proof. Since E is self-adjoint it is clear that Sp (E) C R. On the other hand, take any

real A from the resolvent set of £ and x € dom A, then
A(E — M)z = (E — M)* Az, hence A(E — \) 'z = [(E—X)7']" Az

which means that we can define the operator [(E — AI)7!]. A short computation gives
that
- . o -1
(BE-An"] = (E-AD)
indeed for x € dom A

[(E—AD)7'] (E - Af) Az = A(E — X)) (E — M)z = Az, and

(E - Af) [(E— )" Ax = A(E — \I) (E— \I)" 2 = Auz.
This proves the statement. U

Now we prove that commutation is preserved when taking the generalized form sum

of operators.

Theorem 2.2.4 Let a,b be positive, symmetric operators with D, (a) N D, (b) dense in
H, and suppose that E,F € B(H), such that both E and F leave dom a and dom b

invariant, and for aoll x € dom a and y € dom b
E*axr =aFz, Frar=aFx, FE'by=>bFy, F*by=>bFEy.

Then
E*(a+b) C(a+bF and F*(a+0b)C(a+bE.

Proof. First we show the following:
E*JCJF, F*JCJE, EJ"CJE, FJ*CJF
Indeed, let ax & by € ran a @ ran b, then

A

JF(az®by) = J(aFx®bFy) = aFx+bFy = E*ax+E*by = E*(ax+by) = E*J(ax®by).
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Observing the domains, we have consequently E*J C JF. An analogous proof can be

given for F*J C J E. For the remaining inclusions, we write:
EJ = F*J* C (JF) C(E*J)* = J'E,

as F is bounded, hence BEJ* C J*FE, and with the same reasoning FJ* C J*F.

Finally we turn to the proof of the theorem. Using the previously proved statement,
we have
Note that we have used that E is continuous according to Lemma 2.2.1. We complete

the proof by writing
E*(a+0b) = E*J*J" C J*EFJ* C J*J'F = (a + b)F,

that is £*(a + b) C (a + b)F, and with the same argument F*(a +b) C (a + b)E. O

The following result, which is just a special case of Theorem 2.2.4 with £ = F' =

S = 5%, shows the reason why we talk about “commutation properties” above.

Theorem 2.2.5 Let S be a bounded, selfadjoint operator over the Hilbert space H, such

that S leaves both dom a and dom b invariant, and furthermore
Saxr = aSx, Sby = bSy

hold for all x € doma and y € domb. Also, assume that D, (a) N D, (b) is dense in H.
Then
S(a+b) C (a+b)S.

In Theorem 2.2.4, we require that the bounded operators F, F' leave doma and domb
invariant. It is interesting to see what other subspace D can replace dom a and dom b.
It is clear that a sufficient condition on D is that a + b= (alp) + (b]p). The following

theorem characterizes such subspaces D.
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Theorem 2.2.6 Let a and b be positive, symmetric operators with D, (a) N D, (b) dense
in H, and suppose that D C domandomb is a linear subspace. Then alp + blp =a + b
if and only if for all x € H

sup{|(au, z)|* : u € dom a, (au,u) < 1} + sup{|(bv,z)|* : v € dom b, (bv,v) < 1} =
sup{|(au, 2)|* : v € D, (au,u) < 1} +sup{|(bv,z)|* : v € D, (bv,v) < 1} (2.8)
Proof. Before all, observe that D, (a) C D, (a[p) and D, (b) C D, (b[p). Indeed:
D. (a) = {y € H : Im,|(azx,y)|* < m,(az,z),Yz € doma} C (2.9)

{y € H : 3m,|(az,y) < m,(ax,x). ¥z € D} = D, (al p).

and the same for D, (b) and D, (b[p).

Suppose now that condition 2.8 is satisfied. Then for the reverse inclusion D, (a) N
D, (b) D Dy (alp)ND. (b]p) we let z € D, (alp) N D, (b]p), which is the same as saying
that the right hand side of 2.8 is finite for this . But then, from assumption 2.8 it
follows that the left hand side of 2.8 is also finite, implying x € D, (a) N D, (b). By our

construction for the form sum

M=

dom ((a + b)2) =D, (a) ND, (b), and dom (al, + bl,)% =D, (al,) N D, (bl ),

. Let z € dom (a + b)%, then by the proof of

N

hence dom (a + b)z = dom (al,, + blp)
Theorem 2.1.2 and 1.2 and 1.3

(@ + )7 ]” = agal® + bz = (2.10)
sup{|(au, z)|* : u € dom a, (au,u) < 1} + sup{|(bv, z)|* : v € dom b, (bv,v) < 1} =
sup{|(au, z)* : u € D, (au,u) < 1} + sup{|(bv,z)|* : v € D, (bv,v) < 1} =

l@lp)iel? + 1 Blo)kel® = l(alp + blp) e
Consequently we have alp + b, = a + b.
For the reverse direction, we suppose that al, + bl = a + b. Then for all z €
dom (a + b)z we have ||(a + b)2z||2 = ||(al + bl p)22|%, and the same argument as in

2.10 shows that 2.8 is satisfied. O
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2.3 Remarks on operator sums

Our construction for the form sum is based on the idea used when constructing the
KREIN-VON NEUMANN extension ax of a positive, symmetric operator a. Analogously
we consider the construction corresponding to the Friedrichs extension ap of a (cf The-
orem 1.2.5). We suppose that dom @ and dom b are dense. Again we have the Hilbert
space H, @ H,, and we define analogously as in [23], [24]

Q:H— H,® H,, withdom @ =domaNdomb, Qr=ax® bx.

Obviously @ is a restriction of J*. The question is, what can be said about Q*Q**.

Theorem 2.3.1 Suppose that a and b are positive, symmetric operators, and dom a N
dom b is dense in H. Then Q*Q** = (a + b)F.

Proof. First we show that under these circumstances Q*Q** exists and is a positive,
selfadjoint operator. From the VON NEUMANN theorem, it is clear that if Q*Q** exists
then it is selfadjoint, and obviously positive. @Q* exists, since dom () is dense. We
compute dom Q*, and as it will be dense, we conclude that Q** exists. First we compute

Q* onrana @ ranb. Let axr G by € rana @ ranb and z € dom a Ndom b
(Qz,ax & by] = [az & bz, ax & by|] = [az, ax] + [bz, by] = (az,z) + (bz,y) =

(z,ax) + (z,by) = (2, ax + by),

which shows that ran a @ ran b C dom Q* and Q*(az @ by) = ax + by. Therefore Q* is
densely defined. We see that Q*Q** is an extension of a + b:

Q'Q™2=0Q"Qz = Q*(az ® bz) = az + bz.
Because of the extremality of the FRIEDRICHS extension, we only have to prove that
dom (a + b)%, = dom (Q*Q**)%.
We can write

dom(Q*Q**)% = domQ** = domQ = {y € H : Jy, € domQ, y,, — v, Qy,, convergent} =
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{y € H : Jy,, € dom Q, y,, — Y, [ayn B by, — Ay B bYrm, Y B bYy, — AYy B byy] — 0} =
{y € H : 3y, € domandomb, y, — ¥, (a(yn—Ym), Yo —Ym) +(0(Un—Ym), Yo—Ym) — 0} =
{y € H: 3y, € dom (a+0b),y, — v, ((a+0)(Yn — Ym), Yn — Ym) — 0} = dom (a + b)é,
which remained to complete the proof. U

Finally, we examine the connection between different extensions of the operator
sum. Supose that A and B are positive, selfadjoint operators, and let A + B denote
the operator sum on D = dom A Ndom B. Suppose that D is dense in H, so that the
FRIEDRICHS extension (A + B)r of A+ B exists. KATO [17] shows an example when
A+ B # (A+ B)p. In view of Theorem 2.3.1 one could expect that, analogously,
J*J* = (A+ B)g holds. By Theorem 2.1.3 this would mean that A + B = (A + B)g
holds. However, we will prove that in general A + B # (A + B)g. Note that if we
assume only that dom Az N dom B2 is dense in H — assuring the existence of A + B —

the KREIN-VON NEUMANN extension will still exist. Indeed, it is easy to see that
D. (A+ B)={y € H :3m,|((a+b)z,y)|* <my((a+b)x,x), Vo € D} D

D, (4) N D, (B) = dom A2 N dom Bz,

so D, (A + B) is dense in H. However, it may well happen that dom A2 Ndom B: is
dense in H while dom ANdom B = {0}. In this case A + B # (A+ B)x = 0, providing
a trivial counter-example. For this reason, in the sequel we keep the assumption that D
is dense in H.

Example 1. Let a be a densely defined, closed, symmetric operator with positive lower
bound. Suppose moreover that a is not selfadjoint. Then the deficiency index dim(ker a*)
of a is greater than zero. Consider ax and ap, both are positive and selfadjoint, and
D = dom ax Ndom ar O dom a, therefore D is dense in H. Furthermore, we have that

ax + ap = 2ar, because
1 1 1 1 1
dom a} Ndom a} = dom a3, and |akz|* = |azz|?

1
for all z € domaj. On the other hand, (ax+ar)x = 2ak, because ax+ap is a symmetric

extension of 2a, hence 2ax = (2a)x < (ax + ap)g. Conversely, (ax + ar)x < 2ag,
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because ax + ap is a restriction of 2ax. Thus we have that ax + ap # (ag + arp)k, as
desired. As a simple specific example one can take the extensions ar and ax described
in the Example at the end of Chapter 1.

Example 2. A similar approach can provide an example when A + B # (A + B)p.
The example above fails as ax + ap = 2ar and (ax + ap)r = 2ap as well. However,
take any intermediate extension a,; of a instead of ar. Then we have ay + ay < 2ay
because

1 1
= domaj Ndomajy, = domaj,

[SIE
1=

dom (ax + ay)

and
. 1 1
(ar + anr)2z|® = [laZz|? + [laZz|? < ||(2anr) 2|

1
for all x € dom a},. Furthermore, (ax + an)r > 2ap because both ax + ap and 2ap,

are extensions of 2a,; [ = ax + apr, here we have used that

dom axNdom aps

ok _
aK rdom agnNdomay; — @ rdom agNdomay — OM rdom agNdom apy?

so the inequality follows from the extremality of the FRIEDRICHS extension. Thus we
have

(057¢ + apnr < 20,M < (aK + CLM)F. (2.11)

How can we assure that equality does not hold at both inequalities in 2.117 It is easy
to see from the argument above that a sufficient condition for ay; is that the form g,,,
of aps is not a restriction of the form ¢,, of ax. In other words, it is sufficient that a,,
is not an extremal extension of a (cf. Theorem 1.2.6). When dim (ker a*) > 0, such an
ays is always available (see [2]). Just take any strictly positive, closed form gy on ker a*
(e.g. the original inner product) and define a new form ¢ on kera* + dom aé as follows

1 1
q(x +9y) = qo(x) + ||laky||?, =z € kera*,y € dom a}.
1
We have used that ker a*Ndomaz = {0}. Using the representation theorem, we get the
required ay. (Note that ax belongs to the choice ¢o = 0.) Thus we see that a desired
counter-example can be given whenever dimkera* > 0. As a simple specific example
one can take ax as described in the Example at the end of Chapter 1, and ay; := an

the Neumann-Laplacian, which is not an extremal extension of a.



Chapter 3
Positive forms on Banach spaces

The representation theorem establishes a correspondance between positive, self-adjoint
operators and closed, positive forms on Hilbert spaces. The aim of this chapter is to
show that some of the results remain true if the underlying space is a reflexive Banach
space. In particular, the construction of the Friedrichs extension and the form sum of
positive operators can be carried over to this case.

Let X denote a reflexive complex Banach space, and X* its conjugate dual space
(i.e. the space of all continuous, conjugate linear functionals over X). We will use the
notation (v,z) := v(x) for v € X* | z € X, and (z,v) := v(x). Let A be a densely
defined linear operator from X to X*. Notice that in this context it makes sense to
speak about positivity and self-adjointness of A. Indeed, A defines a sesquilinear form
on dom A x dom A via ta(x,y) = (Ax)(y) = (Az,y) and A is called positive if ¢4 is
positive, i.e. if (Az,xz) > 0 for all z € dom A. Also, the adjoint A* of A is defined
(because A is densely defined) and is a mapping from X** to X*, i.e. from X to X*.
Thus, A is called self-adjoint if A = A*. Similarly, the operator A is called symmetric if
the form ¢, is symmetric.

In Section 3.1 we deal with closed, positive forms and associated operators, and we
establish a generalized version of the representation theorem. In Section 3.2 we apply
the representation theorem in two situations: first we construct the Friedrichs extension

of a positive, symmetric operator, then we define the form sum of two positive, self-
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adjoint operators. We show that the factorization argument of Chapter 1 remains valid
in this context, as well. In the last section we give applications of the results in the
theory of partial differential equations and in probability theory.

The results of this chapter are taken from [15].

3.1 Representation theorem

Let D C X be a dense subspace, and let ¢t : D x D — C be a sesquilinear form on D
(where t is linear in the first variable and conjugate linear in the second). Assume that
t is positive with positive lower bound, i.e. t(z,x) > ~||z||?>, v > 0. Assume also that ¢
is "closed" in the sense that (D,t(-,-)) =: H is a Hilbert space (i.e. it is complete). In
this case, the injection ¢ : H — X is continuous, so H can be regarded as a subspace
of X. For brevity we will use the notation [-, -] for ¢(,-). An operator A from X to X*
can be associated to the form ¢ in a natural way: let x € D and take the functional
[z,y], y € D; if this functional is continuous in the norm of X then there is an element

z in X* for which [z, y] = z(y) =: (2,y), in this case, let Az := z.

Theorem 3.1.1 With notations as above the operator A : X — X is a positive, self-

adjoint operator.

Proof. Let v € X* be an arbitrary element. Now, (v,z) x € D is a continuous,

conjugate linear functional on H. Indeed,

1
(v, 2)| < loll =]l < —=[2] [[v]l = Klz],
val
where [7] denotes the norm of H, i.e. [z] = [z, 2]"/2. Thus, by the theorem of Riesz we

have an element f € H such that (v,z) = [f,z]. Define an operator B from X* to X
by Bv := f. Then B is defined everywhere on X*, and B is positive and bounded with
| Bl < %Y Indeed, (z, Bz) = [Bz, Bz] = [Bz]* > 0, and

1 1 1
IB2)|* < —[B2] = —(Bz,2) < —||B| |z]I.
g g v
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Hence, B is a bounded, positive, self-adjoint operator. Furthermore, B is injective. To
see this, suppose that Bz = 0. Then 0 = [Bz, g] = (2, g) for every g € H, and H is dense
in X therefore z = 0. This means that the inverse B~! exists and is a linear mapping
from X to X*. We will show that A = B~!. Let # € dom A4, then [z, y] = (¢, y) for some
t € X* and Az =t. Also, (t,y) = [Bt,y| so Bt = z, and hence A C B~!. Conversely, if
r € dom B™! then x = Bz for some 2z € X* and [z,y] = [Bz,y] = (2,y) is continuous in
y therefore © € dom A and Ax = z = B~'x, which proves that B~! C A. To complete

the proof we have the following lemma, which is well known in Hilbert spaces. U

Lemma 3.1.2 If B : X* — X is a bounded, injective, self-adjoint operator then A =

B! is also a self-adjoint operator from X to X*.

Proof. First we show that ran B is dense in X. Indeed, if for some v € X* we have
(Bz,v) = 0 for every z € X*, then (Bz,v) = (z,Bv) = 0so Bv =0 and v = 0. Hence
A is densely defined. Also, A is symmetric, because if x € dom A then x = Bz for some
z € X* and (Azx,z) = (2,Bz) € R. Thus A C A*. To see the reverse inclusion, let
y € dom A* and let x = Bz run through the elements of dom A. Then (Az,y) = (z,y)
and also

(Az,y) = (z,A%y) = (Bz,A"y) = (2, BA"y)

which means that y = BA*y, so y € dom A. O

We remark that the previous arguments can be carried out whenever (X,Y) is a
dual pair of locally convex, topological linear spaces. In this case, one has to replace
the condition on the positivity of the lower bound by the natural assumption that the
injection ¢ introduced above is continuous.

It is possible to introduce a more general notion of positive, closed forms (in order to
include forms with lower bound 0). A positive form ¢ : D x D — C will be called closed
if whenever z,, C D and x, — = in X and t(z, — T, T, — T,n) — 0 then x € D and
t(z, — x,x, —x) — 0 (notice that when ¢ has positive lower bound then this definition
agrees with the previous one). We will see from Lemma 3.2.2 that it is possible to
associate a closed form with every positive self-adjoint operator. Conversely, however,

it is an open problem whether the representation theorem remains valid in this context.
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Problem 3.1.3 Assume t is a positive, closed form on a dense subspace D C X. Is it

true that the operator associated with t is selfadjoint?

3.2 The Friedrichs extension and the form sum

In this section we apply the representation theorem in two situations. First we construct
the Friedrichs extension of a densely defined positive operator. We are restricted to the

case when a has positive lower bound.

Theorem 3.2.1 Let a : X — X* be a positive, densely defined operator with positive
lower bound, (azx,z) > v||z||*, v > 0 for every x € dom a. Then a admits a positve

self-adjoint extension with the same lower bound.

Proof. The form t,(z,y) := (az,y) defines a pre-Hilbert space on dom a. Denote the
completion of this space by H, and the arising inner product by [-,-]. The injection
1 : doma — X extends by continuity to H and the extension will be denoted by I,. We
prove that I, is injective. Notice first that [t,y] = (at, [,y) for all t € doma, y € H.
Indeed, take a sequence y,, € doma , y, — y in H (which implies convergence in X as
well), then
(at, I,y) = lim(at, I,y,) = lim[t, y,| = [t, y].

Now assume that [,y = 0. Then

[y]* = lim[y,, y] = lim(ay,, L,y) = 0

therefore y = 0 which means that I, is injective. Thus H can be regarded as a subspace
of X and Theorem 3.1.1 can be applied. It is clear that the arising self-adjoint operator
Ap is an extension of a and we also see from the proof of Theorem 3.1.1 that (Apz,x) >

v||z]|? for all z € dom A. This operator will be called the Friedrichs extension of a. [

Next, we show that the factorization argument described in Chapter 1 remains valid
in this context. For bounded positive self-adjoint operators from X to X* the following
lemma was also proved in [27], and it plays a key role in the characterization of covariance
operators of Banach space valued random variables. It is also remarkable that this

factorization argument is applicable without the condition of positive lower bound.
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Lemma 3.2.2 Let A be a positive self-adjoint operator from X to X* (it is not necessary

that A has positive lower bound). Then there exists an auziliary Hilbert space H and an
operator J : H — X* such that A = JJ*.

Proof. Define an inner product on ran A by [Az, Ay] := (Az,y). It is well defined
because if Ar; = Axy and Ay, = Ays then

(Az1,y1) = (Aza, 11) = (22, Ayr) = (22, Ays) = (Az2, y2).

Furthermore it is positive definite, because if [Ax, Ax] = (Az,x) = 0 then by the Cauchy

inequality we have
|(Az, y)|* < (Az,2)(Ay,y) =0

for all y € dom A which implies that Az = 0. Thus (ran A, |-, -]) is a pre-Hilbert space.
Denote the completion of this space by H4. Define the operator J : H4 — X* by
dom J = ran A and J(Azx) := Az for all Az € ran A. Then, by definition dom J* =
{y e X : |(Az,y)|* < M,(Az, ) for all z € dom A}, in particular dom A C dom J* and
J*y = Ay for all y € dom A. Thus JJ* is an extension of A and JJ* is symmetric. It
is also clear that a self-adjoint operator is maximal symmetric just as in the context of
Hilbert spaces. This means that A = JJ*. ([l

One could think that the Krein-von Neumann and Friedrichs extensions of an ar-
bitrary positive, densely defined operator are now possible to construct in a similar

manner as in Theorem 1.2.1 and 1.2.5. Notice, however, that one link is missing:

Problem 3.2.3 (Generalized von Neumann theorem) Assume that T is a densely de-
fined, closed operator from X to a Hilbert space H. Is it true that T*T : X — X* is
selfadjoint?

Notice that in the context of Hilbert spaces dom A2 = dom J* and (A2z, Azz) =
[J*z, J*z].

It is natural to associate the sesquilinear form t4(x,y) := [J*x, J*y|, z,y € dom J*
with the operator A. This form is closed because the adjoint operator J* is closed. Also,

if two positive self-adjoint operators A and B have the same form then the operators are
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necessarily equal. Indded, for € dom A and y € dom B we have (Az,y) = [Jiz, Jiy] =
[J5x, Jhy] = (z, By) which means that B C A* = A, hence A = B.

It is also possible to obtain the form of A without referring to the operator J*.

Lemma 3.2.4 With notations as above we have

dom J} = {yEX: sup |(Ax,y)|2<oo}

z€dom A,(Az,x)<1

and

[Jhy, Jhyla = sup |(Az, y)|?

zedom A,(Az,z)<1

Proof. The characterization of dom J* is clear from
dom J* = {y € X : |(Az,y)|* < M,(Ax,z) for all € dom A}.
To see the other equality notice that ran A is dense in H 4, therefore we have

[Tay. Jiyla = sup |[Jy Azi = sup |(y, Az)[?
(Az,x)<1 (Az,x)<1

O

Next we turn to the construction of the form sum of two positive self-adjoint opera-
tors.

The form sum construction can be carried out if both forms are closed and at least
one of them has positive lower bound.

Assume that A is a positive self-adjoint operator with positive lower bound, and B
is an operator associated with a positive, closed form ¢p. Assume also that Hsp :=
domJjNdomtp is dense in X. Then it is easy to see that (H4 p,ta+tp) is complete, thus
the representation theorem can be applied. The arising positive self-adjoint operator
will be called the form sum of A and B, and will be denoted by A + B.
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3.3 Application of the results

Covariance operators.

Consider a probability measure space (€, A, u), and let £ : Q@ — X a random variable

i.e. a weakly measurable function. Suppose that & possesses a weak expectation, in

E£:=/Q£du

exists as a Pettis integral. Note that if X is reflexive, according to Dunford and Gelfand,

other words

this is equivalent to requiring the existence of

/Q 7€) du

for all f € X*. Further, we make assumptions on the second moments, and suppose

that the set
D={7:sex [17©F du < oo
is dense in X*. We do not require that D = X* (cf. [27]).
As an example, take X =y, Q = {w, :n=1,2,...} and p({w,}) = ce"C/2" with
a suitable constant c. Setting &(w, ), = n*/k!, it is easy to compute that, in this case,
D # X* is dense.
In the sequel we assume that E£ = 0, since we could take £ —E¢ instead of . Define

the sesquilinear form

t(f,9) =E (f(£)3(§))
for f,g € D.

Theorem 3.3.1 t is a positive, closed, sesquilinear form on D x D.

Proof. Positivity is trivial. Suppose that f, € D converges to f € X* and
E |fa(&) = fm(&)]F — 0, then f,(€) has a limit g € L£5(Q, 1), and moreover g and
f(&) conincide almost everywhere, hence E |[f(£)|*> < +oo, implying f € D and

E |f.(6) — f(O]F — 0. 0
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If ¢t possesses a positive lower bound and X is reflexive, then the application of
Theorem 3.1.1 provides a representing, self-adjoint operator A from X* to X** = X
which is called the covariance operator of the random variable £ (cf. [27]). Note that
if X is a Hilbert space then the original version of the representation theorem provides
the covariance operator of £ associated to the closed form ¢ (even if ¢ has lower bound
0).

It is clear from the definitions that the covariance operator of the sum of independent

random variables is the form sum of the covariance operators.

Theorem 3.3.2 Let & and n are independent random variables with covariance opera-

tors A and B respectively. Then the covariance operator of € +n is A+ B.

Elliptic operators.

This is a classical application of the Friedrichs extension (see [8]). Take X = L,(€2),1 <
p < 400 where €2 is a bounded domain with smooth boundary in R™. Define the operator
A from L,(£2) to L,(£2) by dom A = C§°(£2) and

0 of
Af == g0 () +bf

ik=1

where a;; € CY(Q), b€ L},.(Q), b > 0 and

loc

n

> aiw(@)BiBe =7 Y |87 >0

ik=1

everywhere in Q (uniform ellipticity). In this case we have

“rn= | <— > o @%) +bf> Tdo—

i,k=1

L d TJ >
L(;lazkaxiaxk+b|f|> de >~ QZ

Now, for p < 2n/(n — 2) we have

2
dzx.

ox

af

2
5 dxchin, c>0

of
T
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by the Sobolev imbedding theorem (see e.g. [1] pp. 95-99). Thus A has positive lower

bound. The Friedrichs extension of A is surjective, and this means that the equation

"9 0
- Z (aik_f) +0f =g
ihe1 8371 a.’L‘k

has a weak solution for every g € L,(§2) whenever ¢ > 2n/(n + 2).




Chapter 4
Trotter’s formula for projections

The form sum construction of positive, selfadjoint (and, more generally, m-sectorial)
operators in Hilbert spaces is distinguished by Kato’s famous result on the convergence
of Trotter’s product formula (see [18] Theorem and Addendum; cf. also the subsection
"Closed forms’ in Section 4.1 below).

The aim of this chapter is to examine the convergence of Trotter’s product formula
when one of the Cy-semigroups is replaced by a projection (which can always be regarded
as a constant degenerate semigroup). The motivaton to study Trotter’s formula in this
setting arises from the fact that for 'nice’ open sets Q C R" the Cy-semigroup on L?(()
generated by the Laplacian with Dirichlet boundary conditions can be obtained as a
limit of a formula of this type.

Let A be the generator of a Cp-semigroup (e4);>o on a Banach space E, and let
B € B(E). Then A + B generates a Cj semigroup which is given by Trotter’s product

formula

¢! AtB) = Tim (enAenB) (4.1)

n—o0
where the limit is taken in the strong operator topology. A possible direction of gener-
alization of this well-known result is discussed in [4] and [6]. Namely, the convergence of
Trotter’s product formula is examined in the case when the Cy-semigroup e!? is replaced
by the simplest of degenerate semigroups, i.e. a projection P € B(E). For convenience

we include the basic notions here:
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A family of operators S(t);~¢ is called a semigroup on E if
S :(0,00) — B(FE) is strongly continuous and satisfies the semigroup property S(t+s) =
S(t)S(s) for all s,t > 0. If, in addition, S(0) := lim;_ S(t) exists strongly, then we
say that S(t)io (or S(t)i>0) is a continuous degenerate semigroup. In this case S(0)
is a bounded projection, its image Ey := S(0)E is invariant under S(t) (¢ > 0), and
the restriction of S(t)i>o to Ep is a Cy-semigroup on Ey and S(t) equals 0 on E; :=
(I — S(0))E (see [16], Theorem 10.5.5). A trivial example of a continuous degenerate
semigroup is given by S(t) := P (¢ > 0), where P denotes a bounded projection.

Now, in 4.1 we replace the Cy-semigroup e'” by the continuous degenerate semigroup
S(t) = P (t > 0), and we examine the convergence of the formula

lim (ex”P)" (4.2)

n—oo

under various assumptions on A and P. (If 4.2 converges, then the limit can be re-
garded, in a sense, as the ’restriction’ of the semigroup e** to the subspace PE. Of
course, in the trivial case when ¢4 and P commute, the formula 4.2 does converge
to the restriction of e!* to PE.) In Section 2 we describe some interesting conditions
under which 4.2 converges strongly. For example, if A is the generator of the Gaussian
semigroup on L*(R") and Pf = 1qf where Q C R" is a bounded open domain with
Lipschitz boundary, we will see that 4.2 converges strongly to the semigroup generated
by the Dirichlet Laplacian on L?(Q2). In Section 3 we provide some non-trivial examples
where 4.2 fails to converge.
This chapter is based on [22].

4.1 Convergence results

Closed forms

In this subsection we describe an important case when Trotter’s product formula con-
verges. The results in this subsection are direct consequences of [8, Theorem and Ad-

dendum|. We describe the basic notions briefly:
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Let H be a Hilbert space and let
a:D(a) x D(a) — C

be a sesquilinear mapping where D(a), the domain of a, is a subspace of H. We assume
that a is semibounded, i.e. that there exists A € R such that

|ul|? := Re a(u,u) + Mu,u)g >0

for all w € D(a), u # 0. Moreover, we assume that a + X is sectorial and closed, i.e.,
that [Tm a(u,u)| < M(Re a(u,u)+ A(u,u)y) and (D(a), || - ||.) is complete. In short, we

will call a a closed form. Let K = D(a) be the closure of D(a) in H. Denote by A the

operator on K associated with a, i.e.
D(A) ={u € D(a) : Jv € K such that a(u, p) = (v,¢)y for all p € D(a)}

and Au = v. Then — A generates a Cy-semigroup e~*4 on K. Denote by @ the orthogonal

projection on K. Now, define the operator e™*® on H by
ey =eMQx, v€H t>0

Then e~ is a continuous degenerate semigroup on H. We call it the degenerate semi-
group generated by a on H.

Now, let b be a second closed form on H. Define a+bon H by D(a+b) = D(a)ND(b)
and (a + b)(u,v) = a(u,v) + b(u,v). Then it is easy to see that a + b is a closed form
again. Now the following product formula holds (see [8, Theorem and Addendum]):

Theorem 4.1.1 Let x € H. Then

_ . _ty
ety = lim (e”n% 0z

n—o0

for all t > 0.

We apply this result in a particular situaion. Let P be an orthogonal projection.
Define the form b by D(b) = PH and b(u,v) = 0 for all u,v € PH. Then ¢ * = P for

all t > 0. Therefore, as a corollary of Theorem 4.1.1 we have
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Theorem 4.1.2 For any orthogonal projection P and closed form a, the limit

S(t)z = lim (e +“P)"z

n—oo

exists for all x € H and t > 0, and S(t)i~o is the continuous degenerate semigroup

generated by the form a|py.

There is another possible way to formulate this result. Let 7'(z).cx, be a holomorphic
Co-semigroup on H, defined on a sector 3, := {z € C: 2z # 0,|arg 2| < 7}, 7 € (0, §].
Assume that [|(T'(z)|| < 1 for all z € ¥,. Then the generator A of T'(z) is associated
with a densely defined, semibounded, closed form a (see [17], Chapters VI. and IX., and

also [5], Theorem 1.2), so we have the following corollary (see [6] Theorem 4):

zA

Corollary 4.1.3 Let —A be the generator of a holomorphic Cy-semigroup (e **).ex.
on a Hilbert space H, where 7 € (0,%]}, and assume that ||e=**|| < 1 for all z € ;.
Let P be an orthogonal projection. Then

S(t)r = lim (e +4P)"z

n—oo

exists for all x € H and t > 0, and S(t);=o is a continuous degenerate semigroup on H.

Bounded generators

Just as one would expect, in terms of convergence of 4.2 there is a universally ’nice’

situation, namely the case of bounded generators.

Theorem 4.1.4 Let A € B(E) be the generator of a Cy-semigroup (e')>o and let
P € B(E) be a projection. Then

lim (en4P)"z = e"AP' Py

n—oo

for all x € E and uniformly for t € [0,T] for each T > 0.

Proof. Case 1. Assume first that both e/t and P are contractive. Let V(t) := Pe!AP €
B(PE) and apply Chernoff’s product formula (see e.g. [12], Theorem IIL.5.2) to the
family V(¢) on the space PE. Note that V(0) = Ipg , [|[V(¢)|| < 1 (for all t > 0), and
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limy,_ W = PAx; = PAPx, for all z; € PFE, and PAP is a bounded operator on
PE. Now, by Chernoft’s product formula limn_,oo[V(%)]”xl = ePAPly, for all z; € PE
and uniformly for ¢ € [0, T]. Furthermore, for any given = € E we can decompose z as
& = Px+(I—P)x =: £+, and we have (enAP)"z = (exdP)"xy = en?(PenAP)" 11,

Now, for large n we have
|ePAP Py — (Pen A P)'zy || = ||ePAF 2y — (PenP)ay|| < e
for t € [0,7T], and also

lenA(PendP)"'zy — (Pen A P) x| = ||(I — P)en™(Pen?P)" oy =
(I — P)(en™ — I)(PexAP)" Ly || < [T — P|| - len® = I|| - ||| < &

Case 2. In the general case we first introduce an equvivalent norm on E such that P
becomes contractive, then we use a rescaling argument to achieve that the semigroup
becomes contractive. Indeed, with the new norm ||z||o := ||Px| + ||[(I — P)z|| E is a
Banach space, || - || and || - ||o are equivalent, and P is contractive on Ej.j,. Now, for

7/\t6At

A > ||Al|o the rescaled semigroup e is contractive on Ej.,, therefore the result of

Case 1 can be applied, and the result follows. 0]

Remark 1. By similar arguments one can prove the following statement: if (e/);>o
is a Cp-semigroup on E and P is a finite dimensional projection with ran P C D(A)
then lim, (e P)"z = ePAP Py where eP4P* is meant to be the Co-semigroup on PE

generated by the bounded operator PAP. See also Remark 4 below.

Positive semigroups

The results in this subsection are taken from [4].

Let (X,3, ) be o-finite measure space and let (e');>¢ be a positive Cp-semigroup
on = LP(X) where 1 < p < oo. Let 2 C X be measureable. Then Pf := 1 f defines
a projection on E, where 1 denotes the characteristic function of €2. In this subsection
we will use the notation L”(€2) both in the usual sense and and in the sense to denote
the subspace of functions f in LP(X) such that f = 0 almost everywhere in Q°. When
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a function f is in LP(Q) in the usual sense, we define the extension f on X by flg = f
and f|ge = 0. The following result holds (see [4], Theorem 5.3):

Theorem 4.1.5 Let f € E andt > 0. Then

S(t)f = lim (exP)"f

n—oo

exists and S(t)~o is a continuous degenerate semigroup of positive operators. Further-
more, S(0) := limy_ S(t) is a projection of the the form S(0)f = 1y f where Y C Q is

a measureable set.

The continuous degenerate semigroup S(t);~o can also be characterized by the follow-
ing maximality property (see [4], Theorem 5.1): Let T'(t);~¢ be any semigroup of positive
operators on LP(X) which maps LP(X) to LP(2) and for which 0 < T(t)f < e f for
t>0and 0 < f € LP(X). Then T(t)f < S(t)f.

With the notations of Theorem 4.1.5 it can occur that Y = () and S(¢) = 0 (see [4],
Example 5.4). However, in the following important case Y = € holds (for a detailed
discussion of this Example and the following Remark see [4], Section 5 and 7):
Example (The Dirichlet Laplacian) Let p = 2, X = R™ (with Lebesgue measure) and
A = A the Laplacian on L?(R"). Let Q2 be a bounded open set with Lipschitz boundary.
Then (with the notations of Theorem 4.1.5) we have Y = Q and S()|2(q) = €'*2 where
Agq is the Dirichlet Laplacian on L?(€2), i.e. D(Aq) = {f € H}(Q) : Af € L*(Q2)} and
Aqof = Af.

Remark 2. For general open sets € we still have Y = Q and S(t)|2(q) = e'd2 where Aq
denotes the pseudo-Dirichlet Laplacian on L*(2), i.e. Aq is associated with the following
densely-defined closed positive form a on L?(Q2): D(a) = {f € L*(Q) : f € H'(R")}
and a(f, ) = oo [T+ S0y o IDTE = Jo L+ S0y oo [D, TP (this statement is
a consequence of Theorem 4.1.2 above). This means that we have Ag = Ag whenever
D(a) = H}(2). Tt is not an aim of this paper to describe sets 2 where this occurs, but
in the Example above we take boundedness and Lipschitz boundary as simple sufficient

conditions.
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4.2 Counterexamples

In view of the results in Section 1 one may conjecture that 4.2 converges in more general
settings. In particular, the following conjectures were given in [6]:

(a) Let e be a contractive Cp-semigroup on a Hilbert space H, and let P be an
orthogonal projection. Then 4.2 should converge.

(b) Let €' be a positive, contractive Co-semigroup on LP(X, 3, 1) (where (X, 3, )
is a o-finite measure space, and 1 < p < 00), and let P be a positive, contractive
projection. Then 4.2 should converge.

In this section we present two examples which disprove these conjectures. We remark
that the case p = 1 in conjecture (b) was not included, because a positive, contractive
Co-semigroup and a positive, contractive projection on £ = L'(]0, 1]), such that 4.2 fails

to converge, was already provided in [6].

Hilbert space case

Let us first remark that by using the theory of unitary dilations of contractive Cjy-
semigroups in Hilbert spaces (see e.g. [11], Corollary 6.14) one can reduce the first
conjecture to the case of unitary Cp-semigroups. Indeed, take a unitary dilation U(t) on
a Hilbert space Hy of the contractive Cy-semigroup 7'(t) on H. Then, for all x € H we
have (T'(L)P)"z = Q(U(%)Fy)"x, where @ and P, denote the orthogonal projections of
Hy onto H and PH, respectively.

Therefore, we are considering unitary Cy-semigroups instead of arbitrary contractive
ones. This is a great technical advantage (whether to prove or disprove the conjecture),
because unitary semigroups can always be regarded as multiplication semigroups.

We carry out our construction in the space L?[0,1]. As an example of unitary semi-
group we take the semigroup of multiplications by €™, where h is a real-valued, mea-
surable function on [0, 1], to be specified later. We choose P to be the one-dimensional
orthogonal projection onto the space of constant functions, i.e. Pf =1 fol f(z)dz. As
a test function on which 4.2 will fail for ¢ = 1, we take 1.

. n .
Denoting ¢, = fol e'2"*) dz, the function [e%AP} (1) becomes ¢"Lein. However, by
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the Lebesgue Dominated Convergence Theorem, lim,, .., ¢, = 1 as well as lim,, ., einh =
1in L0, 1). So, limy, .o [e%AP] (1) exists in L2[0, 1] if and only if the numerical limit

lim ¢, (4.3)

exists. Now we specify the function h, for which we prove that 4.3 diverges. Put
ho= 30 X orajo-125m. Then ¢, = 02, 2%@"%2]%. We show the following two

inequalities
7l,2
lim inf |epn]?" > e~ @) (4.4)
n—oo

lim sup |cgng|*"® < e~ % ~27zm7) (4.5)

n—oo

Noticing that 4 + ”TQ <6+ %2 — #1,7 we get the desired result.
Let us show 4.4 first. Observe that

n—1 00 n—1
1 iﬁw 1 1 1 iiw
02"222762 —Q—ﬁZﬁ:Zg—k“ :
k=1 k=n+1 k=1
Using the inequality cos(a) > 1 — %2 we get
n—2 n—2
1 2k 1 72 4k
|an| Z |Re C2n| = ﬁ COS(Q—TLTF) Z Z ﬁ(l - ?4—71)
k=1 k=1
O 1 w2 2
=1—-— - ——2"' - =1—-—U+ )+ —.
2n 24’”( ) 2”( +4)+4"
Since limpy_, (1 + ~ T %)N = e%, we obtain 4.4.
To prove 4.5 let us simplify cong. We have
n—1 00
1 1 1. 1 job=n
Cong = Z ?612"3” + 2nezi’) + Z R
k=1 k=n+1
n—1 o9
L,or 1.1 /3.0 1 1 2k
=2 G i g 2 e
k=1 k=1
Notice that /5™ = /D57 = 1 4 j(—1)M13 Thus, 3730 Leis™ = —1 48,

After these computations cong becomes
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Now using the inequality cos(a) < 1 — %2 + ‘2“—: we obtain the following estimate

n—1
1 72 4F 7 16"
Re cong| < S = (12 =
Re e < < 184"+81-2416”)

k=1
1 T2 2n — 2 7t 8" -8
2n—1 18 4n 81-24 1677
_, 1 6+ 72 4 L b
23 6 27-24-7 (2n3)2 © (273)4

for some constants a and b. Similarly, using sin(a) < «, we have

ITm con3| < g%%ﬂjL 2;{33 < (n;gl)’ﬂ
Thus,
|can3|*™® = (|Re cans|” + [Im 02n3|2)2nT3
< (1_2%3(6+%2_27+:7)+(%)2(n+1)2a1
+ (%)Qag - (%)8(18)2”73‘

Passing to the upper limit as n — oo, we finally obtain 4.5.

Remark 3. The counterexample above was presented at the Autumn School on Evolu-
tion Equations, Levico, 2001. Subsequently, in a private communication to the author,
G. Metafune proved that the more natural choice h(z) := % also provides a counterex-
ample. Interestingly, however, the absolute value of the sequence ¢! converges in that
case.

Remark 4. The function 1 is not in the domain of the generator A of our semigroup. In
fact, we see from Remark 1 above that for any function f € D(A), || f|| = 1 the formula
4.2 converges and we have

lim (e%APf)”f = AL . f

n—oo

where Py denotes the orthogonal projection on the 1-dimensional subspace spanned by

f.
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LP-case for positive semigroups

Our second example is on the Hilbert space L2[0, 27|, but now for a positive contractive
Co-semigroup and positive contractive projection.

We take e f(x) = f(z + 2nt), regarding f as a 27-periodic function. Now let
P be the orthogonal projection onto the space spanned by the positive norm-one
function g(z) = \/ﬁ [4+ZZO:0\/L2—,€COS 2’“1’]. Notice that, like in the previous ex-
ample, our projection is one-dimensional (see Remark 5 below). Simple substitution
shows that 4.2 evaluated at g for ¢ = 1 exists if and only if the numerical limit

lim,, o0 [fozw g(x)g(x + %)dx} exists. Denoting

c%zlﬂmm4x+%Mx

and using the orthogonality of cosines, we obtain

16 1 <1 ok
— COS —T

“T T w ey
k=1
Following the same calculations as for the first example, we obtain inequalities 4.4 and
4.5 with powers doubled on the right hand sides.
This disproves the second conjecture.
Remark 5. As we have already noticed, the projections in our examples are one-
dimensional. We will examine in Chapter 6 what property of the generator of a
Co-semigroup on a Hilbert space is responsible for the existence of 4.2 for all one-

dimensional, or more specifically, one-dimensional orthogonal projections.



Chapter 5
A similarity result

The last two chapters are based on [21].

The aim of Chapters 5 and 6 is to give a characterization in Hilbert spaces of the
generators of C-semigroups associated with closed, sectorial forms in terms of the con-
vergence of Trotter’s product formula for projections. In the course of the proof of the
main result (Theorem 6.0.1) we will need a similarity result which is of independent in-
terest: for any unbounded generator A of a Cy-semigroup e** it is possible to introduce
an equivalent scalar product on the space, such that !4 becomes non-quasi-contractive
with respect to the new scalar product.

The main result of Chapter 6 is then to prove the converse of Kato’s result, i.e.
that the strong convergence of 4.2 for all orthogonal projections P, in fact, characterizes
generators A such that —A is associated with a closed sectorial form. To be more precise

we recall the following result (see Theorem 4.1.4 and 4.1.2):

Theorem 5.0.1 Let A be the generator of a Cy-semigroup et on a Hilbert space H.
Consider the following statements:

(i) A is bounded.

(i) —A is associated with a densely-defined, closed, sectorial form a on H.

(i1i) The formula (e%AP)"x converges for all projections P € B(H), and all x € H
and t > 0.

(iv) The formula (ex*P)"x converges for all orthogonal projections P € B(H), and
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all v € H and t > 0.
The following implications hold: (i) = (iii) and (ii) = (iv).

We will show in Chapter 6 that the converse implications also hold. In the course of
the proof we will need an auxillary result, given in Theorem 5.1.1 below, which can be

regarded as a complement of [9].

5.1 Quasi-contractivity and bounded generators

In order to prove our main result [Theorem 6.0.1], first we need to characterize the class

A

of generators A on H, such that the Cy-semigroup e'” is quasi-contractive for every

equivalent scalar product (, )o on H. The characterization is provided by

Theorem 5.1.1 Let A be the generator of a Cy-semigroup et* on a Hilbert space H.
The following are equivalent:

(i) A is bounded.

(ii) The semigorup ' is quasi-contractive for every equivalent scalar product ( , )o
on H.

(111) For every equivalent scalar product ( |, )o on H there exists Ky € R such that
for every vector x € D(A), (x,x)o = 1 implies Re (Azx, x)y < K.

Proof. The implications (ii) < (iii) are consequences of the Lumer-Phillips theorem
(see e.g. [12], Proposition 3.23.). The implications (i) = (ii) and (i) = (iii) are trivial.

It remains to prove (iii) = (i). We will need the following

Definition 5.1.2 Let 7" € B(H) be an injective operator, and z € H, ||z|| = 1, and
0 < < 1. We say that x is a d-quasi-eigenvector of T if

5 @ 7o)

< B2l (5.1)
[ T]]

Note, that a 1-quasi-eigenvector is, in fact, an eigenvector of 7.
Now, let 0 < § < 1 be fixed. We prove the implication (iii) = (i) by contradiction.
Assume, therefore, that A ¢ B(H), and also, by rescaling, that A~ = T € B(H).
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We emphasize that T is an injective operator, and we will use this fact several times.
Assume, furthermore, that a sequence (h,) C H is given with the following properties:

(a) [|hn]] =1 for all n > 1.

(b) {hg, Thi} L {hj, Th;} for all k # j.

(¢) limy oo | Thy|| =0

(d) For every n > 1 the vector h,, is not a d-quasi-eginvector of 7.

We construct an equivalent scalar product (, )o on H with the help of the sequence
I

Let H, = span{h,, Th,}. Note, that H, is 2-dimensional because h, is not an
eigenvector of 7.

Let Thy, = ¢1nhn + canhy-, where ||h-|| = 1. Note that

2 2
1] < 0 and 2] >1— 62

|cLnl? + ean]® |e1nl? + ean]?

Hence,

|Cl nl 0 |C2n|
L and ————— > V1 — §2
|C2.n 1— 42 | TR ||

Define Q,, € B(H,,) by

Qnhr = hy + Lpyh:
Quht = Lyhy, + (|Ln)? + DAt

where |L,| = 2\/%7 and L,ca, > 0 for all n > 1. It is clear that @, = Q} > 0,

Q' € B(H,), and ||Q.||lg, < K, ||Q,;!#, < K for some universal constant K (not

depending on n). Define Q € B(H) by

Q=019e.. Plneme.)

It is easy to see that @ is well-defined, Q € B(H), Q = Q* >0, and Q' € B(H). This
means that () defines an equivalent scalar product on H by (z,y)o := (z, Q).

Now, let x,, := % Then
Re (A, ) L Re (h QThy) = ——Re (b, c1nhin + Can L)
€ Tny Tn)o = T 01V ns n) = T o e ns Clnlln Conlinln) =
T ha | [ Tha||?
1 S 1

(Re ¢1n + c2nLy)

0 | > 1 P
Copl > —0 — +0o0
—2 M [ Thy|

S >
I Th,|? ~ I Thall? V1
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Let y, = Hi—:”O. Then Re (Ayn,yn)o — +oo still holds due to the equivalence of the
scalar products (, ) and (, )o.

In order to complete the proof of the theorem it remains to construct the sequence
h,, with the required properties. The construction is carried out in several steps.

Step 1. We construct an orthonormal sequence (e,) C H, such that
lim,, . ||Te,|| = 0.

Take the polar decomposition T' = UT; of T', where U is unitary and 77 =17 > 0. It
is clear from the spectral theorem that there exists an orthonormal sequence (e,) C H
such that lim, . ||7T1€,|| = 0 (otherwise T} and T would be invertible, contrary to our
assumption). Note, also, that ||Tie,| = ||Te,|| for all n € N, therefore lim,, ., ||Te,|| = 0
as required.

Step 2. We construct an orthonormal sequence (f,) C H such that
lim, oo [|Tfnll =0 and fro1 L {f1,Tf1, o S, T f0}

We obtain the sequence (f,,) by induction, with the help of the sequence (e,). Take
an index ¢; such that ||Te; || < 1, and let fi := e;,. Assume now that fi, fo, ..., f, are

already given such that

150 =1. 55 LR ThY ITH < =
and f; € span{ej,eq,..., e, }, forall 1 < j k <n, k < j, and [, is an index depending
on n only.

Let H, := span{Tf1,Tfs,...,Tf,}. Take indices ji,...jn+1 such that j. > [, and
|Te;, || < n+r1 for all 1 <k <n+1. The subspace H, is at most n-dimensional, therefore

there exists a non-trivial linear combination

n+1

faer =) ey,
k=1

such that || f,+1|| =1 and f,11 L H,.
It is clear, by construction, that f,y1 L {f1,Tf1,...fn, T fs}. Furthermore,

n+1 n+1 |/\k;|2 B 1

1
Tl < —— el < k=1 =
| f+1||_n+1k2| f <[ == —
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Step 3. We construct an orthonormal sequence (g,) C H such that
lim, oo || Tgn|l = 0 and {g;,Tg;} L {g. Tgx} for all j # k.

We obtain the sequence (g,) by induction, with the help of the sequence (f,,).

Let gy = f1. Assume now that g1, go, ..., g, are already given such that

ool = 1. {65 Ta;} L {onTod, [Tgl € <oy

and g; € span{ fi, fo,..., fo, }, forall 1 < j # k <mn, and b, is an index depending on n
only.

Let G, := span{g1,Tq1,92,TGo, ..., 9n, Tgn}. Take indices my,...mg, 1 such that
my > b, and [T fn, || < ﬁ for all 1 < k < 2n + 1. The subspace G,, is at most
2n-dimensional, therefore there exists a non-trivial linear combination

2n+1

Gnt1 = Z Lk frm

k=1
such that ||g,11|| =1 and T'g,+1 L G,.
It is clear, by construction, that {gn+1,T9ns1} L {91,791, ..-9n, T'gn}. Furthermore,

2n+1 2n+1 |/uLk‘2 1
o < < k=1 —
I g+1|!_2n+1;|“k|— 2n + 1 2(n+1)—1

Step 4. We construct the orthonormal sequence (h,) with the properties stated at
the beginning of the proof.

We obtain the sequence (h,) by induction, with the help of the sequence (g,).

Take an index 7y such that ||Tg,, | < %HTglﬂ. Let

) 02
hi == 1——g,
1 291+ 491

We need to prove that hy is not a d-quasi-eigenvector of 7T'. It is clear that

J 6 02
> > | = — — — —
> (T > (2 s 4) Tl
Also,
52 52 52 5% 62
= | — - — < | — - —)—
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[(h1,Th1)|
1Tl

Assume now that vectors hy, ..., h, are already given, such that h; is not a d-quasi-

Combining these two ineqalities a simple calculation shows that < 0, as required.

eigenvector of T,

1

j js £ 1 j i
and h; € span{gi, ga2,-..,0a,}, for all 1 < j # k <n, and a, is an index depending on
n only. Take indices pi, pe, such that py,ps > a, and [|[Tg,, || < ﬁ, and ||Tgp,|| <
2
16T gp I Let

) 02
hn—i—l = 59;01 +4/1— ngz

It is clear that ||Th,i1] < \/%H, and it can be shown as above that h,y; is not a
d-quasi-eigenvector of T'. Hence, the sequence (h,) satisfies all requirements, and the

proof is complete. 0

We see that the proof above exploits heavily the geometric structure of Hilbert spaces.

Problem 5.1.3 The author conjectures that a result corresponding to Theorem 5.1.1
holds also in Banach spaces. Namely, whenever A is not bounded it should be possible
to introduce an equivalent norm on the space such that et is not quasi-contractive with

respect to the new norm. This problem, however, remains open.



Chapter 6
The convergence of Trotter’s formula

Now we present the main result concerning the convergence of Trotter’s product formula
for projections. We remark that the first part of Theorem 6.0.1 gives a result in the

spirit of [10] Chapter 6: the universally 'nice’ generators are necesssarily bounded.

Theorem 6.0.1 Let A be the generator of a Cy-semigroup et on a Hilbert space H.
Consider the following statements.

(i) A is bounded.

(i) —A is associated with a densely-defined, closed, sectorial form a on H.

(i1i) The formula (G%AP)"x converges for all projections P € B(H), and all x € H
and t > 0.

(iv) The formula (ex*P)"x converges for all orthogonal projections P € B(H), and
all x € H and t > 0.

The following implications hold: (i) < (i), (ii) < (iv).

Proof. The implication (i) = (ili) was proved in |22|, while the implication
(ii) = (iv) is a consequence of [18], Addendum (see also [22], Theorem 4).

We prove the implication (iii) = (i) by contradiction.

Assume first that the semigroup e* is not quasi-contractive. By the Lumer-Phillips
theorem this is equivalent to the fact that the numerical range of A is not contained in

any left half-plane.
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We construct an element g € H such that ||g|| = 1, and

lim (enP,)"g

n—oo

does not exist, where P, denotes the one-dimensional projection onto the subspace
spanned by g. The vector g will be given as

limy o0 g
9=
[Ty, o0 g
where (gx) denotes a convergent sequence in H to be constructed in the sequel.
Let g1 € D(A), such that ||¢g1|| = 1. First, we show that
lim (e Py, )"gy = e g,

n—oo

(Note, that this result follows from the proof of Theorem 4.1.4 as mentioned in Remark

4. in Chapter 4. However, we give a more elementary proof here.)
Indeed,

1 n 1 1 . 1 1 ne
<€nAPgl> g1 :enA(PglenAPm) 191 = €"A(P91€"Apg1917 91) 191
and

lim (P, ¥4 Py g1, 1)~ = om0

n—oo

because

P, en”P, —1 wA T

lim (Poe"Pog1, 91) = lim <u’ 91) = (Ag1, 1)
Now, choose g; such that Re (Agi1,¢1) > 1 holds also.

Let € > 0 be fixed. Take an index n; so large that

I (e54R,)" g — ety < e

It is clear from standard continuity arguments that there exists a d; > 0, such that for
all h € B(g1,91) we have

1 moh
| (enllAPnhn) e g | < 9

7]
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Without loss of generality we can assume that §; < %
Now assume, that vectors g1, gs, ..., gr, and positive numbers 1, do, ..., d;, and in-

dices ny,ng, ..., n; are already given with the properties that:

and "
1 nj 95 95 .
I <6njAPL> M) Iy o
i/ ||kl l9; ]l
for all 1 < j <k and all h € B(g;,d;). Assume, furthermore, that

. 01 09 0;
1gj+1 — 9;]l < min {Ev PYSSERER 5]}
forall1 <j<k-—1.
The numerical range of A is not bounded from the right, hence there exists a vector

f € D(A) such that
. 1L 01 09 O
I < min {2 2 2

and Re (Af, f) > 2. Let f := ¢ f with suitable « such that Re (Afy, gx) > 0. Let
Gk1 = gk + [

Then

Re (Agrt1, ge+1) = Re (Agr, gr) +Re (Agk, fr) +
+Re (Afe,gr) +Re (Afe, fo) > k+(-1)+0+2=Fk+1

Furthermore, we have

Ik+1 Ik+1
1
lim (5 AP spp )T = (Aol Tona) e+l

n—00 Toeal” |lgrstll | gr1]]

Take an index ny,1 so large that ngy; > ny and

N1
| (enleAP o > T e(A“xﬁH’HZ:iEH)—ng | <e
et/ Mol lgel
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It is clear from standard continuity arguments that there exists a dx.1 > 0, such that

for all h € B(grt1,0k+1) we have

H ( "k+1 >nk+1 L _ e(AHz:iiH’“Z:iiH) gk+1 H < 2
i) T i+

It is clear, by construction, that the sequence g; converges in H. Let

Recall, that [|g1]| = 1 and &, < 3, therefore 3 < [|gi|| < 2 for all & > 1. It is also clear,
by construction, that h € B(gy, 5k) for all k 2 1. Hence, for all £ > 1 we have

1 <6iAPg>nk g — AT Tam) Ik < 9.
Hg I
Notice, that
||6 ngll’Hgk\ ellox HQRG (Agr,gr) > eik

This means that (the norm of) the sequence (enAP )"g does not converge.

Now, assume only that A ¢ B(H). Introduce, by Theorem 5.1.1, an equivalent scalar
product (z,y)o := (z,Qy) on H, such that the semigroup e is not quasi-contractive
with respect to ( , )o. Take an orthogonal projection P, (with respect to the scalar
product (, )o ), such that (enAP )"g does not converge. Then, P, is a bounded (possibly
non-orthogonal) projection with respect to the original scalar product (, ), such that
(e%APg)”g does not converge. This proves the implication (iii) = (i).

The implication (iv) = (ii) is also proved by contradiction.

Asume, that the numerical range of A is not contained in any sector
s 3
Ypw 1= {zeC:§+¢<arg (z —w) < 57?—(;5}

with w € R, ¢ € (0,75). There are two cases to consider.
If the semigroup e is not quasi-contractive , then, by the arguments above, there

exists a vector g € H, such that ||g|]| = 1 and (e%APg)”g does not converge.

tA

If the semigroup e** is quasi-contractive then, by rescaling, we can assume that

Re (Az,z) < —1 for all x € D(A), ||z| = 1.
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We construct an element g € H such that ||g|| = 1, and limnﬁoo(e%APg)”g does not
exist, where P, denotes the one-dimensional projection onto the subspace spanned by
g. The vector g will be given as

im0 g
I Mimic gl
where (g;) denotes a convergent sequence in H to be constructed in the sequel.

Take an arbitrary vector g € D(A), ||g1]] = 1. Let (Ag1, 1) =: a1 + byi. We know

that

Let € > 0, and p > 0 be fixed. Take an index ny so large that
I (7P, )" g1 — el < -

It is clear from standard continuity arguments that there exists a d; > 0, such that for
all h € B(g1,91) we have

aA " L _ o(Agr,g1)
| <€1 PITZI\> A e g1]] < 2e

Without loss of generality we can assume that §; < %

Now assume, that vectors g1, go, ..., g, and positive numbers 91, 0o, . . ., O,
real numbers €1, 9, . .., €k, and indices ny, no, ..., ny are already given with the following
properties: for all 1 < j <k we have |¢;]| < p,

g € D(A), (AL Iy — o (e, 40+ (j — )i
gill" Ilg;ll

(note that ey = 0), where a; — 1 < a; < —1, and

n; 9;  9; )
[ (e%APL) QLB TR P
i/ |[h]] lg; ]l
for all h € B(g;,d;). Assume, furthermore, that
, 01 09 d;
1gj+1 — g4l| < min {ga 21y

forall1 <j<k-—1.
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Now, we construct the vector gi,;. The numerical range of A is not contained in
any sector, therefore there exists a sequence (z;) C D(A) such that, lim; . ||z;|| = 0

and
Im (ij#zj) _ o oand R° (A%‘Qa zj) _ ok — (a1 — 1)
[l gl 2

Take y; := €' x; with suitable «; such that (Ay;, gr) > 0 real. Then

(Algr + ), 91 +v5)  (Age, g) N (Agr, ;)

= +

lgxl* 9511 lgx[*
+(ij:9k) + (ijvyj) — ¢, +dii
gx[1> lgx11® S

The real part ¢; of this expression satisfies

ar — (a1 = 1) [(Agk, ;)]
T3 e

for all 7 > 1. For the imaginary part d;, we have

cj>(a1—1

lim d; = e, + by + km

J—00

This means that for large j we have [y;|| < min {3, 72, ... %’“}, and

Re(A(gr + ), 9x + ;)
g + y;]]?

>a; — 1

and
Im(A(gr +y;), gr + y;)

g + ;12

where |e,41] < p. Take such an index j, and define

= €k4+1 +b1 +/€7T

Jk+1 = gk + Y,

Again, standard continuity arguments show that there exist a positive number d;,; and

an index mny.q such that

— e loptall”llg

|| < 2e
il g+

>nk+1 h (Aiglﬂ_l 49}}:11“) gk+1

for all h € B(gr+1, 0k+1).
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It is clear, by construction, that the sequence g converges. Let

h

h:= lim g, and ¢ := —
ko0 17|

Recall, that [|g1]| = 1 and &, < 3, therefore 3 < [|gi|| < 2 for all & > 1. It is also clear,
by construction, that h € B(gy, 5k) for all & Z 1. Hence, for all £ > 1 we have

1 n 9
| (eﬁAPg> kg — AT T || Toel || < 2¢

Notice, furthermore that

lgok4+11" lgap41 1 ”92k 1 gogl
G281 HQQk”
||6a2k+16(52k+1+b1+2k‘ﬂ')iﬂ — %2k (62k+b1+(2k—1)7r)zgi|| >

(Ap2htl  (S2hEL) gop g (A B2k) G2k
le o € ol =

e
||921c+1|| ||92k:||

il = et~ 9l
a2k+(b1—7f)i<€€2k 92k )H

lgaell 70 =

260171 ||tk (g2n H92k+1 —a)l—| a2k+(b1—7r)i(652k 92k

sy 192kl

agj41+b11 agk-i-(bl—ﬂ')i

e g1 —¢€
—lle

— g1l

We can now choose the values of ¢, 1, p so small that

L vy Ol bl e o L
and He < em !
Then we have
%A N2k+1 A N2k
[(emarea™ Py)2kst g — (emar ™ Py)"2g|| > ¢

Therefore the sequence (enAP )"g does not, converge, and the proof is complete.
We also see from the proof that the set of vectors g, such that ||g|| = 1 and (ex”P,)"g

does not converge, is dense on the unit sphere. 0

As a last remark we note the following:
The specific counterexamples in Chapter 4 show that even the norm of (enAP )"g might
not converge. The proof of the general case above, however, relies on the ’change of

direction’ of (e%APg)”g for a particular g.
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Problem 6.0.2 Assume that the generator A of a Cy-semigroup is not associated with
a closed form. Is it possible to choose a vector g of norm 1, such that the norm of the

1
sequence (enP))"g does not converge?

Also, it is natural to expect that the first part of Theorem 6.0.1 holds in arbitrary

Banach spaces.

Problem 6.0.3 Let et be a Cy-semigroup on a Banach space X. Is it true that if
(enP)"z converges for all x € X, t > 0 and all projections P € B(X) then A must be
bounded?
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Summary

Closed sectorial forms provide a convenient way to define m-sectorial (and, in particular,
semibounded self-adjoint) operators. The Friedrichs extension and the form sum are two
basic manifestations of this idea. The form sum is related to Trotter’s product formula
by a result of Kato. This dissertation presents the author’s results in this circle of ideas.

In Chapter 1 we describe a factorization argument for positive self-adjoint operators.
This argument establishes a connection between form methods and operator methods.
Applications of this factorization are included.

In Chapter 2 we apply the construction of Chapter 1 to the addition problem of
positive, symmetric operators. We arrive at a generalized notion of the form sum con-
struction. We prove a commutation property of this construction. We also describe
some pathological phenomena concerning the addition of positive self-adjoint operators.

Chapter 3 considers closed, positive forms on reflexive Banach spaces. We examine
which of the Hilbert space results can be carried over to this case.

In Chapter 4 we recall Kato’s result concerning closed forms and Trotter’s formula.
We apply this result in the case when one of the semigroups is replaced by an orthog-
onal projection. The convergence of Trotter’s formula for projections is then further
investigated. Some convergence results and non-trivial counterexamples are given.

Chapter 5 describes a similarity result which will be needed in the characterization
of the convergence of Trotter’s formula for projections. We prove that if the generator
of a Cy-semigroup on a Hilbert space is unbounded then it is possible to introduce an
equivalent scalar product such that the semigroup becomes non-quasi-contractive.

In Chapter 6 we prove the converse of Kato’s result: if Trotter’s formula converges

for all orthogonal projections then the generator must be associated to a closed form.



Magyar nyelvii osszefoglalas

Alulrol korlatos 6nadjungalt (és altalanosabban m-szektorialis) operatorok definidlasa
gyakori zart szektoridlis formék segitségével. Két egyszert példa erre a Friedrichs kiter-
jesztés és a formaosszeg. Kato egyik eredménye kapcsolatot 1étesit a formadsszeg és a
Trotter formula kozott. Ez a disszertacié a szerzé ilyen irdnyi eredményeit tartalmazza.

Az els6 fejezetben egy faktorizacids tételt bizonyitunk pozitiv onadjungalt opera-
torokra. Téargyaljuk a tétel néhény alkalmazésat.

A masodik fejezetben a formadsszeg fogalmanak egy lehetséges atalanositasat
definidljuk az els6 fejezetben latott konstrukcié segitségével. Bebizonyitjuk konstruk-
cionknak egy kommutacios tulajdonsidgat. Vizsgaljuk a pozitiv 6nadjungélt operatorok
osszegére adhato kiilonbo6z6 konstrukciok kozotti kapcsolatot.

A harmadik fejezetben definidljuk a pozitiv zart forma fogalmat reflexiv Banach
terekben. Megvizsgéaljuk, hogy a Hilbert terek elméletébdl ismert eredmények koziil
melyek vihetGk at erre az esetre.

A negyedik fejezetben felidézziik Kato eredményét a zart formak és a Trotter formula
kapcsolatarol. Megemlitjiik azt az esetet, amikor az egyik félcsoportot egy ortogonélis
projekcioval helyettesitjiik. Ezutan tovabb vizsgaljuk a Trotter formula ezen valtozatéat,
és a konvergencia eredmények mellett két érdekes ellenpéldat is bemutatunk.

Az 6todik fejezetben egy hasonlosdgi eredményt bizonyitunk, amelyre a projek-
ciés Trotter formula konvergencidjanak karakterizaciojakor lesz sziikség: ha egy Cjp-
félcsoport generatora nem korlatos, akkor be lehet vezetni egy olyan ekvivalens skalar
szorzatot, amelyre nézve a félcsoport nem kvézi-kontraktiv.

A hatodik fejezetben kiegészitjiik Kato eredményét: ha a Trotter formula minden

ortogonalis projekciora konvergens, akkor a generator egy zart formabol szarmazik.
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Self-adjoint operators play a central role in the theory of Hilbert space operators. In
the bounded case self-adjoint operators and symmetric sesquilinear forms are, in fact,
the same. The generalization of this fact to the semibounded case is the representation
theorem, which provides a convenient way to define semibounded self-adjoint operators
via closed semibounded forms. Two basic examples of this idea are manifested in the
Friedrichs extension of a positive symmetric operator, and the form sum construction
of two positive self-adjoint operators. The theory of positive self-adjoint extensions was
later significantly developed by Krein, while the form sum was distinguished among other
possible extensions of the operator sum by a famous result of Kato on the convergence
of the Trotter product formula.

My dissertation presents a collection of my results in this direction, based on the
papers [1], |2], [3], and |4]. In the sequel chapters and theorems are numbered as in the

dissertation.

1 Factorization of positive operators

This introductory chapter describes a factorization argument, due to Z. Sebestyén,
which plays a central role in Chapters 2 and 3.

Given a subspace D C H and a positive operator a : D — H the new scalar product
l[ax,ay] = (ax,y) is well defined on ran a because a is symmetric. It is also positive
definite if we assume that D, (a) := {y € H : sup{|(az,y)]* : € D, (az,z) < 1} < oo}
is dense in H. The completion of the space (ran a,[ , |) is denoted by H,. Define
J : H, — H by: dom J := rana, and Jxr = x. It is easy check that the positive,
self-adjoint operator ax := J**J* is a positive self-adjoint extension of a. In particular,
if a is self-adjoint then a = J**J* holds.

Also, we see from the factorization that
dom ag? = dom J* = D, (a),

1 *
lax2yl|* = [|7°y[|* = sup {|(az,y)* : = € dom a, (az,x) < 1}

holds. Therefore we can identify the closed form corresponding to ag.
The extended operator ax is called the Krein-von Neumann extension of a. Slight

modifications of the same argument provide the Friedrichs extension ar and, in general,



all extremal extensions of a.
At the end of the chapter we illustrate the previous notions by particular examples

of different extensions of a positive symmetric operator a.

2 Form sum constructions

As the factorization argument of Chapter 1 establishes a link between ’form methods’
and ’'operator methods’, it is natural to try to apply a similar approach to construct the
form sum of positive operators. This is the theme of Chapter 2.

Let a and b be two positive, symmetric operators, and suppose that D, (a) N D, ()
is dense in H. This implies, a fortiori, that D, (a) and D, (b) are dense, so that the
auxillary Hilbert spaces H,, H, are possible to construct, and the Krein-von Neumann

extensions ax and b exist. Consider the space H, & H,, and the operator
J:H,® H, — H, with dom J =rana ®ranb, J(ax @ by) = ax + by.

It is easy to prove that J**J* is a positive self-adjoint extension of a + b. The next

theorem implies that J**J* is, in fact, a generalization of the form sum construction.

Theorem 2.1.2 Let a and b be positive, symmetric operators such that D, (a) N D, (b)

is dense in H, and let J be as above. Then the form sum of ax and by is J**J*, i.e.

[057¢ —|— bK = J*J".

The main result of Chapter 2 describes a commutation property of the form sum.

Theorem 2.2.4 Let a,b be positive, symmetric operators with D, (a) N D, (b) dense
in H, and suppose that E,F € B(H), such that both E and F leave dom a and dom b

inwvariant, and for all x € dom a and y € dom b
E*ar =aFzx, Far=aFEzr, FE'by=0Fy, F*by=>bEy.

Then
E*(a+b)C(a+bF and F*(a+b)C(a+b)E.



As an interesting result we mention that the Friedrichs extension (a + b)p of the

operator sum is also possible to construct in a similar way. Define

Q:H— H,® Hp,, with dom @ =domandomb, Qxr=ax® bx.

Theorem 2.3.1 Suppose that a and b are positive, symmetric operators, and dom a N
dom b is dense in H. Then Q*Q** = (a + b)F.

At the end of the chapter we show that the extensions (a + b)g, a + b, and (a +b)p
of the operator sum a + b are, in general, different from each other.

The content of this chapter can be found in [1].

3 Positive forms on Banach spaces

It is natural to try to generalize the results of Chapter 2 to reflexive Banach spaces.

Let X denote a reflexive complex Banach space, and X* its conjugate dual space
(i.e. the space of all continuous, conjugate linear functionals over X). Let D C X be a
dense subspace, and let ¢ : D x D — C be a sesquilinear form on D (where ¢ is linear
in the first variable and conjugate linear in the second). Assume that t is positive with
positive lower bound, i.e. t(z,z) > v|/z|*, v > 0. Assume also that ¢ is "closed" in
the sense that (D,t(-,-)) =: H is a Hilbert space (i.e. it is complete). In this case, the
injection ¢ : H — X is continuous, so H can be regarded as a subspace of X. For brevity
we will use the notation [, ] for ¢(-,-). An operator A from X to X* can be associated
to the form ¢ in a natural way: let € D and take the functional [z,y], y € D; if this
functional is continuous in the norm of X then there is an element z in X* for which
[z,y] = z(y) =: (2,y), in this case, let Az := z.
Theorem 3.1.1 With notations as above the operator A : X — X* is a positive, self-

adjoint operator.

Naturally, in this setting it is harder to establish self-adjointness of an operator. The
following lemma can be used:
Lemma 3.1.2 If B : X* — X is a bounded, injective, self-adjoint operator then A =
B! is also a self-adjoint operator from X to X*.

With the help of Theorem 3.1.1 we are able to prove the existence of the Friedrichs

extension in the strictly positiv case.



Theorem 3.2.1 Let a: X — X* be a positive, densely defined operator with positive
lower bound, (az,z) > v||z||*, v > 0 for every x € dom a. Then a admits a positve

self-adjoint extension with the same lower bound.

The other way to show that an operator is self-adjoint is to prove that it is a sym-
metric extension of a given self-adjoint operator. This is the core of the argument in

the following

Lemma 3.2.2 Let A be a positive self-adjoint operator from X to X* (it is not necessary
that A has positive lower bound). Then there exists an auziliary Hilbert space H and an
operator J : H — X* such that A = JJ*.

It is possible to introduce a more general notion of positive, closed forms (in order to
include forms with lower bound 0). A positive form ¢ : D x D — C will be called closed
if whenever z,, C D and x,, — z in X and t(z, — T, T, — T,n) — 0 then x € D and
t(z, — x,x, —x) — 0 (notice that when ¢ has positive lower bound then this definition
agrees with the previous one). A particular example of a positive, closed form is the
‘covariance form’ of an X-valued random variable.

Consider a probability measure space (€2, A, 1), and let £ :  — X a random variable

i.e. a weakly measurable function. Suppose that £ possesses a weak expectation, in other

Lﬂow

exists for all f € X*. Further, we make assumptions on the second moments, and

words

suppose that the set

D={7:sex [17©F du < oo
is dense in X*. We do not require that D = X*.
As an example, take X = £y, Q = {w, :n=1,2,...} and p({w,}) = ce=®/?" with
a suitable constant c. Setting &(w, ), = n*/k!, it is easy to compute that, in this case,
D # X* is dense.
We assume that E £ = 0, since we could take £ — E ¢ instead of &.

Define the sesquilinear form

t(f,9) = E (f(£)3(¢))

4



for f,g € D. We call t the covariance form of &.
Theorem 3.3.1 t is a positive, closed, sesquilinear form on D x D.

Positive closed forms on reflexive Banach spaces also appear in partial differential

equations.
Take X = L,(2),1 < p < +oo where Q is a bounded domain with smooth boundary
in R™. Define the operator A from L,(€2) to L,(€2) by dom A = C§°(€2) and

Z a azk bf

i,k=1

where a;; € CY(Q), b€ L}, .(Q), b > 0 and

n

> aw(x)BiB > WZ B>,y >0

ik=1

everywhere in  (uniform ellipticity). In this case we have

"0 0 -
urh= [ <— > o (angl ) s ) Fas =

- of of of |’
/Q<Z aika_a:iﬁ_;wc+b|f|2> deV/QZ D,

Now, for p < 2n/(n — 2) we have

n 8f2

by the Sobolev imbedding theorem. Thus A has positive lower bound. The Friedrichs

de > cl|f]2 >0

extension of A is surjective, and this means that the equation

—Z l(am )+bf—g

has a weak solution for every g € L,(€2) whenever ¢ > 2n/(n + 2).

The content of this chapter is based on [2].



4 Trotter’s formula for projections

In the Hilbert space setting positive closed forms are related to the convergence of
Trotter’s product formula by a famous result of Kato. We describe the basic notions
briefly:

Let H be a Hilbert space and let

a:D(a)x D(a) — C

be a sesquilinear mapping where D(a), the domain of a, is a subspace of H. We assume
that a is semibounded, i.e. that there exists A € R such that

|ul|? == Re a(u,u) + Mu,u)y >0

for all u € D(a), u # 0. Moreover, we assume that a + X is sectorial and closed, i.e.,
that [Im a(u,u)| < M(Re a(u,u)+ A(u,u)g) and (D(a), || -||a) is complete. In short, we

will call a a closed form. Let K = D(a) be the closure of D(a) in H. Denote by A the

operator on K associated with a, i.e.
D(A) = {u € D(a) : v € K such that a(u,¢) = (v,¢)y for all ¢ € D(a)}

and Au = v. Then — A generates a Cy-semigroup e *4 on K. Denote by @ the orthogonal

projection on K. Now, define the operator e~ on H by
ey =eMQx, veH t>0

Then e is a continuous degenerate semigroup on H. We call it the degenerate semi-
group generated by a on H.

Now, let b be a second closed form on H. Define a+bon H by D(a+b) = D(a)ND(b)
and (a + b)(u,v) = a(u,v) + b(u,v). Then it is easy to see that a + b is a closed form

again. Now, by a result of Kato, the following product formula holds:

Theorem 4.1.1 Let x € H. Then

_ . _ty
ety = lim (e”n% %)z

n—oo

for allt > 0.



We apply this result in a particular situaion. Let P be an orthogonal projection.
Define the form b by D(b) = PH and b(u,v) = 0 for all u,v € PH. Then e~ * = P for

all t > 0. Therefore, as a corollary of Theorem 4.1.1 we have

Theorem 4.1.2 For any orthogonal projection P and closed form a, the limit

S(t)z = lim (e #“P)"x

n—oo
exists for all v € H and t > 0, and S(t)i=o is the continuous degenerate semigroup

generated by the form a|pp.
A particularly interesting example of this theorem is the following:

Example (The Dirichlet Laplacian) Let @ C R™ be a bounded open set with Lipschitz
boundary, and let A denote the Laplacian on L*(R"). Let Pf := 1qf. Then, for all
f € L*(9) we have lim,_..(ex®P)"f = e!®2 f where Agq is the Dirichlet Laplacian on
L3(Q), i.e. D(Aq)={f € H}(Q): Af € L*(Q)} and Aqf = Af.

Kato’s result and this interesting example gives motivation to study the convergence
of Trotter’s formula for projections.

Further convergence results are possible to prove if the generator is bounded, or
the semigroup is positive and the projection is of a particular form. These results are

summarized in the next two theorems.
Theorem 4.1.4 Let A € B(E) be the generator of a Cy-semigroup (e')i>o and let
P € B(E) be a projection. Then

lim (enP)"z = "AP' Py

for all x € E and uniformly for t € [0,T].

Theorem 4.1.5 Let (X, %, 1) be o-finite measure space and let (e!4);>q be a positive
Co-semigroup on E = LP(X) where 1 < p < oo. Let Q C X be measureable and let
Pf:=1qf. Then forall f € E andt >0

S(t)f := lim (en*P)"f

exists and S(t)i~o is a continuous degenerate semigroup of positive operators. Further-
more, S(0) := limy_o S(t) is a projection of the the form S(0)f = 1y f where Y C Q is

a measureable set.



The last theorem is due to W. Arendt, and C. Batty.

In view of these convergence results one may conjecture that 4.2 converges in more
general settings. In particular, the following conjectures were unsolved since 1997:

(a) Let e be a contractive Cyp-semigroup on a Hilbert space H, and let P be an
orthogonal projection. Then limn_,oo(e%AP)”x should converge for all x € H and t > 0.

(b) Let e be a positive, contractive Cg-semigroup on LP(X, X, i) (where (X, X, 1)
is a o-finite measure space, and 1 < p < 00), and let P be a positive, contractive
projection. Then limn_m(e%AP)”x should converge for all x € H and t > 0.

The main result of Chapter 4 is to disprove these conjectures by providing two
counterexamples.

In the first example we take H = L?[0,1]. We take the (unitary) multiplication
semigroup e on H, where h = Y77, x(1/2%,1/26-112"7, and we take Pf =1- fol f(x)dz.

In the second example we take H = L2[0,27]. We take e f(x) = f(z + 2mt),
regarding f as a 2m-periodic function, and we let P be the orthogonal projection onto the
space spanned by the positive norm-one function g(z) = ﬁ 44302, \/%fk cos ka].

In both examples non-trivial calculations show that the norm of the sequence
(e%AP)"f does not converge for f =1 and f = g, respectively.

Chapter 4 is based on [3].

5 A similarity result

The result of this chapter will be used in the characterization of the convergence of
Trotter’s formula for projections in Chapter 6. However, this similarity result can also
be of independent interest. We remark that the corresponding result is not known for

arbitrary Banach spaces.

Theorem 5.1.1 Let A be the generator of a Cy-semigroup e on a Hilbert space H.
The following are equivalent:

(i) A is bounded.

(ii) The semigorup e is quasi-contractive for every equivalent scalar product (, )o on
H.

(iii) For every equivalent scalar product ( , )o on H there exists Ky € R such that for
every vector x € D(A), (z,x)o = 1 implies Re (Az,z)y < Kp.



6 The convergence of Trotter’s formula

In this chapter we give a characterization of the convergence of Trotter’s formula for
projections in terms of properties of the generator. The second part of the result proves,

in a sense, the converse of Kato’s Theorem.

Theorem 6.0.1 Let A be the generator of a Co-semigroup e* on a Hilbert space H.
Consider the following statements.
(i) A is bounded.
(i) —A is associated with a densely-defined, closed, sectorial form a on H.
(1ii) The formula (e%AP)”x converges for all projections P € B(H), and all x € H and
t> 0.
(iv) The formula (ex*P)"x converges for all orthogonal projections P € B(H), and all
x € H andt > 0.
The following implications hold: (i) < (i), (ii) < (iv).

The results of Chapters 5 and 6 can be found in [4].

References

[1] B. Farkas, M. Matolcsi: Commutation properties of the form sum of positive, sym-
metric operators, Acta Sci. Math. (Szeged), (2001).

[2|] B. Farkas, M. Matolcsi: Positive forms on Banach spaces, Acta Math. Hung., (to
appear).

[3] M. Matolcsi, R. Shvidkoy: Trotter’s product formula for projections, Arch. Math.,
(to appear).

[4] M. Matolcsi: On the relation of closed forms and Trotter’s product formula, (sub-

mitted for publication).



Tézisek

a
CLOSED FORMS AND TROTTER’S PRODUCT FORMULA

(Zart formak és a Trotter formula)

cimid PhD értekezéshez

Matolcsi Maté

TémavezetSk: Sebestyén Zoltan, Fialowski Alice

ELTE Matematika doktori iskola
Vezets: Laczkovich Miklos

Elméleti matematika program

Vezets: Szenthe Janos

2002



Az 6nadjungélt operdtorok kdzponti szerepet jatszanak a Hilbert terek operatorainak
elméletében. Korlatos esetben az onadjungélt operatorok és a szimmetrikus szeszkvi-
linearis formak kozott természetes bijekcio van. Ennek az allitdsnak a megfelelGje a
felig korlatos esetben a reprezentacios tétel, amelynek segitségével félig korlatos dnad-
jungalt operatorokat gyakran definidlunk félig korlatos zart formak altal. Két egyszerii
példa erre a pozitiv szimmetrikus operatorok Friedrichs kiterjesztése illetve két poz-
itiv 6nadjungalt operator formaodsszegének konstrukcidja. A pozitiv 6nadjungalt kiter-
jesztések elméletét kés6bb Krein fejlesztette tovabb, mig a formaodsszeg és a Trotter
formula kozotti kapcsolatra Kato egyik hires eredménye mutatott ra.

Ez a disszertacio a szerzé ilyen iranyu eredményeit mutatja be az [1], [2], [3] és
[4] publikaciokra épitve. A tovabbiakban a fejezeteket és tételeket a disszertacionak

megfelelGen szamozom.

1 Pozitiv operatorok faktorizacidja

Ez a bevezets jellegii fejezet vazolja Z. Sebestyén faktorizacios eljarasat, amely kulcs-
fontossagu lesz a 2. és 3. fejezetben.

Legyen adott egy D C H altéren értelmzett a : D — H pozitiv linearis opera-
tor. Az a operator ran a képterén bevezetjiik az [ax, ay] := (ax,y) 0j skalar szorzatot,
amely jol definialt, mert a szimmetrikus. Ha még feltessziik, hogy D, (a) := {y € H :
sup{|(ax,y)* : x € D, (ax,z) < 1} < oo} siir(i, akkor az 4j skalar szorzat pozitiv definit
is. A (rana, [, ]) tér teljessé tételét H,-val jeloljiik. Definidljuk a J : H, — H operatort
a dom J :=rana és Jxr = x Osszefiiggésekkel. Kénnyt latni, hogy a pozitiv énadjungalt
ag = J**J* operator kiterjesztése a-nak. Specialisan, ha a maga is énadjungalt, akkor
a = J*J* teljesiil.

A faktorizaciobol kovetkezik, hogy

dom ax? = dom J* = D, (a),

1 *
lar2yl* = [|[7°y||* = sup {|(az,y)* : = € dom a, (az,z) < 1}.

Tehat az ax-hoz tartozo zart forméat megadhatjuk a J* operdtor segitségével.
Az ax operatort az a operator Krein-von Neumann kiterjesztésének nevezziik. A

fenti faktorizacios eljaras kis valtoztatasaval elGallithatjuk az a operator ap Friedrichs



kiterjesztését is, illetve altalaban az Gsszes tigynevezett extremaélis kiterjesztést.

A fejezet végén egy konkrét példan mutatjuk be a bevezetett fogalmakat.

2 A formaosszeg

Az els6 fejezet faktorizacios eljarasa kapcsolatot teremt a ’forma modszer’ és az
‘operator modszer’ kozott, ezért természetes gondolat, hogy két pozitiv operéator for-
madosszegét is hasonld faktorizacioval probaljuk elGallitani. Errdl szol a masodik fejezet.

Legyen a és b két pozitiv szimmetrikus operator, és tegyiik fel, hogy D, (a) N D, ()
stiri H-ban. Ekkor D, (a) és D, (b) szintén stirtiek, igy a H, és H, terek, valamint az

arx és by operdtorok léteznek. Tekintsiik a H, & H, teret, és a
J:H,® H,— H,dom J =rana @ranb, J(ax ® by) = ax+ by

operatort.

Koénnytd megmutatni, hogy J**J* pozitiv onadjungalt kiterjesztése a + b-nek. A
kovetkezG tétel azt mutatja, hogy J**J* a formadsszeg altalanositasanak tekinthetd.
2.1.2 Tétel Legyen a és b két pozitiv szimmetrikus operdtor, amelyekre D, (a) N D, ()
strd H-ban, és legyen J a fent definidlt operdtor. Ekkor

[057¢ —|— bK = J*J".

A masodik fejezet {6 eredménye a formadsszeg egy kommutacios tulajdonsagat bi-
zonyitja.
2.2.4 Tétel Legyen a és b két pozitiv szimmetrikus operdtor, amelyekre D, (a) N D, (b)
strd H-ban, és tegyiik fel, hogy E, F € B(H), olyan operdtorok, hogy E és F' dom a-t és

dom b-t invaridnsan hagyjdk, és minden x € dom a-re és y € dom b-re fenndll, hogy
E*ar =aFzx, Far=aFEzr, FE'by=0Fy, F*by=>bEy.

Ekkor
E*(a+b) C(a+bF é F'(a+b)C(a+bE.



Erdekességkent megemlitjiik, hogy az operator 6sszeg Friedrichs kiterjesztése (ha
létezik) szintén elGallithato hasonlo faktorizacios eljarassal. Ehhez definidljuk a @

operatort a
Q:H—H,® H,, dom@ =domanNdomb, Qx = ax® bx

Osszefiiggésekkel.

2.3.1 Tétel Legyen a és b két pozitiv szimmetrikus operdtor, amelyekre dom a N dom b
stri H-ban. Ekkor Q*Q™* = (a+b)p.

A fejezet végén megmutatjuk, hogy az (a + b)g, a + b, és (a + b)p kiterjesztések
altaldban kiilonboznek egymastol.

Ezt a fejezetet lényegében tartalmazza az [1] publikacio.

3 Pozitiv formak Banach tereken

Természetes otlet megprobalni a masodik fejezet eredményeit reflexiv Banach terekre
alatalanositani.

Legyen X reflexiv Banach tér, és X* a konjugalt duélis tere (azaz az X-en értelmezett
folytonos, konjugéaltan linearis funkcionalok tere). Legyen D C X stiri altér, és legyen
t: D x D — C szeszkvilinearis forma D-n (megallapodés szerint ¢ az els6 valtozoban
lineéris, és a méasodikban konjugaltan linearis). Tegyiik fel, hogy t(z,z) > v|z|* vala-
milyen v > 0-ra. Tegyiik fel tovabba, hogy ¢ 'zéart’ olyan értelemben, hogy (D, t(-,-)) =:
H Hilbert teret alkot. Az ¢ : H — X beagyazas folytonos, igy H-t az X tér egy
alterének tekinthetjiik. A rovidség kedveéért a [, -] := t(-, ) jelolést fogjuk alkalmazni. A
t forméhoz természetes modon asszocialhaté egy A : X — X* operator: legyen z € D
és tekintsiik az [z,y], y € D funkciondlt; ha ez folytonos X felett, akkor létezik egy
z € X* amelyre [z,y] = z(y) =: (z,y) teljesiil. Legyen Az := z.

3.1.1 Tétel A fenti A: X — X* operdtor pozitiv és onadjungdlt.
Természetesen most nehezebb egy operator ¢nadjungaltsigdt megmutatni, mint

Hilbert terek esetében. A fenti tétel bizonyitasa a kovetkezd lemmét hasznalja:

3.1.2 Lemma Ha B : X* — X injektiv korldtos énadjungdlt operdtor, akkor A := B~!

szintén onadjungalt.



A 3.1.1 Tétel segitségével konnyd bebizonyitani a Friedrichs kiterjesztés létezését a

szigoruan pozitiv esetben.
3.2.1 Tétel Legyen a : X — X* pozitiv sdrin definidlt operdtor, amelyre (azx,x) >
yllz||?, v > 0. Ekkor a-nak létezik pozitiv énadjungdlt kiterjesztése ugyanazzal az alsé
korldttal.

Egy operator onadjungaltsaganak bizonyitasa torténhet még tgy is, hogy megmu-
tatjuk, hogy az operatorunk egy adott énadjungélt operator szimmetrikus kiterjesztése.

Ez az érvelés érvényesiil a kovetkez6 lemméaban.

3.2.2 Lemma Legyen A : X — X* pozitiv onadjungdlt operdtor (itt nem szikséges, hogy
A-nak pozitiv alsd korldtja legyen). Ekkor létezik eqy H Hilbert tér, és eqy J : H — X*
operdtor, amelyre A = JJ* teljesiil.

A pozitiv zart formaknak egy altalanosabb definicidja is lehetséges (annak érdekében,
hogy az olyan formakra is kiterjessziik a definiciot, amelyeknek also korlatja 0). Egy
t: DxD — C pozitiv format zartnak neveziink, ha abbol, hogy x,, C D és x,, — x X-ben
és t(Ty— T, Tn—2m) — 0 kovetkezik, hogy « € D és t(x,—z, x,—x) — 0 (megjegyezziik,
hogy a fenti definicié ekvivalens a korabbival, ha t-nek pozitiv az alsé korlatja). Egy X
értékd valoszintiségi valtozo "kovariancia forméja’ konkrét példat szolgaltat pozitiv zéart
formakra.

Legyen (Q, A, u) egy valosziniiségi météktér, és legyen & : Q@ — X egy valoszintiségi
vatozo (azaz egy gyengén mérhetd fiiggvény). Tegyiik fel, hogy

/Q 7€) du

létezik minden f € X™ esetén. Tegyiik fel tovabba, hogy a

D= {f fe X*,/Qlf@)\? dji < +oo}

halmaz stiri X*-ban. (Azt azonban nem sziikséges kikotni, hogy D = X* teljesiiljon.)
Lassunk egy konkrét példat: legyen X = 5, Q = {w, :n=1,2,...} és p({wn}) =
ce~ /27 ooy megfelel§ ¢ konstanssal. Legyen &(w,)r = n*/k!. Kénnyd belatni, hogy
ekkor D # X* stird altér.
Feltessziik, hogy E ¢ = 0, hiszen kiilonben tekinthetjiik (§ — E £)-t £ helyett.

4



Legyen
t(f,9) =E (f(§)g(¢))

minden f,g € D-re. A t format a & valoszintiségi valtozo kovariancia formajanak nevez-

ziik.
3.3.1 Tétel A fenti t forma pozitiv zdrt forma D x D-n.

A reflexiv Banach tereken definialt pozitiv zart formék a parciélis differencidlegyen-
letekben is szerepet kapnak.

Legyen X = L,(Q2), 1 < p < 400, ahol 2 egy sima peremii korlatos tartomany R"-
ben. Definidljuk az A : L,(Q) — L,(§2) operatort a kovetkez6képpen: dom A = C§°(2)
és

Z%; oz, azk ) +bf
ahol a, € CY(Q), be L}, .(Q),b>0és

n

a()B:0k > ’YZ 1Bi]%, v >0

.

k=1
mindeniitt Q-n (uniform ellipticitas). Ilyenkor fennall, hogy

(Af,f)Z/Q<—§:%<am§f>+bf>f -

i,k=1

/Q<i gf of +b|f|2> dx>7/z

i,k=1

Tovabba p < 2n/(n — 2) esetén

n an

teljesiil a Sobolev-féle beagyazési tétel szerint. Tehat az A operator als6 korlatja pozitiv.

dx > c||f||z277 c>0

Az A operator Friedrichs kiterjesztése sziirjektiv, és ez azt jelenti, hogy a

—Z (a,k )+bf—g



egyenletnek minden g € L,(£2)-ra létezik gyenge megoldasa, ha ¢ > 2n/(n + 2).
A harmadik fejezet eredményei a [2] publikacioban talalhatok meg.

4 A Trotter formula projekciékra

A Hibert tereken értelmezett zart formak és a formadsszeg konstrukcidja Kato egyik
érdekes tétele szerint kapcsolatban allnak a Trotter formula konvergenciajaval. Roviden
ismertetjiik a fogalmakat:

Legyen a H Hilbert téren adva egy
a:D(a) x D(a) — C

szeszkvilinearis forma (ahol D(a) a H tér egy altere). Tegyiik fel, hogy a alulrdl korlatos,

azaz létezik olyan A € R, amelyre
|ul|? := Re a(u,u) + Mu,u)g >0

minden u € D(a), u # 0 esetén. Feltessziik tovabba, hogy a + A szektorialis és zart,
azaz |Im a(u,u)] < M(Re a(u,u) + ANu,u)g) és a (D(a),| - ||o) tér teljes. Roviden a-t

zdrt formdnak nevezziik. Legyen K = D(a) a D(a) altér lezartja H-ban. Jeloljik A-val

az a formahoz asszocialt operatort a K téren, azaz
D(A) ={u € D(a) : Jv € K amelyre a(u, ) = (v,¢)g for all ¢ € D(a)}

és Au = v. Ekkor —A egy e ' Cy-félcsoportot general a K téren. Jeloljikk Q-val a K

—ta

altérre valo ortogonalis projekcidt. Definidljuk most az e™** operatort a H téren az

ey =eMQx, veH t>0

formulaval. Az e % folytonos degeneralt félcsoportot az a forma dltal generdlt félcso-
portnak hivjuk.

Tegyiik most fel, hogy adott egy tovabbi b zart forma is H-n, és definialjuk az a + b
format D(a+0b) := D(a)ND(b)-n az (a+b)(u,v) = a(u,v) +b(u, v) formulaval. Kénnyt
belatni, hogy a + b ismét csak zart forma. Kato eredménye szerint a kovetkez6 Trotter

formula teljesiil:



4.1.1 Tétel Legyen x € H. Ekkor

- : _tg _t
e Mg — Jim (e n% nb)"

n—oo
minden t > 0-ra.

Most ezt a formulat egy specialis esetben alkalmazzuk. Legyen P tetszGleges orto-
gonalis projekcio. Definialjuk a b forméat a kovetkezGképpen: D(b) = PH és b(u,v) =0
minden u,v € PH-ra. Ekkor e™® = P teljesiil minden ¢ > 0O-ra. Tehat a 4.1.1 Tétel
kovetkezményeként kapjuk:

4.1.2 Tétel Legyen P ortogondlis projekcio, és legyen a zdrt forma. Ekkor

S(t)z = lim (e #“P)"x

n—oo

létezik minden © € H-ra, ést > 0-ra, és S(t);=0 az a|py forma dltal generdlt folytonos

félesoport.
Ennek az eredménynek egy érdekes alkalmazésa a kovetkezo:

Példa (Dirichlet-féle Laplace operator) Legyen 2 C R™ korlatos nyilt halmaz Lipschitz
peremmel, és jelolje A a Laplace operatort L?*(R")-en. Legyen Pf := 1qf. Ekkor
minden f € L2(Q)-ra igaz, hogy lim, . (en®P)"f = e®2f ahol Agq jeldli a Dirichlet
peremfeltételdi Laplace operatort L*(Q)-n, azaz D(Aq) = {f € H}(Q) : Af € L*(Q)}
and Aqf = Af.

Kato fenti eredménye és ez az érdekes alkalmazéis adta a motivaciot a projekcios
Trotter formula tovabbi vizsgalatara.

A kovetkezd két tétel tovabbi olyan eseteket térgyal, amikor konvergencia teljesiil.
4.1.4 Tétel Legyen A € B(E) az (€50 Co-félesoport generdgtora, és legyen P € B(E)
tetszdleges projekcio. Ekkor

lim (en4P)"z = e"AP' Py

n—oo

minden x € E-re és a konvergencia egyenletes t € [0, T)]-re.
4.1.5 Tétel Legyen (X,3, 1) egy o-véges mértéktér, és legyen (e"');>0 eqy pozitiv Co-
félcsoport E = LP(X)-en, ahol 1 < p < oco. Legyen Q C X egy mérheté halmaz, és



legyen Pf = 1qf. Ekkor minden f € E-re ést > 0-ra

S(t)f := lim (en*P)" f
létezik, és S(t)i=0 pozitiv operdtoroknak egy folytonos degenerdlt félcsoportja. Tovdbbd,
az S(0) := lim;_oS(t) projekcio a kovetkezd alaku: S(0)f = 1y f, ahol Y C Q egy
meérhetd halmaz.

Ez a tétel W. Arendt-t6l és C. Batty-t6l szarmazik.

A fenti eredmények alapjan W. Arendt a kovetkezs sejtéseket fogalmazta meg 1997-
ben:

(a) Legen e kontraktiv Co-félcsoport egy H Hilbert téren, és legyen P ortogonalis
projekcio. Ekkor lim,_o(ewAP)"z konvergens minden = € H-ra és ¢ > O-ra.

(b) Legyen e* egy pozitiv, kontraktiv Co-félcsoport LP(X, %, u)-n (ahol (X, X, i)
egy o-véges meértéktér, és 1 < p < 00), és legyen P pozitiv kontraktiv projekcio. Ekkor
lim,, .o (e P)"x konvergens minden x € H-ra és t > O-ra.

A negyedik fejezet f6 eredménye ezeknek a sejtéseknek a megcafolasa egy-egy ellen-
példa konstrudlasaval.

Az els§ példaban H = L2%[0,1]. Tekintjiik az (unitér) e szorzas félesoportot H-n,
ahol b = 37" | X(1/2¢.1/2-112"7. A P projekciot pedig a Pf =1 - fol f(z)dz formulaval
definialjuk.

A maésodik példaban H = L%0,2x]. Tekintjiik az e f(z) = f(x + 27t) eltolas
félesoportot, ahol f-et 2m-periodusn fiiggvénynek tekintjiik. Tekintjiik tovabba a g(z) =

\/;47 [4—1— Z;OZO\/LQTCOS 2Fx| pozitiv, 1 normaju fiiggvényt, és az altala kifeszitett 1-

dimenzids altérre valo ortogonalis projekciot jeloljik P-vel.

Mindkét esetben nem-trividlis szamitasok igazoljak, hogy az (exP)"f sorozat (nor-
méja) nem konvergens az f =1 és f = g valasztas mellett.

A negyedik fejezet a [3| publikiciora épiil.
5 Egy hasonlésagi eredmény

Ennek a fejezetnek az eredményére a hatodik fejezetben lesz sziikség a projek-
cios Trotter formula konvergencidjanak karakterizédcidojanal. Az eredmény azonban 6n-

magaban is érdekes. Megjegyezziik, hogy az eredmény megfelelGje Banach terekben nem

ismert.



5.1.1 Tétel Legyen A az et Cy-félcsoport generdtora a H Hilbert téren. A kovetkezdk
ekvivalensek:

(i) A korldtos.

(ii) Az et félcsoport quizi-kontraktiv minden H-beli ekvivalens ( , )o skaldrszozat esetén.
(11i) Minden H-beli ekvivalens ( , )o skaldrszorzat esetén létezik olyan Ky € R, amelyre

teljesiil, hogy minden x € D(A)-ra (z,x)g = 1 esetén fenndll, hogy Re (Ax,z)s < K.
6 A Trotter formula konvergenciaja

Ebben a fejezetben a generator bizonyos tulajdonsigaival jellemezziik a projekcios
Trotter formula konvergenciajat. A kovetkezd tétel masodik része felfoghato Kato ered-

ményének megforditasaként.

6.0.1Tétel Legyen A az et Cy-félesoport generdtora a H Hilbert téren. Tekintsik a
kévetkezd dllitdasokat:

(i) A korldtos.

(ii) —A egy strin definidlt zart szektoridlis a formdahoz asszocidlt operdtor.

(iii) Az (en*P)"z formula konvergdl minden P € B(H) projekcidra, és minden = € H-
ra, ést > 0-ra.

(iv) Az (ew P)"z konvergdl minden ortogondlis P € B(H) projekcidra és minden = € H-
ra ést > 0-ra.

A kovetkezd implikdciok teljesilnek: (i) < (iii), (ii) < (iv).

Az 6t6dik és hatodik fejezet eredményeit a [4] publikicié tartalmazza.

Irodalom

[1] B. Farkas, M. Matolcsi: Commutation properties of the form sum of positive, sym-
metric operators, Acta Sci. Math. (Szeged), (2001).

[2] B. Farkas, M. Matolcsi: Positive forms on Banach spaces, Acta Math. Hung., (meg-
jelenés alatt).

[3] M. Matolesi, R. Shvidkoy: Trotter’s product formula for projections, Arch. Math.,
(megjelenés alatt).

[4] M. Matolcsi: On the relation of closed forms and Trotter’s product formula, (kdzlésre

benyijtva).



