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Introduction

The theory of Hilbert space operators witnessed a major progress with the work of J.
von Neumann when he started to use systematically the notions of adjoints, graphs, and
functions of operators. One reason behind his success was the observation that bounded
sesquilinear forms and bounded linear operators on a complex Hilbert space are, in fact,
the same. He applied these techniques with great success to the theory of unbounded self-
adjoint operators, as well. Later, however, forms have come back into favour in certain
situations. Namely, in the unbounded case, closed, positive forms provide a convenient
way to de�ne positive self-adjoint operators via the form representation theorem. The
basic applications of this idea have been manifested in the Friedrichs extension of densely
de�ned positive symmetric operators and the form sum construction of two appropriate
positive self-adjoint operators. The form sum of two positive self-adjoint operators was
later connected to the convergence of Trotter's product formula by a result of Kato.
This dissertation presents a collection of my results from this circle of ideas.

The present dissertation is based on the author's papers [14] , [15] , [21], [22]. Papers
[14] and [15] consist of results of a joint research with Bálint Farkas at the Department
of Applied Analysis, ELTE. Paper [22] is the result of a joint research with Roman
Shvidkoy originating at the Internet Seminar Workshop, Blaubeuren, 2001. Paper [21]
contains results of the author accomplished during his stay at the University of Ulm
with the Marie Curie Host Fellowship. Many other related results are also included.
References are given to the best of the author's knowledge.

In Chapter 1 we describe a factorization theorem for positive self-adjoint operators
establishing a connection between form methods and operator methods. This construc-
tion is due to Z. Sebestyén. It has been applied successfully to many problems both in
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bounded and semibounded case. Some recent applications, related to subsequent results
of the dissertation, are also included.

In Chapter 2 we apply the basic construction of Chapter 1 to the addition problem
of positive, symmetric operators. We arrive at a generalized notion of the form sum
construction. A commutation property of this sum with bounded operators is proved.
We also describe some pathological phenomena concerning the addition of positive self-
adjoint operators.

In Chapter 3 we consider closed, positive forms on re�exive Banach spaces. We
examine which of the Hilbert space results can be carried over to this general case.

In Chapter 4 we describe the result of Kato which gives a connection between the
form sum of two operators and Trotter's product formula. We apply this result to the
special case when one of the semigroups is replaced by a bounded orthogonal projec-
tion (which can be regarded as a degenerate semigroup). The convergence of Trotter's
formula for projections is then further investigated. Some positive results and coun-
terexamples are given.

Chapter 5 contains a similarity result which will be needed subsequently in the
characterization of the convergence of Trotter's product formula for projectons. This
general similarity result is of independent interest.

Finally, Chapter 6 contains the characterization of the convergence of Trotter's for-
mula for projections in terms of properties of the generator. The result proves, in a
sense, the converse of Kato's result.
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Chapter 1

Factorization of positive operators

This chapter is of introductory character. It describes the basic construction, due to
Z. Sebestyén, which will be indispensable in the course of Chapters 2 and 3. Some
applications of the construction, which are closely related to results of Chapters 2 and
3, are also included. In most cases only the outline of the proof is presented, while
references are made as to where the detailed proof can be found.

1.1 Factorization over an auxillary Hilbert space
Let H denote, here and throughout this dissertation, a complex Hilbert space. The
space of bounded linear operators on H will be denoted by B(H). Let A be a positive,
self-adjoint operator (bounded or unbounded), i.e. A = A∗ and (Ax, x) ≥ 0 holds true
for all x ∈ dom A, the domain of the operator A.

We construct an auxillary Hilbert space in order to factorize the operator A. De�ne
a new scalar product [ , ] on the range of A by [Ax,Ay] := (Ax, y). It is well de�ned
because if x1, x2, y1, y2 ∈ dom A and Ax1 = Ax2, Ay1 = Ay2 then we have (Ax1, y1) =

(Ax2, y1) = (x2, Ay1) = (x2, Ay2) = (Ax2, y2). Also, it is positive de�nite because
(Ax, x) = 0 implies A

1
2 x = 0 and therefore Ax = 0. Hence ran A, the range of the

operator A, equipped with the scalar product [ , ] is a pre-Hilbert space. The completion
space of this pre-Hilbert space will be denoted by HA.
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There is a natural (identi�cation) mapping J of ranA (as a subspace of HA) into the
original Hilbert space H de�ned by Jx = x (x ∈ ran A). As the operator J : HA → H

is densely de�ned, the adjoint J∗ : H → HA exists. For x ∈ dom A we have

|(J(Ay), x)| = |(Ay, x)| ≤ (Ay, y)
1
2 (Ax, x)

1
2 = [Ay, Ay]

1
2 (Ax, x)

1
2

which means that x ∈ domJ∗. Hence J∗ is also densely de�ned, and therefore J∗∗ exists.
Furthermore, for x ∈ dom A, (J(Ay), x) = (y,Ax), hence J∗x = Ax. The operator
J∗∗J∗ : H → H is positive, self-adjoint by von Neumann's theorem. Furthermore, for
all x ∈ dom A, J∗∗J∗(x) = J∗∗(Ax) = J(Ax) = Ax, that is, the operator J∗∗J∗ is a
positive self-adjoint extension of A. This means that J∗∗J∗ = A since A is self-adjoint
itself.

We remark that it is not necessary to consider the operator J∗∗ at this point. The
operator JJ∗ is a positive symmetric extension of A, therefore JJ∗ = A holds also. In
Section 1.2, however, we will need the operator J∗∗ instead of J . For the sake of uni�ed
treatment the operator J∗∗ is introduced already at this point.

The factorization J∗∗J∗ = A implies, by general theory, that dom J∗ = dom A
1
2 ,

where A
1
2 is the unique positive self-adjoint square root of the operator A. Moreover,

for all y ∈ dom J∗ we have

‖A 1
2 y‖2 = ‖J∗y‖2 = sup {|(Ax, y)|2 : x ∈ dom A, (Ax, x) ≤ 1} (1.1)

Therefore we can identify the closed quadratic form corresponding to A in terms of the
auxillary operator J∗. This fact highlights one major advantage of this construction: it
establishes a connection between the 'form approach' and the 'operator approach'.

This factorization argument, with appropriate modi�cations, has led to various re-
sults concerning positive operators. Some of the applications of this argument are in-
cluded here, and some other will appear in Chapters 2 and 3.

Assume �rst that A is bounded. The following theorem is taken from [25]. It
illustrates the advantages of the de�nition of the auxillary Hilbert space HA, and, at
the same time, the factorization of A over HA.
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Theorem 1.1.1 Let A ∈ B(H) be a positive, self-adjoint operator on the Hilbert space
H. Assume that B ∈ B(H) has no negative real numbers in its spectrum, and that the
product AB is self-adjoint. Then AB is automatically positive.

Proof. We only include the sketch of the proof, see [25] for details.
De�ne an operator B̂ : HA → HA by B̂(Ax) := A(Bx), (dom B̂ = ran A ⊂ HA). It

is not hard to show that B̂ is well-de�ned, symmetric, and bounded on ran A ⊂ HA (cf.
Lemma 2.2.1 and 2.2.2). The continuous extension to HA is also denoted by B̂. It is
easy to prove that the inclusion of spectrums Sp B̂ ⊂ Sp B holds (cf. Theorem 2.2.3).

Furthermore, the factorization A = J∗∗J∗, shows that AB = J∗∗B̂J∗ holds:
J∗∗B̂J∗x = J∗∗B̂(Ax) = J∗∗A(Bx) = ABx for all x ∈ H.

By assumption, the spectrum of B does not contain negative reals. Therefore we
see from the inclusion of the spectrums that B̂ is positive, self-adjoint. Hence, the
factorization AB = J∗∗B̂J∗ gives the desired result. ¤

Remark In [25] the result above is stated for bounded positive operators A only. How-
ever, the proof applies to the case of unbounded, positive, self-adjoint operators A, as
well. Indeed, (B∗A)∗ = AB, therefore (B∗A)∗∗ = B∗A = AB, by the assumption that
AB is self-adjoint. This means that B∗A is essentially self-adjoint, and is a core of AB.
Hence, it is enough to prove that B∗A is positive. This, however, follows from the fact
that B∗A ⊂ J∗∗B̂J∗.

1.2 Operator extensions
Next, we turn to the application of the factorization construction in the theory of pos-
itive, self-adjoint extensions of positive symmetric operators. The statements of the
following theorem appeared in [3] and [26].

Theorem 1.2.1 Let a : H → H be a positive linear operator de�ned on a (not neces-
sarily dense) subspace D := dom a. The following are equivalent:

(i) a can be extended to a positive, self-adjoint operator A in H.
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(ii) The set D∗ (a) := {y ∈ H : sup{|(ax, y)|2 : x ∈ D, (ax, x) ≤ 1} < ∞} is dense in
H.

The operator a has a bounded positive extension A on H if and only if D∗ (a) = H,
which occurs if and only if there exists a constant m ≥ 0 such that ‖ax‖2 ≤ m(ax, x)

for all x ∈ D. In this case there exists a bounded positive extension of a whose norm is
inf{m : ‖ax‖2 ≤ m(ax, x), x ∈ D}.

Proof. The proof relies on slight modi�cations of the basic factorization argument
presented at the beginning of the chapter. We only include the main points of the
argument here, see [26] for full details.

The implication (i) → (ii) follows from the inclusions dom A ⊂ D∗ (A) ⊂ D∗ (a)

which clearly holds for any positive, self-adjoint extension A of the given operator a.
For the proof of (ii) → (i) the auxillary space Ha is de�ned analogously as at the

beginning of the chapter.
The scalar product [ax, ay] := (ax, y) is well de�ned on ran a because a is symmetric.
The positive de�nity of [ , ] follows from the positivity of a and the assumption that
D∗ (a) is dense: indeed, if (ax, x) = 0 for some x ∈ D, then for all y ∈ D∗ (a) we have
(ax, y) = 0, therefore ax = 0. De�ne J : Ha → H as before: domJ := rana, and Jx = x.
It is clear from the de�nition of adjoint operators that dom J∗ = D∗ (a) ⊂ H. It is also
clear that D ⊂ domJ∗ and J∗x = ax for all x ∈ D. Now, domJ∗ = D∗ (a) is assumed to
be dense, therefore J∗∗ exists. Finally, it is easy to check that the positive, self-adjoint
operator aK := J∗∗J∗ is an extension of a. Indeed, J∗∗J∗x = J∗∗(ax) = J(ax) = ax for
all x ∈ D.

Also, we see from the factorization that

dom aK

1
2 = dom J∗ = D∗ (a), (1.2)

‖aK

1
2 y‖2 = ‖J∗y‖2 = sup {|(ax, y)|2 : x ∈ dom a, (ax, x) ≤ 1} (1.3)

holds. Furthermore, the operator J is bounded if and only if there exists a constant
m ≥ 0 such that ‖ax‖2 ≤ m(ax, x) for all x ∈ D

The statements concerning bounded positive extensions of a, as described in [26] in
detail, are fairly straightforward from the construction above. ¤
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We introduce the classical partial ordering of positive, self-adjoint operators as fol-
lows:

De�nition 1.2.2 Let A and B be positive, self-adjoint operators on H. We say that
A ≤ B if and only if dom B

1
2 ⊂ dom A

1
2 and (A

1
2 x,A

1
2 x) ≤ (B

1
2 x,B

1
2 x) for all x ∈

dom B
1
2 .

The construction in the proof of the theorem above distinguishes itself by being the
smallest positive self-adjoint extension of a (see [26]):

Corollary 1.2.3 Let a : H → H be a positive linear operator de�ned on a (not nec-
essarily dense) subspace D := dom a. Assume that a posesses at least one positive,
self-adjoint extension. Then the set of all positive, self-adjoint extensions of a contains
a smallest element. The smallest extension is provided by the construction of Theorem
1.2.1, i.e. aK = J∗∗J∗.

Proof. Let A1 be any positive self-adjoint extension of a. Then

sup {|(ax, y)|2 : x ∈ dom a, (ax, x) ≤ 1} ≤ sup {|(A1x, y)|2 : x ∈ dom A1, (A1x, x) ≤ 1}

and this implies the statement, because the left hand side is the form of aK and the
right hand side is the form of A1. ¤

This extension, in the case when a has positive lower bound, was �rst constructed
by von Neumann. Later, it was studied in detail by Krein [20]. Hence the following

De�nition 1.2.4 Let a : H → H be a positive linear operator de�ned on a (not
necessarily dense) subspace D := dom a. Assume that a posesses at least one positive,
self-adjoint extension. Then aK = J∗∗J∗, the smallest positive extension of a, is called
the Krein-von Neumann extension of a.

Next we turn to the case when dom a is dense in H. We show that a slight modi�-
cation of the factorization argument leads to the Friedrichs extension of a. The detailed
proof of the following result can be found in [24] and [23].
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Theorem 1.2.5 Let a : H → H be a positive linear operator de�ned on a dense subspace
D := dom a. Then the set of positive, self-adjoint extensions of a contains a largest
element, the Friedrichs extension of a.

Proof. This theorem is well known. The customary construction of the Friedrichs
extension is via the form representeation theorem. The densely de�ned, positive form
t[x, y] := (ax, y) is shown to be closable, and the Friedrichs extension of a is de�ned as
the positive self-adjoint operator associated with the closure of t. The maximality of the
Friedrichs extension is an easy consequence (see [13] pp. 89, 90). It is also a consequence
of this construction that the Friedrichs extension is the only positive selfadjoint extension
of a such that the domain of its square root is the same as the domain of the closure of
the form t.

Here we give a factorization of the Friedrichs extension in the spirit of Theorem 1.2.1.
First we note that doma ⊂ D∗ (a) always holds, hence D∗ (a) is dense in H, therefore it is
possible to construct the auxillary Hilbert space Ha. We de�ne an operator Q : H → Ha

by dom Q = D and Qx = ax for all x ∈ D. It is not hard to show that J ⊂ Q∗, and
that aF := Q∗Q∗∗ is a positive self-adjoint extension of a. We have to show that aF

is, in fact, the Friedrichs extension of a. It is enough to show that dom a
1
2
F = dom t.

This follows from dom a
1
2
F = dom Q∗∗ = dom Q = {y ∈ H : ∃(xn) ⊂ D, ‖xn − y‖ →

0, (a(xn − xm), xn − xm) → 0} = dom t. ¤

We can deduce from the constructions above, that the closed form corresponding to
the Friedrichs extension aF is a restriction of the closed form of the Krein-von Neumann
extension aK . Indeed, Q∗∗ ⊂ J∗, therefore (a

1
2
F x, a

1
2
F y) = [Q∗∗x,Q∗∗y] = [J∗x, J∗y] =

(a
1
2
Kx, a

1
2
k y) for all x, y ∈ doma

1
2
F . This simple observation relies on the fact that Q ⊂ J∗.

In a similar manner, it is a natural idea to examine all restrictions RL := J∗¹L
of the operator J∗ to each subspace dom a ⊂ L ⊂ dom J∗, and de�ne the operators
AL := R∗

LR
∗∗
L . It is easy to see (cf. [7] Proposition 4.1.) that each AL is a positive

self-adjoint extension of a, and the closed form corresponding to AL is a restriction of
the form of aK . Also, if dom a ⊂ L ⊂M ⊂ dom J∗ then AL ≥ AM holds.

The next theorem gives a characterization of the set of positive self-adjoint extensions
AL (see [7] Theorem 4.4.):
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Theorem 1.2.6 Let a be a densely de�ned, positive operator in H, and let A denote a
positive self-adjoint extension of a. The following are equivalent:

(i) A = R∗
LR

∗∗
L for some dom a ⊂ L ⊂ dom J∗

(ii) A is an extremal extension of a in the sense that inf{(A(x − y), x − y) : y ∈
dom a} = 0 for all x ∈ dom A.

(iii) The form associated to A is a restriction of the form associated to aK.

Proof. For the proof we refer to [7] Theorem 4.4. ¤

For further (function-theoretic) investigations of the class of extremal extensions of
a, and some applications we refer to [7].

Now, we turn to an interesting commutation property of the Krein-von Neumann
and the Friedrichs extensions of a. These results give the basis behind Theorem 2.2.4
in Chapter 2. We remark that the same property is not known to hold for all extremal
extensions of a.

Theorem 1.2.7 Let a : H → H be a positive linear operator de�ned on a subspace
D := doma, and assume D∗ (a) is dense in H. Let B and C be bounded linear operators
on H leaving D invariant and such that

aBx = C∗ax, aCx = B∗ax

for all x ∈ D. Then
aKBx = C∗aKx, aKCx = B∗aKx

holds for all x ∈ dom aK.
If D is dense (ensuring the existence of aF ), then

aF Bx = C∗aF x, aF Cx = B∗aF x

holds for all x ∈ dom aF .

Proof. These results are non-trivial. The statement concerning the Krein-von Neumann
extension appeared in [26]. It also follows from Theorem 2.2.4 in Chapter 2 on setting
a = b.

The statement concerning the Friedrichs extension appeared in [24]. ¤
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Problem 1.2.8 Is the same commutation property enjoyed by all extremal extensions
AL of a?

The author remarks that the proof employed in the cases of aK and aF does not
apply, and it is a conjecture of the author that counterexamples exist.

Finally we demonstrate the di�erent extensions introduced above by a particular
example (see the discussion in [2] and [7]).
Example Let H := L2[0, 1] and a := − d2

dx2 with dom a := W 2,2
0 [0, 1]. Then a is closed,

positive, with lower bound π2, and defect index dim(ker a∗)=2. In fact,
ker a∗=span {1, x}. The Friedrichs extension of a is simply the Dirichlet-Laplacian:
dom aF = W 1,2

0 [0, 1] ∩W 2,2[0, 1] and the corresponding closed form is given by

(a
1
2
F u, a

1
2
F v) =

∫ 1

0

u′(x)v′(x)dx

for all u, v ∈ dom a
1
2
F = W 1,2

0 [0, 1]. The Krein-von Neumann extension of a corresponds
to the closed form

(a
1
2
Ku, a

1
2
Kv) =

∫ 1

0

u′(x)v′(x)dx− (u(1)− u(0))(v(1)− v(0))

for all u, v ∈ dom a
1
2
K = W 1,2[0, 1]. The domain of aK is characterized by the folowing

boundary conditions:

dom aK = {u ∈ W 2,2[0, 1] : u′(0) = u′(1) = u(1)− u(0)}

From the form of aK we see that aK is not the same as the Neumann-Laplacian aN

and, furthermore, that the Neumann-Laplacian is not an extremal extension of a.
In fact, all extremal extensions of a (except for aF and aK) are characterized by the

following boundary conditions (see [7]):
Let c := (c1, c2) ∈ C2 be a vector of norm 1, and de�ne ac := − d2

dx2 with

domac := {u ∈ W 2,2[0, 1] : c2u(0) = c1u(1), c1(u
′(0)−u(1)+u(0)) = c2(u

′(1)−u(1)+u(0))}.



Chapter 2

Form sum constructions

This chapter deals with the addition problem of two positive (not necessarily self-adjoint)
operators. The results of this chapter are taken from [14].

The addition problem of unbounded self-adjoint operators is highly non-trivial and
has been investigated with several approaches (see e.g. [10] and [13]). In the case when
both operators are positive (or semi-bounded) self-adjoint, the form sum construction is
distinguished by Kato's result [18] on the convergence of Trotter's product formula. This
chapter is devoted to the construction and investigation of a generalized form sum of
two positive, symmetric operators. The construction is based on the method described
in Chapter 1, and it reveals an 'operator approach' to the form sum construction.

Given two positive, selfadjoint operators A and B in the Hilbert space H, we may
form the operator sum A + B on dom A ∩ dom B. However, the intersection of the
domains may be zero-dimensional, and in general nothing can assure us that the sum
will be a selfadjoint operator. The so-called form sum construction handles this problem
if domA

1
2 ∩domB

1
2 is dense in H. De�ne qA(x) = (A

1
2 x,A

1
2 x) and qB(x) = (B

1
2 x,B

1
2 x)

two closed forms; their sum qA + qB is a closed form on dom A
1
2 ∩ dom B

1
2 , therefore

the representation theorem provides a selfadjoint operator C, such that C and A + B

coincide on dom A ∩ dom B [13]. The usual notation for the form sum of A and B

is A
.
+ B. In Section 2.1, we give a new construction of a generalized form sum of

positive, symmetric operators. Section 2.2 deals with commutation properties of this
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construction. In the last section we give some examples concerning the form sum, and
describe the relation between other extensions of operator sums.

We use the notations of Chapter 1. Throughout this chapter, unless otherwise stated,
a, b will denote positive, symmetric operators in the Hilbert space H, with not neccesarily
dense domains. The characterizing properties 1.2, 1.3 of the Krein-von Neumann
extension will be used frequently in this chapter.

2.1 The form sum
In the following we propose a new construction for the additon of two positive, symmetric
operators. We show that in case of selfadjont operators this construction supplies the
form sum of the operators.

Let a and b be two positive, symmetric operators, and suppose that D∗ (a) ∩ D∗ (b)

is dense in H. This implies, a fortiori, that D∗ (a) and D∗ (b) are dense, so that the
auxillary Hilbert spaces Ha, Hb are possible to construct, and the corresponding Krein-
von Neumann extensions aK and bK exist (cf. Theorem 1.2.1). Consider the space
Ha ⊕Hb, and the operator

J : Ha ⊕Hb → H, with dom J = ran a⊕ ran b, J(ax⊕ by) = ax + by. (2.1)

It is easy to prove that J∗ is densely de�ned, in fact, D∗ (a) ∩ D∗ (b) = dom J∗. To see
this, let x ∈ dom a, y ∈ dom b and u ∈ D∗ (a) ∩D∗ (b), then

|(J(ax⊕ by), u)|2 = |(ax, u) + (by, u)|2 ≤ 2|(ax, u)|2 + 2|(by, u)|2 ≤
2mu(ax, x) + 2nu(by, y) ≤ m[ax⊕ by, ax⊕ by],

with m = 2 max(mu, nu). This shows that u ∈ dom J∗, hence D∗ (a)∩D∗ (b) ⊆ dom J∗.
For the reverse, let u ∈ dom J∗ and x ∈ dom a, then

|(ax, u)|2 = |(J(ax⊕ 0), u)|2 ≤ m[ax⊕ 0, ax⊕ 0] = m[ax, ax] = m(ax, x),

with a suitable m ≥ 0, therefore u ∈ D∗ (a). Similarly, we obtain that u ∈ D∗ (b). Thus
we have shown that D∗ (a) ∩D∗ (b) ⊇ dom J∗.
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We see that J∗∗ exists. Now, we calculate J∗ on doma∩domb. Let u ∈ doma∩domb

and x ∈ dom a, y ∈ dom b, then

(J(ax⊕ by), u) = (ax, u) + (by, u) = [ax, au] + [by, bu] = [ax⊕ by, au⊕ bu],

consequently J∗u = au⊕ bu.
According to the von Neumann theorem J∗∗J∗ is positive and selfadjoint. We

claim that J∗∗J∗ is an extension of a + b. Indeed, let u ∈ dom a ∩ dom b, then

J∗∗J∗u = J∗∗(au⊕ bu) = J(au⊕ bu) = au + bu = (a + b)u.

In order to prove that our construction is a generalization of the form sum of selfad-
joint operators, we need the following lemma on the Krein-von Neumann extension.

Lemma 2.1.1 If a, b are positive, symmetric operators, and D∗ (a) and D∗ (b) are dense
in H, then D∗ (a⊕ b) is dense in H ⊕H and

aK ⊕ bK = (a⊕ b)K .

Proof. First we show that (a ⊕ b)K exists. It is enough to prove that D∗ (a ⊕ b) =

dom (aK ⊕ bK)
1
2 since the latter is dense in H ⊕H.

We observe �rst that (aK⊕bK)
1
2 = (a

1
2
K⊕b

1
2
K), indeed both are positive and selfadjoint

with the same square aK ⊕ bK .
Now, using the de�nition, we can write:

D∗ (a⊕ b) = (2.2)

{x⊕y : ∃mx,y |((a⊕b)(u⊕v), x⊕y)|2 ≤ mx,y((a⊕b)(u⊕v), u⊕v),∀u⊕v ∈ doma⊕ b} =

{x⊕ y : ∃mx,y |(au, x) + (bv, y)|2 ≤ mx,y((au, u) + (bv, v)),∀u⊕ v ∈ dom a⊕ dom b}.
Also, we know that

dom (aK ⊕ bK)
1
2 = dom (a

1
2
K ⊕ b

1
2
K) = (2.3)

dom a
1
2
K ⊕ dom b

1
2
K = D∗ (a)⊕D∗ (b) =

{x : ∃mx |(au, x)|2 ≤ mx(au, u),∀u ∈ doma}⊕{y : ∃my |(bv, y)|2 ≤ my(bv, v),∀v ∈ domb}.
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Putting u = 0 and respectively v = 0 in 2.2, we see that

D∗ (a⊕ b) ⊆ dom (aK ⊕ bK)
1
2 .

To show
D∗ (a⊕ b) ⊇ dom (aK ⊕ bK)

1
2 ,

we let mx,y = 2 max(mx,my), and use 2.2, 2.3 and the convexity of the function α 7→ α2

on R+. We have seen consequently that D∗(a⊕b) = dom(aK ⊕ bK)
1
2 . So theKrein-von

Neumann extension of a⊕ b exists, and we know that D∗ (a⊕ b) = dom (a⊕ b)
1
2
K .

To see that (a⊕ b)K = aK ⊕ bK , we have to check that

dom (a⊕ b)
1
2
K = dom (aK ⊕ bK)

1
2

and furthermore that
‖(aK ⊕ bK)

1
2 z‖2 = ‖(a⊕ b)

1
2
Kz‖2

holds for all z ∈ dom (a⊕ b)
1
2
K .

The equality of the domains follows from the above argument.
Now, we prove the required identity. Let x⊕ y ∈ dom (a⊕ b)

1
2
K . Then

‖(aK⊕ bK)
1
2 (x⊕y)‖2 = ‖(a

1
2
K⊕ b

1
2
K)(x⊕y)‖2 = ‖a

1
2
Kx⊕ b

1
2
Ky‖2 = ‖a

1
2
Kx‖2 +‖b

1
2
Ky‖2 (2.4)

Now we calculate ‖(a⊕ b)
1
2
K(x⊕ y)‖2. The inequality

‖(a⊕ b)
1
2
K(x⊕ y)‖2 ≤ ‖a

1
2
Kx‖2 + ‖b

1
2
Ky‖2 (2.5)

follows immediately from the minimality of the Krein-von Neumann extension and
the fact that aK ⊕ bK is a positive, selfadjoint extension of a⊕ b.

To see the reverse inequality, we consider the following. We can assume that ‖a
1
2
Kx‖2+

‖b
1
2
Ky‖2 > 0, therefore we let

t =
‖a

1
2
Kx‖2

‖a
1
2
Kx‖2 + ‖b

1
2
Ky‖2

, thus 1− t =
‖b

1
2
Ky‖2

‖a
1
2
Kx‖2 + ‖b

1
2
Ky‖2

.

Then

sup{|((a
1
2
K⊕b

1
2
K)(u⊕v), (a

1
2
k⊕b

1
2
K)(x⊕y))|2 : u ∈ doma, v ∈ domb, (aKu, u)+(bKv, v) ≤ 1} ≥
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sup{|(a
1
2
Ku, a

1
2
Kx) + (b

1
2
Kv, b

1
2
Ky)|2 : u ∈ dom a, v ∈ dom b, (aKu, u) ≤ t, (bKv, v) ≤ 1− t}

Now multiplying u and v by a suitable αu, αv ∈ C of absolute value 1, we continue:

sup{|(a
1
2
Ku, a

1
2
Kx)+(b

1
2
Kv, b

1
2
Ky)|2 : u ∈ doma, v ∈ dom b, (aKu, u) ≤ t, (bKv, v) ≤ 1− t} =

sup{(|(a
1
2
Ku, a

1
2
Kx)|+|(b

1
2
Kv, b

1
2
Ky)|)2 : u ∈ doma, v ∈ domb, (aKu, u) ≤ t, (bKv, v) ≤ 1−t} =

(sup{|(a
1
2
Ku, a

1
2
Kx)| : u ∈ doma, (aKu, u) ≤ t}+sup{|(b

1
2
Kv, b

1
2
Ky)| : v ∈ domb, (bKv, v) ≤ 1−t})2 =

t‖a
1
2
Kx‖2 + 2

√
t(1− t)‖a

1
2
Kx‖‖b

1
2
Ky‖+ (1− t)‖b

1
2
Ky‖2 = ‖a

1
2
Kx‖2 + ‖b

1
2
Ky‖2. (2.6)

We have used that

sup{|(a
1
2
Ku, a

1
2
Kx)|2 : u ∈ doma, (aKu, u) ≤ t} = sup{|(aKu, x)|2 : u ∈ doma, (aKu, u) ≤ t} =

t‖a
1
2
Kx‖2 = sup{|(a

1
2
Ku, a

1
2
Kx)|2 : u ∈ dom a

1
2
K , (a

1
2
Ku, a

1
2
k u) ≤ t}

and the same for bK . Putting together 2.4, 2.5 and 2.6 we obtain:

‖(aK ⊕ bK)
1
2 (x⊕ y)‖2 = ‖(a⊕ b)

1
2
K(x⊕ y)‖2

completing the proof. ¤

With the help of Lemma 2.1.1 we are able to prove that the constructed operator
J∗∗J∗ is indeed a generalization of the notion of the form sum of two positive self-adjoint
operators.

Theorem 2.1.2 Let a and b be positive, symmetric operators such that D∗ (a) ∩D∗ (b)

is dense in H, and let J be as in 2.1, then the form sum of aK and bK is J∗∗J∗, i.e.

aK

.
+ bK = J∗∗J∗.

Proof. Again we prove that dom (aK

.
+ bK)

1
2 = dom (J∗∗J∗)

1
2 , and (aK

.
+ bK)

1
2 x =

(J∗∗J∗)
1
2 x for each x ∈ dom (aK

.
+ bK).

We know that dom (aK

.
+ bK)

1
2 = dom a

1
2
K ∩ dom b

1
2
K , and dom (J∗∗J∗)

1
2 = dom J∗ =

D∗ (a)∩D∗ (b), as we have seen in the argument following 2.1. Moreover doma
1
2
K = D∗ (a)

and dom b
1
2
K = D∗ (b), which implies the desired equality of the domains.
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Using Lemma 2.1.1, we have that

‖(J∗∗J∗) 1
2 x‖2 = [J∗x, J∗x] =

sup{|[au⊕ bv, J∗x]|2 : u ∈ dom a, v ∈ dom b, [au⊕ bv, au⊕ bv] ≤ 1} =

sup{|(au + bv, x)|2 : u ∈ dom a, v ∈ dom b, (au, u) + (bv, v) ≤ 1} =

sup{|((a⊕ b)(u⊕ v), x⊕ x)|2 : u⊕ v ∈ dom a⊕ dom b, ((a⊕ b)(u⊕ v), (u⊕ v)) ≤ 1} =

‖(a⊕ b)
1
2
K(x⊕ x)‖2 = ‖(a

1
2
K ⊕ b

1
2
K)(x⊕ x)‖2 = ‖a

1
2
Kx‖2 + ‖b

1
2
Kx‖2.

Therefore
‖(J∗∗J∗) 1

2 x‖2 = ‖a
1
2
Kx‖2 + ‖b

1
2
Kx‖2,

which is, by de�nition, equal to ‖(aK

.
+ bK)

1
2 x‖2. The theorem is proved. ¤

The following theorem is an immediate consequence of Theorem 2.1.2, because for
any positive, selfadjoint operator a, the Krein-von Neumann extension aK and a

coincide.

Theorem 2.1.3 If a and b are positive, selfadjoint operators with dom a
1
2 ∩ dom b

1
2

dense in H, then the corresponding operator J∗∗J∗ is just the form sum of a and b.

The previous theorem shows that the following notation is consistent with the notation
for the form sum construction. From now on we will use a

.
+ b for the above constructed

operator J∗∗J∗, even if a, b are positive, symmetric operators. We reformulate Theorem
2.1.2 as follows.

Theorem 2.1.4 If a and b are positive, symmetric operators with D∗ (a)∩D∗ (b) dense
in H, then a

.
+ b = aK

.
+ bK.

Remark Considering the extensions of direct sum of operators, an analogous statement
can be proved for the Friedrichs extension, as for the Krein-von Neumann exten-
sion in Lemma 2.1.1. Namely, if a, b are densely de�ned, positive, symmetric operators,
then

aF ⊕ bF = (a⊕ b)F .
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For the proof we only have to check the equality of the domains of the square root
operators.

dom (a⊕ b)
1
2
F = {x⊕ y ∈ H ⊕H : ∃xn ⊕ yn ∈ dom a⊕ b, xn ⊕ yn → x⊕ y,

((a⊕ b)(xn ⊕ yn − xm ⊕ ym), xn ⊕ yn − xm ⊕ ym) → 0} =

{x⊕ y ∈ H ⊕H : ∃xn ∈ dom a, yn ∈ dom b, xn → x, yn → y,

(a(xn − xm), xn − xm) + (b(yn − ym), yn − ym) → 0} =

{x ∈ H : ∃xn ∈ dom a, xn → x, (a(xn − xm), xn − xm) → 0}⊕
⊕{y ∈ H : ∃yn ∈ dom b, yn → y, (b(yn − ym), yn − ym) → 0} = dom a

1
2
F ⊕ dom b

1
2
F

2.2 Commutation properties
In this section we prove certain commutation properties of the generalized form sum.
Theorem 2.2.4 is the analogue of Theorem 1.2.7. The ideas used in this section are
essentially taken from [26], where the commutation property is proved for the Krein-
von Neumann extension. In turn, the �rst part of Theorem 1.2.7 follows from Theorem
2.2.4 on setting a = b. The situation is as follows: given E, F ∈ B(H) and two positive,
symmetric operators a and b, with D∗ (a) and D∗ (b) dense in H, such that both E and
F leave dom a and dom b invariant. Suppose furthermore that the following equations
hold for all x ∈ dom a and y ∈ dom b:

E∗ax = aFx, F ∗ax = aEx, E∗by = bFy, F ∗by = bEy.

We remark that throughout this section it is illuminating to think of the less general
case of E = F (cf. Theorem 1.1.1).

Now, we de�ne Ê and F̂ on Ha ⊕Hb as follows.

dom Ê = ran a⊕ ran b, Ê(ax⊕ by) = aEx⊕ bEy,

and
dom F̂ = ran a⊕ ran b, F̂ (ax⊕ by) = aFx⊕ bFy.
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It is obvious that Ê and F̂ leave ran a ⊕ ran b invariant. The following lemma shows
that both Ê and F̂ are well-de�ned and continuous on a dense subspace of Ha ⊕Hb.

Lemma 2.2.1 With the notations above, Ê and F̂ are well de�ned, and Ê, F̂ ∈ B(Ha⊕
Hb).

Proof. The proof of this lemma could be considerably shortened by referring to the
result [Theorem 2 in [26]]. However, for the sake of completeness we include the detailed
proof.

[F̂ (ax⊕ by), F̂ (ax⊕ by)] = [aFx⊕ bFy, aFx⊕ bFy] = [aFx, aFx] + [bFy, bFy] =

(aFx, Fx) + (bFy, Fy) = (E∗ax, Fx) + (E∗by, Fy) = (ax,EFx) + (by, EFy) =

[ax, aEFx] + [by, bEFy] = [ax⊕ by, aEFx⊕ bEFy] ≤
[ax⊕ by, ax⊕ by]

1
2 [aEFx⊕ bEFy, aEFx⊕ bEFy]

1
2 =

[ax⊕ by, ax⊕ by]
1
2 [ÊF̂ (ax⊕ by), ÊF̂ (ax⊕ by)]

1
2 (2.7)

Substituting ÊF̂ for F̂ , and repeating the argument in 2.7, we obtain

[ÊF̂ (ax⊕ by), ÊF̂ (ax⊕ by)] ≤ [ax⊕ by, ax⊕ by]
1
2 [(ÊF̂ )2(ax⊕ by), (ÊF̂ )2(ax⊕ by)]

1
2

From this, by induction:

[F̂ (ax⊕by), F̂ (ax⊕by)] ≤ [ax⊕by, ax⊕by]
1
2
+··· 1

2n [(ÊF̂ )
2n

2 (ax⊕by), (ÊF̂ )
2n

2 (ax⊕by)]
1

2n =

[ax⊕ by, ax⊕ by]1−
1

2n [a(EF )
2n

2 x⊕ b(EF )
2n

2 y, a(EF )
2n

2 x⊕ b(EF )
2n

2 y]
1

2n =

[ax⊕ by, ax⊕ by]1−
1

2n [(F ∗E∗)
2n

2 ax⊕ (F ∗E∗)
2n

2 by, a(EF )
2n

2 x⊕ b(EF )
2n

2 y]
1

2n =

[ax⊕ by, ax⊕ by]1−
1

2n (ax⊕ by, (EF )2n

x⊕ (EF )2n

y)
1

2n ≤
[ax⊕ by, ax⊕ by]1−

1
2n ‖ax⊕ by‖ 1

2n ‖(EF )2n

x⊕ (EF )2n

y‖ 1
2n =

[ax⊕ by, ax⊕ by]1−
1

2n ‖ax⊕ by‖ 1
2n ‖((EF )2n ⊕ (EF )2n

)(x⊕ y)‖ 1
2n ≤

[ax⊕ by, ax⊕ by]1−
1

2n ‖ax⊕ by‖ 1
2n ‖(EF )2n ⊕ (EF )2n‖ 1

2n ‖x⊕ y‖ 1
2n =

[ax⊕ by, ax⊕ by]1−
1

2n ‖ax⊕ by‖ 1
2n ‖(EF ⊕ EF )2n‖ 1

2n ‖x⊕ y‖ 1
2n
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If we take the limit n →∞, we obtain:

[F̂ (ax⊕ by), F̂ (ax⊕ by)] ≤ r(EF ⊕ EF )[ax⊕ by, ax⊕ by],

where r(EF ⊕ EF ) stands for the spectral radius of EF ⊕ EF . This proves both
statements for F̂ . The proposition for Ê can be proved analogously. (To be very
precise, we have shown that Ê and F̂ are continuously de�ned on a dense subspace of
Ha ⊕Hb, but they are automatically extended to the whole space.) ¤

Now, we compute the adjoints of Ê and F̂ in B(Ha ⊕Hb):

Lemma 2.2.2 Ê∗ = F̂ and F̂ ∗ = Ê.

Proof. It is enough to prove F̂ ∗ = Ê, as Ê, F̂ ∈ B(Ha⊕Hb). We check that F̂ ∗x = Êx

on the dense subspace ran a⊕ ran b. Let ax⊕ by ∈ ran a⊕ ran b, then for all au⊕ bv ∈
ran a⊕ ran b

[au⊕ bv, F̂ ∗(ax⊕ by)] = [F̂ (au⊕ bv), ax⊕ by] = [aFu⊕ bFv, ax⊕ by] =

[aFu, ax]+[bFv, by] = (aFu, x)+(bFv, y) = (E∗au, x)+(E∗bv, y) = (au,Ex)+(bv, Ey) =

[au, aEx] + [bv, bEy] = [au⊕ bv, aEx⊕ bEy] = [au⊕ bv, Ê(ax⊕ by)],

and that was to be proved. ¤

Before proving the commutation preserving property of the generalized form sum
we make a short observation in the case when a = b and E = F . Note, that in the
special case when E = F Lemma 2.2.2 means that Ê is a bounded selfadjoint operator
on Ha ⊕Hb. Furthermore, in the case when a = b and E = F holds, we can replace the
auxillary space Ha⊕Hb by simply Ha, and de�ne Ê(ax) := a(Ex) with dom Ê = ran a.
In this case, the arguments above show that Ê is a bounded self-adjoint operator on Ha.
We can relate the spectrum of Ê to the spectrum of E (see [25] for the bounded case,
and [15] for a more general case).

Theorem 2.2.3 The spectrum Sp (Ê) is contained in Sp (E) ∩ R.
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Proof. Since Ê is self-adjoint it is clear that Sp (Ê) ⊆ R. On the other hand, take any
real λ from the resolvent set of E and x ∈ dom A, then

A(E − λI)x = (E − λI)∗Ax, hence A(E − λI)−1x =
[
(E − λI)−1]∗ Ax

which means that we can de�ne the operator [(E − λI)−1 ]̂. A short computation gives
that [

(E − λI)−1]̂ =
(
Ê − λÎ

)−1

,

indeed for x ∈ dom A

[
(E − λI)−1]̂ (

Ê − λÎ
)

Ax = A (E − λI)−1 (E − λI) x = Ax, and
(
Ê − λÎ

) [
(E − λI)−1]̂ Ax = A (E − λI) (E − λI)−1 x = Ax.

This proves the statement. ¤

Now we prove that commutation is preserved when taking the generalized form sum
of operators.

Theorem 2.2.4 Let a, b be positive, symmetric operators with D∗ (a) ∩D∗ (b) dense in
H, and suppose that E, F ∈ B(H), such that both E and F leave dom a and dom b

invariant, and for all x ∈ dom a and y ∈ dom b

E∗ax = aFx, F ∗ax = aEx, E∗by = bFy, F ∗by = bEy.

Then
E∗(a

.
+ b) ⊆ (a

.
+ b)F and F ∗(a

.
+ b) ⊆ (a

.
+ b)E.

Proof. First we show the following:

E∗J ⊆ JF̂ , F ∗J ⊆ JÊ, ÊJ∗ ⊆ J∗E, F̂J∗ ⊆ J∗F.

Indeed, let ax⊕ by ∈ ran a⊕ ran b, then

JF̂ (ax⊕by) = J(aFx⊕bFy) = aFx+bFy = E∗ax+E∗by = E∗(ax+by) = E∗J(ax⊕by).
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Observing the domains, we have consequently E∗J ⊆ JF̂ . An analogous proof can be
given for F ∗J ⊆ JÊ. For the remaining inclusions, we write:

ÊJ∗ = F̂ ∗J∗ ⊆ (JF̂ )∗ ⊆ (E∗J)∗ = J∗E,

as E is bounded, hence ÊJ∗ ⊆ J∗E, and with the same reasoning F̂ J∗ ⊆ J∗F .
Finally we turn to the proof of the theorem. Using the previously proved statement,

we have
E∗J∗∗ ⊆ (J∗E)∗ ⊆ (ÊJ∗)∗ = J∗∗Ê∗ = J∗∗F̂ .

Note that we have used that Ê is continuous according to Lemma 2.2.1. We complete
the proof by writing

E∗(a
.
+ b) = E∗J∗∗J∗ ⊆ J∗∗F̂ J∗ ⊆ J∗∗J∗F = (a

.
+ b)F,

that is E∗(a
.
+ b) ⊆ (a

.
+ b)F , and with the same argument F ∗(a

.
+ b) ⊆ (a

.
+ b)E. ¤

The following result, which is just a special case of Theorem 2.2.4 with E = F =

S = S∗, shows the reason why we talk about �commutation properties� above.

Theorem 2.2.5 Let S be a bounded, selfadjoint operator over the Hilbert space H, such
that S leaves both dom a and dom b invariant, and furthermore

Sax = aSx, Sby = bSy

hold for all x ∈ dom a and y ∈ dom b. Also, assume that D∗ (a) ∩D∗ (b) is dense in H.
Then

S(a
.
+ b) ⊆ (a

.
+ b)S.

In Theorem 2.2.4, we require that the bounded operators E, F leave doma and domb

invariant. It is interesting to see what other subspace D can replace dom a and dom b.
It is clear that a su�cient condition on D is that a

.
+ b = (a¹D)

.
+ (b¹D). The following

theorem characterizes such subspaces D.
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Theorem 2.2.6 Let a and b be positive, symmetric operators with D∗ (a)∩D∗ (b) dense
in H, and suppose that D ⊆ doma∩domb is a linear subspace. Then a¹D

.
+ b¹D = a

.
+ b

if and only if for all x ∈ H

sup{|(au, x)|2 : u ∈ dom a, (au, u) ≤ 1}+ sup{|(bv, x)|2 : v ∈ dom b, (bv, v) ≤ 1} =

sup{|(au, x)|2 : u ∈ D, (au, u) ≤ 1}+ sup{|(bv, x)|2 : v ∈ D, (bv, v) ≤ 1} (2.8)

Proof. Before all, observe that D∗ (a) ⊆ D∗ (a¹D) and D∗ (b) ⊆ D∗ (b¹D). Indeed:

D∗ (a) = {y ∈ H : ∃my|(ax, y)|2 ≤ my(ax, x), ∀x ∈ dom a} ⊆ (2.9)

{y ∈ H : ∃my|(ax, y)|2 ≤ my(ax, x),∀x ∈ D} = D∗ (a¹D),

and the same for D∗ (b) and D∗ (b¹D).
Suppose now that condition 2.8 is satis�ed. Then for the reverse inclusion D∗ (a) ∩

D∗ (b) ⊇ D∗ (a¹D)∩D∗ (b¹D) we let x ∈ D∗ (a¹D)∩D∗ (b¹D), which is the same as saying
that the right hand side of 2.8 is �nite for this x. But then, from assumption 2.8 it
follows that the left hand side of 2.8 is also �nite, implying x ∈ D∗ (a) ∩D∗ (b). By our
construction for the form sum

dom ((a
.
+ b)

1
2 ) = D∗ (a) ∩D∗ (b), and dom (a¹D

.
+ b¹D)

1
2 = D∗ (a¹D) ∩D∗ (b¹D),

hence dom (a
.
+ b)

1
2 = dom (a¹D

.
+ b¹D)

1
2 . Let x ∈ dom (a

.
+ b)

1
2 , then by the proof of

Theorem 2.1.2 and 1.2 and 1.3

‖(a .
+ b)

1
2 x‖2 = ‖a

1
2
Kx‖2 + ‖b

1
2
Kx‖2 = (2.10)

sup{|(au, x)|2 : u ∈ dom a, (au, u) ≤ 1}+ sup{|(bv, x)|2 : v ∈ dom b, (bv, v) ≤ 1} =

sup{|(au, x)|2 : u ∈ D, (au, u) ≤ 1}+ sup{|(bv, x)|2 : v ∈ D, (bv, v) ≤ 1} =

‖(a¹D)
1
2
Kx‖2 + ‖(b¹D)

1
2
Kx‖2 = ‖(a¹D

.
+ b¹D)

1
2 x‖2.

Consequently we have a¹D

.
+ b¹D = a

.
+ b.

For the reverse direction, we suppose that a¹D

.
+ b¹D = a

.
+ b. Then for all x ∈

dom (a
.
+ b)

1
2 we have ‖(a .

+ b)
1
2 x‖2 = ‖(a¹D

.
+ b¹D)

1
2 x‖2, and the same argument as in

2.10 shows that 2.8 is satis�ed. ¤
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2.3 Remarks on operator sums
Our construction for the form sum is based on the idea used when constructing the
Krein-von Neumann extension aK of a positive, symmetric operator a. Analogously
we consider the construction corresponding to the Friedrichs extension aF of a (cf The-
orem 1.2.5). We suppose that dom a and dom b are dense. Again we have the Hilbert
space Ha ⊕Hb, and we de�ne analogously as in [23], [24]

Q : H → Ha ⊕Hb, with dom Q = dom a ∩ dom b, Qx = ax⊕ bx.

Obviously Q is a restriction of J∗. The question is, what can be said about Q∗Q∗∗.

Theorem 2.3.1 Suppose that a and b are positive, symmetric operators, and dom a ∩
dom b is dense in H. Then Q∗Q∗∗ = (a + b)F .

Proof. First we show that under these circumstances Q∗Q∗∗ exists and is a positive,
selfadjoint operator. From the von Neumann theorem, it is clear that if Q∗Q∗∗ exists
then it is selfadjoint, and obviously positive. Q∗ exists, since dom Q is dense. We
compute domQ∗, and as it will be dense, we conclude that Q∗∗ exists. First we compute
Q∗ on ran a⊕ ran b. Let ax⊕ by ∈ ran a⊕ ran b and z ∈ dom a ∩ dom b

[Qz, ax⊕ by] = [az ⊕ bz, ax⊕ by] = [az, ax] + [bz, by] = (az, x) + (bz, y) =

(z, ax) + (z, by) = (z, ax + by),

which shows that ran a⊕ ran b ⊆ dom Q∗ and Q∗(ax⊕ by) = ax + by. Therefore Q∗ is
densely de�ned. We see that Q∗Q∗∗ is an extension of a + b:

Q∗Q∗∗z = Q∗Qz = Q∗(az ⊕ bz) = az + bz.

Because of the extremality of the Friedrichs extension, we only have to prove that

dom (a + b)
1
2
F = dom (Q∗Q∗∗)

1
2 .

We can write

dom(Q∗Q∗∗)
1
2 = domQ∗∗ = domQ̄ = {y ∈ H : ∃yn ∈ domQ, yn → y,Qyn convergent} =
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{y ∈ H : ∃yn ∈ dom Q, yn → y, [ayn ⊕ byn − aym ⊕ bym, ayn ⊕ byn − aym ⊕ bym] → 0} =

{y ∈ H : ∃yn ∈ doma∩domb, yn → y, (a(yn−ym), yn−ym)+(b(yn−ym), yn−ym) → 0} =

{y ∈ H : ∃yn ∈ dom (a + b), yn → y, ((a + b)(yn − ym), yn − ym) → 0} = dom (a + b)
1
2
F ,

which remained to complete the proof. ¤

Finally, we examine the connection between di�erent extensions of the operator
sum. Supose that A and B are positive, selfadjoint operators, and let A + B denote
the operator sum on D = dom A ∩ dom B. Suppose that D is dense in H, so that the
Friedrichs extension (A + B)F of A + B exists. Kato [17] shows an example when
A

.
+ B 6= (A + B)F . In view of Theorem 2.3.1 one could expect that, analogously,

J∗∗J∗ = (A + B)K holds. By Theorem 2.1.3 this would mean that A
.
+ B = (A + B)K

holds. However, we will prove that in general A
.
+ B 6= (A + B)K . Note that if we

assume only that dom A
1
2 ∩ dom B

1
2 is dense in H � assuring the existence of A

.
+ B �

the Krein-von Neumann extension will still exist. Indeed, it is easy to see that

D∗ (A + B) = {y ∈ H : ∃my |((a + b)x, y)|2 ≤ my((a + b)x, x), ∀x ∈ D} ⊇

D∗ (A) ∩D∗ (B) = dom A
1
2 ∩ dom B

1
2 ,

so D∗ (A + B) is dense in H. However, it may well happen that dom A
1
2 ∩ dom B

1
2 is

dense in H while domA∩domB = {0}. In this case A
.
+ B 6= (A+B)K = 0, providing

a trivial counter-example. For this reason, in the sequel we keep the assumption that D

is dense in H.
Example 1. Let a be a densely de�ned, closed, symmetric operator with positive lower
bound. Suppose moreover that a is not selfadjoint. Then the de�ciency index dim(ker a∗)

of a is greater than zero. Consider aK and aF , both are positive and selfadjoint, and
D = dom aK ∩ dom aF ⊇ dom a, therefore D is dense in H. Furthermore, we have that
aK

.
+ aF = 2aF , because

dom a
1
2
K ∩ dom a

1
2
F = dom a

1
2
F , and ‖a

1
2
Kx‖2 = ‖a

1
2
F x‖2

for all x ∈ doma
1
2
F . On the other hand, (aK+aF )K = 2aK , because aK+aF is a symmetric

extension of 2a, hence 2aK = (2a)K ≤ (aK + aF )K . Conversely, (aK + aF )K ≤ 2aK ,
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because aK + aF is a restriction of 2aK . Thus we have that aK

.
+ aF 6= (aK + aF )K , as

desired. As a simple speci�c example one can take the extensions aF and aK described
in the Example at the end of Chapter 1.
Example 2. A similar approach can provide an example when A

.
+ B 6= (A + B)F .

The example above fails as aK

.
+ aF = 2aF and (aK + aF )F = 2aF as well. However,

take any intermediate extension aM of a instead of aF . Then we have aK

.
+ aM ≤ 2aM

because
dom (aK

.
+ aM)

1
2 = dom a

1
2
K ∩ dom a

1
2
M = dom a

1
2
M

and
‖(aK

.
+ aM)

1
2 x‖2 = ‖a

1
2
Kx‖2 + ‖a

1
2
Mx‖2 ≤ ‖(2aM)

1
2 x‖2

for all x ∈ dom a
1
2
M . Furthermore, (aK + aM)F ≥ 2aM because both aK + aM and 2aM

are extensions of 2aM¹dom aK∩dom aM
= aK + aM , here we have used that

aK¹dom aK∩dom aM
= a∗¹dom aK∩dom aM

= aM¹dom aK∩dom aM
,

so the inequality follows from the extremality of the Friedrichs extension. Thus we
have

aK

.
+ aM ≤ 2aM ≤ (aK + aM)F . (2.11)

How can we assure that equality does not hold at both inequalities in 2.11? It is easy
to see from the argument above that a su�cient condition for aM is that the form qaM

of aM is not a restriction of the form qaK
of aK . In other words, it is su�cient that aM

is not an extremal extension of a (cf. Theorem 1.2.6). When dim (ker a∗) > 0, such an
aM is always available (see [2]). Just take any strictly positive, closed form q0 on ker a∗

(e.g. the original inner product) and de�ne a new form q on ker a∗ + dom a
1
2
F as follows

q(x + y) = q0(x) + ‖a
1
2
F y‖2, x ∈ ker a∗, y ∈ dom a

1
2
F .

We have used that ker a∗∩doma
1
2
F = {0}. Using the representation theorem, we get the

required aM . (Note that aK belongs to the choice q0 ≡ 0.) Thus we see that a desired
counter-example can be given whenever dim ker a∗ > 0. As a simple speci�c example
one can take aK as described in the Example at the end of Chapter 1, and aM := aN

the Neumann-Laplacian, which is not an extremal extension of a.



Chapter 3

Positive forms on Banach spaces

The representation theorem establishes a correspondance between positive, self-adjoint
operators and closed, positive forms on Hilbert spaces. The aim of this chapter is to
show that some of the results remain true if the underlying space is a re�exive Banach
space. In particular, the construction of the Friedrichs extension and the form sum of
positive operators can be carried over to this case.

Let X denote a re�exive complex Banach space, and X∗ its conjugate dual space
(i.e. the space of all continuous, conjugate linear functionals over X). We will use the
notation (v, x) := v(x) for v ∈ X∗ , x ∈ X, and (x, v) := v(x). Let A be a densely
de�ned linear operator from X to X∗. Notice that in this context it makes sense to
speak about positivity and self-adjointness of A. Indeed, A de�nes a sesquilinear form
on dom A × dom A via tA(x, y) = (Ax)(y) = (Ax, y) and A is called positive if tA is
positive, i.e. if (Ax, x) ≥ 0 for all x ∈ dom A. Also, the adjoint A∗ of A is de�ned
(because A is densely de�ned) and is a mapping from X∗∗ to X∗, i.e. from X to X∗.
Thus, A is called self-adjoint if A = A∗. Similarly, the operator A is called symmetric if
the form tA is symmetric.

In Section 3.1 we deal with closed, positive forms and associated operators, and we
establish a generalized version of the representation theorem. In Section 3.2 we apply
the representation theorem in two situations: �rst we construct the Friedrichs extension
of a positive, symmetric operator, then we de�ne the form sum of two positive, self-
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adjoint operators. We show that the factorization argument of Chapter 1 remains valid
in this context, as well. In the last section we give applications of the results in the
theory of partial di�erential equations and in probability theory.

The results of this chapter are taken from [15].

3.1 Representation theorem
Let D ⊆ X be a dense subspace, and let t : D × D → C be a sesquilinear form on D

(where t is linear in the �rst variable and conjugate linear in the second). Assume that
t is positive with positive lower bound, i.e. t(x, x) ≥ γ‖x‖2, γ > 0. Assume also that t

is "closed" in the sense that (D, t(·, ·)) =: H is a Hilbert space (i.e. it is complete). In
this case, the injection i : H → X is continuous, so H can be regarded as a subspace
of X. For brevity we will use the notation [·, ·] for t(·, ·). An operator A from X to X∗

can be associated to the form t in a natural way: let x ∈ D and take the functional
[x, y], y ∈ D; if this functional is continuous in the norm of X then there is an element
z in X∗ for which [x, y] = z(y) =: (z, y), in this case, let Ax := z.

Theorem 3.1.1 With notations as above the operator A : X → X∗ is a positive, self-
adjoint operator.

Proof. Let v ∈ X∗ be an arbitrary element. Now, (v, x) x ∈ D is a continuous,
conjugate linear functional on H. Indeed,

|(v, x)| ≤ ‖v‖ ‖x‖ ≤ 1√
γ

[x] ‖v‖ = K[x],

where [x] denotes the norm of H, i.e. [x] = [x, x]1/2. Thus, by the theorem of Riesz we
have an element f ∈ H such that (v, x) = [f, x]. De�ne an operator B from X∗ to X

by Bv := f . Then B is de�ned everywhere on X∗, and B is positive and bounded with
‖B‖ ≤ 1

γ
. Indeed, (z, Bz) = [Bz, Bz] = [Bz]2 ≥ 0, and

‖Bz‖2 ≤ 1

γ
[Bz]2 =

1

γ
(Bz, z) ≤ 1

γ
‖Bz‖ ‖z‖.
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Hence, B is a bounded, positive, self-adjoint operator. Furthermore, B is injective. To
see this, suppose that Bz = 0. Then 0 = [Bz, g] = (z, g) for every g ∈ H, and H is dense
in X therefore z = 0. This means that the inverse B−1 exists and is a linear mapping
from X to X∗. We will show that A = B−1. Let x ∈ domA, then [x, y] = (t, y) for some
t ∈ X∗ and Ax = t. Also, (t, y) = [Bt, y] so Bt = x, and hence A ⊆ B−1. Conversely, if
x ∈ dom B−1 then x = Bz for some z ∈ X∗ and [x, y] = [Bz, y] = (z, y) is continuous in
y therefore x ∈ dom A and Ax = z = B−1x, which proves that B−1 ⊆ A. To complete
the proof we have the following lemma, which is well known in Hilbert spaces. ¤

Lemma 3.1.2 If B : X∗ → X is a bounded, injective, self-adjoint operator then A :=

B−1 is also a self-adjoint operator from X to X∗.

Proof. First we show that ran B is dense in X. Indeed, if for some v ∈ X∗ we have
(Bz, v) = 0 for every z ∈ X∗, then (Bz, v) = (z, Bv) = 0 so Bv = 0 and v = 0. Hence
A is densely de�ned. Also, A is symmetric, because if x ∈ dom A then x = Bz for some
z ∈ X∗ and (Ax, x) = (z, Bz) ∈ R. Thus A ⊆ A∗. To see the reverse inclusion, let
y ∈ dom A∗ and let x = Bz run through the elements of dom A. Then (Ax, y) = (z, y)

and also
(Ax, y) = (x,A∗y) = (Bz, A∗y) = (z, BA∗y)

which means that y = BA∗y, so y ∈ dom A. ¤

We remark that the previous arguments can be carried out whenever (X,Y ) is a
dual pair of locally convex, topological linear spaces. In this case, one has to replace
the condition on the positivity of the lower bound by the natural assumption that the
injection i introduced above is continuous.

It is possible to introduce a more general notion of positive, closed forms (in order to
include forms with lower bound 0). A positive form t : D×D → C will be called closed
if whenever xn ⊆ D and xn → x in X and t(xn − xm, xn − xm) → 0 then x ∈ D and
t(xn − x, xn − x) → 0 (notice that when t has positive lower bound then this de�nition
agrees with the previous one). We will see from Lemma 3.2.2 that it is possible to
associate a closed form with every positive self-adjoint operator. Conversely, however,
it is an open problem whether the representation theorem remains valid in this context.



CHAPTER 3. POSITIVE FORMS ON BANACH SPACES 32

Problem 3.1.3 Assume t is a positive, closed form on a dense subspace D ⊂ X. Is it
true that the operator associated with t is selfadjoint?

3.2 The Friedrichs extension and the form sum
In this section we apply the representation theorem in two situations. First we construct
the Friedrichs extension of a densely de�ned positive operator. We are restricted to the
case when a has positive lower bound.

Theorem 3.2.1 Let a : X → X∗ be a positive, densely de�ned operator with positive
lower bound, (ax, x) ≥ γ‖x‖2, γ > 0 for every x ∈ dom a. Then a admits a positve
self-adjoint extension with the same lower bound.

Proof. The form ta(x, y) := (ax, y) de�nes a pre-Hilbert space on dom a. Denote the
completion of this space by H, and the arising inner product by [·, ·]. The injection
i : dom a → X extends by continuity to H and the extension will be denoted by Ia. We
prove that Ia is injective. Notice �rst that [t, y] = (at, Iay) for all t ∈ dom a, y ∈ H.
Indeed, take a sequence yn ∈ dom a , yn → y in H (which implies convergence in X as
well), then

(at, Iay) = lim(at, Iayn) = lim[t, yn] = [t, y].

Now assume that Iay = 0. Then

[y]2 = lim[yn, y] = lim(ayn, Iay) = 0

therefore y = 0 which means that Ia is injective. Thus H can be regarded as a subspace
of X and Theorem 3.1.1 can be applied. It is clear that the arising self-adjoint operator
AF is an extension of a and we also see from the proof of Theorem 3.1.1 that (AF x, x) ≥
γ‖x‖2 for all x ∈ dom A. This operator will be called the Friedrichs extension of a. ¤

Next, we show that the factorization argument described in Chapter 1 remains valid
in this context. For bounded positive self-adjoint operators from X to X∗ the following
lemma was also proved in [27], and it plays a key role in the characterization of covariance
operators of Banach space valued random variables. It is also remarkable that this
factorization argument is applicable without the condition of positive lower bound.
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Lemma 3.2.2 Let A be a positive self-adjoint operator from X to X∗ (it is not necessary
that A has positive lower bound). Then there exists an auxiliary Hilbert space H and an
operator J : H → X∗ such that A = JJ∗.

Proof. De�ne an inner product on ran A by [Ax,Ay] := (Ax, y). It is well de�ned
because if Ax1 = Ax2 and Ay1 = Ay2 then

(Ax1, y1) = (Ax2, y1) = (x2, Ay1) = (x2, Ay2) = (Ax2, y2).

Furthermore it is positive de�nite, because if [Ax,Ax] = (Ax, x) = 0 then by the Cauchy
inequality we have

|(Ax, y)|2 ≤ (Ax, x)(Ay, y) = 0

for all y ∈ dom A which implies that Ax = 0. Thus (ran A, [·, ·]) is a pre-Hilbert space.
Denote the completion of this space by HA. De�ne the operator J : HA → X∗ by
dom J = ran A and J(Ax) := Ax for all Ax ∈ ran A. Then, by de�nition dom J∗ =

{y ∈ X : |(Ax, y)|2 ≤ My(Ax, x) for all x ∈ dom A}, in particular dom A ⊆ dom J∗ and
J∗y = Ay for all y ∈ dom A. Thus JJ∗ is an extension of A and JJ∗ is symmetric. It
is also clear that a self-adjoint operator is maximal symmetric just as in the context of
Hilbert spaces. This means that A = JJ∗. ¤

One could think that the Krein-von Neumann and Friedrichs extensions of an ar-
bitrary positive, densely de�ned operator are now possible to construct in a similar
manner as in Theorem 1.2.1 and 1.2.5. Notice, however, that one link is missing:

Problem 3.2.3 (Generalized von Neumann theorem) Assume that T is a densely de-
�ned, closed operator from X to a Hilbert space H. Is it true that T ∗T : X → X∗ is
selfadjoint?

Notice that in the context of Hilbert spaces dom A
1
2 = dom J∗ and (A

1
2 x,A

1
2 x) =

[J∗x, J∗x].
It is natural to associate the sesquilinear form tA(x, y) := [J∗x, J∗y], x, y ∈ dom J∗

with the operator A. This form is closed because the adjoint operator J∗ is closed. Also,
if two positive self-adjoint operators A and B have the same form then the operators are
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necessarily equal. Indded, for x ∈ domA and y ∈ domB we have (Ax, y) = [J∗Ax, J∗Ay] =

[J∗Bx, J∗By] = (x,By) which means that B ⊆ A∗ = A, hence A = B.
It is also possible to obtain the form of A without referring to the operator J∗.

Lemma 3.2.4 With notations as above we have

dom J∗A =

{
y ∈ X : sup

x∈dom A,(Ax,x)≤1

|(Ax, y)|2 < ∞
}

and
[J∗Ay, J∗Ay]A = sup

x∈dom A,(Ax,x)≤1

|(Ax, y)|2

Proof. The characterization of dom J∗ is clear from

dom J∗ = {y ∈ X : |(Ax, y)|2 ≤ My(Ax, x) for all x ∈ dom A}.

To see the other equality notice that ran A is dense in HA, therefore we have

[J∗Ay, J∗Ay]A = sup
(Ax,x)≤1

|[J∗y,Ax]|2A = sup
(Ax,x)≤1

|(y,Ax)|2

¤

Next we turn to the construction of the form sum of two positive self-adjoint opera-
tors.

The form sum construction can be carried out if both forms are closed and at least
one of them has positive lower bound.

Assume that A is a positive self-adjoint operator with positive lower bound, and B

is an operator associated with a positive, closed form tB. Assume also that HA,B :=

domJ∗A∩domtB is dense in X. Then it is easy to see that (HA,B, tA+tB) is complete, thus
the representation theorem can be applied. The arising positive self-adjoint operator
will be called the form sum of A and B, and will be denoted by A

.
+ B.
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3.3 Application of the results

Covariance operators.
Consider a probability measure space 〈Ω,A, µ〉, and let ξ : Ω → X a random variable
i.e. a weakly measurable function. Suppose that ξ possesses a weak expectation, in
other words

E ξ :=

∫

Ω

ξ dµ

exists as a Pettis integral. Note that if X is re�exive, according to Dunford and Gelfand,
this is equivalent to requiring the existence of

∫

Ω

f(ξ) dµ

for all f ∈ X∗. Further, we make assumptions on the second moments, and suppose
that the set

D =

{
f : f ∈ X∗,

∫

Ω

|f(ξ)|2 dµ < +∞
}

is dense in X∗. We do not require that D = X∗ (cf. [27]).
As an example, take X = `2, Ω = {ωn : n = 1, 2, . . .} and µ({ωn}) = ce−(3/2)n with

a suitable constant c. Setting ξ(ωn)k = nk/k!, it is easy to compute that, in this case,
D 6= X∗ is dense.

In the sequel we assume that Eξ = 0, since we could take ξ−Eξ instead of ξ. De�ne
the sesquilinear form

t(f, g) = E (f(ξ)ḡ(ξ))

for f, g ∈ D.

Theorem 3.3.1 t is a positive, closed, sesquilinear form on D ×D.

Proof. Positivity is trivial. Suppose that fn ∈ D converges to f ∈ X∗ and
E |fn(ξ)− fm(ξ)|2 → 0, then fn(ξ) has a limit g ∈ L2(Ω, µ), and moreover g and
f(ξ) conincide almost everywhere, hence E |f(ξ)|2 < +∞, implying f ∈ D and
E |fn(ξ)− f(ξ)|2 → 0. ¤
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If t possesses a positive lower bound and X is re�exive, then the application of
Theorem 3.1.1 provides a representing, self-adjoint operator A from X∗ to X∗∗ = X,
which is called the covariance operator of the random variable ξ (cf. [27]). Note that
if X is a Hilbert space then the original version of the representation theorem provides
the covariance operator of ξ associated to the closed form t (even if t has lower bound
0).

It is clear from the de�nitions that the covariance operator of the sum of independent
random variables is the form sum of the covariance operators.

Theorem 3.3.2 Let ξ and η are independent random variables with covariance opera-
tors A and B respectively. Then the covariance operator of ξ + η is A

.
+ B.

Elliptic operators.
This is a classical application of the Friedrichs extension (see [8]). Take X = Lp(Ω), 1 ≤
p < +∞ where Ω is a bounded domain with smooth boundary in Rn. De�ne the operator
A from Lp(Ω) to Lq(Ω) by dom A = C∞

0 (Ω) and

Af = −
n∑

i,k=1

∂

∂xi

(aik
∂f

∂xk

) + bf

where aik ∈ C1(Ω), b ∈ L1
loc(Ω), b ≥ 0 and

n∑

i,k=1

aik(x)βiβk ≥ γ

n∑
i

|βi|2, γ > 0

everywhere in Ω (uniform ellipticity). In this case we have

(Af, f) =

∫

Ω

(
−

n∑

i,k=1

∂

∂xi

(
aik

∂f

∂xk

)
+ bf

)
f dx =

∫

Ω

(
n∑

i,k=1

aik
∂f

∂xi

∂f

∂xk

+ b|f |2
)

dx ≥ γ

∫

Ω

n∑
i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

dx.

Now, for p ≤ 2n/(n− 2) we have
∫

Ω

n∑
i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

dx ≥ c‖f‖2
p, c > 0
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by the Sobolev imbedding theorem (see e.g. [1] pp. 95-99). Thus A has positive lower
bound. The Friedrichs extension of A is surjective, and this means that the equation

−
n∑

i,k=1

∂

∂xi

(
aik

∂f

∂xk

)
+ bf = g

has a weak solution for every g ∈ Lq(Ω) whenever q ≥ 2n/(n + 2).



Chapter 4

Trotter's formula for projections

The form sum construction of positive, selfadjoint (and, more generally, m-sectorial)
operators in Hilbert spaces is distinguished by Kato's famous result on the convergence
of Trotter's product formula (see [18] Theorem and Addendum; cf. also the subsection
'Closed forms' in Section 4.1 below).

The aim of this chapter is to examine the convergence of Trotter's product formula
when one of the C0-semigroups is replaced by a projection (which can always be regarded
as a constant degenerate semigroup). The motivaton to study Trotter's formula in this
setting arises from the fact that for 'nice' open sets Ω ⊂ Rn the C0-semigroup on L2(Ω)

generated by the Laplacian with Dirichlet boundary conditions can be obtained as a
limit of a formula of this type.

Let A be the generator of a C0-semigroup (etA)t≥0 on a Banach space E, and let
B ∈ B(E). Then A + B generates a C0 semigroup which is given by Trotter's product
formula

et(A+B) = lim
n→∞

(e
t
n

Ae
t
n

B)n (4.1)

where the limit is taken in the strong operator topology. A possible direction of gener-
alization of this well-known result is discussed in [4] and [6]. Namely, the convergence of
Trotter's product formula is examined in the case when the C0-semigroup etB is replaced
by the simplest of degenerate semigroups, i.e. a projection P ∈ B(E). For convenience
we include the basic notions here:
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A family of operators S(t)t>0 is called a semigroup on E if
S : (0,∞) → B(E) is strongly continuous and satis�es the semigroup property S(t+s) =

S(t)S(s) for all s, t > 0. If, in addition, S(0) := limt→0 S(t) exists strongly, then we
say that S(t)t>0 (or S(t)t≥0) is a continuous degenerate semigroup. In this case S(0)

is a bounded projection, its image E0 := S(0)E is invariant under S(t) (t ≥ 0), and
the restriction of S(t)t≥0 to E0 is a C0-semigroup on E0 and S(t) equals 0 on E1 :=

(I − S(0))E (see [16], Theorem 10.5.5). A trivial example of a continuous degenerate
semigroup is given by S(t) := P (t > 0), where P denotes a bounded projection.

Now, in 4.1 we replace the C0-semigroup etB by the continuous degenerate semigroup
S(t) = P (t > 0), and we examine the convergence of the formula

lim
n→∞

(e
t
n

AP )n (4.2)

under various assumptions on A and P . (If 4.2 converges, then the limit can be re-
garded, in a sense, as the 'restriction' of the semigroup etA to the subspace PE. Of
course, in the trivial case when etA and P commute, the formula 4.2 does converge
to the restriction of etA to PE.) In Section 2 we describe some interesting conditions
under which 4.2 converges strongly. For example, if A is the generator of the Gaussian
semigroup on L2(Rn) and Pf = 1Ωf where Ω ⊂ Rn is a bounded open domain with
Lipschitz boundary, we will see that 4.2 converges strongly to the semigroup generated
by the Dirichlet Laplacian on L2(Ω). In Section 3 we provide some non-trivial examples
where 4.2 fails to converge.

This chapter is based on [22].

4.1 Convergence results

Closed forms
In this subsection we describe an important case when Trotter's product formula con-
verges. The results in this subsection are direct consequences of [8, Theorem and Ad-
dendum]. We describe the basic notions brie�y:
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Let H be a Hilbert space and let

a : D(a)×D(a) → C

be a sesquilinear mapping where D(a), the domain of a, is a subspace of H. We assume
that a is semibounded, i.e. that there exists λ ∈ R such that

‖u‖2
a := Re a(u, u) + λ(u, u)H > 0

for all u ∈ D(a), u 6= 0. Moreover, we assume that a + λ is sectorial and closed, i.e.,
that |Im a(u, u)| ≤ M(Re a(u, u)+λ(u, u)H) and (D(a), ‖ · ‖a) is complete. In short, we
will call a a closed form. Let K = D(a) be the closure of D(a) in H. Denote by A the
operator on K associated with a, i.e.

D(A) = {u ∈ D(a) : ∃v ∈ K such that a(u, φ) = (v, φ)H for all φ ∈ D(a)}

and Au = v. Then−A generates a C0-semigroup e−tA on K. Denote by Q the orthogonal
projection on K. Now, de�ne the operator e−ta on H by

e−tax = e−tAQx, x ∈ H, t ≥ 0

Then e−ta is a continuous degenerate semigroup on H. We call it the degenerate semi-
group generated by a on H.

Now, let b be a second closed form on H. De�ne a+b on H by D(a+b) = D(a)∩D(b)

and (a + b)(u, v) = a(u, v) + b(u, v). Then it is easy to see that a + b is a closed form
again. Now the following product formula holds (see [8, Theorem and Addendum]):

Theorem 4.1.1 Let x ∈ H. Then

e−t(a+b)x = lim
n→∞

(e−
t
n

ae−
t
n

b)nx

for all t > 0.

We apply this result in a particular situaion. Let P be an orthogonal projection.
De�ne the form b by D(b) = PH and b(u, v) = 0 for all u, v ∈ PH. Then e−tb = P for
all t ≥ 0. Therefore, as a corollary of Theorem 4.1.1 we have
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Theorem 4.1.2 For any orthogonal projection P and closed form a, the limit

S(t)x = lim
n→∞

(e−
t
n

aP )nx

exists for all x ∈ H and t > 0, and S(t)t>0 is the continuous degenerate semigroup
generated by the form a|PH .

There is another possible way to formulate this result. Let T (z)z∈Στ be a holomorphic
C0-semigroup on H, de�ned on a sector Στ := {z ∈ C : z 6= 0, |arg z| < τ}, τ ∈ (0, π

2
].

Assume that ‖(T (z)‖ ≤ 1 for all z ∈ Στ . Then the generator A of T (z) is associated
with a densely de�ned, semibounded, closed form a (see [17], Chapters VI. and IX., and
also [5], Theorem 1.2), so we have the following corollary (see [6] Theorem 4):

Corollary 4.1.3 Let −A be the generator of a holomorphic C0-semigroup (e−zA)z∈Στ

on a Hilbert space H, where τ ∈ (0, π
2
]}, and assume that ‖e−zA‖ ≤ 1 for all z ∈ Στ .

Let P be an orthogonal projection. Then

S(t)x = lim
n→∞

(e−
t
n

AP )nx

exists for all x ∈ H and t > 0, and S(t)t>0 is a continuous degenerate semigroup on H.

Bounded generators
Just as one would expect, in terms of convergence of 4.2 there is a universally 'nice'
situation, namely the case of bounded generators.

Theorem 4.1.4 Let A ∈ B(E) be the generator of a C0-semigroup (etA)t≥0 and let
P ∈ B(E) be a projection. Then

lim
n→∞

(e
t
n

AP )nx = ePAPtPx

for all x ∈ E and uniformly for t ∈ [0, T ] for each T ≥ 0.

Proof. Case 1. Assume �rst that both etA and P are contractive. Let V (t) := PetAP ∈
B(PE) and apply Cherno�'s product formula (see e.g. [12], Theorem III.5.2) to the
family V (t) on the space PE. Note that V (0) = IPE , ‖V (t)‖ ≤ 1 (for all t ≥ 0), and
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limh→0
V (h)x1−x1

h
= PAx1 = PAPx1 for all x1 ∈ PE, and PAP is a bounded operator on

PE. Now, by Cherno�'s product formula limn→∞[V ( t
n
)]nx1 = ePAPtx1 for all x1 ∈ PE

and uniformly for t ∈ [0, T ]. Furthermore, for any given x ∈ E we can decompose x as
x = Px+(I−P )x =: x1+x2 and we have (e

t
n

AP )nx = (e
t
n

AP )nx1 = e
t
n

A(Pe
t
n

AP )n−1x1.
Now, for large n we have

‖ePAPtPx− (Pe
t
n

AP )nx1‖ = ‖ePAPtx1 − (Pe
t
n

AP )nx1‖ < ε

for t ∈ [0, T ], and also

‖e t
n

A(Pe
t
n

AP )n−1x1 − (Pe
t
n

AP )nx1‖ = ‖(I − P )e
t
n

A(Pe
t
n

AP )n−1x1‖ =

‖(I − P )(e
t
n

A − I)(Pe
t
n

AP )n−1x1‖ ≤ ‖I − P‖ · ‖e t
n

A − I‖ · ‖x1‖ < ε

Case 2. In the general case we �rst introduce an equvivalent norm on E such that P

becomes contractive, then we use a rescaling argument to achieve that the semigroup
becomes contractive. Indeed, with the new norm ‖x‖0 := ‖Px‖ + ‖(I − P )x‖ E is a
Banach space, ‖ · ‖ and ‖ · ‖0 are equivalent, and P is contractive on E‖·‖0 . Now, for
λ > ‖A‖0 the rescaled semigroup e−λteAt is contractive on E‖·‖0 , therefore the result of
Case 1 can be applied, and the result follows. ¤

Remark 1. By similar arguments one can prove the following statement: if (etA)t≥0

is a C0-semigroup on E and P is a �nite dimensional projection with ran P ⊂ D(A)

then limn→∞(e
t
n

AP )nx = ePAPtPx where ePAPt is meant to be the C0-semigroup on PE

generated by the bounded operator PAP . See also Remark 4 below.

Positive semigroups
The results in this subsection are taken from [4].

Let (X, Σ, µ) be σ-�nite measure space and let (etA)t≥0 be a positive C0-semigroup
on E = Lp(X) where 1 ≤ p < ∞. Let Ω ⊂ X be measureable. Then Pf := 1Ωf de�nes
a projection on E, where 1Ω denotes the characteristic function of Ω. In this subsection
we will use the notation Lp(Ω) both in the usual sense and and in the sense to denote
the subspace of functions f in Lp(X) such that f = 0 almost everywhere in Ωc. When
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a function f is in Lp(Ω) in the usual sense, we de�ne the extension f on X by f |Ω = f

and f |Ωc = 0. The following result holds (see [4], Theorem 5.3):

Theorem 4.1.5 Let f ∈ E and t > 0. Then

S(t)f := lim
n→∞

(e
t
n

AP )nf

exists and S(t)t>0 is a continuous degenerate semigroup of positive operators. Further-
more, S(0) := limt→0 S(t) is a projection of the the form S(0)f = 1Y f where Y ⊂ Ω is
a measureable set.

The continuous degenerate semigroup S(t)t>0 can also be characterized by the follow-
ing maximality property (see [4], Theorem 5.1): Let T (t)t>0 be any semigroup of positive
operators on Lp(X) which maps Lp(X) to Lp(Ω) and for which 0 ≤ T (t)f ≤ etAf for
t > 0 and 0 ≤ f ∈ Lp(X). Then T (t)f ≤ S(t)f .

With the notations of Theorem 4.1.5 it can occur that Y = ∅ and S(t) = 0 (see [4],
Example 5.4). However, in the following important case Y = Ω holds (for a detailed
discussion of this Example and the following Remark see [4], Section 5 and 7):
Example (The Dirichlet Laplacian) Let p = 2, X = Rn (with Lebesgue measure) and
A = ∆ the Laplacian on L2(Rn). Let Ω be a bounded open set with Lipschitz boundary.
Then (with the notations of Theorem 4.1.5) we have Y = Ω and S(t)|L2(Ω) = et∆Ω where
∆Ω is the Dirichlet Laplacian on L2(Ω), i.e. D(∆Ω) = {f ∈ H1

0 (Ω) : ∆f ∈ L2(Ω)} and
∆Ωf = ∆f .
Remark 2. For general open sets Ω we still have Y = Ω and S(t)|L2(Ω) = et∆̃Ω where ∆̃Ω

denotes the pseudo-Dirichlet Laplacian on L2(Ω), i.e. ∆̃Ω is associated with the following
densely-de�ned closed positive form a on L2(Ω): D(a) = {f ∈ L2(Ω) : f ∈ H1(Rn)}
and a(f, f) =

∫
Rn |f |2 +

∑n
j=1

∫
Rn |Djf |2 =

∫
Ω
|f |2 +

∑n
j=1

∫
Rn |Djf |2 (this statement is

a consequence of Theorem 4.1.2 above). This means that we have ∆̃Ω = ∆Ω whenever
D(a) = H1

0 (Ω). It is not an aim of this paper to describe sets Ω where this occurs, but
in the Example above we take boundedness and Lipschitz boundary as simple su�cient
conditions.
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4.2 Counterexamples
In view of the results in Section 1 one may conjecture that 4.2 converges in more general
settings. In particular, the following conjectures were given in [6]:

(a) Let etA be a contractive C0-semigroup on a Hilbert space H, and let P be an
orthogonal projection. Then 4.2 should converge.

(b) Let etA be a positive, contractive C0-semigroup on Lp(X, Σ, µ) (where (X, Σ, µ)

is a σ-�nite measure space, and 1 < p < ∞), and let P be a positive, contractive
projection. Then 4.2 should converge.

In this section we present two examples which disprove these conjectures. We remark
that the case p = 1 in conjecture (b) was not included, because a positive, contractive
C0-semigroup and a positive, contractive projection on E = L1([0, 1]), such that 4.2 fails
to converge, was already provided in [6].

Hilbert space case
Let us �rst remark that by using the theory of unitary dilations of contractive C0-
semigroups in Hilbert spaces (see e.g. [11], Corollary 6.14) one can reduce the �rst
conjecture to the case of unitary C0-semigroups. Indeed, take a unitary dilation U(t) on
a Hilbert space H0 of the contractive C0-semigroup T (t) on H. Then, for all x ∈ H we
have (T ( t

n
)P )nx = Q(U( t

n
)P0)

nx, where Q and P0 denote the orthogonal projections of
H0 onto H and PH, respectively.

Therefore, we are considering unitary C0-semigroups instead of arbitrary contractive
ones. This is a great technical advantage (whether to prove or disprove the conjecture),
because unitary semigroups can always be regarded as multiplication semigroups.

We carry out our construction in the space L2[0, 1]. As an example of unitary semi-
group we take the semigroup of multiplications by eith, where h is a real-valued, mea-
surable function on [0, 1], to be speci�ed later. We choose P to be the one-dimensional
orthogonal projection onto the space of constant functions, i.e. Pf = 1 · ∫ 1

0
f(x)dx. As

a test function on which 4.2 will fail for t = 1, we take 1.
Denoting cn =

∫ 1

0
ei 1

n
h(x)dx, the function

[
e

1
n

AP
]n

(1) becomes cn−1
n ei 1

n
h. However, by
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the Lebesgue Dominated Convergence Theorem, limn→∞ cn = 1 as well as limn→∞ ei 1
n

h =

1 in L2[0, 1]. So, limn→∞
[
e

1
n

AP
]n

(1) exists in L2[0, 1] if and only if the numerical limit

lim
n→∞

cn
n (4.3)

exists. Now we specify the function h, for which we prove that 4.3 diverges. Put
h =

∑∞
k=1 χ(1/2k,1/2k−1]2

kπ. Then cn =
∑∞

k=1
1
2k ei 1

n
2kπ. We show the following two

inequalities

lim inf
n→∞

|c2n |2n ≥ e−(4+π2

4
) (4.4)

lim sup
n→∞

|c2n3|2n3 ≤ e−(6+π2

6
− π4

27·24·7 ) (4.5)

Noticing that 4 + π2

4
< 6 + π2

6
− π4

27·24·7 we get the desired result.
Let us show 4.4 �rst. Observe that

c2n =
n−1∑

k=1

1

2k
ei 2k

2n π − 1

2n
+

∞∑

k=n+1

1

2k
=

n−1∑

k=1

1

2k
ei 2k

2n π.

Using the inequality cos(α) ≥ 1− α2

2
we get

|c2n | ≥ |Re c2n | =
n−2∑

k=1

1

2k
cos(

2k

2n
π) ≥

n−2∑

k=1

1

2k
(1− π2

2

4k

4n
)

= 1− 4

2n
− π2

2

1

4n
(2n−1 − 2) = 1− 1

2n
(4 +

π2

4
) +

π2

4n
.

Since limN→∞(1 + a
N

+ b
N2 )

N = ea, we obtain 4.4.
To prove 4.5 let us simplify c2n3. We have

c2n3 =
n−1∑

k=1

1

2k
ei 2k

2n3
π +

1

2n
ei 1

3
π +

∞∑

k=n+1

1

2k
ei 2k−n

3
π

=
n−1∑

k=1

1

2k
ei 2k

2n3
π +

1

2n
(
1

2
+ i

√
3

2
) +

1

2n

∞∑

k=1

1

2k
ei 2k

3
π.

Notice that ei 2k

3
π = ei(−1)k+1 2

3
π = −1

2
+ i(−1)k+1

√
3

2
. Thus,

∑∞
k=1

1
2k ei 2k

3
π = −1

2
+ i

√
3

6
.

After these computations c2n3 becomes
n−1∑

k=1

1

2k
ei 2k

2n3
π + i

2
√

3

2n3
.
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Now using the inequality cos(α) ≤ 1− α2

2
+ α4

24
we obtain the following estimate

|Re c2n3| ≤
n−1∑

k=1

1

2k

(
1− π2

18

4k

4n
+

π4

81 · 24

16k

16n

)

= 1− 1

2n−1
− π2

18

2n − 2

4n
+

π4

81 · 24

8n − 8

16n7

= 1− 1

2n3

(
6 +

π2

6
− π4

27 · 24 · 7
)

+
a

(2n3)2
+

b

(2n3)4
,

for some constants a and b. Similarly, using sin(α) ≤ α, we have

|Im c2n3| ≤
n−1∑

k=1

1

2k

2k

2n3
π +

2
√

3

2n3
≤ (n + 1)π

2n3
.

Thus,

|c2n3|2n3 =
(|Re c2n3|2 + |Im c2n3|2

) 2n3
2

≤ (1− 2

2n3
(6 +

π2

6
− π4

27 · 24 · 7) + (
2

2n3
)2(n + 1)2a1

+ (
2

2n3
)2a2 + . . . + (

2

2n3
)8a8)

2n3
2 .

Passing to the upper limit as n →∞, we �nally obtain 4.5.
Remark 3. The counterexample above was presented at the Autumn School on Evolu-
tion Equations, Levico, 2001. Subsequently, in a private communication to the author,
G. Metafune proved that the more natural choice h(x) := 1

x
also provides a counterex-

ample. Interestingly, however, the absolute value of the sequence cn
n converges in that

case.
Remark 4. The function 1 is not in the domain of the generator A of our semigroup. In
fact, we see from Remark 1 above that for any function f ∈ D(A), ‖f‖ = 1 the formula
4.2 converges and we have

lim
n→∞

(e
t
n

APf )
nf = e(Af,f) · f

where Pf denotes the orthogonal projection on the 1-dimensional subspace spanned by
f .
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Lp-case for positive semigroups
Our second example is on the Hilbert space L2[0, 2π], but now for a positive contractive
C0-semigroup and positive contractive projection.

We take etAf(x) = f(x + 2πt), regarding f as a 2π-periodic function. Now let
P be the orthogonal projection onto the space spanned by the positive norm-one
function g(x) = 1√

34π

[
4 +

∑∞
k=0

1√
2k

cos 2kx
]
. Notice that, like in the previous ex-

ample, our projection is one-dimensional (see Remark 5 below). Simple substitution
shows that 4.2 evaluated at g for t = 1 exists if and only if the numerical limit
limn→∞

[∫ 2π

0
g(x)g(x + 1

n
)dx

]n

exists. Denoting

cn =

∫ 2π

0

g(x)g(x +
1

n
)dx

and using the orthogonality of cosines, we obtain

cn =
16

17
+

1

17

∞∑

k=1

1

2k
cos

2k

n
π

Following the same calculations as for the �rst example, we obtain inequalities 4.4 and
4.5 with powers doubled on the right hand sides.

This disproves the second conjecture.
Remark 5. As we have already noticed, the projections in our examples are one-
dimensional. We will examine in Chapter 6 what property of the generator of a
C0-semigroup on a Hilbert space is responsible for the existence of 4.2 for all one-
dimensional, or more speci�cally, one-dimensional orthogonal projections.



Chapter 5

A similarity result

The last two chapters are based on [21].
The aim of Chapters 5 and 6 is to give a characterization in Hilbert spaces of the

generators of C0-semigroups associated with closed, sectorial forms in terms of the con-
vergence of Trotter's product formula for projections. In the course of the proof of the
main result (Theorem 6.0.1) we will need a similarity result which is of independent in-
terest: for any unbounded generator A of a C0-semigroup etA it is possible to introduce
an equivalent scalar product on the space, such that etA becomes non-quasi-contractive
with respect to the new scalar product.

The main result of Chapter 6 is then to prove the converse of Kato's result, i.e.
that the strong convergence of 4.2 for all orthogonal projections P , in fact, characterizes
generators A such that −A is associated with a closed sectorial form. To be more precise
we recall the following result (see Theorem 4.1.4 and 4.1.2):

Theorem 5.0.1 Let A be the generator of a C0-semigroup etA on a Hilbert space H.
Consider the following statements:

(i) A is bounded.
(ii) −A is associated with a densely-de�ned, closed, sectorial form a on H.
(iii) The formula (e

t
n

AP )nx converges for all projections P ∈ B(H), and all x ∈ H

and t > 0.
(iv) The formula (e

t
n

AP )nx converges for all orthogonal projections P ∈ B(H), and
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all x ∈ H and t > 0.
The following implications hold: (i) ⇒ (iii) and (ii) ⇒ (iv).

We will show in Chapter 6 that the converse implications also hold. In the course of
the proof we will need an auxillary result, given in Theorem 5.1.1 below, which can be
regarded as a complement of [9].

5.1 Quasi-contractivity and bounded generators
In order to prove our main result [Theorem 6.0.1], �rst we need to characterize the class
of generators A on H, such that the C0-semigroup etA is quasi-contractive for every
equivalent scalar product ( , )0 on H. The characterization is provided by

Theorem 5.1.1 Let A be the generator of a C0-semigroup etA on a Hilbert space H.
The following are equivalent:

(i) A is bounded.
(ii) The semigorup etA is quasi-contractive for every equivalent scalar product ( , )0

on H.
(iii) For every equivalent scalar product ( , )0 on H there exists K0 ∈ R such that

for every vector x ∈ D(A), (x, x)0 = 1 implies Re (Ax, x)0 ≤ K0.

Proof. The implications (ii) ⇔ (iii) are consequences of the Lumer-Phillips theorem
(see e.g. [12], Proposition 3.23.). The implications (i) ⇒ (ii) and (i) ⇒ (iii) are trivial.
It remains to prove (iii) ⇒ (i). We will need the following

De�nition 5.1.2 Let T ∈ B(H) be an injective operator, and x ∈ H, ‖x‖ = 1, and
0 < δ ≤ 1. We say that x is a δ-quasi-eigenvector of T if

δ ≤ |(x, Tx)|
‖Tx‖ ≤ 1 (5.1)

Note, that a 1-quasi-eigenvector is, in fact, an eigenvector of T .
Now, let 0 < δ < 1 be �xed. We prove the implication (iii) ⇒ (i) by contradiction.

Assume, therefore, that A /∈ B(H), and also, by rescaling, that A−1 =: T ∈ B(H).



CHAPTER 5. A SIMILARITY RESULT 50

We emphasize that T is an injective operator, and we will use this fact several times.
Assume, furthermore, that a sequence (hn) ⊂ H is given with the following properties:

(a) ‖hn‖ = 1 for all n ≥ 1.
(b) {hk, Thk} ⊥ {hj, Thj} for all k 6= j.
(c) limn→∞ ‖Thn‖ = 0

(d) For every n ≥ 1 the vector hn is not a δ-quasi-eginvector of T .
We construct an equivalent scalar product ( , )0 on H with the help of the sequence

hn.
Let Hn = span{hn, Thn}. Note, that Hn is 2-dimensional because hn is not an

eigenvector of T .
Let Thn = c1,nhn + c2,nh

⊥
n , where ‖h⊥n ‖ = 1. Note that

|c1,n|2
|c1,n|2 + |c2,n|2 < δ2 and

|c2,n|2
|c1,n|2 + |c2,n|2 > 1− δ2

Hence,
|c1,n|
|c2,n| <

δ√
1− δ2

and
|c2,n|
‖Thn‖ >

√
1− δ2

De�ne Qn ∈ B(Hn) by

Qnhn := hn + Lnh⊥n

Qnh⊥n := Lnhn + (|Ln|2 + 1)h⊥n

where |Ln| = 2 δ√
1−δ2 and Lnc2,n > 0 for all n ≥ 1. It is clear that Qn = Q∗

n ≥ 0,
Q−1

n ∈ B(Hn), and ‖Qn‖Hn ≤ K, ‖Q−1
n ‖Hn ≤ K for some universal constant K (not

depending on n). De�ne Q ∈ B(H) by

Q := Q1 ⊕Q2 ⊕ . . .
⊕

I(H1⊕H2⊕...)⊥

It is easy to see that Q is well-de�ned, Q ∈ B(H), Q = Q∗ ≥ 0, and Q−1 ∈ B(H). This
means that Q de�nes an equivalent scalar product on H by (x, y)0 := (x,Qy).

Now, let xn := Thn

‖Thn‖ . Then

Re (Axn, xn)0 =
1

‖Thn‖2
Re (hn, QThn) =

1

‖Thn‖2
Re (hn, c1,nhn + c2,nLnhn) =

=
1

‖Thn‖2
(Re c1,n + c2,nLn) ≥ 1

‖Thn‖2

δ√
1− δ2

|c2,n| ≥ 1

‖Thn‖δ → +∞
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Let yn := xn

‖xn‖0
. Then Re (Ayn, yn)0 → +∞ still holds due to the equivalence of the

scalar products ( , ) and ( , )0.
In order to complete the proof of the theorem it remains to construct the sequence

hn with the required properties. The construction is carried out in several steps.
Step 1. We construct an orthonormal sequence (en) ⊂ H, such that

limn→∞ ‖Ten‖ = 0.
Take the polar decomposition T = UT1 of T , where U is unitary and T1 = T ∗

1 ≥ 0. It
is clear from the spectral theorem that there exists an orthonormal sequence (en) ⊂ H

such that limn→∞ ‖T1en‖ = 0 (otherwise T1 and T would be invertible, contrary to our
assumption). Note, also, that ‖T1en‖ = ‖Ten‖ for all n ∈ N, therefore limn→∞ ‖Ten‖ = 0

as required.
Step 2. We construct an orthonormal sequence (fn) ⊂ H such that

limn→∞ ‖Tfn‖ = 0 and fn+1 ⊥ {f1, T f1, ...fn, T fn}.
We obtain the sequence (fn) by induction, with the help of the sequence (en). Take

an index i1 such that ‖Tei1‖ ≤ 1, and let f1 := ei1 . Assume now that f1, f2, . . . , fn are
already given such that

‖fj‖ = 1, fj ⊥ {fk, T fk}, ‖Tfj‖ ≤ 1√
j

and fj ∈ span{e1, e2, . . . , eln}, for all 1 ≤ j, k ≤ n, k < j, and ln is an index depending
on n only.

Let Hn := span{Tf1, T f2, . . . , T fn}. Take indices j1, . . . jn+1 such that jk > ln and
‖Tejk

‖ ≤ 1
n+1

for all 1 ≤ k ≤ n+1. The subspace Hn is at most n-dimensional, therefore
there exists a non-trivial linear combination

fn+1 :=
n+1∑

k=1

λkejk

such that ‖fn+1‖ = 1 and fn+1 ⊥ Hn.
It is clear, by construction, that fn+1 ⊥ {f1, T f1, ...fn, T fn}. Furthermore,

‖Tfn+1‖ ≤ 1

n + 1

n+1∑

k=1

|λk| ≤
√∑n+1

k=1 |λk|2
n + 1

=
1√

n + 1
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Step 3. We construct an orthonormal sequence (gn) ⊂ H such that
limn→∞ ‖Tgn‖ = 0 and {gj, T gj} ⊥ {gk, T gk} for all j 6= k.

We obtain the sequence (gn) by induction, with the help of the sequence (fn).
Let g1 = f1. Assume now that g1, g2, . . . , gn are already given such that

‖gj‖ = 1, {gj, T gj} ⊥ {gk, T gk}, ‖Tgj‖ ≤ 1√
2j − 1

and gj ∈ span{f1, f2, . . . , fbn}, for all 1 ≤ j 6= k ≤ n, and bn is an index depending on n

only.
Let Gn := span{g1, T g1, g2, T g2, . . . , gn, T gn}. Take indices m1, . . . m2n+1 such that

mk > bn and ‖Tfmk
‖ ≤ 1

2n+1
for all 1 ≤ k ≤ 2n + 1. The subspace Gn is at most

2n-dimensional, therefore there exists a non-trivial linear combination

gn+1 :=
2n+1∑

k=1

µkfmk

such that ‖gn+1‖ = 1 and Tgn+1 ⊥ Gn.
It is clear, by construction, that {gn+1, T gn+1} ⊥ {g1, T g1, ...gn, T gn}. Furthermore,

‖Tgn+1‖ ≤ 1

2n + 1

2n+1∑

k=1

|µk| ≤
√∑2n+1

k=1 |µk|2
2n + 1

=
1√

2(n + 1)− 1

Step 4. We construct the orthonormal sequence (hn) with the properties stated at
the beginning of the proof.

We obtain the sequence (hn) by induction, with the help of the sequence (gn).
Take an index r1 such that ‖Tgr1‖ ≤ δ2

10
‖Tg1‖. Let

h1 :=
δ

2
g1 +

√
1− δ2

4
gr1

We need to prove that h1 is not a δ-quasi-eigenvector of T . It is clear that

1 ≥ ‖Th1‖ ≥
(

δ

2
− δ2

10

√
1− δ2

4

)
‖Tg1‖

Also,

|(h1, Th1)| =
∣∣∣∣
δ2

4
(g1, T g1) + (1− δ2

4
)(gr1 , T gr1)

∣∣∣∣ ≤
(

δ2

4
+ (1− δ2

4
)
δ2

10

)
‖Tg1‖
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Combining these two ineqalities a simple calculation shows that |(h1,Th1)|
‖Th1‖ < δ, as required.

Assume now that vectors h1, . . . , hn are already given, such that hj is not a δ-quasi-
eigenvector of T ,

‖hj‖ = 1, {hj, Thj} ⊥ {hk, Thk}, ‖Thj‖ ≤ 1√
j

and hj ∈ span{g1, g2, . . . , gan}, for all 1 ≤ j 6= k ≤ n, and an is an index depending on
n only. Take indices p1, p2, such that p1, p2 > an and ‖Tgp1‖ ≤ 1√

n+1
, and ‖Tgp2‖ ≤

δ2

10
‖Tgp1‖. Let

hn+1 :=
δ

2
gp1 +

√
1− δ2

4
gp2

It is clear that ‖Thn+1‖ ≤ 1√
n+1

, and it can be shown as above that hn+1 is not a
δ-quasi-eigenvector of T . Hence, the sequence (hn) satis�es all requirements, and the
proof is complete. ¤

We see that the proof above exploits heavily the geometric structure of Hilbert spaces.

Problem 5.1.3 The author conjectures that a result corresponding to Theorem 5.1.1
holds also in Banach spaces. Namely, whenever A is not bounded it should be possible
to introduce an equivalent norm on the space such that etA is not quasi-contractive with
respect to the new norm. This problem, however, remains open.



Chapter 6

The convergence of Trotter's formula

Now we present the main result concerning the convergence of Trotter's product formula
for projections. We remark that the �rst part of Theorem 6.0.1 gives a result in the
spirit of [10] Chapter 6: the universally 'nice' generators are necesssarily bounded.

Theorem 6.0.1 Let A be the generator of a C0-semigroup etA on a Hilbert space H.
Consider the following statements.

(i) A is bounded.
(ii) −A is associated with a densely-de�ned, closed, sectorial form a on H.
(iii) The formula (e

t
n

AP )nx converges for all projections P ∈ B(H), and all x ∈ H

and t > 0.
(iv) The formula (e

t
n

AP )nx converges for all orthogonal projections P ∈ B(H), and
all x ∈ H and t > 0.

The following implications hold: (i) ⇔ (iii), (ii) ⇔ (iv).

Proof. The implication (i) ⇒ (iii) was proved in [22], while the implication
(ii) ⇒ (iv) is a consequence of [18], Addendum (see also [22], Theorem 4).

We prove the implication (iii) ⇒ (i) by contradiction.
Assume �rst that the semigroup etA is not quasi-contractive. By the Lumer-Phillips

theorem this is equivalent to the fact that the numerical range of A is not contained in
any left half-plane.
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We construct an element g ∈ H such that ‖g‖ = 1, and

lim
n→∞

(e
1
n

APg)
ng

does not exist, where Pg denotes the one-dimensional projection onto the subspace
spanned by g. The vector g will be given as

g :=
limk→∞ gk

‖ limk→∞ gk‖
where (gk) denotes a convergent sequence in H to be constructed in the sequel.

Let g1 ∈ D(A), such that ‖g1‖ = 1. First, we show that

lim
n→∞

(e
1
n

APg1)
ng1 = e(Ag1,g1)g1

(Note, that this result follows from the proof of Theorem 4.1.4 as mentioned in Remark
4. in Chapter 4. However, we give a more elementary proof here.)

Indeed,

(e
1
n

APg1)
ng1 = e

1
n

A(Pg1e
1
n

APg1)
n−1g1 = e

1
n

A(Pg1e
1
n

APg1g1, g1)
n−1g1

and
lim

n→∞
(Pg1e

1
n

APg1g1, g1)
n−1 = e(Ag1, g1)

because

lim
n→∞

(Pg1e
1
n

APg1g1, g1)− 1

1/n
= lim

n→∞

(
(e

1
n

A − I)g1

1/n
, g1

)
= (Ag1, g1)

Now, choose g1 such that Re (Ag1, g1) ≥ 1 holds also.
Let ε > 0 be �xed. Take an index n1 so large that

‖
(
e

1
n1

A
Pg1

)n1

g1 − e(Ag1,g1)g1‖ < ε

It is clear from standard continuity arguments that there exists a δ1 > 0, such that for
all h ∈ B(g1, δ1) we have

‖
(
e

1
n1

A
P h
‖h‖

)n1 h

‖h‖ − e(Ag1,g1)g1‖ < 2ε
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Without loss of generality we can assume that δ1 < 1
2
.

Now assume, that vectors g1, g2, . . . , gk, and positive numbers δ1, δ2, . . . , δk, and in-
dices n1, n2, . . . , nk are already given with the properties that:

gj ∈ D(A), Re (Agj, gj) ≥ j

and
‖

(
e

1
nj

A
P h
‖h‖

)nj h

‖h‖ − e
(A

gj
‖gj‖ ,

gj
‖gj‖ ) gj

‖gj‖‖ < 2ε

for all 1 ≤ j ≤ k and all h ∈ B(gj, δj). Assume, furthermore, that

‖gj+1 − gj‖ < min

{
δ1

2j
,

δ2

2j−1
, . . .

δj

2

}

for all 1 ≤ j ≤ k − 1.
The numerical range of A is not bounded from the right, hence there exists a vector

f ∈ D(A) such that
‖f‖ < min

{
1

‖Agk‖ ,
δ1

2k
,

δ2

2k−1
, . . .

δk

2

}

and Re (Af, f) ≥ 2. Let fk := eiαf with suitable α such that Re (Afk, gk) ≥ 0. Let

gk+1 := gk + fk

Then

Re (Agk+1, gk+1) = Re (Agk, gk) + Re (Agk, fk) +

+Re (Afk, gk) + Re (Afk, fk) ≥ k + (−1) + 0 + 2 = k + 1

Furthermore, we have

lim
n→∞

(e
1
n

AP gk+1
‖gk+1‖

)n gk+1

‖gk+1‖ = e
(A

gk+1
‖gk+1‖

,
gk+1
‖gk+1‖

) gk+1

‖gk+1‖
Take an index nk+1 so large that nk+1 > nk and

‖
(

e
1

nk+1
A
P gk+1
‖gk+1‖

)nk+1 gk+1

‖gk+1‖ − e
(A

gk+1
‖gk+1‖

,
gk+1
‖gk+1‖

) gk+1

‖gk+1‖‖ < ε
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It is clear from standard continuity arguments that there exists a δk+1 > 0, such that
for all h ∈ B(gk+1, δk+1) we have

‖
(
e

1
nk+1

A
P h
‖h‖

)nk+1 h

‖h‖ − e
(A

gk+1
‖gk+1‖

,
gk+1
‖gk+1‖

) gk+1

‖gk+1‖‖ < 2ε

It is clear, by construction, that the sequence gk converges in H. Let

h := lim
k→∞

gk and g :=
h

‖h‖

Recall, that ‖g1‖ = 1 and δ1 < 1
2
, therefore 1

2
< ‖gk‖ < 3

2
for all k ≥ 1. It is also clear,

by construction, that h ∈ B(gk, δk) for all k ≥ 1. Hence, for all k ≥ 1 we have

‖
(
e

1
nk

A
Pg

)nk

g − e
(A

gk
‖gk‖

,
gk
‖gk‖

) gk

‖gk‖‖ < 2ε

Notice, that
‖e(A

gk
‖gk‖

,
gk
‖gk‖

) gk

‖gk‖‖ = e
1

‖gk‖2
Re (Agk,gk)

> e
1
4
k

This means that (the norm of) the sequence (e
1
n

APg)
ng does not converge.

Now, assume only that A /∈ B(H). Introduce, by Theorem 5.1.1, an equivalent scalar
product (x, y)0 := (x,Qy) on H, such that the semigroup etA is not quasi-contractive
with respect to ( , )0. Take an orthogonal projection Pg (with respect to the scalar
product ( , )0 ), such that (e

1
n

APg)
ng does not converge. Then, Pg is a bounded (possibly

non-orthogonal) projection with respect to the original scalar product ( , ), such that
(e

1
n

APg)
ng does not converge. This proves the implication (iii) ⇒ (i).

The implication (iv) ⇒ (ii) is also proved by contradiction.
Asume, that the numerical range of A is not contained in any sector

Σφ,ω := {z ∈ C :
π

2
+ φ < arg (z − ω) <

3

2
π − φ}

with ω ∈ R, φ ∈ (0, π
2
). There are two cases to consider.

If the semigroup etA is not quasi-contractive , then, by the arguments above, there
exists a vector g ∈ H, such that ‖g‖ = 1 and (e

1
n

APg)
ng does not converge.

If the semigroup etA is quasi-contractive then, by rescaling, we can assume that
Re (Ax, x) ≤ −1 for all x ∈ D(A), ‖x‖ = 1.
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We construct an element g ∈ H such that ‖g‖ = 1, and limn→∞(e
1
n

APg)
ng does not

exist, where Pg denotes the one-dimensional projection onto the subspace spanned by
g. The vector g will be given as

g :=
limk→∞ gk

‖ limk→∞ gk‖
where (gk) denotes a convergent sequence in H to be constructed in the sequel.

Take an arbitrary vector g1 ∈ D(A), ‖g1‖ = 1. Let (Ag1, g1) =: a1 + b1i. We know
that

lim
n→∞

(
e

1
n

APg1

)n

g1 = e(Ag1,g1)g1

Let ε > 0, and ρ > 0 be �xed. Take an index n1 so large that

‖
(
e

1
n1

A
Pg1

)n1

g1 − e(Ag1,g1)g1‖ < ε

It is clear from standard continuity arguments that there exists a δ1 > 0, such that for
all h ∈ B(g1, δ1) we have

‖
(
e

1
n1

A
P h
‖h‖

)n1 h

‖h‖ − e(Ag1,g1)g1‖ < 2ε

Without loss of generality we can assume that δ1 < 1
2
.

Now assume, that vectors g1, g2, . . . , gk, and positive numbers δ1, δ2, . . . , δk,
real numbers ε1, ε2, . . . , εk, and indices n1, n2, . . . , nk are already given with the following
properties: for all 1 ≤ j ≤ k we have |εj| < ρ,

gj ∈ D(A), (A
gj

‖gj‖ ,
gj

‖gj‖) = aj + (εj + b1 + (j − 1)π)i

(note that ε1 = 0), where a1 − 1 < aj ≤ −1, and

‖
(
e

1
nj

A
P h
‖h‖

)nj h

‖h‖ − e
(A

gj
‖gj‖ ,

gj
‖gj‖ ) gj

‖gj‖‖ < 2ε

for all h ∈ B(gj, δj). Assume, furthermore, that

‖gj+1 − gj‖ < min

{
δ1

2j
,

δ2

2j−1
, . . .

δj

2

}

for all 1 ≤ j ≤ k − 1.
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Now, we construct the vector gk+1. The numerical range of A is not contained in
any sector, therefore there exists a sequence (xj) ⊂ D(A) such that, limj→∞ ‖xj‖ = 0

and
Im

(Axj, xj)

‖gk‖2
= π and

Re (Axj, xj)

‖gk‖2
<

ak − (a1 − 1)

2

Take yj := eiαjxj with suitable αj such that (Ayj, gk) ≥ 0 real. Then

(A(gk + yj), gk + yj)

‖gk‖2
=

(Agk, gk)

‖gk‖2
+

(Agk, yj)

‖gk‖2
+

+
(Ayj, gk)

‖gk‖2
+

(Ayj, yj)

‖gk‖2
=: cj + dji

The real part cj of this expression satis�es

cj > (a1 − 1) + (
ak − (a1 − 1)

2
)− |(Agk, yj)|

‖gk‖2

for all j ≥ 1. For the imaginary part dj, we have

lim
j→∞

dj = εk + b1 + kπ

This means that for large j we have ‖yj‖ < min { δ1
2k , δ2

2k−1 , . . .
δk

2
}, and

Re(A(gk + yj), gk + yj)

‖gk + yj‖2
> a1 − 1

and
Im(A(gk + yj), gk + yj)

‖gk + yj‖2
= εk+1 + b1 + kπ

where |εk+1| < ρ. Take such an index j, and de�ne

gk+1 := gk + yj

Again, standard continuity arguments show that there exist a positive number δk+1 and
an index nk+1 such that

‖
(
e

1
nk+1

A
P h
‖h‖

)nk+1 h

‖h‖ − e
(A

gk+1
‖gk+1‖

,
gk+1
‖gk+1‖

) gk+1

‖gk+1‖‖ < 2ε

for all h ∈ B(gk+1, δk+1).
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It is clear, by construction, that the sequence gk converges. Let

h := lim
k→∞

gk and g :=
h

‖h‖
Recall, that ‖g1‖ = 1 and δ1 < 1

2
, therefore 1

2
< ‖gk‖ < 3

2
for all k ≥ 1. It is also clear,

by construction, that h ∈ B(gk, δk) for all k ≥ 1. Hence, for all k ≥ 1 we have

‖
(
e

1
nk

A
Pg

)nk

g − e
(A

gk
‖gk‖

,
gk
‖gk‖

) gk

‖gk‖‖ < 2ε

Notice, furthermore that

‖e(A
g2k+1
‖g2k+1‖

,
g2k+1
‖g2k+1‖

) g2k+1

‖g2k+1‖ − e
(A

g2k
‖g2k‖

,
g2k
‖g2k‖

) g2k

‖g2k‖‖ =

‖ea2k+1e(ε2k+1+b1+2kπ)i g2k+1

‖g2k+1‖ − ea2ke(ε2k+b1+(2k−1)π)i g2k

‖g2k‖‖ ≥

‖ea2k+1+b1ig1 − ea2k+(b1−π)ig1‖ − ‖ea2k+1+b1i(eε2k+1
g2k+1

‖g2k+1‖ − g1)‖ −

−‖ea2k+(b1−π)i(eε2k
g2k

‖g2k‖ − g1)‖ ≥

2ea1−1 − ‖ea2k+1+b1i(eε2k+1
g2k+1

‖g2k+1‖ − g1)‖ − ‖ea2k+(b1−π)i(eε2k
g2k

‖g2k‖ − g1)‖

We can now choose the values of ε, δ1, ρ so small that

‖ea2k+1+b1i(eε2k+1
g2k+1

‖g2k+1‖ − g1)‖+ ‖ea2k+(b1−π)i(eε2k
g2k

‖g2k‖ − g1)‖ ≤ ea1−1

and 5ε ≤ ea1−1

Then we have
‖(e

1
n2k+1

A
Pg)

n2k+1g − (e
1

n2k
A
Pg)

n2kg‖ ≥ ε

Therefore the sequence (e
1
n

APg)
ng does not converge, and the proof is complete.

We also see from the proof that the set of vectors g, such that ‖g‖ = 1 and (e
1
n

APg)
ng

does not converge, is dense on the unit sphere. ¤

As a last remark we note the following:
The speci�c counterexamples in Chapter 4 show that even the norm of (e

1
n

APg)
ng might

not converge. The proof of the general case above, however, relies on the 'change of
direction' of (e

1
n

APg)
ng for a particular g.



CHAPTER 6. THE CONVERGENCE OF TROTTER'S FORMULA 61

Problem 6.0.2 Assume that the generator A of a C0-semigroup is not associated with
a closed form. Is it possible to choose a vector g of norm 1, such that the norm of the
sequence (e

1
n

APg)
ng does not converge?

Also, it is natural to expect that the �rst part of Theorem 6.0.1 holds in arbitrary
Banach spaces.

Problem 6.0.3 Let etA be a C0-semigroup on a Banach space X. Is it true that if
(e

t
n

AP )nx converges for all x ∈ X, t > 0 and all projections P ∈ B(X) then A must be
bounded?
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Summary

Closed sectorial forms provide a convenient way to de�ne m-sectorial (and, in particular,
semibounded self-adjoint) operators. The Friedrichs extension and the form sum are two
basic manifestations of this idea. The form sum is related to Trotter's product formula
by a result of Kato. This dissertation presents the author's results in this circle of ideas.

In Chapter 1 we describe a factorization argument for positive self-adjoint operators.
This argument establishes a connection between form methods and operator methods.
Applications of this factorization are included.

In Chapter 2 we apply the construction of Chapter 1 to the addition problem of
positive, symmetric operators. We arrive at a generalized notion of the form sum con-
struction. We prove a commutation property of this construction. We also describe
some pathological phenomena concerning the addition of positive self-adjoint operators.

Chapter 3 considers closed, positive forms on re�exive Banach spaces. We examine
which of the Hilbert space results can be carried over to this case.

In Chapter 4 we recall Kato's result concerning closed forms and Trotter's formula.
We apply this result in the case when one of the semigroups is replaced by an orthog-
onal projection. The convergence of Trotter's formula for projections is then further
investigated. Some convergence results and non-trivial counterexamples are given.

Chapter 5 describes a similarity result which will be needed in the characterization
of the convergence of Trotter's formula for projections. We prove that if the generator
of a C0-semigroup on a Hilbert space is unbounded then it is possible to introduce an
equivalent scalar product such that the semigroup becomes non-quasi-contractive.

In Chapter 6 we prove the converse of Kato's result: if Trotter's formula converges
for all orthogonal projections then the generator must be associated to a closed form.



Magyar nyelv¶ összefoglalás

Alulról korlátos önadjungált (és általánosabban m-szektoriális) operátorok de�niálása
gyakori zárt szektoriális formák segítségével. Két egyszer¶ példa erre a Friedrichs kiter-
jesztés és a formaösszeg. Kato egyik eredménye kapcsolatot létesít a formaösszeg és a
Trotter formula között. Ez a disszertáció a szerz® ilyen irányú eredményeit tartalmazza.

Az els® fejezetben egy faktorizációs tételt bizonyítunk pozitív önadjungált operá-
torokra. Tárgyaljuk a tétel néhány alkalmazását.

A második fejezetben a formaösszeg fogalmának egy lehetséges átalánosítását
de�niáljuk az els® fejezetben látott konstrukció segítségével. Bebizonyítjuk konstruk-
ciónknak egy kommutációs tulajdonságát. Vizsgáljuk a pozitív önadjungált operátorok
összegére adható különböz® konstrukciók közötti kapcsolatot.

A harmadik fejezetben de�niáljuk a pozitív zárt forma fogalmát re�exív Banach
terekben. Megvizsgáljuk, hogy a Hilbert terek elméletéb®l ismert eredmények közül
melyek vihet®k át erre az esetre.

A negyedik fejezetben felidézzük Kato eredményét a zárt formák és a Trotter formula
kapcsolatáról. Megemlítjük azt az esetet, amikor az egyik félcsoportot egy ortogonális
projekcióval helyettesítjük. Ezután tovább vizsgáljuk a Trotter formula ezen változatát,
és a konvergencia eredmények mellett két érdekes ellenpéldát is bemutatunk.

Az ötödik fejezetben egy hasonlósági eredményt bizonyítunk, amelyre a projek-
ciós Trotter formula konvergenciájának karakterizációjakor lesz szükség: ha egy C0-
félcsoport generátora nem korlátos, akkor be lehet vezetni egy olyan ekvivalens skalár
szorzatot, amelyre nézve a félcsoport nem kvázi-kontraktív.

A hatodik fejezetben kiegészítjük Kato eredményét: ha a Trotter formula minden
ortogonális projekcióra konvergens, akkor a generátor egy zárt formából származik.
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Self-adjoint operators play a central role in the theory of Hilbert space operators. In
the bounded case self-adjoint operators and symmetric sesquilinear forms are, in fact,
the same. The generalization of this fact to the semibounded case is the representation
theorem, which provides a convenient way to de�ne semibounded self-adjoint operators
via closed semibounded forms. Two basic examples of this idea are manifested in the
Friedrichs extension of a positive symmetric operator, and the form sum construction
of two positive self-adjoint operators. The theory of positive self-adjoint extensions was
later signi�cantly developed by Krein, while the form sum was distinguished among other
possible extensions of the operator sum by a famous result of Kato on the convergence
of the Trotter product formula.

My dissertation presents a collection of my results in this direction, based on the
papers [1], [2], [3], and [4]. In the sequel chapters and theorems are numbered as in the
dissertation.

1 Factorization of positive operators
This introductory chapter describes a factorization argument, due to Z. Sebestyén,

which plays a central role in Chapters 2 and 3.
Given a subspace D ⊂ H and a positive operator a : D → H the new scalar product

[ax, ay] := (ax, y) is well de�ned on ran a because a is symmetric. It is also positive
de�nite if we assume that D∗ (a) := {y ∈ H : sup{|(ax, y)|2 : x ∈ D, (ax, x) ≤ 1} < ∞}
is dense in H. The completion of the space (ran a, [ , ]) is denoted by Ha. De�ne
J : Ha → H by: dom J := ran a, and Jx = x. It is easy check that the positive,
self-adjoint operator aK := J∗∗J∗ is a positive self-adjoint extension of a. In particular,
if a is self-adjoint then a = J∗∗J∗ holds.

Also, we see from the factorization that

dom aK

1
2 = dom J∗ = D∗ (a),

‖aK

1
2 y‖2 = ‖J∗y‖2 = sup {|(ax, y)|2 : x ∈ dom a, (ax, x) ≤ 1}

holds. Therefore we can identify the closed form corresponding to aK .
The extended operator aK is called the Krein-von Neumann extension of a. Slight

modi�cations of the same argument provide the Friedrichs extension aF and, in general,
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all extremal extensions of a.
At the end of the chapter we illustrate the previous notions by particular examples

of di�erent extensions of a positive symmetric operator a.

2 Form sum constructions
As the factorization argument of Chapter 1 establishes a link between 'form methods'

and 'operator methods', it is natural to try to apply a similar approach to construct the
form sum of positive operators. This is the theme of Chapter 2.

Let a and b be two positive, symmetric operators, and suppose that D∗ (a) ∩ D∗ (b)

is dense in H. This implies, a fortiori, that D∗ (a) and D∗ (b) are dense, so that the
auxillary Hilbert spaces Ha, Hb are possible to construct, and the Krein-von Neumann
extensions aK and bK exist. Consider the space Ha ⊕Hb, and the operator

J : Ha ⊕Hb → H, with dom J = ran a⊕ ran b, J(ax⊕ by) = ax + by.

It is easy to prove that J∗∗J∗ is a positive self-adjoint extension of a + b. The next
theorem implies that J∗∗J∗ is, in fact, a generalization of the form sum construction.
Theorem 2.1.2 Let a and b be positive, symmetric operators such that D∗ (a)∩D∗ (b)

is dense in H, and let J be as above. Then the form sum of aK and bK is J∗∗J∗, i.e.

aK

.
+ bK = J∗∗J∗.

The main result of Chapter 2 describes a commutation property of the form sum.
Theorem 2.2.4 Let a, b be positive, symmetric operators with D∗ (a) ∩ D∗ (b) dense
in H, and suppose that E, F ∈ B(H), such that both E and F leave dom a and dom b

invariant, and for all x ∈ dom a and y ∈ dom b

E∗ax = aFx, F ∗ax = aEx, E∗by = bFy, F ∗by = bEy.

Then
E∗(a

.
+ b) ⊆ (a

.
+ b)F and F ∗(a

.
+ b) ⊆ (a

.
+ b)E.
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As an interesting result we mention that the Friedrichs extension (a + b)F of the
operator sum is also possible to construct in a similar way. De�ne

Q : H → Ha ⊕Hb, with dom Q = dom a ∩ dom b, Qx = ax⊕ bx.

Theorem 2.3.1 Suppose that a and b are positive, symmetric operators, and dom a ∩
dom b is dense in H. Then Q∗Q∗∗ = (a + b)F .

At the end of the chapter we show that the extensions (a + b)K , a
.
+ b, and (a + b)F

of the operator sum a + b are, in general, di�erent from each other.
The content of this chapter can be found in [1].

3 Positive forms on Banach spaces
It is natural to try to generalize the results of Chapter 2 to re�exive Banach spaces.
Let X denote a re�exive complex Banach space, and X∗ its conjugate dual space

(i.e. the space of all continuous, conjugate linear functionals over X). Let D ⊆ X be a
dense subspace, and let t : D ×D → C be a sesquilinear form on D (where t is linear
in the �rst variable and conjugate linear in the second). Assume that t is positive with
positive lower bound, i.e. t(x, x) ≥ γ‖x‖2, γ > 0. Assume also that t is "closed" in
the sense that (D, t(·, ·)) =: H is a Hilbert space (i.e. it is complete). In this case, the
injection i : H → X is continuous, so H can be regarded as a subspace of X. For brevity
we will use the notation [·, ·] for t(·, ·). An operator A from X to X∗ can be associated
to the form t in a natural way: let x ∈ D and take the functional [x, y], y ∈ D; if this
functional is continuous in the norm of X then there is an element z in X∗ for which
[x, y] = z(y) =: (z, y), in this case, let Ax := z.
Theorem 3.1.1 With notations as above the operator A : X → X∗ is a positive, self-
adjoint operator.

Naturally, in this setting it is harder to establish self-adjointness of an operator. The
following lemma can be used:
Lemma 3.1.2 If B : X∗ → X is a bounded, injective, self-adjoint operator then A :=

B−1 is also a self-adjoint operator from X to X∗.
With the help of Theorem 3.1.1 we are able to prove the existence of the Friedrichs

extension in the strictly positiv case.
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Theorem 3.2.1 Let a : X → X∗ be a positive, densely de�ned operator with positive
lower bound, (ax, x) ≥ γ‖x‖2, γ > 0 for every x ∈ dom a. Then a admits a positve
self-adjoint extension with the same lower bound.

The other way to show that an operator is self-adjoint is to prove that it is a sym-
metric extension of a given self-adjoint operator. This is the core of the argument in
the following
Lemma 3.2.2 Let A be a positive self-adjoint operator from X to X∗ (it is not necessary
that A has positive lower bound). Then there exists an auxiliary Hilbert space H and an
operator J : H → X∗ such that A = JJ∗.

It is possible to introduce a more general notion of positive, closed forms (in order to
include forms with lower bound 0). A positive form t : D×D → C will be called closed
if whenever xn ⊆ D and xn → x in X and t(xn − xm, xn − xm) → 0 then x ∈ D and
t(xn − x, xn − x) → 0 (notice that when t has positive lower bound then this de�nition
agrees with the previous one). A particular example of a positive, closed form is the
'covariance form' of an X-valued random variable.

Consider a probability measure space 〈Ω,A, µ〉, and let ξ : Ω → X a random variable
i.e. a weakly measurable function. Suppose that ξ possesses a weak expectation, in other
words ∫

Ω

f(ξ) dµ

exists for all f ∈ X∗. Further, we make assumptions on the second moments, and
suppose that the set

D =

{
f : f ∈ X∗,

∫

Ω

|f(ξ)|2 dµ < +∞
}

is dense in X∗. We do not require that D = X∗.
As an example, take X = `2, Ω = {ωn : n = 1, 2, . . .} and µ({ωn}) = ce−(3/2)n with

a suitable constant c. Setting ξ(ωn)k = nk/k!, it is easy to compute that, in this case,
D 6= X∗ is dense.

We assume that E ξ = 0, since we could take ξ − E ξ instead of ξ.
De�ne the sesquilinear form

t(f, g) = E (f(ξ)ḡ(ξ))
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for f, g ∈ D. We call t the covariance form of ξ.
Theorem 3.3.1 t is a positive, closed, sesquilinear form on D ×D.

Positive closed forms on re�exive Banach spaces also appear in partial di�erential
equations.

Take X = Lp(Ω), 1 ≤ p < +∞ where Ω is a bounded domain with smooth boundary
in Rn. De�ne the operator A from Lp(Ω) to Lq(Ω) by dom A = C∞

0 (Ω) and

Af = −
n∑

i,k=1

∂

∂xi

(aik
∂f

∂xk

) + bf

where aik ∈ C1(Ω), b ∈ L1
loc(Ω), b ≥ 0 and

n∑

i,k=1

aik(x)βiβk ≥ γ

n∑
i

|βi|2, γ > 0

everywhere in Ω (uniform ellipticity). In this case we have

(Af, f) =

∫

Ω

(
−

n∑

i,k=1

∂

∂xi

(
aik

∂f

∂xk

)
+ bf

)
f dx =

∫

Ω

(
n∑

i,k=1

aik
∂f

∂xi

∂f

∂xk

+ b|f |2
)

dx ≥ γ

∫

Ω

n∑
i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

dx.

Now, for p ≤ 2n/(n− 2) we have
∫

Ω

n∑
i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

dx ≥ c‖f‖2
p, c > 0

by the Sobolev imbedding theorem. Thus A has positive lower bound. The Friedrichs
extension of A is surjective, and this means that the equation

−
n∑

i,k=1

∂

∂xi

(
aik

∂f

∂xk

)
+ bf = g

has a weak solution for every g ∈ Lq(Ω) whenever q ≥ 2n/(n + 2).
The content of this chapter is based on [2].
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4 Trotter's formula for projections
In the Hilbert space setting positive closed forms are related to the convergence of

Trotter's product formula by a famous result of Kato. We describe the basic notions
brie�y:

Let H be a Hilbert space and let

a : D(a)×D(a) → C

be a sesquilinear mapping where D(a), the domain of a, is a subspace of H. We assume
that a is semibounded, i.e. that there exists λ ∈ R such that

‖u‖2
a := Re a(u, u) + λ(u, u)H > 0

for all u ∈ D(a), u 6= 0. Moreover, we assume that a + λ is sectorial and closed, i.e.,
that |Im a(u, u)| ≤ M(Re a(u, u)+λ(u, u)H) and (D(a), ‖ · ‖a) is complete. In short, we
will call a a closed form. Let K = D(a) be the closure of D(a) in H. Denote by A the
operator on K associated with a, i.e.

D(A) = {u ∈ D(a) : ∃v ∈ K such that a(u, φ) = (v, φ)H for all φ ∈ D(a)}

and Au = v. Then−A generates a C0-semigroup e−tA on K. Denote by Q the orthogonal
projection on K. Now, de�ne the operator e−ta on H by

e−tax = e−tAQx, x ∈ H, t ≥ 0

Then e−ta is a continuous degenerate semigroup on H. We call it the degenerate semi-
group generated by a on H.

Now, let b be a second closed form on H. De�ne a+b on H by D(a+b) = D(a)∩D(b)

and (a + b)(u, v) = a(u, v) + b(u, v). Then it is easy to see that a + b is a closed form
again. Now, by a result of Kato, the following product formula holds:
Theorem 4.1.1 Let x ∈ H. Then

e−t(a+b)x = lim
n→∞

(e−
t
n

ae−
t
n

b)nx

for all t > 0.
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We apply this result in a particular situaion. Let P be an orthogonal projection.
De�ne the form b by D(b) = PH and b(u, v) = 0 for all u, v ∈ PH. Then e−tb = P for
all t ≥ 0. Therefore, as a corollary of Theorem 4.1.1 we have
Theorem 4.1.2 For any orthogonal projection P and closed form a, the limit

S(t)x = lim
n→∞

(e−
t
n

aP )nx

exists for all x ∈ H and t > 0, and S(t)t>0 is the continuous degenerate semigroup
generated by the form a|PH .

A particularly interesting example of this theorem is the following:
Example (The Dirichlet Laplacian) Let Ω ⊂ Rn be a bounded open set with Lipschitz
boundary, and let ∆ denote the Laplacian on L2(Rn). Let Pf := 1Ωf . Then, for all
f ∈ L2(Ω) we have limn→∞(e

t
n

∆P )nf = et∆Ωf where ∆Ω is the Dirichlet Laplacian on
L2(Ω), i.e. D(∆Ω) = {f ∈ H1

0 (Ω) : ∆f ∈ L2(Ω)} and ∆Ωf = ∆f .
Kato's result and this interesting example gives motivation to study the convergence

of Trotter's formula for projections.
Further convergence results are possible to prove if the generator is bounded, or

the semigroup is positive and the projection is of a particular form. These results are
summarized in the next two theorems.
Theorem 4.1.4 Let A ∈ B(E) be the generator of a C0-semigroup (etA)t≥0 and let
P ∈ B(E) be a projection. Then

lim
n→∞

(e
t
n

AP )nx = ePAPtPx

for all x ∈ E and uniformly for t ∈ [0, T ].
Theorem 4.1.5 Let (X, Σ, µ) be σ-�nite measure space and let (etA)t≥0 be a positive
C0-semigroup on E = Lp(X) where 1 ≤ p < ∞. Let Ω ⊂ X be measureable and let
Pf := 1Ωf . Then for all f ∈ E and t > 0

S(t)f := lim
n→∞

(e
t
n

AP )nf

exists and S(t)t>0 is a continuous degenerate semigroup of positive operators. Further-
more, S(0) := limt→0 S(t) is a projection of the the form S(0)f = 1Y f where Y ⊂ Ω is
a measureable set.
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The last theorem is due to W. Arendt, and C. Batty.
In view of these convergence results one may conjecture that 4.2 converges in more

general settings. In particular, the following conjectures were unsolved since 1997:
(a) Let etA be a contractive C0-semigroup on a Hilbert space H, and let P be an

orthogonal projection. Then limn→∞(e
t
n

AP )nx should converge for all x ∈ H and t > 0.
(b) Let etA be a positive, contractive C0-semigroup on Lp(X, Σ, µ) (where (X, Σ, µ)

is a σ-�nite measure space, and 1 < p < ∞), and let P be a positive, contractive
projection. Then limn→∞(e

t
n

AP )nx should converge for all x ∈ H and t > 0.
The main result of Chapter 4 is to disprove these conjectures by providing two

counterexamples.
In the �rst example we take H = L2[0, 1]. We take the (unitary) multiplication

semigroup eith on H, where h =
∑∞

k=1 χ(1/2k,1/2k−1]2
kπ, and we take Pf = 1 · ∫ 1

0
f(x)dx.

In the second example we take H = L2[0, 2π]. We take etAf(x) = f(x + 2πt),
regarding f as a 2π-periodic function, and we let P be the orthogonal projection onto the
space spanned by the positive norm-one function g(x) = 1√

34π

[
4 +

∑∞
k=0

1√
2k

cos 2kx
]
.

In both examples non-trivial calculations show that the norm of the sequence
(e

t
n

AP )nf does not converge for f = 1 and f = g, respectively.
Chapter 4 is based on [3].

5 A similarity result
The result of this chapter will be used in the characterization of the convergence of

Trotter's formula for projections in Chapter 6. However, this similarity result can also
be of independent interest. We remark that the corresponding result is not known for
arbitrary Banach spaces.
Theorem 5.1.1 Let A be the generator of a C0-semigroup etA on a Hilbert space H.
The following are equivalent:
(i) A is bounded.
(ii) The semigorup etA is quasi-contractive for every equivalent scalar product ( , )0 on
H.
(iii) For every equivalent scalar product ( , )0 on H there exists K0 ∈ R such that for
every vector x ∈ D(A), (x, x)0 = 1 implies Re (Ax, x)0 ≤ K0.
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6 The convergence of Trotter's formula
In this chapter we give a characterization of the convergence of Trotter's formula for

projections in terms of properties of the generator. The second part of the result proves,
in a sense, the converse of Kato's Theorem.
Theorem 6.0.1 Let A be the generator of a C0-semigroup etA on a Hilbert space H.
Consider the following statements.
(i) A is bounded.
(ii) −A is associated with a densely-de�ned, closed, sectorial form a on H.
(iii) The formula (e

t
n

AP )nx converges for all projections P ∈ B(H), and all x ∈ H and
t > 0.
(iv) The formula (e

t
n

AP )nx converges for all orthogonal projections P ∈ B(H), and all
x ∈ H and t > 0.
The following implications hold: (i) ⇔ (iii), (ii) ⇔ (iv).

The results of Chapters 5 and 6 can be found in [4].
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Az önadjungált operátorok központi szerepet játszanak a Hilbert terek operátorainak
elméletében. Korlátos esetben az önadjungált operátorok és a szimmetrikus szeszkvi-
lineáris formák között természetes bijekció van. Ennek az állításnak a megfelel®je a
félig korlátos esetben a reprezentációs tétel, amelynek segítségével félig korlátos önad-
jungált operátorokat gyakran de�niálunk félig korlátos zárt formák által. Két egyszer¶
példa erre a pozitív szimmetrikus operátorok Friedrichs kiterjesztése illetve két poz-
itív önadjungált operátor formaösszegének konstrukciója. A pozitív önadjungált kiter-
jesztések elméletét kés®bb Krein fejlesztette tovább, míg a formaösszeg és a Trotter
formula közötti kapcsolatra Kato egyik híres eredménye mutatott rá.

Ez a disszertáció a szerz® ilyen irányú eredményeit mutatja be az [1], [2], [3] és
[4] publikációkra építve. A továbbiakban a fejezeteket és tételeket a disszertációnak
megfelel®en számozom.

1 Pozitív operátorok faktorizációja
Ez a bevezet® jelleg¶ fejezet vázolja Z. Sebestyén faktorizációs eljárását, amely kulcs-

fontosságú lesz a 2. és 3. fejezetben.
Legyen adott egy D ⊂ H altéren értelmzett a : D → H pozitív lineáris operá-

tor. Az a operátor ran a képterén bevezetjük az [ax, ay] := (ax, y) új skalár szorzatot,
amely jól de�niált, mert a szimmetrikus. Ha még feltesszük, hogy D∗ (a) := {y ∈ H :

sup{|(ax, y)|2 : x ∈ D, (ax, x) ≤ 1} < ∞} s¶r¶, akkor az új skalár szorzat pozitív de�nit
is. A (rana, [ , ]) tér teljessé tételét Ha-val jelöljük. De�niáljuk a J : Ha → H operátort
a dom J := ran a és Jx = x összefüggésekkel. Könny¶ látni, hogy a pozitív önadjungált
aK := J∗∗J∗ operátor kiterjesztése a-nak. Speciálisan, ha a maga is önadjungált, akkor
a = J∗∗J∗ teljesül.

A faktorizációból következik, hogy

dom aK

1
2 = dom J∗ = D∗ (a),

‖aK

1
2 y‖2 = ‖J∗y‖2 = sup {|(ax, y)|2 : x ∈ dom a, (ax, x) ≤ 1}.

Tehát az aK-hoz tartozó zárt formát megadhatjuk a J∗ operátor segítségével.
Az aK operátort az a operátor Krein-von Neumann kiterjesztésének nevezzük. A

fenti faktorizációs eljárás kis változtatásával el®állíthatjuk az a operátor aF Friedrichs
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kiterjesztését is, illetve általában az összes úgynevezett extremális kiterjesztést.
A fejezet végén egy konkrét példán mutatjuk be a bevezetett fogalmakat.

2 A formaösszeg
Az els® fejezet faktorizációs eljárása kapcsolatot teremt a 'forma módszer' és az

'operátor módszer' között, ezért természetes gondolat, hogy két pozitív operátor for-
maösszegét is hasonló faktorizációval próbáljuk el®állítani. Err®l szól a második fejezet.

Legyen a és b két pozitív szimmetrikus operátor, és tegyük fel, hogy D∗ (a) ∩D∗ (b)

s¶r¶ H-ban. Ekkor D∗ (a) és D∗ (b) szintén s¶r¶ek, így a Ha és Hb terek, valamint az
aK és bK operátorok léteznek. Tekintsük a Ha ⊕Hb teret, és a

J : Ha ⊕Hb → H, dom J = ran a⊕ ran b, J(ax⊕ by) = ax + by

operátort.
Könny¶ megmutatni, hogy J∗∗J∗ pozitív önadjungált kiterjesztése a + b-nek. A

következ® tétel azt mutatja, hogy J∗∗J∗ a formaösszeg általánosításának tekinthet®.
2.1.2 Tétel Legyen a és b két pozitív szimmetrikus operátor, amelyekre D∗ (a)∩D∗ (b)

s¶r¶ H-ban, és legyen J a fent de�niált operátor. Ekkor

aK

.
+ bK = J∗∗J∗.

A második fejezet f® eredménye a formaösszeg egy kommutációs tulajdonságát bi-
zonyítja.
2.2.4 Tétel Legyen a és b két pozitív szimmetrikus operátor, amelyekre D∗ (a)∩D∗ (b)

s¶r¶ H-ban, és tegyük fel, hogy E, F ∈ B(H), olyan operátorok, hogy E és F dom a-t és
dom b-t invariánsan hagyják, és minden x ∈ dom a-re és y ∈ dom b-re fennáll, hogy

E∗ax = aFx, F ∗ax = aEx, E∗by = bFy, F ∗by = bEy.

Ekkor
E∗(a

.
+ b) ⊆ (a

.
+ b)F és F ∗(a

.
+ b) ⊆ (a

.
+ b)E.
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Érdekességkent megemlítjük, hogy az operátor összeg Friedrichs kiterjesztése (ha
létezik) szintén el®állítható hasonló faktorizációs eljárással. Ehhez de�niáljuk a Q

operátort a

Q : H → Ha ⊕Hb, dom Q = dom a ∩ dom b, Qx = ax⊕ bx

összefüggésekkel.
2.3.1 Tétel Legyen a és b két pozitív szimmetrikus operátor, amelyekre dom a ∩ dom b

s¶r¶ H-ban. Ekkor Q∗Q∗∗ = (a + b)F .
A fejezet végén megmutatjuk, hogy az (a + b)K , a

.
+ b, és (a + b)F kiterjesztések

általában különböznek egymástól.
Ezt a fejezetet lényegében tartalmazza az [1] publikáció.

3 Pozitív formák Banach tereken
Természetes ötlet megpróbálni a második fejezet eredményeit re�exív Banach terekre

álatalánosítani.
Legyen X re�exív Banach tér, és X∗ a konjugált duális tere (azaz az X-en értelmezett

folytonos, konjugáltan lineáris funkcionálok tere). Legyen D ⊂ X s¶r¶ altér, és legyen
t : D × D → C szeszkvilineáris forma D-n (megállapodás szerint t az els® változóban
lineáris, és a másodikban konjugáltan lineáris). Tegyük fel, hogy t(x, x) ≥ γ‖x‖2 vala-
milyen γ > 0-ra. Tegyük fel továbbá, hogy t 'zárt' olyan értelemben, hogy (D, t(·, ·)) =:

H Hilbert teret alkot. Az i : H → X beágyazás folytonos, így H-t az X tér egy
alterének tekinthetjük. A rövidség kedvéért a [·, ·] := t(·, ·) jelölést fogjuk alkalmazni. A
t formához természetes módon asszociálható egy A : X → X∗ operátor: legyen x ∈ D

és tekintsük az [x, y], y ∈ D funkcionált; ha ez folytonos X felett, akkor létezik egy
z ∈ X∗, amelyre [x, y] = z(y) =: (z, y) teljesül. Legyen Ax := z.
3.1.1 Tétel A fenti A : X → X∗ operátor pozitív és önadjungált.

Természetesen most nehezebb egy operátor önadjungáltságát megmutatni, mint
Hilbert terek esetében. A fenti tétel bizonyítása a következ® lemmát használja:
3.1.2 Lemma Ha B : X∗ → X injektív korlátos önadjungált operátor, akkor A := B−1

szintén önadjungált.
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A 3.1.1 Tétel segítségével könny¶ bebizonyítani a Friedrichs kiterjesztés létezését a
szigorúan pozitív esetben.
3.2.1 Tétel Legyen a : X → X∗ pozitív s¶r¶n de�niált operátor, amelyre (ax, x) ≥
γ‖x‖2, γ > 0. Ekkor a-nak létezik pozitív önadjungált kiterjesztése ugyanazzal az alsó
korláttal.

Egy operátor önadjungáltságának bizonyítása történhet még úgy is, hogy megmu-
tatjuk, hogy az operátorunk egy adott önadjungált operátor szimmetrikus kiterjesztése.
Ez az érvelés érvényesül a következ® lemmában.
3.2.2 Lemma Legyen A : X → X∗ pozitív önadjungált operátor (itt nem szükséges, hogy
A-nak pozitív alsó korlátja legyen). Ekkor létezik egy H Hilbert tér, és egy J : H → X∗

operátor, amelyre A = JJ∗ teljesül.
A pozitív zárt formáknak egy általánosabb de�níciója is lehetséges (annak érdekében,

hogy az olyan formákra is kiterjesszük a de�níciót, amelyeknek alsó korlátja 0). Egy
t : D×D → C pozitív formát zártnak nevezünk, ha abból, hogy xn ⊆ D és xn → x X-ben
és t(xn−xm, xn−xm) → 0 következik, hogy x ∈ D és t(xn−x, xn−x) → 0 (megjegyezzük,
hogy a fenti de�níció ekvivalens a korábbival, ha t-nek pozitív az alsó korlátja). Egy X

érték¶ valószín¶ségi változó 'kovariancia formája' konkrét példát szolgáltat pozitív zárt
formákra.

Legyen 〈Ω,A, µ〉 egy valószín¶ségi météktér, és legyen ξ : Ω → X egy valószín¶ségi
vátozó (azaz egy gyengén mérhet® függvény). Tegyük fel, hogy

∫

Ω

f(ξ) dµ

létezik minden f ∈ X∗ esetén. Tegyük fel továbbá, hogy a

D =

{
f : f ∈ X∗,

∫

Ω

|f(ξ)|2 dµ < +∞
}

halmaz s¶r¶ X∗-ban. (Azt azonban nem szükséges kikötni, hogy D = X∗ teljesüljön.)
Lássunk egy konkrét példát: legyen X = `2, Ω = {ωn : n = 1, 2, . . .} és µ({ωn}) =

ce−(3/2)n egy megfelel® c konstanssal. Legyen ξ(ωn)k = nk/k!. Könny¶ belátni, hogy
ekkor D 6= X∗ s¶r¶ altér.

Feltesszük, hogy E ξ = 0, hiszen különben tekinthetjük (ξ − E ξ)-t ξ helyett.
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Legyen
t(f, g) = E (f(ξ)ḡ(ξ))

minden f, g ∈ D-re. A t formát a ξ valószín¶ségi változó kovariancia formájának nevez-
zük.
3.3.1 Tétel A fenti t forma pozitív zárt forma D ×D-n.

A re�exív Banach tereken de�niált pozitív zárt formák a parciális di�erenciálegyen-
letekben is szerepet kapnak.

Legyen X = Lp(Ω), 1 ≤ p < +∞, ahol Ω egy sima perem¶ korlátos tartomány Rn-
ben. De�niáljuk az A : Lp(Ω) → Lq(Ω) operátort a következ®képpen: dom A = C∞

0 (Ω)

és
Af = −

n∑

i,k=1

∂

∂xi

(aik
∂f

∂xk

) + bf

ahol aik ∈ C1(Ω), b ∈ L1
loc(Ω), b ≥ 0 és

n∑

i,k=1

aik(x)βiβk ≥ γ

n∑
i

|βi|2, γ > 0

mindenütt Ω-n (uniform ellipticitás). Ilyenkor fennáll, hogy

(Af, f) =

∫

Ω

(
−

n∑

i,k=1

∂

∂xi

(
aik

∂f

∂xk

)
+ bf

)
f dx =

∫

Ω

(
n∑

i,k=1

aik
∂f

∂xi

∂f

∂xk

+ b|f |2
)

dx ≥ γ

∫

Ω

n∑
i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

dx.

Továbbá p ≤ 2n/(n− 2) esetén
∫

Ω

n∑
i=1

∣∣∣∣
∂f

∂xi

∣∣∣∣
2

dx ≥ c‖f‖2
p, c > 0

teljesül a Sobolev-féle beágyazási tétel szerint. Tehát az A operátor alsó korlátja pozitív.
Az A operátor Friedrichs kiterjesztése szürjektív, és ez azt jelenti, hogy a

−
n∑

i,k=1

∂

∂xi

(
aik

∂f

∂xk

)
+ bf = g
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egyenletnek minden g ∈ Lq(Ω)-ra létezik gyenge megoldása, ha q ≥ 2n/(n + 2).
A harmadik fejezet eredményei a [2] publikációban találhatók meg.

4 A Trotter formula projekciókra
A Hibert tereken értelmezett zárt formák és a formaösszeg konstrukciója Kato egyik

érdekes tétele szerint kapcsolatban állnak a Trotter formula konvergenciájával. Röviden
ismertetjük a fogalmakat:

Legyen a H Hilbert téren adva egy

a : D(a)×D(a) → C

szeszkvilineáris forma (ahol D(a) a H tér egy altere). Tegyük fel, hogy a alulról korlátos,
azaz létezik olyan λ ∈ R, amelyre

‖u‖2
a := Re a(u, u) + λ(u, u)H > 0

minden u ∈ D(a), u 6= 0 esetén. Feltesszük továbbá, hogy a + λ szektoriális és zárt,
azaz |Im a(u, u)| ≤ M(Re a(u, u) + λ(u, u)H) és a (D(a), ‖ · ‖a) tér teljes. Röviden a-t
zárt formának nevezzük. Legyen K = D(a) a D(a) altér lezártja H-ban. Jelöljük A-val
az a formához asszociált operátort a K téren, azaz

D(A) = {u ∈ D(a) : ∃v ∈ K amelyre a(u, φ) = (v, φ)H for all φ ∈ D(a)}

és Au = v. Ekkor −A egy e−tA C0-félcsoportot generál a K téren. Jelöljük Q-val a K

altérre való ortogonális projekciót. De�niáljuk most az e−ta operátort a H téren az

e−tax = e−tAQx, x ∈ H, t ≥ 0

formulával. Az e−ta folytonos degenerált félcsoportot az a forma által generált félcso-
portnak hívjuk.

Tegyük most fel, hogy adott egy további b zárt forma is H-n, és de�niáljuk az a + b

formát D(a+ b) := D(a)∩D(b)-n az (a+ b)(u, v) = a(u, v)+ b(u, v) formulával. Könny¶
belátni, hogy a + b ismét csak zárt forma. Kato eredménye szerint a következ® Trotter
formula teljesül:
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4.1.1 Tétel Legyen x ∈ H. Ekkor

e−t(a+b)x = lim
n→∞

(e−
t
n

ae−
t
n

b)nx

minden t > 0-ra.
Most ezt a formulát egy speciális esetben alkalmazzuk. Legyen P tetsz®leges orto-

gonális projekció. De�niáljuk a b formát a következ®képpen: D(b) = PH és b(u, v) = 0

minden u, v ∈ PH-ra. Ekkor e−tb = P teljesül minden t ≥ 0-ra. Tehát a 4.1.1 Tétel
következményeként kapjuk:
4.1.2 Tétel Legyen P ortogonális projekció, és legyen a zárt forma. Ekkor

S(t)x = lim
n→∞

(e−
t
n

aP )nx

létezik minden x ∈ H-ra, és t > 0-ra, és S(t)t>0 az a|PH forma által generált folytonos
félcsoport.

Ennek az eredménynek egy érdekes alkalmazása a következ®:
Példa (Dirichlet-féle Laplace operátor) Legyen Ω ⊂ Rn korlátos nyílt halmaz Lipschitz
peremmel, és jelölje ∆ a Laplace operátort L2(Rn)-en. Legyen Pf := 1Ωf . Ekkor
minden f ∈ L2(Ω)-ra igaz, hogy limn→∞(e

t
n

∆P )nf = et∆Ωf ahol ∆Ω jelöli a Dirichlet
peremfeltétel¶ Laplace operátort L2(Ω)-n, azaz D(∆Ω) = {f ∈ H1

0 (Ω) : ∆f ∈ L2(Ω)}
and ∆Ωf = ∆f .

Kato fenti eredménye és ez az érdekes alkalmazás adta a motivációt a projekciós
Trotter formula további vizsgálatára.

A következ® két tétel további olyan eseteket tárgyal, amikor konvergencia teljesül.
4.1.4 Tétel Legyen A ∈ B(E) az (etA)t≥0 C0-félcsoport generátora, és legyen P ∈ B(E)

tetsz®leges projekció. Ekkor

lim
n→∞

(e
t
n

AP )nx = ePAPtPx

minden x ∈ E-re és a konvergencia egyenletes t ∈ [0, T ]-re.
4.1.5 Tétel Legyen (X, Σ, µ) egy σ-véges mértéktér, és legyen (etA)t≥0 egy pozitív C0-
félcsoport E = Lp(X)-en, ahol 1 ≤ p < ∞. Legyen Ω ⊂ X egy mérhet® halmaz, és
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legyen Pf := 1Ωf . Ekkor minden f ∈ E-re és t > 0-ra

S(t)f := lim
n→∞

(e
t
n

AP )nf

létezik, és S(t)t>0 pozitív operátoroknak egy folytonos degenerált félcsoportja. Továbbá,
az S(0) := limt→0 S(t) projekció a következ® alakú: S(0)f = 1Y f , ahol Y ⊂ Ω egy
mérhet® halmaz.

Ez a tétel W. Arendt-t®l és C. Batty-t®l származik.
A fenti eredmények alapján W. Arendt a következ® sejtéseket fogalmazta meg 1997-

ben:
(a) Legen etA kontraktív C0-félcsoport egy H Hilbert téren, és legyen P ortogonális

projekció. Ekkor limn→∞(e
t
n

AP )nx konvergens minden x ∈ H-ra és t > 0-ra.
(b) Legyen etA egy pozitív, kontraktív C0-félcsoport Lp(X, Σ, µ)-n (ahol (X, Σ, µ)

egy σ-véges mértéktér, és 1 < p < ∞), és legyen P pozitív kontraktív projekció. Ekkor
limn→∞(e

t
n

AP )nx konvergens minden x ∈ H-ra és t > 0-ra.
A negyedik fejezet f® eredménye ezeknek a sejtéseknek a megcáfolása egy-egy ellen-

példa konstruálásával.
Az els® példában H = L2[0, 1]. Tekintjük az (unitér) eith szorzás félcsoportot H-n,

ahol h =
∑∞

k=1 χ(1/2k,1/2k−1]2
kπ. A P projekciót pedig a Pf = 1 · ∫ 1

0
f(x)dx formulával

de�niáljuk.
A második példában H = L2[0, 2π]. Tekintjük az etAf(x) = f(x + 2πt) eltolás

félcsoportot, ahol f -et 2π-periódusú függvénynek tekintjük. Tekintjük továbbá a g(x) =
1√
34π

[
4 +

∑∞
k=0

1√
2k

cos 2kx
]
pozitív, 1 normájú függvényt, és az általa kifeszített 1-

dimenziós altérre való ortogonális projekciót jelöljük P -vel.
Mindkét esetben nem-triviális számítások igazolják, hogy az (e

t
n

AP )nf sorozat (nor-
mája) nem konvergens az f = 1 és f = g választás mellett.

A negyedik fejezet a [3] publikációra épül.

5 Egy hasonlósági eredmény
Ennek a fejezetnek az eredményére a hatodik fejezetben lesz szükség a projek-

ciós Trotter formula konvergenciájának karakterizációjánál. Az eredmény azonban ön-
magában is érdekes. Megjegyezzük, hogy az eredmény megfelel®je Banach terekben nem
ismert.

8



5.1.1 Tétel Legyen A az etA C0-félcsoport generátora a H Hilbert téren. A következ®k
ekvivalensek:
(i) A korlátos.
(ii) Az etA félcsoport qvázi-kontraktív minden H-beli ekvivalens ( , )0 skalárszozat esetén.
(iii) Minden H-beli ekvivalens ( , )0 skalárszorzat esetén létezik olyan K0 ∈ R, amelyre
teljesül, hogy minden x ∈ D(A)-ra (x, x)0 = 1 esetén fennáll, hogy Re (Ax, x)0 ≤ K0.

6 A Trotter formula konvergenciája
Ebben a fejezetben a generátor bizonyos tulajdonságaival jellemezzük a projekciós

Trotter formula konvergenciáját. A következ® tétel második része felfogható Kato ered-
ményének megfordításaként.
6.0.1Tétel Legyen A az etA C0-félcsoport generátora a H Hilbert téren. Tekintsük a
következ® állításokat:
(i) A korlátos.
(ii) −A egy s¶r¶n de�niált zárt szektoriális a formához asszociált operátor.
(iii) Az (e

t
n

AP )nx formula konvergál minden P ∈ B(H) projekcióra, és minden x ∈ H-
ra, és t > 0-ra.
(iv) Az (e

t
n

AP )nx konvergál minden ortogonális P ∈ B(H) projekcióra és minden x ∈ H-
ra és t > 0-ra.
A következ® implikációk teljesülnek: (i) ⇔ (iii), (ii) ⇔ (iv).

Az ötödik és hatodik fejezet eredményeit a [4] publikáció tartalmazza.
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