
Eötvös Loránd University

Institute of Mathematics

Combinatorics on words and its

applications

Péter Ligeti
Doctoral thesis

Doctoral school: Mathematics

Director: Professor Miklós Laczkovich

Doctoral program: Applied mathematics

Director: Professor András Prékopa

Supervisor: Péter Sziklai

Associate professor, CSc.

Department of Computer Science

mailto:turul@cs.elte.hu

Acknowledgements

Before all, I am most grateful to Péter Sziklai for introducing me

the field of mathematical research and the world of words. His guid-

ance and stimulating supervision was invaluable. I promise him my

undying gratitude.

I would like to thank all my coauthors for the fruitful scientific work.

Furthermore, I am indebted to István Miklós for checking the cor-

rectness of the biological parts, to Marci Makai for helping me with

latex and to the Rényi Institute for the encourageing and inspiring

atmosphere.

Last, but not least, my infinite gratitude is due to my family, especially

my son Ábel for the silent nights and my wife Eszter for all.

Contents

1 Introduction 1

1.1 Motivation and notation . 1

1.2 Overview of the thesis . 5

1.3 Mathematical background . 8

1.3.1 Combinatorial reconstruction problems 8

1.3.2 Preliminary results on reconstruction of words 11

1.4 Biological background . 14

1.4.1 The structure of the DNA 14

1.4.2 Genome rearrangement . 15

2 Reconstruction from the n− 1-deck and automorphism groups 17

2.1 DNA-words . 17

2.1.1 Motivation and notation 17

2.1.2 Reconstruction from the n− 1-deck 18

2.1.3 The automorphism group of the DNA poset 19

2.2 Matrices . 21

2.2.1 Motivation and notation 21

2.2.2 Reconstruction from the n− 1-deck 21

2.2.3 The automorphism group of the matrix poset 22

2.3 A short proof for a theorem of Burosch, Gronau and Laborde . . . 27

2.3.1 Motivation and notation 27

2.3.2 The automorphism group of the Burosch poset 27

2.4 Open problems . 31

ii

CONTENTS

3 Generalized bounds for reconstruction of words 32

3.1 Motivation and notation . 32

3.2 General bounds for the number of letters 33

3.3 Examples . 35

4 Reconstruction of DNA-words 36

4.1 Motivation and notation . 36

4.2 Main results . 38

4.3 Easy consequences and preliminary results 39

4.4 The proof of Theorem 40 for DNA-words composed of one com-

plement pair . 43

4.4.1 The case Ā < A . 44

4.4.2 The case Ā = A . 48

4.5 The proof of Theorem 41 for DNA-words composed of two com-

plement pairs . 51

4.5.1 The case q = 1 . 54

4.5.2 The case 1 < q ≤ m + 1 55

4.5.3 The case q > m + 1 . 58

4.6 Open problems . 58

5 Reconstruction of matrices 60

5.1 Motivation and notation . 60

5.2 The limitation of the method . 61

5.3 Rephrasing the reconstruction problem 62

5.3.1 The symmetric case . 63

5.3.2 The non-symmetric case 65

5.4 Construction of the polynomial 67

5.4.1 Main results . 67

5.4.2 Proof of the upper bound 68

5.5 Conclusion . 77

5.6 Open problems . 77

iii

CONTENTS

6 An algorithm for words and its application to genome rearrange-

ment 78

6.1 Motivation and notation . 78

6.2 Preliminaries . 79

6.2.1 Mathematical description of genome rearrangement 79

6.2.2 The graph of reality and desire 81

6.2.3 Stochastic modeling and Bayesian MCMC 82

6.3 Characterizing and sampling transpositions and inverted transpo-

sitions . 83

6.3.1 Sampler based on the change of cycles 84

6.3.1.1 Preprocessing . 85

6.3.1.2 Existence of mutations 87

6.3.1.3 The 1, 2, 3 case 88

6.3.1.4 The 2, 1, 3 case 89

6.3.1.5 The 1, 3, 2 case 91

6.3.1.6 Mutations with leftmost reality edge of position

1, and sampling the middle and rightmost edges . 93

6.3.1.7 Weighting the reality edges 93

6.3.1.8 “Rest” mutations 93

6.4 Discussion . 93

6.5 Open problems . 94

Bibliography 103

iv

List of Figures

1.1 The 4-deck of an ordered graph on 5 points and the 4-deck of its

adjacency matrix . 9

1.2 Part of a DNA double helix with complementary bonds 15

2.1 The poset of substrands of the DNA-word ACGT 18

4.1 The bonding of a sample to a probe 37

5.1 Construction of polynomial in Lemma 74 68

5.2 Construction of polynomial in Lemma 76 70

5.3 Construction of Pn . 72

5.4 Estimate for min(d1, d2) . 72

5.5 Regions D and D′ . 73

5.6 Construction of the first polynomial in Lemma 79 74

5.7 Construction of the second polynomial in Lemma 79 75

6.1 The graph of reality and desire of the signed permutation

(3,−2,−1, 4,−5) . 81

6.2 The graph of reality and desire of the identity permutation

(1, 2, 3, 4, 5) . 82

6.3 Decision trees used by the introduced algorithms 84

6.4 The possible visiting order of three reality edges on which a trans-

position increases the number of cycles by two 88

6.5 Explanatory figure for the 2, 1, 3 algorithm 90

v

List of Algorithms

1 Preprocessing1 {calculating the arrays π(), sign(), pos()} 86

2 Preprocessing2 {calculating the arrays s max(), s min()} 87

3 The 1, 2, 3 case . 89

4 The 2, 1, 3 case . 91

5 The 1, 3, 2 case . 92

vi

Chapter 1

Introduction

1.1 Motivation and notation

Combinatorics on words is a relatively new research area of discrete mathemat-

ics partly inspired by problems in theoretical computer science, as dealing with

formal languages and automata theory and other fields of mathematics, such as

number theory, group theory and probability theory.

The beginning of systematic research concerning the topic is devoted to the

pioneering work of Axel Thue who started to work on repetition-free words and

proved, among others, the existence of an infinite square-free word over an alpha-

bet of three elements.

Until the eighties, words were used in various areas of mathematics but only as

tools to achieve other goals. The first comprehensive presentation of results and

methods related to the field was the book “Combinatorics on words” of Lothaire

[40].

The book, which collected the current developments of the topic, was followed

by others. The recent one [41] is devoted to the applications of combinatorics

on words only. It covers several areas of science, such as natural languages,

bioinformatics, applied and pure mathematics.

Now we review the most fundamental notion and notation used through the

thesis. For more details, see the corresponding chapters.

1

1.1 Motivation and notation

Let Σ be a finite set of t elements. Σ is called the alphabet and its elements

are called the letters. For the sake of simplicity we will use the alphabet Σ =

{0, 1, . . . , t− 1}. A finite sequence composed of the elements of Σ is a word, i.e.

w = w1 . . . wn such that wi ∈ Σ for all i. Here we notice that all the structures

examined in the thesis are finite. For a word w = w1 . . . wn let n be the length

of w, it will be denoted by |w|. Let Σn denote the set of all words of length

n over the alphabet Σ and let Σ∗ =
⋃

n∈N Σn. A (not necessarily consecutive)

subsequence u of w is called a subword, which will be denoted by u ≤ w. The

consecutive subsequences are called factors.

Let |w|i denote the maximal number of occurrences of the letter i in the word

w. More generally for w ∈ Σ∗ and G ⊆ Σ, let wG denote the maximal subword

of w containing the letters of G only. A word is homogeneous if all of its letters

are the same. Maximal homogeneous consecutive subwords are called runs. (So

e.g. 01111001 has four runs.)

Let the ordered pair P = (A, <) be a partial ordered set or a poset shortly

where A is the ground set of P and < is the partial order of P. a, b ∈ P are

comparable if a < b or b < a.

If a < b, but there is no x ∈ P such that a < x < b for a, b ∈ P, then a is

called a child of b, and b is called a parent of a. Furthermore we say that a1 and

a2 are brothers if they have a common parent.

A poset P is called graded or ranked if all of its maximal chains (are finite

and) have the same length. Every graded poset has a rank function r : P → Z
such that if a is a minimal element, then r(a) = 0, furthermore, if b is a parent

of a, then r(b) = r(a) + 1. Let Pl denote the elements of rank l in the poset P,

called the l-th level.

Let B be a family of elements of rank l in a poset P, i.e. B ⊆ Pl. Let
a

k B

denote for 0 ≤ k ≤ l the family of elements of rank k being comparable to at

least one element of B, the k-shadow of B. For k = l − 1 we simply say shadow

and denote it by
a

B. Similarly, for l ≤ k the k-shade
`k

B is the family of the

elements of rank k being comparable to at least one element of B. For k = l + 1

we simply say shade and denote it by
`

B.

In the case of B = {a}, let
a

k B be called the k-deck of a. Less formally

speaking the k-deck of the element a is the family of elements of rank k being

2

1.1 Motivation and notation

comparable to it.

Let Aut(P) denote the automorphism group of the poset P.

All logarithms are of natural base through the thesis, except when it is de-

noted.

In mathematics, there is a notable number of problems that deal with recon-

struction either of an object by some incomplete information about it or of a whole

by its parts. One can find such problems in various topics, such as the reconstruc-

tion of a function by its values at some points, the reconstruction of a group by

its subgroups, pattern recognition or decision making by partial observations or

fragmentary information, information with missed values, error-correcting codes,

etc. Many problems of discrete mathematics can be reduced to this scenario,

furthermore it is often difficult to determine whether the missing information is

important and whether it is possible to restore it using the available data.

In a substantial part of this thesis we will examine different generalizations

and applications of the following reconstruction problem:

Basic problem Let the length n of a word and an alphabet Σ be given. Determine

the smallest k such that every word w ∈ Σn can be reconstructed from the k-deck

of its subwords.

In the literature two versions of this problem are studied concerning the ele-

ments of the k-deck:

i. reconstruction from the k-deck consisting of the multiset of the
(

n
k

)
subwords

of the original word of length n;

ii. reconstruction from the k-deck consisting of the set of different subwords of

the original word of length n.

The problem was examined first by Kalashnik [28] who handled the case of

reconstruction from the k-deck consisting of the multiset of
(

n
k

)
subwords. In

his paper the author is related to the information-theoretic study of noisy dele-

tion channels in which characters of a transmitted sequence are randomly (but

not necessarily independently) omitted. The examined problem addresses the

3

1.1 Motivation and notation

variant in which, out of n original characters, n− k are chosen uniformly at ran-

dom and deleted; the problem amounts to characterizing the greatest loss rate at

which it is possible to determine the message using unlimited repeated sampling.

This is similar to asking whether ancestral genomes can be inferred from modern

specimens, although the genetic process is more complicated, than this mathe-

matical model, since in the real world not only deletions occur but insertions and

substitutions as well; furthermore, the number of deleteted genes is not constant.

The problem is partially motivated by a non-standard direction of coding the-

ory, the insertion-deletion codes. Codes with an upper bound on the length of

common subwords of two codewords are called insertion-deletion codes, which

are introduced by Levenshtein [35] for the correction of synchronization errors.

Contrary to the conventional coding theory, the length of the sent and received

messages are different, hence the classical results are not applicable. As an ana-

logue of the Hamming-distance, a new metric called Levenshtein-distance was

introduced as the minimum number of insertions and deletions of letters needed

to transform a word into another. In the paper some constructions capable cor-

recting single deletions are given via ordered Steiner systems.

One way to generalize the problem is to consider DNA-words and their sub-

strands instead of words and subwords. This variant of the problem is motivated

by the basic properties of the DNA-strand: one can build an exact mathematical

model of DNA-words, which can be handled well, by emphasizing the presence

of complement pairs, and some structural properties of the Watson-Crick double

helix (i.e. double-strandedness and reverse complementation).

D’yachkov et al. [19] introduced a new family of insertion-deletion codes,

called DNA codes, based upon the structure of the DNA-strand. A DNA code is

a set of codeword strands over the alphabet {{A, T}, {C, G}} with the following

properties:

• no codeword strand equals to its reverse complement

• the reverse complement of every codeword strand is a codeword strand as

well

• the length of a common subword of any two distinct codeword strands of

length n is at most k

4

1.2 Overview of the thesis

Then a DNA code defined above is capable to correct n− k deletions.

Another way of generalization is to increase the “dimension” of the problem.

This leads to reconstruction of square matrices from their square submatrices

which question is not well-studied in contrast to the case of words, except the

lonely paper of Manvel and Stockmeyer [43]. Note that there are two natural

variants of this problem, i.e. the case of deleting some rows and columns of the

original matrix symmetrically, or arbitrarily. Beyond its theoretical interest this

problem has a connection to the famous graph reconstruction problem of Kelly

[31] and Ulam [60]: it is equivalent with the special case of ordered graphs or

ordered bipartite graphs, respectively.

The results of the original problem cannot be generalized trivially in neither

case. The reason of the difficulties is the greater complexity of the structures.

The algorithmic aspect of combinatorics on words is very important from the

practical point of view as well. In pure mathematics, computer science, bioinfor-

matics and other areas of science there is a wide range of applications related to

this topic, such as language processing, inference of network expressions, DNA

sequencing, pattern matching, etc. For more on the applications and algorithms

on combinatorics on words see the third book of Lothaire [41].

1.2 Overview of the thesis

Here we outline the main results presented in the thesis.

In Chapter 2 we examine the most simple version of reconstruction from differ-

ent subwords in the case of DNA-words and matrices: the reconstruction from the

n−1-deck. Contrary to the case of graph-reconstruction, the presented problems

can be solved easily, these are only tools for proving other interesting statements:

as an application of this kind of results we determine the automorphism groups

of different posets: the first one arising from all DNA-words of length at most n,

partially ordered by the substrand relation, the second one arising from all square

matrices of order at most n partially ordered by the submatrix relation. There

are two obvious types of automorphisms in both cases:

5

1.2 Overview of the thesis

DNA-words: the one induced by a permutation on the complement pairs,

and the ones induced by a map which interchanges the elements of a given

complement pair

Matrices: the one induced by a permutation on the alphabet, and the congru-

ence group of the square

We will see that for most cases (i.e. for n ≥ 3) there are no more automorphisms.

At last as one more illustration of the method we will give a significantly shorter

proof for a theorem of Burosh, Gronau and Laborde [12] which determines the

automorphism group of a poset consisting of all subwords of the word which has

maximum number of different subwords among the words of given length n and

over given alphabet. The results of Chapter 2 are based on a joint paper with

Péter Sziklai [L4] and on a manuscript [L3].

Simon [53] and Lothaire [40] proved that every word w ∈ Σn can be recon-

structed from its dn+1
2
e-deck consisting of its different subwords which result is

sharp for binary alphabet. In Chapter 3 we give an improvement of this result

for a general alphabet and with lower and upper bounds for the number of oc-

currences of letters in the words. The results of Chapter 3 are based on a joint

paper with Péter Sziklai [L5].

In Chapter 4 we examine the reconstruction of DNA-words from the k-deck

consisting of the set of its different substrands. We prove the analogue of the

result of Theorem 10 for DNA-words, i.e. every DNA-word of length n can

be reconstructed from its b2(n+1)
3
c-deck. The significant part of this chapter is

devoted to this proof which has two main stages. In the first one we prove a bit

stronger result when the alphabet consists of one complement pair, and in the

second part we prove the general statement when the alphabet consists of two

complement pairs. In addition we give some further related simple results. The

results of Chapter 4 based are on a joint paper with Péter L. Erdős, Péter Sziklai

and David C. Torney [L1].

In Chapter 5 we consider the other generalization of the basic problem, i.e.

the reconstruction of square matrices from the k-deck consisting of the multiset

of its square submatrices and one more special problem, the reconstruction from

6

1.2 Overview of the thesis

the matrix consisting the sum of the elements of the k-deck. Clearly matrices

with the same k-decks have the same sum-matrix but the other direction is not

trivial. We examine the cases of symmetric and non-symmetric deletions as well,

and prove lower and upper bounds in both cases. (The reconstruction problem

from the sum-matrix is motivated by the proof of the lower bound.)

In the first part of this chapter using simple combinatorial and linear algebraic

arguments we prove that the following is a necessary condition for the reconstruc-

tion problem of matrices (this condition is sufficient in the case of reconstruction

from the sum of the the elements of the k-deck only): if two square matrices

of order n have different k-decks consisting of the multiset of their square sub-

matrices, then there exists a polynomial p(x, y) with real coefficients such that

deg p < k and two subsets H1, H2 ⊂ {1, 2, . . . , n}2, such that∑
(x,y)∈H1

p(x, y) 6=
∑

(x,y)∈H2

p(x, y).

The second part of the chapter is devoted to the construction of such a poly-

nomial using Chebishev polynomials and some geometrical arguments.

The main results of this chapter are (i) an asymptotical upper bound of order

of magnitude O(n2/3), (ii) the fact that one cannot get essentially better bound

using this method yielding a lower bound for the reconstruction from the sum

of the elements of the k-deck which differs in a factor O(3
√

log n) only from the

upper bound.

The results of Chapter 5 are based on a manuscript joint with Géza Kós and

Péter Sziklai [L2].

In Chapter 6 we present an algorithm on words which has an application

to bioinformatics. The algorithm determines the evolutionary distance between

two organisms, hence it can be used in the statistical analysis of the genome

rearrangement via Markov chain Monte Carlo methods.

The evolutionary distance can be determined by comparing the order of ap-

pearance of orthologous genes in the genomes of the organisms. Among the

numerous parsimony approaches that try to obtain the shortest sequence of rear-

rangement operations sorting one genome into the other, Bayesian Markov chain

Monte Carlo methods have been introduced a few years ago. The computational

7

1.3 Mathematical background

time for convergence in the Markov chain is the product of the number of steps

needed in the Markov chain and the computational time needed to perform one

MCMC step. Therefore faster methods for making one MCMC step can reduce

the mixing time of an MCMC in terms of computer running time.

We introduce an efficient algorithm for characterizing and sampling transpo-

sitions and inverted transpositions for Bayesian MCMC. The algorithm charac-

terizes the mutations by the change in the number of cycles in the graph of desire

and reality. We show that this is equivalent with the following searching problem

on words: for every position of a given signed permutation of length n decide

whether there can be found a given 3-long permutation starting in this position.

The algorithm runs in O(n) time and uses O(n) memory, where n is the size of

the genome. This is a significant improvement compared with the so far available

brute force method with O(n3) running time and memory usage.

The results of Chapter 6 are based on a joint paper with István Miklós and

Timothy P. Brooks [L6].

In most of the chapters some open problems are presented.

1.3 Mathematical background

In the few subsequent sections we give a brief survey of the related problems and

motivations on combinatorial reconstruction problems and of the known results

concerning the reconstruction problem of words as well.

1.3.1 Combinatorial reconstruction problems

There is a wide range of reconstruction problems in combinatorics, however the

name “The Reconstruction Problem” is devoted to the famous and notorious

conjecture of Kelly [31] and Ulam [60]:

Conjecture 1 Every finite graph of at least three vertices is determined up to

isomorphism by the n− 1-deck, consisting of its one-vertex-deleted subgraphs.

For some graph-classes the conjecture is known to be true, e.g. for discon-

nected graphs and trees and for graphs of at most as many edges as vertices,

8

1.3 Mathematical background

etc., however the problem is still open in general. For an interested reader we

recommend the chapter of Babai [4] who gives a comprehensive discussion of this

topic.

An ordered graph on n vertices is a graph with a linear ordering on its vertices

inherited by its subgraphs, i.e. the vertices are indexed by the numbers 1, . . . , n,

and in the case of considering its subgraph on k vertices with vertex-indices

i1, . . . , ik the vertices must be re-indexed with the numbers 1, . . . , k keeping the

order of the indices.

A bipartite graph with color-classes on n1 and n2 vertices is ordered if both of

the color-classes are ordered and no order relation between the vertices of different

color-classes is given. In other words the vertices are indexed by the numbers

1, . . . , n1 and 1, . . . , n2, respectively, and the subgraphs inherit the orderings,

similarly as above.

Note that the vertex-reconstruction of ordered graphs is a special case of

reconstruction of square matrices with symmetric deletions by considering the

adjacency matrix of the graph, see Figure 1.1.0BBBBB@
0 0 0 1 1

0 0 1 1 1

0 1 0 1 0

1 1 1 0 0

1 1 0 0 0

1CCCCCA
↓z }| {0BBB@

0 1 1 1

1 0 1 0

1 1 0 0

1 0 0 0

1CCCA
0BBB@

0 0 1 1

0 0 1 0

1 1 0 0

1 0 0 0

1CCCA
0BBB@

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

1CCCA
0BBB@

0 0 0 1

0 0 1 1

0 1 0 0

1 1 0 0

1CCCA
0BBB@

0 0 0 1

0 0 1 1

0 1 0 1

1 1 1 0

1CCCA

Figure 1.1: The 4-deck of an ordered graph on 5 points and the 4-deck of its

adjacency matrix

9

1.3 Mathematical background

Similarly the vertex-reconstruction of ordered bipartite graphs is a special case

of reconstruction of square matrices with not necessarily symmetric deletions by

considering the adjacency matrix of the bipartite graph.

Tardos [58] settled a series of conjectures and solved problems with the help of

0-1 matrices and ordered graphs. Marcus and Tardos [44] examined the extremal

problem of how many 1 entries a square binary matrix of order n, that avoids

a certain fixed submatrix P , can have. They proved a linear bound for any

permutation matrix P , settling the conjecture of Stanley and Wilf on the number

of n-permutations avoiding a fixed permutation and other related open problems.

Tardos [59] determined the order of magnitude of the maximal number of 1 entries

of a square binary matrix of order n avoiding P for all patterns P with four

1 entries. In the same framework Pach and Tardos [49] disproved the general

conjecture of Füredi and Hajnal and presented a new proof of a theorem of

Spencer et al. [55] claiming that the number of occurrences of the unit distance

among n points on the plane is O(n4/3).

Alon et al. [3] examined the reconstruction problems in a more general frame-

work with the help of tools from permutation group theory. In their model they

supposed that a set X and a group of automorphisms G of X are given. Then

considering an arbitrary Y ⊆ X on m elements and the set of representatives R

of orbits of Y , the k-deck of Y tells the number of subsets of Y on k elements

which are in the same orbit with a representative r for every r ∈ R.

In this scenario they considered the following reconstruction problem:

Problem: Given a set X, a group of automorphisms G of X, and two integers

m, k (m > k), can every subset Y on m elements be reconstructed (up to G-

equivalence) from its k-deck?

One can consider the edge-reconstruction conjecture of Harary [26] within this

framework as a nice example. Let X be the set of all
(

n
2

)
edges of a complete graph

on n vertices and G is the group of all permutations of X induced by permuting

the vertices of the complete graph. Then a subset Y ∈ X on m elements is a

graph on n vertices and m edges, and its orbit is the set of every graph isomorphic

to it. The m−1-deck is the set of isomorphism types of all edge-deleted subgraphs

of Y with multiplicities.

10

1.3 Mathematical background

The authors proved several relationships between the parameters of the prob-

lem (i.e. m, k, the size of G and of the orbits, etc.) which ensure reconstructabil-

ity, and discussed more combinatorial and geometrical reconstruction problems.

1.3.2 Preliminary results on reconstruction of words

As we noted above, there are two different versions of the reconstruction problem

of words: reconstruction from the k-deck consisting of the multiset of subwords

and reconstruction from the k-deck consisting of the different subwords. In the

following we present the known results of both problems in chronology.

Reconstruction from the k-deck consisting of the multiset of subwords

The original problem raised from Kalashnik [28] who proved the following

upper bound:

Theorem 2 Every word w of length n can be reconstructed from its k-deck if

k ≥ bn
2
c.

Later Aleksanjan [1] gave an incorrect assertion claimed that every word w of

length n can be reconstructed from its 3-deck. Zenkin and Leont’ev [62] proved

the first lower bound.

Theorem 3 It is not possible to reconstruct every word w of length n from its

k-deck if k ≤ log n
log log n

.

Later Manvel et al. [42] improved the lower bound and gave a new proof of

the upper bound of Theorem 2.

Theorem 4 Every word w of length n can be reconstructed from its k-deck if

k ≥ bn
2
c.

It is not possible to reconstruct every word w of length n from its k-deck if

k ≤ log2 n.

11

1.3 Mathematical background

The lower bound is given by the well-known Prouhet-Thue-Morse sequence

and its complement. The Prouhet-Thue-Morse sequence is a binary sequence

and its n-th element is 1 if the number of ones in the binary form of n is odd

and 0 otherwise. The Prouhet-Thue-Morse sequence has applications in many

fields of science such as combinatorics on words, number theory, physics, etc. For

a comprehensive discussion of this topic see Allouche and Shallit [2]. Here we

present the first three examples of length 2k of Manvel et al. denoted the same

k-decks by ∼k:

01 ∼1 10, 0110 ∼2 1001, 01101001 ∼4 10010110, . . .

Choffrut and Karhumäki [15] improved the lower bound with a constant factor

by showing that k is bounded by φ(n), where φ() is a Fibonacci-sequence defined

by φ(1) = 2, φ(2) = 5 and φ(n) = φ(n − 1) + φ(n − 2) for n ≥ 3. From this the

authors proved the following:

Theorem 5 It is not possible to reconstruct every word w of length n from its

k-deck if k ≤ 4.77 log n + 1.1.

Scott [51] made a substantial improvement of the upper bound using simple

number theoretic and linear algebraic arguments:

Theorem 6 Every word w of length n can be reconstructed from its k-deck if

k ≥ (1 + o(1))
√

n log n.

Dud́ık and Schulman [17] improved the lower bound with a generalization of

the Prouhet-Thue-Morse sequence called templates:

Theorem 7 It is not possible to reconstruct every word w of length n from its

k-deck if k ≤ 3(
√

2/3−o(1)) log
1/2
3 n.

Independently Krasikov and Roddity [32] improved the upper bound using

similar ideas than Scott [51]. They proved that if there are two different words

of length n with the same k-deck, then for some s the system

ah
1 + ah

2 + .. + ah
s = bh

1 + bh
2 + .. + bh

s , h = 1, .., k − 1

12

1.3 Mathematical background

a1 < a2 < .. < as, b1 < b2 < .. < bs

has a nontrivial solution with ai, bi ∈ [0, n− 1].

This is the Prouhet-Tarry-Escott problem of classical Diophantine analysis.

Using a new result of Borwein et al. [11] on this problem the authors get the

following:

Theorem 8 Every word w of length n can be reconstructed from its k-deck if

k ≥ b16
7

√
nc+ 5 ≈ 2.286

√
n.

Furthermore they proved that this bound cannot be improve significantly with

this method, since for k ≤
√

2 log 2

√
n

log n
− 1

2
the above system has a non-trivial

solution.

Foster and Krasikov [22] improved the result of Borwein et al. [11] concern-

ing the Prouhet-Tarry-Escott problem which yields a slight improvement in the

constant factor of the upper bound.

Theorem 9 Every word w of length n can be reconstructed from its k-deck if

k ≥ 2b
√

n log 2c+ 3 ≈ 1, 665
√

n.

Leont’ev and Smetanin [34] proved that determining whether a given word

can be uniquely reconstructed from a given set of subwords is an NP-complete

problem.

Reconstruction from the k-deck consisting of the different subwords

This problem originates from Simon [53] who proved the following:

Theorem 10 Every word w of length at most n is uniquely determined by its

length and the dn+1
2
e-deck of its different subwords.

Lothaire [40] gave an elegant proof of this bound for general alphabet. Since

we were inspired by they train of thought, and we have proved a few generaliza-

tions of Theorem 10, we present their original proof in 4.3. Contrary to the case

of reconstruction from the multiset of subwords, this result is sharp for a binary

alphabet. One can see that easily from the pair of words abab..ab and baba..ba.

13

1.4 Biological background

Levenshtein in his papers [36; 37; 38] considered more generalizations of this

reconstruction problem. In [37] the author examines which other sets of subwords

or super-words determine uniquely the original word, in [36] the maximum size

of the set of common subwords (or super-words) of two different words of fixed

length is given in a recursive way. In [38] every unknown sequence is reconstructed

from its versions distorted by errors of a certain type, which are considered as

outputs of repeated transmissions over a channel, and a minimal number of trans-

missions sufficient to reconstruct the original word (either exactly or with a given

probability) is given. In both of the last papers simple reconstruction algorithms

are given.

Leont’ev and Smetanin [34], Simon [54], and Dress and Erdős [16] approached

the problem from algorithmic point of view. The authors presented algorithms

of linear running-time which reconstruct a word from the set of its different sub-

words.

1.4 Biological background

In the next sections we briefly outline the structural properties of the DNA and

the main notions of the genome rearrangement necessary to the examined math-

ematical models.

1.4.1 The structure of the DNA

DNA (deoxyribonucleic acid) is a nucleic acid that contains the genetic instruc-

tions and information used in the development and functioning of all known

living organisms. The DNA segments that carry this genetic information are

called genes, but other DNA sequences have structural purposes, or are involved

in regulating the use of this genetic information.

DNA is a strand composed of four nucleotides or bases called adenine, cyto-

sine, guanine and thymine, abbreviated by A, C,G and T , respectively. These

nucleotides form two base-pairs which are A − T and C − G called complement

pairs. The chemical structure of DNA induces an orientation of the strands: there

is a starting and an ending point of the DNA, denoted by 5’ and 3’. Furthermore

14

1.4 Biological background

DNA is double-stranded (which is called the double helix), i.e. every strand bonds

to an other strand, to its reverse complement. Reverse means that in a double

helix the direction of the nucleotides in one strand is opposite to their direction in

the other strand and complement means that every nucleotide of a strand bonds

to the other base of its complement pair in the other strand. See Figure 1.2 as

an illustration of the structural properties above.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
5’ — . . . C G C C T T A T A C . . . — 3’

| | | | | | | | | |
3’ — . . . G C G G A A T A T G . . . — 5’

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 1.2: Part of a DNA double helix with complementary bonds

Obviously one can get the reverse complement of a DNA strand in two steps:

first by reverting the whole strand and second by replacing every nucleotide with

its complement.

1.4.2 Genome rearrangement

Genes are finite sequences of nucleotides, and since these sequences are double-

stranded every gene has a “reading direction”. Genomes are assumed to have the

same gene content, and each gene is represented in one copy in every genome.

Gene orders are described as signed permutations, numbers correspond to genes,

signs represent the reading direction of genes.

There are different types of mutations or rearrangement operations acting on

genomes, here we present the ones which will be taken into consideration in our

mathematical model and some others. Let’s denote the genes by γi-s, some of the

possible mutations are the following:

• inversions : this type of mutations reverses a consecutive block of the genome

and changes the reading directions of all genes in the block, i.e.:

. . . γi
−−−−−−→γi+1 . . . γjγj+1 · · ·; . . . γi

←−−−−−−−−−−γj · · · − γi+1γj+1 . . .

15

1.4 Biological background

• transpositions : this type of mutations interchanges two consecutive blocks

of the genome, i.e.:

. . . γi
−−−−−−→γi+1 . . . γj

−−−−−−→γj+1 . . . γkγk+1 · · ·; . . . γi
−−−−−−→γj+1 . . . γk

−−−−−−→γi+1 . . . γjγk+1 . . .

• inverted transpositions : this type of mutations can be considered as a con-

catenation of a transposition and an inversion on one block of the transpo-

sition performed, i.e.:

. . . γi
−−−−−−→γi+1 . . . γj

−−−−−−→γj+1 . . . γkγk+1 · · ·; . . . γi
←−−−−−−−−−−−γk · · · − γj+1

−−−−−−→γi+1 . . . γjγk+1 . . .

• translocations : this type of mutations insert one consecutive block of a

genome into another genome, i.e.:

. . . γi
−−−−−−→γi+1 . . . γjγj+1 · · ·; . . . ρk

−−−−−−→γi+1 . . . γjρk+1 . . .

Given two genomes π1, π2 with the same gene content, the problem of the

genome rearrangement is to determine the evolutionary distance of two genomes,

which is the minimal number of mutations transforming π1 to π2.

These processes are studied by parsimony methods, i.e. what is the minimum

number of a certain type of events (mutations) needed to turn one genome into

another.

16

Chapter 2

Reconstruction from the

n− 1-deck and automorphism

groups

2.1 DNA-words

2.1.1 Motivation and notation

Let A = {{α1, ᾱ1}; {α2, ᾱ2}; ...; {αq, ᾱq}} be an alphabet of q pairs of symbols

(called complement pairs), the finite sequences composed from A are called DNA-

words. Define ¯̄αi = αi; and for a word w = x1x2...xt over A let w̃ = x̄tx̄t−1...x̄1

be the reverse complement of w. Note that (̃w̃) = w. Since we want to keep

the essence of the partial ordering of ordinary words, we identify each DNA-word

with its reverse-complement, i.e. every w with the corresponding w̃, denoted by

w ≡ w̃. For obvious reasons, when q = 2 then the alphabet is often denoted by

{{A, Ā = T}; {G, Ḡ = C}}.
Let Dq,n denote the poset of all DNA-words of length at most n (defined

over an alphabet of q complement pairs), partially ordered by the extension of

the subword relation, i.e. {u, ũ} ≤ {v, ṽ} if u is a subsequence of v or ũ is a

subsequence of v. In this case we say that u precedes v or u is a substrand of v,

and we use the notation u ≺ v. A small example for a DNA-poset can be found

in Figure 2.1: the poset of substrands of the DNA-word ACGT .

17

2.1 DNA-words

Figure 2.1: The poset of substrands of the DNA-word ACGT

2.1.2 Reconstruction from the n− 1-deck

In the following we will prove that every DNA-word of length n can be recon-

structed from the set of different DNA-words of length n− 1 which precede it.

As a first step we reduce the case of a general alphabet to the case of the

alphabet {{A, T}, {C, G}}.

Lemma 11 We can solve a reconstruction problem of all DNA-words over an

alphabet with q ≥ 2 complement pairs if and only if we can do it for the similar

problem for q = 2, i.e. if and only if we can reconstruct all DNA-words over the

alphabet {{A, T}, {C, G}}.

Proof: It is clear that if we can reconstruct all DNA-words over an alphabet

with q ≥ 2 complement pairs, then we can reconstruct them over {{A, T}, {C, G}}.
Conversely, suppose that we can reconstruct all DNA-words over {{A, T}, {C, G}}.
Then replace the first complement pair with A−T , and all the others with C−G.

Now we can reconstruct the strand, and so we find the places of letters from the

first complement pair in the original strand (now A−T -s are there); then we can

repeat the procedure in order to find the other complement pairs. 2

Now we show that a DNA-word can be reconstructed from its n− 1-deck.

18

2.1 DNA-words

Lemma 12 If 3 ≤ i then every DNA-word of length i is uniquely determined by

its substrands of length (i− 1).

Proof: Because of Lemma 11, it is enough to consider DNA-words over the

conventional {{A, T}, {C, G}} alphabet. It is easy to see that for i = 2 the

lemma is false: the DNA-words AT and TA have the same one letter substrand

{A ≡ T} but AT 6≡ TA. Now w.l.o.g. we can suppose that we have a substrand

with first letter A. Now consider substrands of form AkαT l, where k is maximal

and then l is maximal with respect to this k. Then 0 ≤ l ≤ k and k ≥ 1.

Such a word can arise after deleting a letter from one of the following words:

AkT l+1 (then α was empty, in this case k > l), AkβT l for |β| = |α| + 1,

AmxAk−mαT l for m = 0, ..., k − 1 and AkαT l−myTm for m = 0, ..., l − 1. Be-

cause of the maximality of k and l there are no more cases and the first letter of

β is not A, the last is not T , further x 6= A, y 6= T .

Now we search for substrands of form Am−1xAk−mαT l. If we have such a

substrand for some m = m∗ ∈ {1, ..., k − 1} and for m = m∗ + 1, then the

original word was Am∗
xAk−m∗

αT l. If we have for m = 1 but not for m = 2 then

the original word was xAkαT l. If we have for m = k but not for m = k − 1,

then AkxαT l. If we are not in the above cases, we search for substrands of form

AkαT l−myTm−1 and follow the above train of thought. At last if we haven’t found

a substrand of the above forms, then we have a substrand Ak−1βT l, where we get

β from α by inserting a letter. Then the word is AkβT l. The proof is complete.2

2.1.3 The automorphism group of the DNA poset

Now our aim is to determine Aut(Dq,n). There are two obvious types of au-

tomorphisms: a permutation π ∈ Symq on the complement pairs induces an

automorphism σπ on Dq,n. Denote also by Symq the automorphism group gener-

ated by these σπ-s. Furthermore, consider a map which interchanges the elements

of the i-th complement pair. This induces an automorphism σ̂i on Dq,n. Denote

by Z2 the automorphism group generated by σ̂i. We will prove that for n ≥ 3

there are no more automorphisms (note that the automorphism that reverses the

order of the letters, which is a natural one, is σ̂1σ̂2...σ̂q; e.g. σ̂1σ̂2(ab) = āb̄, which

is identified with its reverse complement, i.e. ba).

19

2.1 DNA-words

Theorem 13 (i) if n = 1, then Aut(Dq,1) = Symq;

(ii) if n = 2, then Aut(Dq,2) = Symq ⊗ Symq
3 ⊗ Sym

(q
2)

4 ;

(iii) if n ≥ 3, then Aut(Dq,n) = Symq ⊗ Zq
2 .

Proof: The case n = 1 is considered only for the sake of completeness. In this

case an automorphism is a simple permutation on the q complement pairs.

It is clear, that the levels of the poset are invariant under an automorphism.

Furthermore, an automorphism transfers complement pairs to complement pairs.

Take an arbitrary automorphism σ0 ∈ Aut(Dq,n), and consider its action on Dq,n
1

(i.e. on the set of complement pairs). Thus, this is a permutation on A, take

its inverse π−1 on A. This permutation induces an automorphism σπ−1 on the

poset Dq,n. Let σ1 = σ0σπ−1 . Then σ1 fixes all of the complement pairs. Now

one can partition the second level into q +
(

q
2

)
blocks: we have q blocks of size

3 with elements {aiai ≡ āiāi, aiāi, āiai}; and
(

q
2

)
blocks of size 4, with elements

{aiaj ≡ āj āi, aiāj ≡ aj āi, āiaj ≡ ājai, āiāj ≡ ajai} for all i 6= j, each block is

fixed by σ1 (setwise).

If n = 2, then within these blocks one can specify the image of all elements

freely. This means q copies of Sym3 and
(

q
2

)
copies of Sym4, and these automor-

phisms differ and commute.

Now let n ≥ 3 and consider the effect of σ1 on Dq,n
2 .

Claim 14 σ1 fixes all sequences of form aiai ≡ āiāi.

Proof: To the contrary, suppose that σ1(aiai) = aiāi (or āiai which case is sim-

ilar). Then σ1(aiaiai) = aiāiāi or σ1(aiaiai) = aiaiāi. In both cases
a

σ1(aiaiai)

has two elements, but
a

(aiaiai) has only one element, hence we cannot define

σ1(aiaiai). 2

Let σ̂i be the automorphism which interchanges the elements of the i-th com-

plement pair. Take the product of those σ̂i’s for which σ1(aiāi) = āiai, then let

σ2 := σ1

∏
i:σ1(aiāi)=

=āiai

σ̂i for all i. Then σ2 fixes all elements in the 3-blocks. If q = 1,

the proof is complete. Let q ≥ 2.

Claim 15 σ2 fixes all sequences of form aiaj, i 6= j.

20

2.2 Matrices

Proof: To the contrary, suppose first that σ2(aiaj) = ajai. Then σ2(āiaiaj) =

āiajai because āiai is fixed, therefore āiaj is fixed too. But then we cannot

define σ2(aiāiaj). Now suppose that σ2(aiaj) = aiāj (āiaj is similar). Then

σ2(aiaj āj) = aiaj āj because aj āj is fixed, then σ2(aiāj) = aiaj. But then we

cannot define σ2(ājaiaj). 2

Now we know that σ2 is the identity on Dq,n
1 and Dq,n

2 . Because of Lemma

12 it is true for Dq,n
3 , and by induction for all Dq,n

i (i = 4, . . . , n). The proof is

complete.

2.2 Matrices

2.2.1 Motivation and notation

Let Σ be a finite alphabet and Σn×n the set of all n×n matrices over Σ, further-

more let Σ2 =
⋃

Σn×n, the set of all finite square matrices over Σ . For A ∈ Σk×k

and B ∈ Σn×n we say that A is a submatrix of B if we can get A by deleting

some n − k rows and some n − k columns of B (we use the notation A � B).

Denote by sk(B) = {A ∈ Σl×l : A � B, l = 1, ..., k} the set of all submatrices of

B of size at most k × k. Let Mn
q denote the partially ordered set of all elements

of Σi×i for i = 1, ..., n and for Σ = {0, 1, ..., q − 1}, partially ordered with this

submatrix relation.

2.2.2 Reconstruction from the n− 1-deck

We begin this section with some basic observations. The case q = 1 (i.e. homo-

geneous 0-matrices) is not interesting, so we can suppose that q ≥ 2. We can

prove easily, that the size of the alphabet is not important.

Lemma 16 We can solve the reconstruction problem for all square matrices if

and only if we can solve it for q = 2, i.e. if and only if we can do it for 0 − 1

square matrices.

Proof: It is clear that if we can solve the problem for an arbitrary alphabet,

then we can solve it for a two-element alphabet. Conversely, suppose that we can

21

2.2 Matrices

solve it for 0 − 1 square matrices, and consider A, B ∈ Σn×n such that A 6= B.

This means that there exist 1 ≤ i, j ≤ n, such that a = ai,j 6= bi,j = b. Then

replace all occurrences of a by 0 and all the other letters by 1, denote A∗ and

B∗ the new 0 − 1 square matrices respectively. Clearly A∗ 6= B∗, then by the

assumption sk(A
∗) 6= sk(B

∗), i.e. there exist C∗ ∈ {0, 1}k×k : C∗ � A∗, C∗ 5 B∗

and C∗ has a 0 entry. One can obtain the corresponding matrix C by deleting the

set of rows and columns from A which arises C∗ from A∗. Then clearly C 5 B,

which completes the proof. 2

Now we show that matrices can be reconstructed from its n− 1-deck.

Lemma 17 For n ≥ 3 every square matrix in Σn×n is uniquely determined by

its submatrices of size (n− 1)× (n− 1).

Proof: For n = 2 the statement is clearly not true. Furthermore, because of

Lemma 16, we consider 0 − 1-matrices only. We prove the lemma by induction.

Let n = 3, there exist 29 = 512 binary matrix of size 3 × 3. We can check by a

simple Matlab program that all of its submatrix-sets are different. Now suppose

that the statement is true for n = k. Let A ∈ Σ(k+1)×(k+1) and consider sk(A).

Now by deleting the last row and the last column from all elements of sk(A) we

get the set s′. Clearly s′ = sk−1(A
′) where A′ denotes the matrix, which we get

from A by deleting its last row and last column. Applying the induction for A′,

we can determine the upper left (n−1)×(n−1) of A. Similarly we can determine

the first n− 1 rows, and last n− 1 column, etc. 2

2.2.3 The automorphism group of the matrix poset

Now our aim is to give the automorphism group of the posets Mn
q for all q and

n. There are two obvious types of automorphisms: a permutation π ∈ Symq on

the elements of Σ induces an automorphism σπ on Mn
q . Denote also by Symq the

automorphism group generated by these σπ-s. At second consider the elements of

the congruence group of the square (the matrix), which is generated by a rotation

(of order 4), and a vertical reflection (of order 2). These induce the automor-

phisms σrot, σref on Mn
q . Denote by D4 the automorphism group generated by

the congruences. Clearly, these automorphisms differ and commute with the ones

22

2.2 Matrices

in Symq. We will see that for n ≥ 3 there are no more automorphisms of the

matrix poset.

Theorem 18 (i) if n = 1, then Aut(M1
q) = Symq

(ii) if n = 2, then Aut(M2
q) = Symq ⊗ Sym

(q
2)

14 ⊗ Sym
(q
3)

36 ⊗ Sym
(q
4)

24

(iii) if n ≥ 3 , then Aut(Mn
q) = Symq ⊗D4

Proof: The case n = 1 is considered only for the sake of completeness. In this

case an automorphism is a simple permutation on the q letters.

Let n ≥ 2. Take an arbitrary automorphism σ0 ∈ Aut(Mn
q) and consider its

action on the first level of the poset, i.e. on the letters. This is a permutation

on Σ, take its inverse π−1 on the letters. This induces an automorphism σπ−1 on

the whole poset. Let σ1 = σ0σπ−1 . Then σ1 fixes the letters (the first level of the

poset). Now we can partition the second level of the poset into four parts: in the

first part there are the q homogeneous 2×2 matrices, these are fixed, because the

letters are fixed. In the second part there are the matices containing two letters

only, for every pair of letters there are 14 such a 2 × 2 matrices, these build a

block, and there are
(

q
2

)
blocks. In the third part are the matrices containing only

three letters, for every triple of letters there are 36 such a 2 × 2 matrices, and

there are
(

q
3

)
blocks. And at last in the fourth part are the matrices containing

four different letters, these build
(

q
4

)
blocks of size 24. Clearly, these blocks are

setwise fixed. Now in n = 2, then in each block we can specify the image of

all elements freely. These automorphisms differ and commute, hence we get the

second part of the theorem.

Now let n ≥ 3. Our aim is to prove that except the elements of D4 =<

σrot, σref >, (the rotation and the reflection w.r.t horizontal axis) there are no

more. Now consider the 14-element block of the matrices containing the 0 and 1

letters only. For the sake of simplicity we present these matrices:

(type1 subblockz }| {
1 1

1 0

!
,

1 0

1 1

!
,

0 1

1 1

!
,

1 1

0 1

!
;

type1 subblockz }| {
0 0

0 1

!
,

0 1

0 0

!
,

1 0

0 0

!
,

0 0

1 0

!
;

0 1

0 1

!
,

1 0

1 0

!
| {z }

type2 subblock

;

0 0

1 1

!
,

1 1

0 0

!
| {z }

type2 subblock

;

0 1

1 0

!
,

1 0

0 1

!
| {z }

type3 subblock

)

23

2.2 Matrices

We have some restrictions concerning the images of the elements of this block:

there are five subblocks of three types, i.e. there are some properties which are

not changing under every automorphisms, if the first level of the poset is fixed.

The properties determining the subblocks are the following:

type1 subblock There are matrices which have only one parent who has one

more child only, a homogeneous one (this parent is for example

0B@ 1 1 1

1 1 1

1 1 0

1CA
for the first matrix of the block). These matrices form two four-element

subblocks concerning their homogeneous brother . It is easy to see, that

there is no other matrix in this block with this property.

type2 subblock There are two matrix-pairs such that they have two common

parents, such that they have only one more common brother, and it is homo-

geneous (one of these parents is for example

0B@ 0 1 0

0 1 0

0 1 0

1CA, then the matrix-

pair is

0 1

0 1

!
,

1 0

1 0

!
.) As above we can see, that no other matrix-pairs

satisfy this assumption. Notice that we cannot distinguish these matrix-

pairs in the poset, because

0 0

1 1

!
,

1 1

0 0

!
with the parent

0B@ 0 0 0

1 1 1

0 0 0

1CA
have the same structure in the poset as of the above example.

type3 subblock The remaining two matrices

0 1

1 0

!
and

1 0

0 1

!
form one

more subblock.

So the automorphism must fix each subblock setwise. We will prove that, if the

four elements of the above matrix-pairs (i.e. the second type of the subblock) are

fixed, then the whole second level of the poset is fixed.

Suppose first that σ1(
(

0 1

0 1

)
) 6=

(
0 1

0 1

)
. We can fix this matrix easily by a

rotation. Now let σ2 = σ1σrot. This yields that the other element in the subblock

(i.e.

1 0

1 0

!
) is fixed too. Now we must fix the elements of the other subblock.

Suppose that σ2(
(

0 0

1 1

)
) =

(
1 1

0 0

)
. Now let σ3 = σ2σref . Notice that this

automorphism do not change the elements of the other matrix-pair, this results

that all the matrices of the two matrix-pairs are fixed under σ3.

Claim 19 σ3 fixes the 0-1-matrices in the second level of the poset .

24

2.2 Matrices

Proof: Because of the above we have some restrictions for the images of the

elements. We analyze one case in detail, the proof of other cases are same, here

we present only the counterexamples.

Suppose that σ3(
(

0 1

1 0

)
) =

(
1 0

0 1

)
. Consider the children of

0B@ 0 1 1

1 0 0

1 0 0

1CA in

the poset. These are

0 1

1 0

!
,

1 0

1 0

!
,

1 1

0 0

!
and

0 0

0 0

!
. Only the first child

is not fixed by σ3, that is the children of σ3(

(
0 1 1

1 0 0

1 0 0

)
) are

1 0

0 1

!
,

1 0

1 0

!
,

1 1

0 0

!
and

0 0

0 0

!
, and we can check fast that there is no 0-1-matrix in Σ3×3

with these children, i.e.

1 0

0 1

!
is fixed under σ3.

Suppose that σ3(
(

0 0

0 1

)
) =

(
1 0

0 0

)
, or

0 0

1 0

!
. Now, as above, we cannot

define σ3(

(
0 0 0

0 0 1

0 0 1

)
). At last suppose, that σ3(

(
0 0

0 1

)
) =

(
0 1

0 0

)
, now we

cannot define σ3(

(
0 0 0

0 0 0

0 1 1

)
).

Similarly we can see, that all the matrices of the four-element subblocks are

fixed under σ3, the proof is complete. 2

Now our aim is to prove that the elements in the other blocks of size 14, i.e.

the matrices containing only two letters (but not 0 and 1) are fixed under σ3.

Claim 20 σ3 fixes all matrices in the second level of the poset containing only

two letters.

Proof: We prove at first that the 2 × 2 matrices with children 0 and a are

fixed, for a = 2, ..., q− 1. Remember that the letters are fixed, and we have some

restrictions for the images of the matrices as above. In the proof we must consider

five cases, these steps are similar to the above observations, so we omit here the

full analysis, it is left to the reader.

1.

0 0

0 a

!
is fixed, otherwise we cannot define σ3(

(
0 1 0

1 0 0

0 0 a

)
).

2.

0 a

a a

!
is fixed, otherwise we cannot define σ3(

(
0 1 0

1 0 a

0 a a

)
).

25

2.2 Matrices

3.

0 a

a 0

!
is fixed, otherwise we cannot define σ3(

(
0 a 1

a 0 a

1 a 0

)
).

4. σ3(
(

a 0

a 0

)
) 6=

(
a a

0 0

)
, or

0 0

a a

!
, else we cannot define σ3(

(
a 0 0

0 1 0

a 0 0

)
).

5.

a 0

a 0

!
is fixed, otherwise we cannot define σ3(

(
a 0 0

a 0 0

a a 0

)
).

Now we have that all matrices having the children 0 and a only are fixed, next

we have to prove that every matrix composed of a, b /∈ {0, 1}. Here we present

one case only, the other cases can be handle by a similar way:
a b

b a

!
is fixed, otherwise we cannot define σ3(

(
a 0 b

0 0 0

b 0 a

)
)

Now we have that all matrices containing only two letters are fixed. 2

Claim 21 σ3 fixes all matrices in the second level of the poset.

Proof: The only remaining thing is to prove that the matrices containing three

and four letters are fixed too. From the previous claim and the same type of

counterexamples as the last one in Claim 20 this will follows. We present here

one case of the three-letter case only, the remaining ones and the four-letter case

can be handle similarly:
a b

c a

!
is fixed, otherwise we cannot define σ3(

(
a 0 b

0 0 0

c 0 a

)
).

2

Now we know that σ3 is the identity on the first two levels of the poset.

Because of Lemma 17 it is the identity on the third level, and by induction on

the whole poset. This completes the proof.

26

2.3 A short proof for a theorem of Burosch, Gronau and Laborde

2.3 A short proof for a theorem of Burosch,

Gronau and Laborde

2.3.1 Motivation and notation

At the end of this chapter we show an application of the method used above,

i.e. the reconstruction from the n − 1-deck, by giving a short proof for the

nice theorem by Burosch, Gronau and Laborde [12]. Their result determines the

automorphism group of a poset consisting of all subwords of a certain word um,n

which has maximum number of different subwords among the words of length n

over an m-letter alphabet. Chase [14] showed that the maximum is realized if

and only if the word is a repeated permutation of the alphabet and a prefix of

the permutation, e.g. 4021340213402.

Based on this result, let um,n denote the word a1...an where m ≥ 2, a1 = 0

and ai+1 = ai + 1 modulo m, and let Bm,n denote the set of all subwords of um,n

partially ordered by the subword relation. As a special case of the result of Erdős

et al. [20] and Theorem 10, the elements of the poset Bm,n can be reconstructed

from its n− 1-deck.

Lemma 22 If 3 ≤ i then every word of length i is uniquely determined by its

subwords of length (i− 1). 2

2.3.2 The automorphism group of the Burosch poset

Similarly, as in the previous sections of this chapter, based on the Lemma 22, we

give a simple proof for the following theorem by Burosch, Gronau and Laborde

[12] with proof of 13 pages:

Theorem 23 (i) if 1 ≤ n ≤ m, then Aut(Bm,n) = Symn;

(ii) if m + 1 ≤ n ≤ 2m− 1, then Aut(Bm,n) = Z2 ⊗ Sym2m−n;

(iii) if 2m ≤ n, then Aut(Bm,n) = Z2.

Before the proof let us describe the involutory automorphism of the “typical

case” no.(iii). Consider um,n = 01...(m− 1)01...(m− 1)...01...(m− 1)01...(k− 1).

27

2.3 A short proof for a theorem of Burosch, Gronau and Laborde

Let σ∗ be the mapping that reverses all the words, and let νk,m be the mapping

that changes the letters in the words in the following way: for 0 ≤ i ≤ k − 1 the

letter i is changed for k − 1 − i, and for k ≤ j ≤ m − 1 the letter j is changed

for m + k − 1− j. Clearly neither σ∗ nor νk,m is an automorphism of Bm,n, but

σ∗νk,m ∈ Aut(Bm,n).

Proof: It is clear, that the levels of the poset are invariant under an automor-

phism. Also homogeneity (i.e. the property that a word has exactly one 1-letter

subword) and total inhomogeneity (i.e. the property that a t-letter word has

exactly t 1-letter subwords) are kept by every automorphism.

(i) Take an arbitrary automorphism σ0 ∈ Aut(Bm,n), and consider its action on

the first level of the poset. Thus, this is a permutation π on {a1, ..., an}, take its

inverse π−1 on {a1, ..., an}. This permutation induces an automorphism σπ−1 on

the poset. Let σ1 = σ0σπ−1 . Then σ1 fixes all of the letters. Furthermore, σ1 fixes

all sequences of form ij where i < j because σ1(ij) 6= (ji) as ji is not a subword

of um,n. Then σ1 is the identity on the two lowest levels of the poset and, by

Lemma 22, on the whole poset. 2

(ii) In this case um,n = 01...(m− 1)01...(k− 1) where n = m + k, 1 ≤ k ≤ m− 1

and let σ0 be an arbitrary automorphism.

It is easy to see that if i ≤ k − 1 then σ0(i) ≤ k − 1. Indeed, σ0(i) = j ≥ k is

impossible as ii is a subword of um,n but jj is not.

Claim 24 Let e be an element of the third level of the poset,
a

1 e contains the

two letters i, j only and suppose that ii is a subword of e. Then we can read from

the poset whether j is the middle letter or not.

Proof: In that case e = iij, jii, or iji. The shadows of the first two words have

two elements, but the shadow of the third word has three elements. 2

Claim 25 Let j1 < j2 ≤ k − 1 and i ≤ k − 1, i 6= j1, j2, then we can tell

the difference between the j1iij2-type subwords and the j1j2ii-type or iij1j2-type

subwords in the poset.

Proof: Consider the elements of the shade of j1iij2 containing the subword j1j1

(by inserting a letter j1 in the above word: j1ij1ij2 or j1iij1j2). Now consider

28

2.3 A short proof for a theorem of Burosch, Gronau and Laborde

the element of the 3-shadow of this word which contain the letter j2 and the

subword j1j1. In this case the inserted letter is the middle one what we can see

from the poset because of Claim 24. We get the same by inserting the letter j2;

the inserted letter is the middle one. Now insert the letters j1 or j2 in j1j2ii: we

get j1j2ij1i or j1j2ij2i. We see by considering the elements of the 3-shadow that

in the first case the inserted letter is not the middle one. For iij1j2 we get the

same: the inserted letter is never the middle one. 2

Claim 26 The image of the letter i is i or (k − i− 1) by any automorphism.

Proof: Consider the family of subwords of length k + 1 having a 2-long homo-

geneous and a k-long totally inhomogeneous subsequence (i.e. with k different

letters) and put vi = 01...(i− 1)ii(i + 1)...(k− 1). Clearly the set {v0, v1, .., vk−1}
is fixed by every automorphism. With the previous claim σ0(v0) = v0 or vk−1,

because only for i = 0 or k − 1 will vi have no j1iij2-type subwords, as we can

see because of Claim 25. Hence the image of 0 is 0 or k − 1.

Now one can forget all the words in the poset containing 0 or (k − 1) and,

inductively, as in the previous paragraph, it can be proved, that the image of 1

is either 1 or (k − 2), etc. 2

It is also easy to see that every sequence i(k− i−1) is fixed by every automor-

phism for i < k− i− 1, as σ(ii(k− i− 1)) = ii(k− i− 1) or i(k− i− 1)(k− i− 1).

Then i(k − i− 1) is fixed and so (k − i− 1)i is fixed, too.

From the statements above we can see that we have restrictions for the images

of the letters 0, 1, ..., k− 1, but we are free to choose the images of the remaining

2m − n letters. Let σ0 be an arbitrary automorphism, and consider its action

on the letters k, ..., m − 1 (i.e. on the first level of the poset), this induces a

permutation π on these letters (still on the first level), take its inverse π−1. This

permutation induces an automorphism σπ−1 on the poset. Let σ1 = σ0σπ−1 . Then

σ1 is the identity on the letters k, ..., m − 1 and, as above, σ1 fixes all sequences

of form ij where k ≤ i < j.

Now we define a mapping ρ: given a word w = x1x2...xsy1y2...ytz1z2...zu, where

0 ≤ xi, zi ≤ k−1; k ≤ yi ≤ m−1; let ρ(w) = zuzu−1...z1y1y2...ytxsxs−1...x1. Let ν

be the mapping that changes the letters i (0 ≤ i ≤ k−1) for k−1−i in each word

29

2.3 A short proof for a theorem of Burosch, Gronau and Laborde

(and does not change the letters j for k ≤ j ≤ m− 1). Clearly neither ρ nor ν is

an automorphism but ρν is an involution in Aut(Bm,n). Finally, if σ1(0) = (k−1)

then let σ = ρνσ1 and if σ1(0) = 0 then let σ = σ1. Hence σ(0) = 0.

Claim 27 The two lowest levels of the poset are fixed under σ.

Proof: We prove first that 0i is fixed for 1 ≤ i ≤ k − 1, hence we get that the

first level of the poset is fixed (remember that σ1 fixes all sequences of form ij

where k ≤ i < j). Now suppose that 0i is not fixed. Then we have that σ(0i)

is either 0(k − i − 1) or i0 or (k − i − 1)0. Let σ(0i) = 0(k − i − 1), hence

σ(0(k− i−1)i) = 0(k− i−1)i because (k− i−1)i is fixed, so σ(0(k− i−1)) = 0i

but then we cannot define σ((k − i − 1)0i). Now let σ(0i) = i0 (or similarly

(k − i− 1)0). Then σ(0ii) = ii0 which is not a subword of um,n. Note that, as a

by-product, we have just proved that each letter 0 ≤ i ≤ k − 1 is fixed as well.

(For k ≤ i ≤ m− 1 we knew it already.)

It follows from this reasoning that i0 is fixed if i is at most k − 1. Now let’s

see the image of ij. Suppose that σ(ij) = ji (this is the only case to exclude as

the first level is fixed). If 0 ≤ i, j ≤ k − 1 then we cannot define σ(i0j) because

i0 and 0j are fixed. If 0 ≤ i ≤ k − 1 < j ≤ m− 1 then we cannot define σ(ij0).

So ij is fixed (we knew it already if k ≤ i, j). 2

From this claim we get that σ is the identity on the two lowest levels of the

poset and so (by Lemma 22) on the whole poset, which proves part (ii) of the

theorem. 2

(iii) Now the word is of the following form um,n = 01...(m− 1)01...(m− 1)...01...

...(m − 1)01...(k − 1) where n = lm + k. Let σ0 an arbitrary automorphism.

Clearly σ0(i) 6= j for 0 ≤ i < k ≤ j ≤ m − 1 (we could not define σ0(i
l+1)).

Similarly to the above train of thought we get that for every automorphism σ0

and for 0 ≤ i ≤ k − 1 we have σ0(i) = i or k − i − 1 considering the subwords

wi = 01...(i− 1)il+1(i+1)...(k− 1) and here for k ≤ j ≤ m− 1 we have σ0(j) = j

or k + m− j − 1 considering the subwords uj = k...(j − 1)jl(j + 1)...(m− 1) as

well. Now every sequence i(k − i − 1) and j(k + m − j − 1) are fixed by every

automorphism for 0 ≤ i ≤ k − 1 and for k ≤ j ≤ m− 1.

Remember the automorphism σ∗νk,m defined before the proof. Let σ be

σ∗νk,mσ0 if σ0(0) = (k − 1) and let σ be σ0 if σ0(0) = 0. Now σ(0) = 0. By

30

2.4 Open problems

the previous paragraph, similarly to (ii), one can see that σ is the identity on the

two lowest levels of the poset and because of Lemma 22 on the whole poset.

The case m = k is slightly simpler, then we have only σ0(i) = i or k − i − 1

for 0 ≤ i ≤ k − 1 by any automorphism, etc. The proof is complete.

2.4 Open problems

Problem 28 Determine the automorphism group of the matrix poset in the case

of symmetric deletions.

As we mentioned in the Introduction one can define a submatrix of a square

matrix by deleting rows and columns either symmetrically or arbitrarily. In 2.2

we handled the second case. Regarding the other case, there are two obvious types

of automorphisms: the one induced by a permutation on the alphabet, and the

reflection to the diagonal, i.e. for the poset symMn
q the previous claims suggest

that Aut(symMn
q) = Symq ⊗ Z2 for sufficiently large n. However, contrary to

the non-symmetric case, the term “sufficiently large” means at least 4, since the

symmetric analogue of Lemma 17 is not true for n = 3, which can be seen from

the following example: 0B@ 0 0 0

0 0 0

1 0 0

1CA,

0B@ 0 0 0

0 0 0

0 1 0

1CA.

Hence in order to prove the symmetric analogue of Theorem 18, one have to

fix at least the three lowest level of the poset symMn
q , which seems at least as

technical as in the non-symmetric case, so we dispense with it.

Problem 29 Further short proofs.

Using the same tools as in 2.3 (i.e. with the help of the reconstruction from the

n− 1-deck) one can find shorter and new proofs of known results. One example

can be the theorem of Carpi and deLuca [13], claiming that a word w is completely

determined by its set of factors of length at most Gw+2, where Gw is the maximal

length of a repeated factor of w (i.e. a factor of multiplicity at most two).

31

Chapter 3

Generalized bounds for

reconstruction of words

3.1 Motivation and notation

Consider the t-element alphabet Σt = {0, 1, ..., t − 1} denoted by Σt throughout

this section and the elements of the set Σn
t called words. We do not deal with the

trivial case of t = 1, i.e. the alphabet consisting of one letter only. Remember

that Simon [53] and Lothaire [40] proved the following bound:

Theorem 10 Every word w ∈ Σn
t is uniquely determined by its length and the

dn+1
2
e-deck consisting of its different subwords.

Moreover, this result is sharp for the binary alphabet as the following example

shows:

Example 30 Consider the periodic words w = 0101..01 and v = 1010..10 of

length 2n. It is easy to see, that the n-deck consisting of the different subwords

of v and also for w is Σn
2 , i.e. all the binary words of length n.

There are however several series of examples (see some in 3.3) showing that if

one knows more about the structure of the word w then one can get an improve-

ment of Theorem 10.

32

3.2 General bounds for the number of letters

To describe a bit more this phenomenon we will specify some restrictions for

the number of occurrences of letters in the words, which, in some cases, will result

in better bound than Theorem 10.

Before we present our results let us recall two easy observations, which will

be useful in what follows.

Remark 31 We can reconstruct every w ∈ Σn
t from the k-deck consisting of the

multiset of
(

n
k

)
subwords (or different subwords) for any t ≥ 2 if and only if we

can reconstruct every w ∈ Σn
2 from the k-deck consisting of the multiset of

(
n
k

)
subwords (or different subwords resp.).

Remark 32 It is equivalent to know the set of subwords of length at most k

instead of the set of subwords of length k.

In this chapter we examine the case of different subwords only, hence from

now on we use the term subwords for the set of different subwords.

3.2 General bounds for the number of letters

In the following we suppose that there are common lower and upper bounds for

the number of occurrences of every letter in the words, i.e. for the examined

words w ∈ Σn
t we have

l ≤ |w|i ≤ u

for i = 0, . . . , t− 1.

In the first Lemma we examine a slightly different problem of reconstructing

the original word from its subwords. Note that this algorithmic point of view is a

different problem, which is examined in several papers [16], [34], [54] in the case

of the binary alphabet.

Lemma 33 Let w ∈ Σn
t such that |w|i ≤ u for i = 0, . . . , t − 1. Then w is

uniquely characterized by its length and by its subwords of length at most u + 1.

Proof: Let S denote the set of subwords of w of length at most u + 1. Because

of the assumption we get i|w|i ∈ S, i.e. we know the exact number of each

33

3.2 General bounds for the number of letters

letter in w. In the next step we can find out the lengths of the 0-runs from the

subwords 0rj0|w|0−r ∈ S, moreover, we know which letters occur between two

fixed consecutive 0-runs. Similarly, we can reconstruct the lengths of the runs of

each letter i and the set of letters between two fixed consecutive i-runs. From

these we can uniquely reconstruct the original word w by interleaving the runs.

2

Lemma 34 Let w ∈ Σn
t such that |w|i ≥ l for i = 0, . . . , t−1. Then w is uniquely

characterized by its length and by its subwords of length at most dn−(t−2)·l+1
2

e.

Proof: Let S denote the set of subwords of w of length at most dn−(t−2)·l+1
2

e
and suppose that there is a v ∈ Σn

t , v 6= w with the same lower bound for the

number of letters and the same subword-set S. First we will show that |w|i = |v|i
for every i. Suppose to the contrary that |w|0 < |v|0, then the assumption yields

|v|0 > dn−(t−2)·l+1
2

e. Since |w| = |v| we get that there is another letter, say, 1 such

that |w|1 > |v|1 and from |v{0,1}| ≤ n− (t−2) · l we get |v|1 < dn−(t−2)·l+1
2

e, which

is a contradiction because 1|v|1+1 is a subword of w and 1|v|1+1 is not a subword

of v.

From now on we suppose that |w|i = |v|i for every i. Since w 6= v there are

two letters such that subwords of w and v builded up only from these letters are

different. Take the two letters at a position where v and w differ. W.l.o.g. we

can suppose that w{0,1} 6= v{0,1}. From the assumption we get |w{0,1}| = |v{0,1}| ≤
n− (t− 2) · l. In this case we can use Theorem 10 for word length n− (t− 2) · l,
so we find a subword of length at most dn−(t−2)·l+1

2
e which is contained in one of

them only. This completes the proof. 2

Theorem 35 Every word w ∈ Σn
t with l ≤ |w|i ≤ u for i = 0, . . . , t − 1 is

uniquely characterized by its length and by its subwords of length at most min{u+

1, dn−(t−2)·l+1
2

e}.

Proof: Use Lemma 33 and Lemma 34.

The following remark is not surprising as we used Theorem 10 in the proof.

Remark 36 For a binary alphabet Theorem 10 of Simon and Lothaire is a special

case of Theorem 35 with the most general parameter values l = 0, u = n.

34

3.3 Examples

Note that if there are different lower and upper bounds for the number of

occurrences of every letter then we can prove similar bounds which are a bit

stronger in some cases:

Remark 37 Every word w ∈ Σn
t , with li ≤ |w|i ≤ ui for i = 0, . . . , t − 1 and

l0 ≤ · · · ≤ lt−1, is uniquely characterized by its length and by its subwords of

length at most min{maxi ui + 1, dn−
Pt−3

i=0 li+1

2
e}.

3.3 Examples

At the end of this chapter we present some natural examples where the two

bounds of Theorem 35 coincide.

Example 38 Let w be a permutation of order n, i.e. l = u = 1, t = n.

Every permutation of order n can be reconstructed from its subwords of length 2.

We get this from the bounds of Theorem 35 which are u + 1 = dn−(t−2)·l+1
2

e = 2.

More generally:

Example 39 Let w and u two periodic words of t letters, i.e. l = u = n
t
.

w = 01 . . . (t − 1)01 . . . (t − 1) . . . 01 . . . (t − 1) and v = 12 . . . (t − 1)012 . . . (t −
1)0 . . . 12 . . . (t− 1)0. Similarly to Example 30 it is easy to see, that the subwords

of length n
t

of w and v are the same, however the subwords of length n
t

+ 1

are not the same. We can get this from the bounds of Theorem 35 which are

u + 1 = dn−(t−2)·l+1
2

e = n
t

+ 1.

35

Chapter 4

Reconstruction of DNA-words

4.1 Motivation and notation

In this chapter we study another version of the reconstruction problem of words.

Let us recall the basic notation of 2.1 concerning the DNA-words:

Let A = {{α1, ᾱ1}; {α2, ᾱ2}; ...; {αq, ᾱq}} be an alphabet of q pairs of sym-

bols (called complement pairs), the finite sequences composed from A are called

DNA-words. Define ¯̄αi = αi; and for a DNA-word f = x1x2...xt over A let

f̃ = x̄tx̄t−1...x̄1 the reverse complement of f . Note that (̃f̃) = f . Since we want

to keep the basic properties of the structure of the DNA, and we need a gener-

alization of the ordinary subword-relation we identify every DNA-word with its

reverse complement. Let An denote the DNA-words of length n composed from

A considering this identification.

We will say that the DNA-word g precedes the DNA-word f or g is a substrand

of f (g ≺ f) if g is a subword of f or it is a subword of its reverse complement

f̃ . We suggest to the reader to keep the difference between the subword (≤) and

the substrand (≺) relations in mind in this section. Let S(m, f) denote the set

of all different DNA-words of length at most m, which precede f. Our main goal

in this chapter is to determine for a given n the smallest m such that for every

f ∈ An the set S(m, f) uniquely defines f , i.e. f can be reconstructed from its

m-deck.

36

4.1 Motivation and notation

The problem and definitions have molecular biological motivations, two po-

tential applications are Digital Velcro and DNA computing (for more details see

D’yachkov et al. [19]). DNA typically exists as paired, reverse-complementary

words or strands: the Watson-Crick double helix, with its four letters, A, C, G

and T paired via Ā = T and C̄ = G. Respective DNA-codes could involve the

insertion-deletion metric — with bounded similarity between two strands: the

length of the longest subword common either to the strands or common to one

strand and the reverse complement of the other.

Another common task is to decide fast and effectively whether a given DNA-

word (for example an erroneous gene, which causes illness) is present in the

sample. For that job microarrays are used: ten thousands of relatively short

DNA-words (called probes) are fixed on a glass sheet. The sample reacts with

the probes, and it is evaluated which probes bond material from the sample. See

Figure 4.1 as an illustration.

Figure 4.1: The bonding of a sample to a probe

On the figure we denote the probe with a black line and the sample with a

blue line, such that the loops which are the substrands not bonding to the probe

are denoted with dashed line. The blocks between two consecutive loops form a

substrand of the sample bonding to the probe.

We want to model this process with our definition. One can argue that the

physiochemical laws don’t allow that each substrand of the long DNA-word can

make the bond, but longer blocks are needed, and perhaps the number of blocks

are also bounded. While these are perfectly legitimate objections, we try to make

a step in that direction.

37

4.2 Main results

4.2 Main results

In this section we formulate our main results concerning the reconstruction of

DNA-words. Since the proofs of the main theorems are rather technical and

long, we present them in the following sections.

One can ask what is the difference between this and the original problems: here

we may have more substrands but we do not know that the individual subwords

belong to the DNA-word or to its reverse complement. This difference will be

very clear already if our alphabet consists of one letter and its complement.

Let’s consider the following example:

F′ = ā2k+ε ak and G′ = ā2k+ε−1 ak+1, (4.1)

where ε ∈ {0, 1, 2} and k ≥ 1 and (k, ε) 6= (1, 0). The length of both DNA-words

are 3k + ε. On the one hand the substrand ā2k+ε of F′ satisfies ā2k+ε 6≺ G′. On

the other hand it is easy to check that

S(2k + ε− 1, F′) = S(2k + ε− 1, G′).

This example suggests the following result:

Theorem 40 Every DNA-word f ∈ {a, ā}∗ of length at most 3m− 1 is uniquely

determined by its length and by the set

D′(f) := S(2m, f).

The proof of this result can be found in Section 4.4.

The next example shows that if our DNA-words contain letters from more

than one complement pairs then they are “easier” to determine. Consider the

following DNA-words:

F = ā2k+ε b̄ b ak and G = ā2k+ε−1 b̄ b ak+1, (4.2)

where ε ∈ {0, 1, 2} and k ≥ 1 and (k, ε) 6= (1, 0). The length of both DNA-words

are 3k + 2 + ε. On the one hand the substrand ā2k+ε of F satisfies ā2k+ε 6≺ G. On

the other hand it is easy to verify that

S(2k + ε− 1, F) = S(2k + ε− 1, G).

We have the following statement:

38

4.3 Easy consequences and preliminary results

Theorem 41 Every DNA-word f ∈ A∗ of length at most 3m + 1 (m > 1)

containing both (a or ā) and (b or b̄) is uniquely determined by its length and

by the set

D(f) := S(2m, f).

The examples abab and abba show that in case of m = 1 the statement is not

true. The proof of this result can be found in Section 4.5.

We recall that, due to our definitions, the expression “uniquely determined”

means “uniquely determined, up to reverse complementation”. The statement

deals with the case of ε = 2 in the examples.

4.3 Easy consequences and preliminary results

Applying the results in Section 4.2 we may derive some easy conclusions of them.

For example, in the case when our DNA-words contain letters from one comple-

ment pair only, one may formulate the following result:

Corollary 42 Every DNA-word f ∈ {a, ā}∗ of length at most n is uniquely de-

termined by its length and by the set S
(⌈

2(n+2)
3

⌉
, f
)

.

Proof: Let m be the smallest integer such that n ≤ 3m−1. Then
⌈

2(n+2)
3

⌉
≥ 2m

and Theorem 40 applies.

The situation is similar in the case of DNA-words containing letters from two

complement pairs:

Corollary 43 Every DNA-word f ∈ A∗ of length at most n containing both (a or

ā) and (b or b̄) is uniquely determined by its length and by the set S
(⌊

2(n+1)
3

⌋
, f
)

.

Proof: The statement is straightforward: let m be the smallest integer such

that n ≤ 3m + 1. Then
⌊

2(n+1)
3

⌋
≥ 2m, therefore Theorem 41 applies.

Let us recall the corresponding theorem for words:

Theorem 10 Every word w ∈ Σn
t is uniquely determined by its length and the

dn+1
2
e-deck consisting of its different subwords.

39

4.3 Easy consequences and preliminary results

It can be seen that Corollaries 42 and 43 are similar to Theorem 10. Indeed

these corollaries can be considered as the analogues of Theorem 10 for DNA-

words.

Perhaps the shortest proof of Theorem 10 is due to Sakarovitch and Simon

(see [40], pp. 119–120.). Since in 4.4 and in 4.5 we were influenced by this nice

proof, we present their proof here for a sake of completeness. They proved the

following analogue of Theorems 40 and 41, from which Theorem 10 follows:

Theorem 44 Every word w ∈ {a, b}∗ with at most 2m − 1 letters is uniquely

determined by its length and by the set of its different subwords of length at most

m.

Proof: Let us assume, to obtain a contradiction, that f and g are different

words in {a, b}∗ such that |f | = |g| ≤ 2m− 1 and let D denote the (common) set

of their different subwords of length at most m. We further define p = max{|s| :
s ∈ D ∩ a∗} and q = max{|s| : s ∈ D ∩ b∗}.

We can suppose that q ≤ p. Then clearly, |f |a ≥ p and |f |b ≥ q, hence

2q ≤ p+q ≤ |f |a+|f |b = |f | ≤ 2m−1. Since q is an integer it follows that q < m,

and this implies that |f |b = q. Thus, there exist integers i0, i1, ..., iq, j0, j1, ..., jq,

such that f = ai0bai1b...aiq−1baiq and g = aj0baj1b...ajq−1bajq .

As f 6= g by assumption, there exists a smallest k, such that ik 6= jk. W.l.o.g.

we can assume that ik < jk. Since |f | = |g|, il = jl for 0 ≤ l < k and ik < jk it

follows that jk+1 + ... + jq < ik+1 + ... + iq.

Let the words s and t be given by

s = ai0+i1+...+ik+1bq−k and t = bk+1ajk+1+...+jq+1.

Clearly, s is a subword of g but not of f and t is a subword of f but not of g. Hence,

due to the assumptions, it follows that |s|, |t| > m. Then i0+i1+...+ik+q−k ≥ m

and k +1+ jk+1 + ...+ jq ≥ m. Summing these two inequalities and recalling that

il = jl for 0 ≤ l < k, and that ik < jk we have j0 + j1 + ... + jq + q = |g| ≥ 2m, a

contradiction. Thus ik = jk for every k, i.e. f = g.

Previously we suspected that Corollaries 42 and 43 are not sharp and based on

the examples above we thought the truth is the following two general statements:

40

4.3 Easy consequences and preliminary results

• Each DNA-word of length at most 3m+ε containing only a or ā is uniquely

determined by its length and by the set S(2m + ε, f).

• Each DNA-word of length at most 3m + 2 + ε containing both (a or ā) and

(b or b̄) is uniquely determined by its length and by the set S(2m + ε, f).

As we mentioned above Theorem 40 and Theorem 41 are handling the case

ε = 2 in presence of one or two complement pairs, respectively. However one can

check it with simple calculations that in general case we cannot say better bound

than the ones in Corollaries 42 and 43. The case ε = 1 gives the same bound in

both cases, we can attain a slight (i.e. ”1“) improvements only in the case ε = 0.

The analogue of Corollary 42 is the following:

Remark 45 Every DNA-word f ∈ {a, ā}∗ of length n = 3m is uniquely deter-

mined by its length and by the set S
(⌈

2(n+1)
3

⌉
, f
)

.

The analogue of Corollary 43 is the following:

Remark 46 Every DNA-word f ∈ A∗ of length n = 3m + 2 containing both (a

or ā) and (b or b̄) is uniquely determined by its length and by the set S
(⌊

2n
3

⌋
, f
)
.

We will not prove both statements since they doesn’t seem too relevant, how-

ever in 4.4.2 as a part of the proof of Theorem 40 we will get Remark 45.

If our DNA-words are self-reverse-complementary, then we are back to the

original reconstruction problem of words :

Remark 47 Let the DNA-words f and g ∈ A∗ of length at most n be self-reverse-

complementary, that is f = f̃ and g = g̃. Now if S(dn+1
2
e, f) = S(dn+1

2
e, g) then

f = g.

Proof: If for the DNA-word w we have w ≺ f and f = f̃ , then w is a subword

of f and f̃ as well, i.e. w ≺ f if and only if w ≤ f = f̃ . Then we can apply

Theorem 10 for ordinary words, which proves the statement. 2

At the original reconstruction problem of words it was almost trivial, that if we

know the result for the binary alphabet, then we have an answer at once for the

case of k-element alphabets as well. The situation here is similar but the proof

requires some work:

41

4.3 Easy consequences and preliminary results

Theorem 48 Theorem 41 remains valid if the DNA-word f contains letters from

k ≥ 2 different complement pairs.

Proof: We use induction on the number k of different complement pairs present.

The case of two pairs present is Theorem 41. Assume that the statement is valid

for case of k − 1 different pairs present. Let f and g be DNA-words with length

|f | = |g| ≤ 3m + 1, and in both DNA-words there are k different complement

pairs present. The alphabet is {{a1, ā1}, ..., {ak, āk}}. Let A1,2, Ā1,2 be a new pair

of complement letters, and f1,2 be the DNA-word derived from f by identifying all

occurrences of a1 and a2 with A1,2 and all occurrences of ā1 and ā2 with Ā1,2. The

DNA-word g1,2 is derived similarly. The new DNA-words contain letters from k−1

different pairs and D(f1,2) = D(g1,2). The induction hypothesis gives that f1,2 =

g1,2 (maybe we have to exchange the names of g1,2 and g̃1,2). Furthermore, for the

substrands f ∗1,2 and g∗1,2 consisting of all occurrences of the letters {a1, ā1, a2, ā2}
we have D(f ∗1,2) = D(g∗1,2) therefore we can apply Theorem 41, hence we have

f ∗1,2 = g∗1,2 or f ∗1,2 = g̃∗1,2.

In case of f ∗1,2 = g∗1,2 interleaving f1,2 and f ∗1,2 we can determine f which is

identical to g. In case of (f1,2 = g̃1,2 and f ∗1,2 = g̃∗1,2) we can proceed similarly.

However, it can happen that

f1,2 = g1,2 but f1,2 6= g̃1,2 while (4.3)

f ∗1,2 6= g∗1,2 but f ∗1,2 = g̃∗1,2. (4.4)

The value |f ∗1,2| cannot be odd, since otherwise f1,2(
|f∗1,2|+1

2
) = g1,2(

|g∗1,2|+1

2
),

therefore f ∗1,2 = g̃∗1,2 cannot occur. So let |f ∗1,2| = ` be even. From Condition (4.4)

it follows that there is an index j ≤ `/2 such that, say, f ∗1,2(j) = a1, g∗1,2(j) = a2,

while f ∗1,2(`+1− j) = ā2 and g∗1,2(`+1− j) = ā1. From Condition (4.3) it follows

that there is a subscript i ≤ (3m + 1)/2 such that, say, f1,2(i) = a3 (therefore

g1,2(i) = a3 also holds) while g1,2(3m + 2− i) = b where b 6= ā3. If b ∈ {a1, ..., ak}
then introducing the new letters B1, B̄1, B2, B̄2, substitute all occurrences of a1

and a3 with B1, all occurrences of ā1, ā3 with B̄1, all occurrences of the letters

a2, a4, ..., ak with B2, finally all occurrences of the letters ā2, ā4, ..., āk with B̄2 in

the original DNA-words. The result is the DNA-words fB and gB which satisfy

the conditions of Theorem 41 while clearly fB 6= gB and fB 6= g̃B, a contradiction.

42

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

If, however, b ∈ {ā1, ā2, ā4, ..., āk} then we may define a bipartition of the

alphabet, where letters b and a3 belong to different classes, and letters a1 and a2

belong also to different classes. Then substitute all occurrences of the letters from

the first class of the bipartition with C1, C̄1 and the letters from the second class

with C2, C̄2, respectively. The new DNA-words clearly satisfy the conditions of

Theorem 41, however the consequence of Theorem 41 does not hold.

This proof suggests that the existence of letters from more complement pairs

decreases the necessary substrand length in the result.

Because our approach does not work for very short DNA-words, therefore we

need the following help:

Remark 49 Theorems 40 and 41 were tested by a computer program for short

DNA-words (these are where |f | ≤ 15 and if |f | ≤ 18 and their structures are

very special) and were found valid. Therefore in the proofs we can deal with long

enough DNA-words only. That is important where our reasoning works above a

(usually very small) bound.

In the next two sections we prove our main results concerning the reconstruction

of DNA-words. The general approach used is similar to the one in the proof of

Theorem 48: find a subword of the DNA-word under investigation which dis-

tinguishes the DNA-word and its reverse complement from each other. Such a

substrand in hand can identify the DNA-word itself. The greater the similarity

between the DNA-word and its reverse complement, the harder to find such a

substrand but, in exchange for this difficulty, we know more about the structure

of the DNA-word.

4.4 The proof of Theorem 40 for DNA-words

composed of one complement pair

Assume that f and g are DNA-words in {a, ā}∗ of the same length such that

|f | = |g| ≤ 3m− 1 and D′(f) = D′(g) = D′.

43

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

Due to Remark 47 we may assume that f is not-self reverse complementary.

Denote by A(w) the number of a’s in the DNA-word w, and define Ā(w) analo-

gously. W.l.o.g. we may assume that both DNA-words f and g are written in the

form where A(f) ≥ Ā(f) and A(g) ≥ Ā(g). At first assume that A(f) > A(g),

which also means that Ā(f) < Ā(g). If A(f) > 2m then take an arbitrary sub-

strand g′ of g such that A(g′), Ā(g′) ≥ Ā(f)+1. It is clear that g′ 6≺ f. If, instead,

A(f) ≤ 2m then take the substrand f ′ of f containing A(g)+1 a’s. It is also clear

that f ′ 6≺ g and that |f ′|, |g′| ≤ 2m, which constitutes a contradiction. Therefore

from now on in this proof we assume that we have

A := A(f) = A(g) and Ā := Ā(f) = Ā(g). (4.5)

Before we continue we recall one more notion: a DNA-word contains a run of

length k when it contains k consecutive copies of a certain letter.

4.4.1 The case Ā < A

In this case we know that f 6= f̃ and g 6= g̃, and each substrand of f or g con-

taining at least Ā+1 a’s shows these inequalities. All substrands from S(2m, f),

containing at least Ā + 1 a’s, are substrands of g, because they cannot be sub-

strands of g̃ — and similarly for the substrands from S(2m, g) the analogous

statement holds.

Our DNA-words f and g can be written in the following form:

f := aI0 ā aI1 ā....ā aIs and g := aJ0 ā aJ1 ā....ā aJs

where s = Ā, and any Il or Jl can be zero. If f 6= g then the subset

L :=
{

l ∈ {0, ..., s} | Il 6= Jl

}
has at least two elements. W.l.o.g. we may assume that I` = min{Il, Jl : l ∈
L}, i.e. f contains a shortest run — of those indexed by L. Then consider the

substrand g′ of g containing all ā’s, in the `th run of a’s containing at least I` +1

a’s, finally it may contain other copies of a’s so that altogether there are at least

Ā+1 a’s. Then, due to the definition, g′ is not a substrand of f, furthermore, by

44

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

the number of a’s, it is also clear that g̃′ is also not a substrand of f. We know

that

|g′| ≤ max

{(⌈
A

2

⌉
− 1

)
+ 1 + Ā, 2Ā + 1

}
,

since the left argument of the maximum includes, within its parentheses, the

largest possible value for Ik. If |g′| ≤ 2Ā + 1 ≤ 2m holds, then there is a con-

tradiction. Therefore this method shows that D′(f) and D′(g) must be different

while Ā + 1 ≤ m. Continuing the proof from now on (in this section) we assume

that

Ā > m− 1. (4.6)

Hence, in this case

A = 3m− 1− Ā ≤ 2m− 1. (4.7)

Denote by f̄(a, `) the substrand of f containing all a’s and the `th of ā’s.

By our assumptions these are substrands of g, but, as we have just seen, not

substrands of g̃. Therefore both f and g can be written in the following forms:

f = ar0 ās1ar1 ās2 ...āstart and g = ar0 āz1ar1 āz2 ...āztart , (4.8)

where r0 or rt can be zero, while r1, ..., rt−1 and all si and zi are non-zero.

Now we are going to show that for all i we also have si = zi (which, of course,

implies that f = g).

Let F ∈ {x, y}∗ be an arbitrary word and assume it is written in the form

F = xr0ys1xr1ys2ystxrt , (4.9)

where the runs are not empty (except, possibly, the very first and last). That is

r0, rt ≥ 0 and all other superscripts > 0.

Definition 50 Let F ∈ {x, y}∗. A subword W of F is well recognizable for the

pair x, y, or shortly well recognizable if one can reconstruct exactly which letter

of W comes from which x- or y-runs of F.

Note that reverse complementation is not taken into consideration now. Generally

we will ensure separately that the well recognizable subword’s reverse complement

is not a subword of the original. It is clear that if the subword W ′ of F contains

45

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

W as a subword, then W ′ is also well recognizable. The subword F1 containing

one letter from each run is clearly well recognizable. Even better, if r0 and rt are

both non-zero (or, oppositely, both zero), then the reverse complement of this

subword is automatically not a subword of F. But when F has a big number of

runs (say each run consists of one letter), then one can find much shorter well

recognizable subwords.

Lemma 51 Let W (F) be the subword of F defined as follows:

(I) W (F) retains at least one x from each x-run.

(II) If r0 or rt > 1 then W (F) contains one x from the respective run and one y

from the neighboring y-run.

(III)From all other x-runs with precisely two letters, let W (F) contain both.

(IV) From all other x-runs with at least three letters W (F) contains one x from

the run and one y from both adjacent runs.

(En1) If between two previously chosen y’s there are only two-letter x-runs, keep

one x from each of these runs and take one element from each in-between y-run.

(En2) From every run of y’s, remove all but one.

Then the resulting W (F) is a well recognizable subword of F for the pair x, y.

2

(The two last procedures make enhancement of the already constructed well

recognizable subwords, that gives their different kind of names.) Lemma 51 may

be thought of as an algorithm, whose six steps are applied sequentially in a single

pass. Thus, its validity is evident. Let’s remark that without operation (En1)

the subword W (F) would be still a well recognizable subword, but this operation

decreases the number of letters with one with its every application. Note that

W (F) never has more letters than the total number of runs in f and it is never

shorter than the number of x-runs. However, this construction is sensible for

one-letter runs and in their presence it produces well recognizable subwords with

fewer letters than the total number of runs.

Note also that any well recognizable subword of f in condition (4.8) is also a

well recognizable subword of g.

46

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

Assume now that f 6= g, that is the series s1, ..., st and z1, ..., zt are different.

Then the set

L :=
{

l ∈ {1, ..., t} s. t. sl 6= zl

}
has at least two elements, since the total number of ā’s are the same in both of

our DNA-words. W.l.o.g. we may assume that z` = min{sl, zl : l ∈ L}. At first

take the substrand f1 of f containing all its a’s and z` +1 ā’s from the `th ā-run:

f = ar0 ās1ar1 . . . ās` . . . āstart

↓ ↓ . . . ↓ . . . ↓
f1 = ar0+ ... +r`−1 āz`+1ar`+ ... +rt .

This DNA-word is clearly a well recognizable one, and, due to A > Ā, its reverse

complement is not a subword of f or g. Therefore, if A + z` + 1 ≤ 2m, then

f1 ∈ D′(f) but f1 6∈ D′(g), a contradiction.

If, however, this is not the case, then |f1| = 2m + α and

A = 2m + α− (z` + 1); (4.10)

Ā = 3m− 1− A = m− α + z`

where α ≥ 1. By the minimality of z` there is another ā-run in f with at least z`

elements. Therefore there are at most

t ≤ 2 + Ā− (2z` + 1) = m + 1− (z` + α) (4.11)

ā-runs in the DNA-word f, and there is at most one more: that is, at most

m + 2− (z` + α) a-runs in f.

Recall that the substrand f1 is not in D′(f) because it has α extra letters and

z` ≥ α ≥ 1 (viz. (4.10)).

Assume at first that r0, rt > 0. Then consider the subword f2 of the DNA-

word f containing one letter from each run except the `th ā-run, which contains

z` + 1 ā’s:

f = ar0 ās1ar1 . . . ās` . . . āstart

↓ ↓ ↓ . . . ↓ . . . ↓ ↓
f2 = a ā a . . . āz`+1 . . . ā a.

47

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

This DNA-word is well recognizable, and f̃2 is not a subword of f or g because

there are not enough ā-runs in them. Furthermore, f2 is also clearly not a subword

of g, since in the `-th ā-run there are too many letters. Due to (4.11) we know

that

|f2| ≤ 1 + 2t + z` ≤ 1 + 2[m + 1− (z` + α)] + z` = 2m + 3− 2α− z` ≤ 2m,

since z` ≥ α ≥ 1. Therefore f2 ∈ D′(f) but f2 6∈ D′(g), a contradiction.

If r0 = rt = 0 then we can repeat the previous reasoning since f̃2 is not a

subword of f or g because there are not enough a-runs in them. If, say, r0 > 0

and rt = 0, then we cannot rule out that the reverse complement of f2 is a

subword of g. In this case there are precisely t (≤ m + 1− (z` + α)) a-runs in f.

We construct the subword f3 of f as follows: it contains one letter from each run

except the `th ā-run, which contains z` + 1 ā’s. Then f3 looks like f2 but it has

one less elements, due to rt = 0. It is a well recognizable subword of f but not a

subword of g. Its length is

|f3| = 2t + z` < |f2|

therefore also f3 ∈ D′(f). In general it would yield a contradiction, but if rt−` > z`

then it still can happen that f̃3 is a subword of g. But then let f4 be constructed

from f3 by adding z` more a letters to the (t− z`)th a-run.

f = ar0 ās1ar1 . . . ās` . . . ast−z` . . . ārt−1ast

↓ ↓ ↓ . . . ↓ . . . ↓ ↓ ↓
f4 = a ā a . . . āz`+1 . . . az`+1 . . . ā a.

This f4 is clearly a subword of f but not a subword of g or g̃. Finally

|f4| = |f3|+ z` ≤ 2m + 2− 2α ≤ 2m.

Therefore f4 ∈ D′(f) but 6∈ D′(g), a contradiction. The case Ā < A is proved.

4.4.2 The case Ā = A

In this case we can prove a slightly stronger version of Theorem 40: we can

suppose that |f | ≤ 3m. Remember that this is the assumption of Remark 45

which will proven here at the same time.

48

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

Now |f | = |g| is even, i.e. m = 2k and the two DNA-words are of the form

f = ar0 ās1ar1 ās2āstart and g = aR0 āz1aR1 āz2āzT aRT , (4.12)

where r0 + · · · + rt = s1 + · · · + st = R0 + · · · + RT = z1 + · · · + zT = A = 3k

and at least one from r0, rt and at least one from R0, RT is positive, otherwise we

exchange the name of f and f̃ , and similarly for g as well. Now w.l.o.g. we may

assume that r0 > 0. Then in g we have R0 > 0. Indeed, otherwise the subword

aāA of f does not precede g (since there are not enough ā’s after the first a in g,

and not enough a’s before the last ā in g̃).

If rt > 0 also holds then consider the substrand f1 = āAa. If 3k + 1 ≤ 4k

then f1 ∈ D′(f) but f̃1 is not a subword of g, since there are not enough a’s

after the first ā in g. Therefore f1 itself is a subword of g and we have RT > 0,

otherwise there are not enough ā’s before the last a in g. It also means that f1 is

a well recognizable subword of f and g as well. Therefore rt = 0⇔ RT = 0. (If,

however, |f | ≤ 4, then Remark 49 finishes the proof.)

Assume at first that

rt, RT > 0. (4.13)

Denote by Fi the subword of f derived from f1 by inserting one a from the ith

a-run. If A ≥ 6 then Fi ∈ D′(f). These DNA-words together, for all i, describe

the length of the ā-runs in f and all those runs are the complete union of some

consecutive ā-runs in g. Repeating the process with g, yielding Gi’s, we have

the similar correspondence between the ā-runs of f and g. Therefore the ā-run

structure of f and g are identical: t = T, and si = zi for i = 1, ..., t. (If A ≤ 5

then Remark 49 finishes the proof.) Therefore our DNA-words are of the form

f = ar0 ās1ar1 ās2āstart and g = aR0 ās1aR1 āz2āstaRt . (4.14)

Assume now that f 6= g, that is the series r0, ..., rt and R0, ..., Rt are different.

Then the set

L :=
{

l ∈ {0, ..., t} such that rl 6= Rl

}
has at least two elements, since the total number of a’s is A in both DNA-words.

W.l.o.g. we may assume that R` = min{rl, Rl : l ∈ L}. Consider the subword

f2 = ās1+...+s`aR`+1ās`+1+...+sta of f This is clearly a subword neither of g nor of

49

4.4 The proof of Theorem 40 for DNA-words composed of one
complement pair

g̃. Therefore A + R` + 2 > 4k, implying that R` ≥ k − 1. Due to the selection

procedure for R` there is another a-run in f of length at least R`. Then all the

other a-runs in f altogether contain at most 3k − (2R` + 1) letters, hence the

numbers of ā-runs are limited: t ≤ 3k−2R`. Let the subword f3 contain one letter

from each different run in f, and contain R` more letters from the `th a-run. This

DNA-word has at most 2(3k−2R`)+1+R` = 6k−3R` +1 ≤ 3k+4 letters (here

we used R` ≥ k − 1). Since f3 is a substrand of f but does not precede g this is

a contradiction (unless k ≤ 2, when |f | ≤ 12 and Remark 49 applies; or k = 3

and the length of DNA-word f ’s a-runs are 3, 2, 1, 1, 1, 1 which allows again the

use of Remark 49), proving Theorem 40 for this case.

From now on we assume that (4.13) does not hold: that is we have

rt = RT = 0. (4.15)

(Let’s recall that at that point we do not know whether the number of runs

in f and g are equal or different.) Let f(a; i) denote the subword of f containing

all its a’s and, furthermore, one ā from the ith ā-run of f for i = 1, ..., t.

f = ar0 ās1ar1 . . . āsi . . . ārt−1ast

↓ ↓ . . . ↓ . . . ↓
f(a; i) = ar0+ ... +ri−1 āari+ ... +rt−1 .

Claim 52 Every f(a; i) is a subword of g or every f(a; i) is a subword of g̃ or

both hold.

Proof: Indeed, if every f(a; i) is a subword of both DNA-words then there is

nothing to prove. Therefore assume that there is an index i such that f(a; i) is a

subword of g but not of g̃. Then for all indices l 6= i the substrand f(a; l) is also

a subword of g. Indeed, if there is an index l, such that the substrand f(a; l) was

a subword of g̃ but not of g, then consider the analogous subword f(a; i, l) of f,

containing altogether A + 2 letters (all a’s and one letter from the ith and one

from the lth ā-run). This would not be a subword either of g or g̃, a contradiction,

if A ≥ 6 (if A < 6 then Remark 49 applies). The Claim is proved. 2

Therefore we may assume that all f(a; i) are subwords of g; therefore t ≤ T,

and one can make t groups g∗1, ..., g
∗
t of consecutive a-runs in g such that the

50

4.5 The proof of Theorem 41 for DNA-words composed of two
complement pairs

total length of a-runs within g∗j is equal to sj. Repeat the whole process for the

subwords g(a; i). It still can happen, that we must substitute f̃ for f, but due to

(4.15) this already implies that

t = T. (4.16)

But from this equation it also follows that each g(a; i) is a subword of f,

since they are just the image in g of the subwords f(a; i). Therefore we also have

ri = Ri for all i.

Repeat the whole process now for the analogous subwords f(ā; i) of f. What

we get is (
si = zi for all i

)
or

(
si = Rt−i for all i

)
.

In the first case we are done. Assume to the contrary that this is not the case.

Then the second relation series holds. But repeating again the whole process for

the analogous subwords g(ā, i) then we get that zi = rt−i for all i, but since we

have ri = Ri these imply that si = zi for all i. This contradicts our assumption

and Theorem 40 is proved.

4.5 The proof of Theorem 41 for DNA-words

composed of two complement pairs

In this section, for the sake of simplicity, we will use the notation â for both a

and ā and b̂ for both b and b̄, when we don’t care about the actual value of â or

b̂. With this notation every DNA-word of A∗ can be considered as a DNA-word

from {â, b̂}∗ Assume that f and g are DNA-words in A∗ of the same length such

that

|f | = |g| ≤ 3m + 1 and D(f) = D(g) = D. (4.17)

Without loss of generality we also may assume, due to Remark 47, that at least

one of the two DNA-words, say g, is not self-reverse complementary. Furthermore

let

p = max
{
|s| : s ∈ D ∩ â∗

}
and q = max

{
|s| : s ∈ D ∩ b̂∗

}
.

51

4.5 The proof of Theorem 41 for DNA-words composed of two
complement pairs

W.l.o.g. we can assume that q ≤ p. Let f(a) denote the substrand of f

consisting of all â’s. The notations f(b), g(a), g(b) are analogous. Then, by

definition, |f(a)| ≥ p and |f(b)| ≥ q, hence

2q ≤ p + q ≤ |f(a)|+ |f(b)| = |f | ≤ 3m + 1,

consequently q ≤ 3m+1
2

< 2m if 1 < m. This implies that |f(b)| = |g(b)| = q. It

also implies that |f(a)| = |g(a)| holds. We remark that |f(a)| can be bigger than

p. (Note that if q is odd, then the substrands containing all b̂’s are different from

their reverse complements.)

Due to these properties there exist non-negative integers t, T ; i0, ..., it; r1, ..., rt;

j0, ..., jT ; and R1, ..., RT such that

f = âi0 b̂r1 âi1 ...b̂rt âit and g = âj0 b̂R1 âj1 ...b̂RT âjT , (4.18)

where t 6= T can happen and where i0, it, j0, jT can be zero, while all other

superscripts are nonnegative integers, furthermore i0+...+it = j0+...+jT = |f(a)|
and r1 + · · · + rt = R1 + · · · + RT = |f(b)|. Since q ≤ 2m, the substrands f(b)

and g(b) belong to S(2m, f) = D; therefore f(b) = g(b) or f(b) = g̃(b), or both.

Let’s remark that we have our general form (4.9) with letters â and b̂; therefore

Lemma 51 applies for these DNA-words.

For two DNA-words w and u denote by w ' u that w ≺ u and u ≺ w. The

following observation will be useful later.

Lemma 53 Let f and g DNA-words of form(4.18). Assume that T = t, ik = jk

for k = 0, ..., t and rl = Rl for l = 1, .., t, furthermore f(a) ' g(a) and f(b) '
g(b). Then f ' g.

Proof: Suppose to the contrary that f 6= g and f 6= g̃. We can obtain f by

interleaving the runs of f(a) and f(b). Since f 6= g it easy to see that we must

get g from the runs of f̃(a) and f(b). If at least one of f(a) or f(b) is self-reverse

complementary, then we get f = g̃ or f = g, a contradiction. Suppose now that

f(a) 6= f̃(a) and f(b) 6= f̃(b). Then due to Theorem 10 there exists a subword a∗,

of length at most d(|f(a)| + 1)/2e, such that, say, a∗ ≤ f(a), but a∗ � f̃(a). We

get b∗ of length at most d(|f(b)|+ 1)/2e similarly. Now let f∗ be the DNA-word

52

4.5 The proof of Theorem 41 for DNA-words composed of two
complement pairs

made by interleaving a∗ and b∗. Clearly f∗ ≺ f but f∗ ⊀ g. Hence if |f | > 7, then

|f∗| ≤ d(|f(a)|+ 1)/2e+ d(|f(b)|+ 1)/2e = d(f + 2)/2e = d(3m + 3)/2e ≤ 2m, a

contradiction. (The cases |f | ≤ 7 are covered by Remark 49.) 2

In the sequel we are going to show that the conditions of Lemma 53 hold.

At first we show that the run structures in f(b) and in at least one of g(b) and

g̃(b) are identical. Denote by f(b; `) the substrand consisting of all its b̂’s and one

letter from the `th â-run:

f = âi0 b̂r1 âi1 . . . âi` . . . b̂rt âit

↓ . . . ↓ . . . ↓
f(b; `) = b̂r1+ ... +ri−1 âb̂ri+ ... +rt .

Since |f(b; `)| ≤ 2m, 1 < m, this belongs to D(f) = D(g).

Claim 54 Every f(b; `) is a subword of g or every f(b; `) is a subword of g̃ or

both hold.

Proof: Indeed, if every f(b; `) is a subword of both DNA-words then there is

nothing to prove. Therefore assume that for a particular k the DNA-word f(b; k)

is a subword of, say, g but not of g̃. Then for all ` the DNA-words f(b; `) are

subwords of g as well. Indeed, if there is a j 6= k such that f(b; j) is a subword of g̃

but not of g, then the f -subword f(b; k, j), defined analogously, is not a subword

of either g nor of g̃.

Because |f(b; k, j)| ≤ (3m + 1)/2 + 2, this yields a contradiction for 5 ≤ m.

(The cases m ≤ 5 are covered by Remark 49.) The Claim is proved. 2

So we can assume that every f(b; `) is a subword of, say, g. Therefore t ≤ T

and one can make t groups g∗1, ..., g
∗
t of consecutive b̂-runs in g such that the total

length of the b̂-runs within g∗j is equal to rj. Repeat the whole process for the

subwords g(a; i). It still can happen, that we had to substitute f̃ for f, but this

already implies that t = T. But from this equation it also follows that each g(a; `)

can be chosen to be a subword of f, since, as we know, the subwords f(a; i) can

be found in g. Therefore we also have ri = Ri for all i and

f = âi0 b̂r1 âi1 ...b̂rt âit and g = âj0 b̂r1 âj1 ...b̂rt âjt (4.19)

53

4.5 The proof of Theorem 41 for DNA-words composed of two
complement pairs

where the b̂-runs with the same superscripts are identical. Furthermore, we also

know that the number of non-empty â-runs in f and g are equal as well. Indeed,

if the multiset {i0, ir} has no fewer non-zero elements than the multiset {j0, jr}
then the DNA-word containing one â from the nonempty runs indexed by the first

multiset and f(b) establishes this relation. Therefore the number of non-empty

â-runs in f and g are the same, say r′, equal to t− 1, t or t + 1.

It remains to prove that f(a) ' g(a) and g can be written in form that ik = jk

for all possible k. (Remark that if one must interchange g and g̃ then we will show

that in that case f(b) = f̃(b).)

4.5.1 The case q = 1

We start with the special case q = 1. Now w.l.o.g. we may assume that both

DNA-words are written in form where b̂ = b (otherwise we can take the reverse

complement form of the DNA-word). Now any substrand of f containing the

letter b should be contained in g in its original form because changing the sub-

strand into its reverse complement would change b into b̄. Since |f(a)| = |g(a)|,
i0 + i1 = j0 + j1.

If the multisets {{i0, i1}} and {{j0, j1}} were different, then there would exist

a unique smallest element within them, say, the i1 : we have i0 > j0, j1 > i1. Take

a subword u of g of the form

u = bâi1+1.

This subword clearly does not precede f (there are not enough â’s after b in

the DNA-word f). Since |u| ≤ (3m+1)/2 ≤ 2m, 1 < m, therefore D(f) 6= D(g),

a contradiction. The ordered pairs (i0, i1) and (j0, j1) coincide. Denote by f0 the

longest simple subword of f finishing with b, and by f1 the longest subword of

f starting with b. The definitions of g0 and g1 are similar. Now f0 and g0 are

DNA-words of the same length, and all their substrands of length ≤ 2m, ending

with b coincide as well. Denote by f ∗0 and g∗0 the same DNA-words without their

b terminus. Then we know that all subwords of length d(|f ∗0 |+1)/2e of f ∗0 and g∗0

are the same above the alphabet a, ā, in the simple subword relation. Application

of Theorem 10 gives that f ∗0 = g∗0 in the original ordering. Furthermore, the same

applies for f ∗1 and g∗1, therefore we have proven that f = g.

54

4.5 The proof of Theorem 41 for DNA-words composed of two
complement pairs

From now on we assume that 1 < q ≤ (3m+1)/2. Therefore |f(a)| = 3m+1−q ≤
3m− 1. Now considering the elements âk ∈ D and applying Theorem 40 we get

that

f(a) ' g(a).

Our only remaining goal is to prove that the â-structure of the DNA-words

are the same, i.e. ik = jk for all k. We will examine two cases concerning the size

of q.

4.5.2 The case 1 < q ≤ m + 1

Lemma 55 If 1 < q ≤ m + 1 and there are two indices ` ∈ {0, ..., t} for which

q + i` > 2m, (4.20)

then we have t = 2, q = m + 1, i0 = i1 = j0 = j1 = m.

Proof: Indeed, if q ≤ m and if there are two distinct indices k 6= l satisfying

(4.20) then

q + il + q + ik ≥ 2m + 1 + 2m + 1,

therefore

q + il + ik ≥ 4m + 2− q ≥ 3m + 2 > |f |,

a contradiction.

If, however, q = m + 1 and i0 = i1 = m then j0 = j1 as well. Otherwise we

would have, say, j0 < i1 < j1. Then a g-substrand consisting of one letter from

the middle b̂-run, and i1 +1 letters from the j1-run is clearly shorter than 2m but

does not precede f, a contradiction. Let’s remark that in this case Lemma 53 is

applicable directly, and Theorem 41 is proved. 2

If there is precisely one index ` satisfying (4.20), then the corresponding run

will be called a long run, while the other runs are called short. Denote by f ∗(b; k)

the f -substrand consisting of all its b̂’s and the complete kth â-run. For short

runs the length of these substrands is at most 2m, therefore these belong to

D(f) = D(g). Assume for a moment that f(b) = g(b) 6= g̃(b). Then f ∗(b; k) is not

a subword of g̃ for any short run, therefore we can find equality of the lengths of

55

4.5 The proof of Theorem 41 for DNA-words composed of two
complement pairs

the short runs, i.e. ik = jk for short runs. Furthermore, because of Lemma 55 (i)

there is only one â-run (the `-th), whose length can not be ascertained from the

substrands, but then |i`| = (3m+1− q)−
∑
k 6=`

|ik| = (3m+1− q)−
∑
k 6=`

|jk| = |j`|,

which completes the proof in this case. Therefore from now on we assume that

f(b) = g(b) = g̃(b)

holds as well.

Now we analyze two cases based on the presence of a long run.

Case 1: Assume at first that there is a long run in the DNA-word f and this

is the `th one. Then g also has at least one long run. Indeed, let u1 denote

an (2m − q)-letter substrand of the long run. Then the f -substrand f(b) ∪ u1

belongs to D(g), and the image of u1 is contained in a long â-run of g. However, g

cannot contain two long runs, otherwise Lemma 55 would apply, a contradiction.

Therefore g contains exactly one long run and we may assume that f and g

contain their respective long runs at the same index `. Let’s assume now that

` 6= t − `. Then denote f ∗` the substrand containing everything except the `th

and (t− `)th â-runs. This has at most 2m letters, and therefore belongs to D(f):

that is it precedes the analogously defined g-substrand g∗` . Similarly g∗` precedes

f ∗` . Consequently we know that f ∗` ' g∗` . That can mean that (a) f ∗` = g∗` or (b)

f ∗` = g̃∗` or both. But all three possibilities show us that i` + it−` = j` + jt−`. If

(b) does not hold then there is a k 6= `, t− ` such that f̃(b; k) is not a subword of

g(b; t− k). But since it−k 6= 0 therefore the substrand f(b; k, t− `) (it consists of

all b̂’s and one element of the kth and one element of the (t − `)th â-runs each)

which is not longer than 2m, is a substrand of g(b; k, t− `), and vice versa, which

shows that Lemma 53 is applicable. If, however, (b) holds but (a) does not, then

there is a k such that f(b; k) is not a substrand of g(b; k). Then let u denote an

2m − q − ik element substrand of the long run in f. Let f ′ be the DNA-word

consisting of u and f(b; k). This is not a subword of g but also not a subword of

g̃(b; t− k, t− `) unless q is very close to m and jt−` is also close to m. But then

we have a small run-number r and then there is a well recognizable subword of

f with at most 2r + 1 letters and repeating the previous reasoning we get the

contradiction.

56

4.5 The proof of Theorem 41 for DNA-words composed of two
complement pairs

We came now to the case when ` = t− ` and t is odd. But then if f ∗` has at

most 2m letters, which allows us to show as before that f ∗` ' g∗` , and then we can

apply Lemma 53 again. If this is not the case then we have q = m+1 and i` = m.

If we have at least four non-empty â-runs then for all k 6= ` we have f(b; k, t−k) '
g(b; k, t−k), showing that i` = j`. Furthermore, it is impossible, as usual, that for

k1, k2 we have f(b; k1, t−k1) = g(b; k1, t−k1) while f(b; k2, t−k2) = g(b; k2, t−k2).

(We can use the previous technique again.) So Lemma 53 is applicable again.

Case 2: Next suppose that there is no long run. Then all f(b; k) ∈ D(f) = D(g).

Assume that for all k the substrand f(b; k, t− k) has length ≤ 2m. Then for all

k we have f(b; k, t− k) ' g(b; k, t− k). Even more, as usual, we can show that if

there is a k such that f(b; k, t− k) is equal to g(b; k, t− k) but not to its reverse

complement, then for all other l 6= k we also have f(b; l, t − l) = g(b; l, t − l).

Indeed, if this is not the case then there is a substrand f1 of f(b; k, t− k) with at

most d(ik +it−k)/2e letters from its â-runs showing that f(b; l, t− l) 6= g̃(b; l, t− l).

Similarly, there is a substrand f2 of f(b; l, t− l) with at most d(il + it−l)/2e letters

from its â-runs showing that f(b; l, t − l) 6= g(b; l, t − l). Putting together these

two substrands we get a DNA-word from D(f) which does not belong to D(g),

a contradiction, except if q = m + 1 and both â-run pairs contain exactly m− 1

letters, where m is odd. But again, then we can find a well recognizable DNA-

word with ten letters, and repeating the whole process we are done.

So what remains is that we have an ` such that q + i` + it−` > 2m. Then

for all other k 6= `, t − ` we have f(b; k, t − k) ' g(b; k, t − k). (Otherwise again

we have four non-empty â-runs, and finding a well recognizable DNA-word with

eight letters finishes the proof.) Now again we can show that, say, f(b; k, t − k)

is equal to g(b; k, t− k). Of course, we also get from it that i` + it−` = j` + jt−`.

Then the multisets {i`, it−`} and {j`, jt−`} are the same. Otherwise there would

be a clear maximum, say i` and then f(b; i`) does not precede g, a contradiction.

So we are done except if i` = jt−` 6= j` = it−`. But then if for all k 6= `, t − ` we

have f(b; k, t−k) = g̃(b; k, t−k) then we can apply Lemma 53 getting that f = g̃

or there is a k which does not satisfy this. But then, as usual, we can construct

a substrand of f with d(ik + it−k)/2e+ d(i` + it−`)/2e letters from the respective

â-runs which does not precede g, a contradiction; except if again those four runs

57

4.6 Open problems

contain all the â’s. But then again we can construct a well recognizable DNA-

word of length at most, say, 10, repeating the reasoning. So the case 1 < q ≤ m+1

is solved.

4.5.3 The case q > m + 1

In this case we have p = |f(a)| ≤ 2m− 1. Therefore any substrand fk consisting

of f(a) and an arbitrary letter from the kth b̂-run belongs to D(f). If f(a) 6= f̃(a)

then it also means that for all k the substrand fk is a subword of g, therefore for

all k we have ik = jk. Lemma 53 finishes the proof.

So we may assume that f(a) = f̃(a). Suppose that there is a k such that fk

is a subword of g but not of g̃. Assume furthermore that there is an ` such that

f` is a subword of g̃ but not of g. (If this second substrand does not exist then

we already have that the lengths of the â-runs in f and g are identical.) Let

fk,` denote the union of the former two subwords, then it is a subword of f but

not a subword either of g nor of g̃. If q > m + 2 then fk,` ∈ D(f) therefore it

is a contradiction and we are done. But q = m + 2 can not be true, otherwise

p = 2m − 1 would hold, therefore f(a) 6= f̃(a), a contradiction. Theorem 41 is

fully proved.

4.6 Open problems

Problem 56 Reconstruction from the k-deck of the multiset of substrands.

As we seen in the Introduction, in the case of reconstruction problem of words

the exact bounds for multiset-reconstruction are still unknown. One can ask the

similar question for DNA-words as well. However, it seems less relevant from the

practical point of view, it is rather a problem of theoretical mathematics than of

applied mathematics or bioinformatics.

Furthermore one idiosyncrasy of the substrand relation (i.e. the identification

of every DNA-word with its reverse complement) complicate the problem, since

to handle the multiplicities of the substrands becomes a nontrivial problem.

58

4.6 Open problems

Problem 57 Finding a polynomial (or being optimistical, a linear) algorithm.

Although, we use the terminology ”reconstruction“, the results of this chapter

tell when a DNA-word is uniquely determined by its substrands. Though our

method contains a few algorithmic elements, a fast polynomial algorithm for

reconstruction of DNA-words will be most welcome as well.

Problem 58 Approximate the mathematical model to the real world.

Let us recall Figure 4.1 to illustrate this problem:

As we mentioned above, the physiochemical laws of the DNA double-helix

make restrictions to the length and the number of the blocks (i.e. the lines

between two consecutive dashed loops). Hence in a more exact mathematical

model there are two parameters L and N , and our aim is to reconstruct a DNA-

word from its m-deck such that the elements of the m-deck have to satisfy that

the length of they blocks is at most L and the number of the blocks is at least N .

Unfortunately these assumptions make the problem very hard to handle. Some

examples and computer tests made by the authors gave nothing useful until this

moment.

59

Chapter 5

Reconstruction of matrices

5.1 Motivation and notation

Let Σ be a finite alphabet and Σn×n the set of all n × n matrices over Σ. For

B ∈ Σk×k and A ∈ Σn×n we say that B is a symmetric submatrix of A if we

can get B by deleting n − k rows and columns of A symmetrically. Denote by

symMk(A) the multiset of all the
(

n
k

)
submatrices of A of size k × k.

We can consider the case of non-symmetric deleting of rows and columns as

well, then let Mk(A) denote the multiset of all the
(

n
k

)2
submatrices of A of size

k × k with this submatrix relation. Let us define the sum-matrix of the matrix

A as the sum of the elements of the k-deck of the respective multisets in both

cases: symΣk(A) =
∑

B∈symMk(A) B and Σk(A) =
∑

B∈Mk(A) B.

In this chapter we consider the following reconstruction problems:

Problem 59 For a given n what is the smallest k such that every A ∈ Σn×n is

uniquely determined by symMk(A) or by Mk(A), i.e. the k-deck consisting of the

multiset of its submatrices of size k × k.

Problem 60 For a given n what is the smallest k such that every A ∈ Σn×n is

uniquely determined by symΣk(A) or by Σk(A), i.e. its sum-matrix of order k.

We will use the term k-equivalent for matrices A and B in the case of symmet-

ric or non-symmetric deletions if symMk(A) = symMk(B) or Mk(A) = Mk(B),

resp. Similarly we say that matrices A and B are additively k-equivalent in

60

5.2 The limitation of the method

the case of symmetric or non-symmetric deletions if symΣk(A) = symΣk(B) or

Σk(A) = Σk(B), resp.

Beyond its theoretical interest, Problem 59 has a connection to the famous

(vertex) graph reconstruction problem of Kelly [31] and Ulam [60]: it is equivalent

with the special case of ordered graphs or ordered bipartite graphs, respectively.

An ordered graph on n vertices is a graph with a linear ordering on its vertices

which is inherited by its subgraphs. A bipartite graph is ordered if both of the

the color-classes of the graph are ordered independently. Using 0-1 matrices and

ordered graphs, Tardos [58] settled a series of conjectures and gave new proofs

for several problems.

The vertex-reconstruction of ordered (bipartite) graphs is a special case of

reconstruction of square matrices with (non-)symmetric deletions by considering

the adjacency matrix of the (bipartite) graph.

By the following lemma, the symmetric analogue of Lemma 16, claims that it

is enough to examine the problems over the binary alphabet.

Lemma 61 Every A ∈ Σn×n is uniquely determined by symMk(A) for |Σ| ≥ 2

iff every A ∈ {0, 1}n×n is uniquely determined by symMk(A). 2

Contrary to the case of words, the reconstruction problem of matrices was

not examined widely. The only one result is due to Manvel and Stockmeyer [43]

proving the reconstruction from symMn−1(A), i.e. the reconstruction from the

n− 1-deck consisting of its symmetric submatrices.

5.2 The limitation of the method

First we present negative results concerning the reconstruction from the sum-

matrix (i.e. Problem 60), which show the limitation of our method via proving

the existence of additively k-equivalent matrices:

Theorem 62 (a) If k <
n2/3

3
√

2 log2(n + 1)
then there exist matrices A, B ⊂ {0, 1}n×n

such that A 6= B but Σk(A) = Σk(B).

61

5.3 Rephrasing the reconstruction problem

(b) If k <
n2/3

3
√

log2(n + 1)
then there exist matrices A, B ⊂ {0, 1}n×n such that

A 6= B but symΣk(A) = symΣk(B).

Proof: (a) For an arbitrary 0-1 matrix A of size n×n, the matrix Σk(A) is the

sum of
(

n
k

)2
submatrices of A so each entry in Σk(A) is a nonnegative integer not

exceeding
(

n
k

)2
. Hence,

∣∣∣{Σk(A) : H ∈ {0, 1}n×n
}∣∣∣ ≤ ((n

k

)2

+ 1

)k2

≤ (n + 1)2k3

< 2n2

=
∣∣{0, 1}n×n}

∣∣.
So the number of possible values of Σk(A) is less than the number of 0-1 matrices.

(b) Similarly to the nonsymmetric case, each entry of symΣk(A) is at most(
n
k

)
and therefore

∣∣∣{symΣk(A) : H ∈ {0, 1}n×n
}∣∣∣ ≤ ((n

k

)
+ 1

)k2

≤ (n+1)k3

< 2n2

=
∣∣{0, 1}n×n}

∣∣.

Remark 63 With more careful computation the conditions can be improved to

k <

(
3

√
3

2
− ε

)
n2/3

3
√

log2 n
and k <

(
3
√

3− ε
) n2/3

3
√

log2 n
, respectively.

Since this statement shows the limitation of the method only, we do not deal

with the determination of the exact constants.

5.3 Rephrasing the reconstruction problem

From now on our aim is to give an upper bound for the reconstruction Problems

59 and 60. In this section we give a generalization of the ideas of Krasikov and

Roditty [32].

62

5.3 Rephrasing the reconstruction problem

5.3.1 The symmetric case

We will index the rows and the columns of the matrices from 0 to n − 1 and

let A = (aij). Note that in the case of symmetric deletions an element of the

lower(or upper)-triangle of a matrix remains in the lower(or upper)-triangle of its

submartix and the elements of the diagonal also remain in the diagonal, hence we

handle these cases separately. It is easy to see that the case of the diagonal leads

back to the case of reconstruction of words examined by Krasikov and Roditty

[32] (see Theorem 8), therefore we eliminate the formulas concerning the diagonal

here. The case of lower and the upper triangle can be handled similarly, here we

consider the upper triangle only.

Lemma 64 Let A ∈ {0, 1}n×n and let Sij(A) denote the total number of occur-

rences of 1’s in the position of the i-th row and j-th column of the elements of

symMk(A). (Clearly Sij(A) = sym
∑

k(A)ij.) Then for i, j = 0, . . . , k − 1 and

i < j

Sij(A) =
n−1∑
l=0

n−1∑
m=l+1

(
l

i

)(
m− l − 1

j − i− 1

)(
n−m− 1

k − j − 1

)
alm.

Proof: Suppose that alm = 1, then we need to count the cases when this element

becomes a 1 of the ith row and jth column in a matrix of symMk(A). Note that we

need to handle the case l < m only because an element of the lower-triangle of a

matrix remains in the lower-triangle of its submartix. (If we allow non-symmetric

deleting of rows and columns this statement is not true.) We attain such a case

if we choose row and column indices by the following way: first choose i indices

from the first l ones, then j− i− 1 indices from the indices from l + 1, . . . ,m− 1,

and the remaining k− j− 1 indices from the indices m+1 . . . n− 1. This ensures(
l
i

)(
m−l−1
j−i−1

)(
n−m−1
k−j−1

)
1’s in symMk(A) for a given pair l,m, summing up all these

expressions for every l < m finishes the proof.

2

Let A and B be two k-equivalent matrices and let ∆ = (δij) be a matrix

over the alphabet {−1, 0, 1} where δij = aij − bij. From Lemma 64 we get the

following:

63

5.3 Rephrasing the reconstruction problem

Lemma 65

n−1∑
l=0

n−1∑
m=l+1

(
l

i

)(
m− l − 1

j − i− 1

)(
n−m− 1

k − j − 1

)
δlm = 0, 0 ≤ i < j ≤ k − 1,

2

Consider now the following polynomials of two variables:

pij(x, y) =

(
x

i

)(
y − x− 1

j − i− 1

)(
n− y − 1

k − j − 1

)
for i < j and i, j = 0, . . . , k− 1. It is easy to see that every pij is a polynomial of

total degree k− 2, furthermore pij(x, y) = 0 for 0 ≤ x < i, n + j − k < y ≤ n− 1

and 0 < y − x < j − i.

Lemma 66 For every fixed pair of integers n and k, the set {pij(x, y) : i <

j, i, j = 0, . . . , k − 1} forms a basis of the vectorspace of polynomials of total

degree at most k − 2 in two variables.

Proof: Consider

r(x, y) =
k−1∑
i=0

k−1∑
j=i+1

λijpij(x, y) =
k−1∑
i=0

k−1∑
j=i+1

λij

(
x

i

)(
y − x− 1

j − i− 1

)(
n− y − 1

k − j − 1

)
.

Now suppose that r(x, y) ≡ 0, we will prove that λij = 0 for all i < j. Suppose

to the contrary that λαβ 6= 0 and this coefficient is the first one in lexicographical

order.

Then we get 0 = r(α, β) = λαβ

(
n−β−1
k−β−1

)
, since

(
α
i

)(
β−α−1
j−i−1

)(
n−β−1
k−j−1

)
= 0 for

i = α, j > β, and for i > α because of the second and the first binomial term

respectively, furthermore
(

α
i

)(
n−β−1
k−i−1

)
= 0 for i > α which is a contradiction.

Then pi,j(x, y)’s are k(k−1)
2

linearly independent polynomials, which completes

the proof. 2

From Lemma 65 and Lemma 66 we get the following necessary condition of

k-equivalence of matrices of order n:

64

5.3 Rephrasing the reconstruction problem

Theorem 67 If A and B are k-equivalent then for every polynomial r(x, y) of

total degree at most k − 2 in two variables

n−1∑
x=0

n−1∑
y=x+1

δxyr(x, y) = 0.

Proof:
n−1∑
x=0

n−1∑
y=x+1

δxyr(x, y) =
n−1∑
x=0

n−1∑
y=x+1

δxy

k−1∑
i=0

k−1∑
j=i+1

λijpij(x, y) =

=
k−1∑
i=0

k−1∑
j=i+1

λij

n−1∑
x=0

n−1∑
y=x+1

δxypij(x, y) = 0.

5.3.2 The non-symmetric case

Suppose now that for A ∈ Σk×k and B ∈ Σn×n that A is a submatrix of B if

we can get A by deleting n − k rows and columns of B arbitrarily. In this case

we can get similar statements as above, there are however some little differences,

e.g. let Mk(A) be the multiset of all the
(

n
k

)2
submatrices of A of size k × k, and

the diagonal and the lower/upper-triangles are not inherited by the submatrices.

This results in similar and simpler proofs, hence we don’t discuss them in detail

here.

Lemma 68 Let A ∈ {0, 1}n×n and let Sij(A) be the total number of occurrences

of 1’s in the i-th row and j-th column of the elements of Mk(A). (Clearly Sij(A) =∑
k(A)ij.) Then

Sij(A) =
n−1∑
l=0

n−1∑
m=0

(
l

i

)(
n− l − 1

k − i− 1

)(
m

j

)(
n−m− 1

k − j − 1

)
alm, i, j = 0, . . . , k − 1.

2

Lemma 69

n−1∑
l=0

n−1∑
m=0

(
l

i

)(
n− l − 1

k − i− 1

)(
m

j

)(
n−m− 1

k − j − 1

)
δlm = 0, i, j = 0, . . . k − 1.

2

65

5.3 Rephrasing the reconstruction problem

Consider now the following polynomials of two variables:

pij(x, y) =

(
x

i

)(
n− x− 1

k − i− 1

)(
y

j

)(
n− y − 1

k − j − 1

)
for i, j = 0, . . . , k−1. It is easy to see that every pij is a polynomial of degree k−1

in both of the variables and that pij(x, y) = 0 for 0 ≤ x < i, n+ i−k < x ≤ n−1

and 0 ≤ y < j, n + j − k < y ≤ n− 1.

Lemma 70 For every fixed pair of integers n and k, the set {pij(x, y) : i, j =

0, . . . , k− 1} forms a basis of the vectorspace of polynomials of of degree k− 1 in

each variable. 2

Theorem 71 If A and B are k-equivalent then for every polynomial q(x, y) of of

degree k − 1 in each variable

n−1∑
x=0

n−1∑
y=0

δxyq(x, y) = 0.

Theorems 67 and 71 show that the case of symmetric and non-symmetric

deletions are essentially the same in the sense that the order of magnitude of the

bounds resulting from the method will be the same.

Let us mention, that from now on we will index the rows and the columns of

the matrices from 1 to n for clearer formulas.

Consider the subsets of the discrete grid of size n × n as the indices of the

1-entries of the square matrices of order n. Then the main theorems of this

chapter suggest the following notion: let H1, H2 ⊂ {1, 2, . . . , n} × {1, 2, . . . , n} =

{1, 2, . . . , n}2 be two arbitrary sets (in the symmetric case we restrict to the upper

triangle, more precisely H1, H2 ⊂ {(i, j) : 1 ≤ i < j ≤ n}) and let k be positive

integer and define sets H1 and H2 k-distinguishable if there exists a polynomial

p(x, y) with real coefficients such that deg p < k and∑
(x,y)∈H1

p(x, y) 6=
∑

(x,y)∈H2

p(x, y).

66

5.4 Construction of the polynomial

5.4 Construction of the polynomial

5.4.1 Main results

First we present the main result concerning the existence of k-distinguishable

sets without proof. Let us mention that this theorem is the generalization of the

result of Borwein et al. [11] for polynomials of two variables.

The following asymptotic result is the best possible in the sense that it ap-

proximates the lower bound of Theorem 62 with an O(3
√

log n) factor:

Theorem 72 If n is sufficiently large and k ≥ 38n2/3 then any two different sets

H1, H2 ⊂ {1, 2, . . . , n}2 are k-distinguishable.

The proof of this result can be found in Section 5.4.2.

As a consequence of this result and of the theorems of the previous sections

we get the following bounds for reconstruction of matrices:

Corollary 73 For sufficiently large n every A ∈ Σn×n is uniquely determined by

symMk(A) if k ≥ 38n2/3 + 1.

For sufficiently large n every A ∈ Σn×n is uniquely determined by Mk(A) if

k ≥ 38n2/3 + 1.

Proof: Suppose that k ≥ 38n2/3 +1, A 6= B are binary matrices of order n and

let H1 6= H2 ⊂ {1, 2, . . . , n}2 be the set of indices of the 1-entries of A and B,

resp. First suppose that the diagonals of the matrices are different. Then we are

back to the case of words and we can have a better bound applying Theorem 8,

i.e. the matrices are uniquely determined by its k-deck if k ≥ b16
7

√
nc + 5. If

the diagonals of A 6= B are the same then its lower or upper-triangle must be

different. Then for sufficiently large n from Theorem 67 and Theorem 72 we get

that A and B cannot be k-equivalent, which proves the first part of the corollary.

Using Theorem 71 instead of Theorem 67 in the non-symmetric case implies

the second part of the statement.

Theorem 62 shows that one cannot get essentially better bound for recon-

struction of matrices using this method.

67

5.4 Construction of the polynomial

5.4.2 Proof of the upper bound

Lemma 74 For arbitrary real numbers A, M > 0 there exists a polynomial f(x)

with real coefficients with the following properties:

(a) f(0) = M ,

(b) |f(x)| ≤ min

(
M,

1

x2

)
for all x ∈ (0, A] and

(c) deg f <
√

π
√

A 4
√

M + 2.

Proof: Let k =
⌈√

π
2

√
A 4
√

M
⌉
+1 and consider the Chebishev polynomial Tk(x).

Let u0 = cos π
2k

which is the largest root and u1 = cos π
k

which is the largest local

minimum (see Figure 5.1).

Figure 5.1: Construction of polynomial in Lemma 74

The requested polynomial will be constructed as

f(x) = cg2(x); g(x) =
−Tk

(
u0 − 1+u0

A
x
)

x
, c =

M

g2(0)
.

Obviously, f(0) = M and deg f = 2(k − 1) <
√

π
√

A 4
√

M + 2, so properties (a)

and (c) hold.

To estimate g(0), notice that

T ′
k(cos t) = −

(
Tk(cos t)

)′
sin t

= −
(
cos kt

)′
sin t

=
k sin kt

sin t
(5.1)

for all 0 < t < π. Then

g(0) =
1 + u0

A
T ′

k(u0) =
1 + cos π

2k

A
·
k sin π

2

sin π
2k

>
2− 1

2

(
π
2k

)2
A

· k
π
2k

=
4
π
k2 − π

4

A
>
√

M,

68

5.4 Construction of the polynomial

therefore c = M
g2(0)

< 1.

For all x ∈ (0, A], we have u0 − 1+u0

A
x ∈ [−1, 1] and |Tk

(
u0 − 1+u0

A
x
)
| ≤ 1.

Hence,

|f(x)| = c

(
Tk

(
u0 − 1+u0

A
x
)

x

)2

<
1

x2
. (5.2)

The function Tk(x) is convex in the interval [u1, u0], and thus |Tk(x)| ≤
T ′

k(u0)(x − u0). For x ∈ [−1, u1] we have T ′
k(u0)(x − u0) < −1. Therefore

|Tk(x)| ≤ |T ′
k(u0)| · (u0 − x) holds in the entire interval [−1, u0]. Then, for all

x ∈ (0, A],

|f(x)| = c

(
Tk

(
u0 − 1+u0

A
x
)

x

)2

≤ c

(|T ′
k(u0)| · 1+u0

A
x

x

)2

= cg2(0) = M. (5.3)

Estimates (5.2) and (5.3) together provide property (b). 2

Remark 75 This lemma and this polynomial come from an earlier paper [11],

but the proof has been re-arranged in a different way to make generalizations

easier, as it can be seen in Lemma 76.

Lemma 76 For arbitrary real numbers A, B, M ≥ 1 there exists a polynomial

f(x) with real coefficients such that

(a) f(0) = M ,

(b) |f(x)| < min

(
4M,

1

x2

)
for all x ∈ [−A, B], x 6= 0 and

(c) deg f < 7
√

ABM + 2.

Proof: Without loss of generality we can assume A ≥ B. Let k be the smallest

odd integer which is not less than 7
2

√
ABM and consider the Chebishev polyno-

mial Tk(x). Let ω = arc cos A−B
A+B

and let u0 = cos ω0 be the greatest root of Tk(x)

in the interval [−1, A−B
A+B

]. Since k is odd, u0 ≥ 0. Similarly to Lemma 74, the

requested polynomial will be constructed as

f(x) = cg2(x); g(x) =

Tk

(
u0 +

1 + u0

A
x

)
x

, c =
M

g2(0)
.

69

5.4 Construction of the polynomial

Again, properties (a) and (c) are obvious. For all x ∈ [−A, B] we have u0+
1+u0

A
x ∈

[−1, 1] and therefore |g(x)| ≤ 1
|x| .

Since ω0 ≤ min
(
ω + π

k
, π

2

)
,

sin ω0 < sin ω+
π

k
≤

√
1−

(
A−B

A + B

)2

+
π

7
2

√
ABM

=
2
√

AB

A + B
+

2
7
π

√
ABM

< 3

√
B

A
,

|g(0)| = 1 + u0

A
|T ′

k(u0)| ≥
1

A
· k

sin ω0

>
7
2

√
ABM

A · 3
√

B
A

>
√

M

and

|f(x)| = M

g2(0)
g2(x) < 1 ·

(
1

x

)2

=
1

x2
. (5.4)

Figure 5.2: Construction of polynomial in Lemma 76

To finish proving property (b) we show that∣∣∣∣ Tk(x)

x− u0

∣∣∣∣ < 2|T ′
k(u0)| (5.5)

for all x ∈ [−1, 1], x 6= u0. Let let u1 = cos ω1 and u2 = cos ω2 be the two

neighboring local extrema of Tk(x) around u0 (see Figure 5.2). Consider an

arbitrary point x ∈ [−1, 1], x 6= u0. If Tk(x) = 0 then inequality (5.5) is trivial.

Otherwise, choose the point y = cos ϑ ∈ [u1, u2] such that x and y lie on the same

side of u0 and |Tk(y)| = |Tk(x)|. Then 0 < |y − u0| ≤ |x − u0| and by Cauchy’s

mean value theorem, there exists a ξ ∈ (ω2, ω1) such that∣∣∣∣ Tk(x)

x− u0

∣∣∣∣ ≤ ∣∣∣∣Tk(y)− Tk(u0)

y − u0

∣∣∣∣ =

∣∣∣∣cos kϑ− cos kω0

cos ϑ− cos ω0

∣∣∣∣ =

∣∣∣∣−k sin kξ

− sin ξ

∣∣∣∣ < k

sin ω2

=

70

5.4 Construction of the polynomial

=
sin ω0

sin ω2

· |T ′
k(u0)|.

Since ω ≤ ω0 ≤ π
2

and ω2 = ω0 − π
2k

,

sin ω2

sin ω0

>
sin ω0 − π

2k

sin ω0

= 1−
π
2k

sin ω0

≥ 1−
π
2k

sin ω
≥ 1−

π
7
√

ABM

2
√

AB
A+B

>
1

2

and inequality (5.5) follows.

Applying inequality (5.5) on polynomial g(x),

|g(x)| = 1 + u0

A
·

∣∣∣∣∣Tk

(
u0 + 1+u0

A
x
)

1+u0

A
x

∣∣∣∣∣ < 1 + u0

A
· 2|T ′

k(u0)| = 2g(0)

and

|f(x)| = M

(
g(x)

g(0)

)2

< 4M. (5.6)

Inequalities (5.4) and (5.6) prove property (b). 2

Lemma 77 For sufficiently large n there exist a convex lattice polygon Pn with

the following properties.

(a) Pn contains a square of size n × n in its interior, with horizontal and

vertical sides;

(b) The side lengths of Pn lie in the interval [n1/3, 2n1/3];

(c) The sides of Pn do not contain any lattice point other than the vertices;

Proof: Denote by N(R) be the number of lattice points (x, y) in the circle

x2 + y2 < R2 which are visible from the origin (i.e. x and y are relatively prime).

It is well-known that

lim
R→∞

N(R)

R2
=

6

π
.

Let R1 = n1/3 and R2 = 2n1/3 and consider the lattice vectors (x, y) where x

and y are relatively prime integers and R2
1 ≤ x2 + y2 < R2

2. Choose these vectors

to be the sides of Pn; i.e. sort the vectors by direction and merge them to obtain

the convex polygon. Obviously, properties (b) and (c) hold.

71

5.4 Construction of the polynomial

Figure 5.3: Construction of Pn

The perimeter of Pn is at least(
N(R2)−N(R1)

)
·R1 >

(
6

π
− ε

)
R2

2R1−
(

6

π
+ ε

)
R3

1 =

(
18

π
− 5ε

)
n > 4

√
2n.

By the symmetry of Pn, property (a) follows. 2

Lemma 78 Let ` be an arbitrary line intersecting Pn and let `1 and `2 be the

two supporting lines of Pn, parallel to `; denote the distance between ` and `i by

di (i = 1, 2). Assume that ` has a common point with a side S of Pn such that

the angle between ` and S is ϕ = arc sin n−1/3 (see Figure 5.4). Then

min(d1, d2) < 15n1/3.

Figure 5.4: Estimate for min(d1, d2)

72

5.4 Construction of the polynomial

Proof: Without loss of generality, we can assume d1 ≤ d2. Consider the side

vectors of Pn which lie completely or partially between the lines ` and `1. Trans-

lating these vectors to start from the origin, the end-points lie in a region D which

is bounded by two concentric circular arcs of radii R1 = n1/3 and R2 = 2n1/3 and

two radii of the same circles. The central angle of the arcs is 2ϕ (see Figure 5.5).

Figure 5.5: Regions D and D′

Drawing a unit square around the endpoints of the vectors, these squares do

not overlap and they lie in a region denoted by D′ in the Figure. The central angle

of this region is less than 4ϕ and its area is less than
(
(R2 +1)2−(R1−1)2

)
·4ϕ <

15n1/3. Therefore, the number of sides of Pn which have at least one end-point

between the lines ` and `1 is less than 15n1/3. Since the side lengths of Pn do

not exceed 2n1/3 and the angles between ` and the mentioned sides do no exceed

arc sin n−1/3, this implies d1 < 15n1/3. 2

Lemma 79 For sufficiently large n, for an arbitrary nonempty set H ⊂ {1, 2, . . .
. . . , n}2 there exists a point a = (a1, a2) ∈ H and a polynomial p(x, y) such that

deg p < 38n2/3 and

p(a1, a2) >
∑

(x,y)∈H, (x,y) 6=(a1,a2)

|p(x, y)|. (5.7)

Proof: Translate the polygon Pn, provided by Lemma 77, to polygon P ′
n such

that the set H is contained in P ′
n and at least one point of H lies on the boundary

of P ′
n. By the choice of the side vectors, any side of P ′

n may contain at most two

73

5.4 Construction of the polynomial

lattice points; if a side contains two lattice points, they must be the two end-

points. Since set H cannot contain all vertices of the polygon P ′
n, there is a side

S which contains exactly one element of H. Let a = (a1, a2) be this element.

The desired polynomial will be constructed as a product of two polynomials

p1 and p2. To construct the first polynomial, rotate the side vector of S by 90

degrees such that it points inside P ′
n; let this vector be u = (u1, u2); by the

construction of Pn, the coordinates u1 and u2 are relatively prime integers and

n1/3 ≤ |u| ≤ 2n1/3 (see Fig. 5.6).

Figure 5.6: Construction of the first polynomial in Lemma 79

Let f1(t) be the polynomial provided by Lemma 74 for M = 19 and A = 2n4/3

and define

g1(x, y) = u1(x− a1) + u2(y − a2), p1(x, y) = f1

(
g1(x, y)

)
.

For each integer k, let tk be the line where g1(x, y) = k. Line t0 is the ex-

tension of side S and the distance between lines tk and tk+1 is 1/|u| for ev-

ery k. Since the diameter of set H is at most
√

2n and |u| ≤ 2n1/3, we have

g1(H) ⊂
{
0, 1, 2, . . . ,

[
2
√

2n4/3
]}

.

To construct the second polynomial, take a unit vector v which encloses an

angle ϕ = arc sin n−1/3 with u. Let ` be the line through (a1, a2) which is

perpendicular to v and let `1 and `2 be the two supporting lines of the set H,

parallel to `. Let di be the distance between ` and `i (i = 1, 2). We can assume

74

5.4 Construction of the polynomial

d1 ≤ d2. Moreover, by Lemma 78, we have d1 < 15n1/3 and d2 ≤
√

2n since the

diameter of H is at most
√

2n (Fig. 5.7).

Figure 5.7: Construction of the second polynomial in Lemma 79

Let f2(t) be the polynomial by Lemma 76 for parameters A = max(d1, 1),

B = max(d2, 1) and M = 1 and define

g2(x, y) = v1(x− a1) + v2(y − a2), p2(x, y) = f2

(
g2(x, y)

)
.

For an arbitrary integer k, consider the lattice points on line tk. The lattice

points are distributed uniformly; the distance between the consecutive pairs is

|u|. Hence, the values g2(x, y) on these points form an arithmetic progression

lying in the interval [−d1, d2] with difference |u|/ sin ϕ ≥ 1.

Since |f2(t)| ≤ min(4, 1/t2) in the interval [−d1, d2], this implies

∑
(x,y)∈H∩tk

|p2(x, y)| < 2

[max(d1,d2)]∑
h=0

min

(
4,

1

h2

)
< 8 +

π2

3
.

Now let

p(x, y) = p1(x, y) · p2(x, y).

Then

p(a1, a2) = f1(0) · f2(0) = 19 · 1 = 19

75

5.4 Construction of the polynomial

and

∑
(x,y)∈H, (x,y) 6=(a1,a2)

|p(x, y)| =
[2
√

2n4/3]∑
k=1

∑
(x,y)∈H∩tk

|p1(x, y)| · |p2(x, y)| =

=

[2
√

2n4/3]∑
k=1

|f1(k)|
∑

(x,y)∈H∩tk

|p2(x, y)| <
[2
√

2n4/3]∑
k=1

1

k2

(
8 +

π2

3

)
<

π2

6

(
8 +

π2

3

)
<

< 19 = p(a1, a2)

so the polynomial p(x, y) satisfies (5.7).

The degree of the polynomial is

deg p = deg p1+deg p2 <

(√
π
√

2n4/3 4
√

19+2

)
+

(
7

√
15n1/3 ·

√
2n+2

)
< 38n2/3.

2

Proof: [Proof for Theorem 72] Let D1 = H1 \ H2 and D2 = H2 \ H1. By

Lemma 79, there exists a point (a1, a2) ∈ D1 ∪D2 and a polynomial p(x, y) such

that deg p < 38n2/3 ≤ k and

p(a1, a2) >
∑

(x,y)∈D1∪D2, (x,y) 6=(a1,a2)

|p(x, y)|.

Without loss of generality we can assume that (a1, a2) ∈ D1. Then∑
(x,y)∈H1

p(x, y)−
∑

(x,y)∈H2

p(x, y) =
∑

(x,y)∈D1

p(x, y)−
∑

(x,y)∈D2

p(x, y) =

= p(a1, a2) +
∑

(x,y)∈D1, (x,y) 6=(a1,a2)

p(x, y)−
∑

(x,y)∈D2

p(x, y) ≥

≥ p(a1, a2)−
∑

(x,y)∈D1∪D2, (x,y) 6=(a1,a2)

|p(x, y)| > 0.

Therefore ∑
(x,y)∈H1

p(x, y) >
∑

(x,y)∈H2

p(x, y)

and the sets H1 and H2 are k-distinguishable.

76

5.5 Conclusion

5.5 Conclusion

Here we collect all of our results concerning the reconstruction from the k-deck

consisting of the multiset of its submatrices (Problem 59) and from the sum-

matrix (Problem 60) both. Let denote the minimal k’s in Problem 59 by symkmin

or kmin; and in Problem 60 by symk+
min or k+

min, resp.

Corollary 80 There exist positive constants c1, c2, c3 such that:

c1 ·
n2/3

3
√

log n
≤ (sym)k+

min ≤ c2 · n2/3;

(sym)kmin ≤ c3 · n2/3.

Clearly (sym)kmin ≤ (sym)k+
min, yielding the second inequality, however the

question (sym)kmin � (sym)k+
min is not a trivial one neither for words. The

authors made computer tests for small word and subword-lengths (i.e. n ≤ 20),

but did not find words which are additively k-equivalent but not k-equivalent

(the equivalences can be defined analogously to the 2-dimension case).

5.6 Open problems

Problem 81 Reconstruction from the k-deck consisting of different submatrices.

Finding the smallest k such that every square matrix can be reconstructed from

the k-deck consisting of its different submatrices is very difficult in the symmetric

and the non-symmetric case both. (Remember that the reconstruction from the

n− 1-deck in the non-symmetric case is proved in Lemma 17.)

In the symmetric case k > dn+1
2
e as the following pair of matrices of size 2k+1

show (the kth and the k + 1th element of the last rows is 1):0BBBBB@
0 0 . . . 0

0 0 . . . 0

.

..
.
.. . . .

.

..

0 0 . . . 1 0 . . . 0

1CCCCCA,

0BBBBB@
0 0 . . . 0

0 0 . . . 0

.

..
.
.. . . .

.

..

0 0 . . . 0 1 . . . 0

1CCCCCA
In the non-symmetric case the situation is slightly better: it is easy to prove

that k ≤ dn
2
e in a special case of matrices with different number of 1 entries using

simple graph-theoretical arguments and pigeonhole principle.

77

Chapter 6

An algorithm for words and its

application to genome

rearrangement

6.1 Motivation and notation

The differences between the order of genes in two genomes have been used as

a measurement of evolutionary distance already more than six decades ago [56].

The rediscovery of inversion distance is dated back to the eighties [50], and since

then a large set of papers on optimization methods for genome rearrangement

problems has been published. However, except the case of sorting signed per-

mutations by inversions [5; 8; 25; 29; 52; 57] or by translocations [24], only

approximations [7; 9; 21; 23; 30] and heuristics [10] exist. Most of the methods

concerning with more types of mutations either penalize all the mutations with

the same weight [23], or exclude a whole set of possible mutations due to a special

choice of weights [21]. (A nice exception can be found in [6].)

Among the numerous parsimony approaches that try to obtain the shortest

sequence of rearrangement operations sorting one genome into the other, Bayesian

Markov chain Monte Carlo methods have been introduced a few years ago. They

define different models where genomes can evolve by reversals [33; 61], reversals

and translocations [18] or reversals, transpositions and inverted transpositions

78

6.2 Preliminaries

[46; 48]. It has been shown that transpositions and inverted transpositions could

happen in unichromosomal genomes [47], therefore it is natural to incorporate

such events into the Bayesian model. So far the available computer program for

the model accommodating transpositions and inverted transpositions used O(n3)

memory and had O(n4) running time per MCMC step [48] where n is the length

of the genome. Though this memory usage and running time allowed the analysis

of short genomes (for example, Metazoan mithochondrial genomes), the program

suffered memory problems with large genomes containing hundreds of genes.

We introduce an algorithm for characterizing and sampling transpositions and

inverted transpositions. The algorithm characterizes the mutations by the change

in the number of cycles in the graph of desire and reality and samples from a

distribution in which cycle-increasing mutations are preferred, which is equivalent

with searching fixed 3-long signed permutations starting in every positions of

a signed permutation of length n. The algorithm runs in O(n) time and has

O(n) memory usage. Since linear running time algorithms for characterizing and

sampling reversals have already been developed earlier [47; 48], an MCMC step in

the reversals, transpositions and inverted transpositions accommodating model

takes only O(n2) running time (the sampling algorithm might be repeated O(n)

times in an MCMC step), and needs only linear memory with this algorithm.

Let us remark that one can make other kind of linear algorithm which char-

acterizes the mutations by the number of breakpoints in the graph of desire and

reality and samples from a distribution in which breakpoint-removing mutations

are preferred. We disregard the full discussion of this algorithm because it is not

related to the subject of the thesis, we present however the comparison of the two

approaches when we think it is necessary.

6.2 Preliminaries

6.2.1 Mathematical description of genome rearrangement

Let us remember that a genome can be considered as a signed permutation πi,

and the evolutionary distance between two genomes π1, π2 is the minimal number

of mutations transforming π1 to π2. There are different types of mutations acting

79

6.2 Preliminaries

on genomes, here we present the ones which will take into consideration in our

mathematical model, there are however other types (e.g. translocations, etc.)

which we eliminate in the following. Let’s denote the genes by γi-s, the examined

mutations are:

• inversions : this type of mutations reverses a consecutive block of the genome

and changes the reading directions of all genes in the block, i.e.:

. . . γi
−−−−−−→γi+1 . . . γjγj+1 . . . −→ . . . γi

←−−−−−−−−−−γj · · · − γi+1γj+1 . . .

• transpositions : this type of mutations interchanges two consecutive blocks

of the genome, i.e.:

. . . γi
−−−−−−→γi+1 . . . γj

−−−−−−→γj+1 . . . γkγk+1 . . . −→ . . . γi
−−−−−−→γj+1 . . . γk

−−−−−−→γi+1 . . . γjγk+1 . . .

• inverted transpositions : this type of mutations can be considered as a con-

catenation of a transposition and an inversion on one block of the transpo-

sition performed, i.e.:

. . . γi
−−−−−−→γi+1 . . . γj

−−−−−−→γj+1 . . . γkγk+1 . . . −→ . . . γi
←−−−−−−−−−−−γk · · · − γj+1

−−−−−−→γi+1 . . . γjγk+1 . . .

Note that an inversion can be considered as an inverted transposition where

the second block is empty, since we will deal with transpositions and inverted

transpositions only.

Since mutations are actions on the group of signed permutations, transforming

a genome π1 to a genome π2 is equivalent with sorting π−1
2 π1 to the identical

permutation, and thus, we are going to talk about sorting permutations instead

of transforming one into another.

By following the convention, a signed permutation of length n is represented

as an unsigned permutation of length 2n + 2, +i is replaced by 2i − 1, 2i, and

−i is replaced by 2i, 2i− 1. This unsigned permutation is then framed to 0 and

2n + 1. Here we present a short example:

(3,−2,−1, 4,−5)→ (0, 5, 6, 4, 3, 2, 1, 7, 8, 10, 9, 11). (6.1)

To properly mimic the signed permutation case, only segments [2i + 1, 2j] are

allowed to mutate in the unsigned representation.

80

6.2 Preliminaries

6.2.2 The graph of reality and desire

The graph representation of a signed permutation is called graph of reality and

desire, whose vertices are the numbers from 0 to 2n + 1, and edges are the

reality and desire edges. The reality edges connect every second position in the

permutation starting with 0. Mutations act on the reality edges, a reversal acts

on two reality edges, while a transposition or an inverted transposition on three

ones. The desire edges are arcs connecting 2i with 2i + 1 for each i. In the

present model all edges are unoriented, however the method based on the change

of breakpoints used oriented edges as well: a desire edge is unoriented if it spans

even number of points otherwise it is oriented (we will need this notion to an

open problem in 6.5). Since each vertex has a degree of 2, the graph of desire

and reality can be unequivocally decomposed into cycles. A reality edge is a

breakpoint if its cycle is longer than 2. The graph of reality and desire of the

example seen in 6.1 is the following (in the figure the desire edges are the blue

ones and the reality edges are the black ones):

Figure 6.1: The graph of reality and desire of the signed permutation

(3,−2,−1, 4,−5)

The identity permutation has 0 breakpoints and n + 1 cycles (see Figure 6.2

on the next page), all other mutations have more breakpoints and less cycles .

Therefore the sorting of a permutation is equivalent with increasing the number

of cycles to n + 1 or decreasing the number of breakpoints to 0.

81

6.2 Preliminaries

Figure 6.2: The graph of reality and desire of the identity permutation

(1, 2, 3, 4, 5)

Mutations can be characterized by the number of breakpoints they remove or

the change in the number of cycles. We will talk about e.g. -3-b-transpositions

meaning that they remove 3 breakpoints or +1-c-inversions, which increase the

number of cycles by 1.

6.2.3 Stochastic modeling and Bayesian MCMC

Time-continuous Markov models have been the standard approaches for stochas-

tic modeling of molecular evolution. Unlike the case of nucleic acid substitution

models, modeling genome rearrangements is computationally demanding and no

analytical solutions is known for transition probabilities. What we can calculate

is the likelihood of a trajectory, which is the probability that a given sequence of

mutations happened in a time span conditional on a set of parameters describing

the model [46; 47; 48].

To sample trajectories from the posterior distribution, we apply Bayesian

Markov chain Monte Carlo (MCMC) [39; 45] which is a random walk on the pos-

sible trajectories, and whose stationary distribution is the posterior distribution

of trajectories. The random walk is constructed in two steps. In the first step,

a new trajectory is drawn from a proposal distribution, and in the second step,

the discrepancy between the proposal and the target distribution is corrected by

accepting the proposal with probability

min

{
1 ,

P (X|Y)π(Y)

P (Y |X)π(X)

}
(6.2)

where P is the proposal distribution, π is the target one, X is the actual state

of the chain, and Y is the proposal, and the chain remains in state X with

the complement probability [27; 45]. The proposal step replaces a part of the

82

6.3 Characterizing and sampling transpositions and inverted
transpositions

trajectory. The new sub-trajectory is obtained step by step, each mutation is

drawn from a distribution that mimics the target distribution we would like to

sample from, and the new proposal is independent from the old sub-trajectory.

The mixing of the Markov chain depends on how well the proposal distribution

can mimic the target distribution. When proposing a new sub-trajectory step

by step, published methods measure the departure of the actual rearrangement

from the rearrangement where the sub-trajectory must arrive to, and propose

mutations decreasing the measurement of the departure (’good’ mutations) with

high probability and propose other ones (’bad’ mutations) with low probability.

This philosophy seems to be essential since random mutations would reach the

target rearrangement with a very small probability.

Since there are 3
(

n+1
3

)
transpositions and inverted transpositions and

(
n+1

2

)
reversals, an algorithm that spends only constant time with each possible muta-

tion to decide its goodness will already run in Ω(n3) time. Therefore it is not

a trivial problem how to characterize and sample mutations in less time. Below

we show an algorithm characterizing and sampling transpositions and inverted

transpositions in linear time, for cycles, but it is easy to construct a simpler one

for breakpoints.

6.3 Characterizing and sampling transpositions

and inverted transpositions

Figure 6.3 a) and b) shows the two decision trees that the two algorithms (based

on the change of breakpoints and on the change of the cycles resp.) use to sample

random mutations. At an internal node, a random decision is made only if both

subtrees are non-empty. If one of the subtrees is empty, then the algorithm

chooses the other subtree with probability 1. For example, on Figure 6.3 a),

if there is no transposition or inverted transposition decreasing the number of

breakpoints by 3, and there is no reversal decreasing the number of breakpoints

by two, then there is no random decision at the root of the tree, the algorithm

will go to the right subtree with probability 1.

83

6.3 Characterizing and sampling transpositions and inverted
transpositions

Figure 6.3: Decision trees used by the introduced algorithms

T stands for transpositions and inverted transpositions, R stands for reversals.

Numbers on the edges means probabilities, p is between 0.5 and 1. In practice,

p = 0.8 gives a proposal distribution which is reasonably close to the target

distribution, acceptance ratio is about 20− 30%.

6.3.1 Sampler based on the change of cycles

The proposed algorithm characterizes the mutations by the change in the number

of cycles. Though this algorithm does not tell the exact number of mutations

falling into a given class, it does tell for each category and for each reality edge

whether or not there exists a mutation that falls into the given category and its

leftmost edge is the given one. This is enough for using the decision tree on Figure

6.3. b) and for sampling from a distribution for which the sampling probabilities

can be calculated. (We would like to mention for non-experts that the ability of

sampling from a distribution does not imply that sampling probabilities can be

calculated, see for example [39] and [47].)

It is easy to show that cycle-increasing mutations act on one cycle. If three

reality edges are in one cycle, they are in one of the eight possible configurations

84

6.3 Characterizing and sampling transpositions and inverted
transpositions

on Table 6.1. Dotted arcs on the table are not necessarily reality edges but

alternating paths of reality end desire edges.

Configuration transpos. inv. tr. to the left inv. tr. to the right

+2-c +1-c +1-c

+1-c +2-c “rest”

+1-c “rest” +2-c

+1-c “rest” “rest”

“rest” +1-c +1-c

“rest” +1-c “rest”

“rest” “rest” +1-c

“rest” “rest” “rest”

Table 6.1: The possible configurations of three reality edges in a cycle and the

category of mutations acting on them.

The idea of the algorithm is that for each configuration and reality edge, the

algorithm decides whether or not there are other two reality edges to the right

being in the given configuration with the third edge. If so, then the reality edge

goes to a set from which the algorithm chooses a random leftmost reality edge.

Once the algorithm has chosen the mutation type and the leftmost reality edge, it

decides for each reality edge on the right hand side of the leftmost edge whether

or not it can be together with a rightmost reality edge in a configuration that is

good for the given mutation type. After choosing a random middle edge from the

ensemble of possible middle edges, the algorithm finally chooses a random good

leftmost edge. This method also takes only O(n) time and memory.

6.3.1.1 Preprocessing

The algorithm works on each cycle independently. Starting with the leftmost

edge of the cycle, the algorithm traverses the cycle and stores the visiting order

of reality edges, as well as the direction of the reality edges on the cycle-traversing.

π(i) tells the visit order of the reality edge in the ith position, and pos(i) tells

85

6.3 Characterizing and sampling transpositions and inverted
transpositions

the position of the edge which was the ith in the cycle tour and sign(i) tells the

direction of the edge.(We will denote by plus sign the left to right direction and

by minus sign the right to left direction.) These arrays can be trivially calculated

in O(n) time.

The pseudocode of this stage can be found in Algorithm 1.

Algorithm 1 Preprocessing1 {calculating the arrays π(), sign(), pos()}
for i = 1 to n do

π(i)← ji if the edge i is the ji-th in the cycle tour

if the edge i has left to right direction in the cycle tour then

sign(i)← +

else

sign(i)← −
i← i + 1

for j = 1 to n do

pos(j)← π−1(j)

j ← j + 1

After this, the algorithm traverses the reality edges in reverse position order

(namely, from right to left), and calculates s max(i) = maxj≥i{π(j)|sign(j) = s}
and s min(i) = minj≥i{π(j)|sign(j) = s} both for positive and negative signs.

The pseudocode of this stage can be found in Algorithm 2.

86

6.3 Characterizing and sampling transpositions and inverted
transpositions

Algorithm 2 Preprocessing2 {calculating the arrays s max(), s min()}
for s ∈ {+,−} do

s max(n)← null, s min(n)← null

for i = n to 1 do

if sign(i) = s then

if s max(i) = null ∧ s min(i) = null then

s max(i) = s min(i)← π(i)

else

if π(i) ∈ [s min(i), s max(i)] then

s max(i)← s max(i + 1), s min(i)← s min(i + 1)

else

if π(i) < s min(i) then

s min(i)← π(i)

else

s max(i)← π(i)

i← i− 1

6.3.1.2 Existence of mutations

Each configuration on Table 6.1 can be traversed in six possible ways, see for

example on Figure 6.4 how the first configuration on Table 6.1 can be traversed.

Eight configuration times the six possible traversing gives 48 cases, and this is the

3! possible permutations of the visiting order of the three edges multiplied by the

23 possible signs of the three edges. Instead of configurations and traversing, we

will talk about visiting permutations and signs, there is a one-to-one correspon-

dence between them. Therefore the problem is to tell in constant time for each

permutation, sign pattern and reality edge whether or not there are other two

reality edges to the right being in the given permutation and sign pattern. Any

sign pattern can be discussed in a general way, the three signs will be denoted by

s1, s2 and s3 from left to right.

Another observation is that it is enough to give algorithms for the 1, 2, 3, the

2, 1, 3 and 1, 3, 2 permutations since the cycle can be traversed with starting the

tour on the leftmost edge in the other direction. This will cause a change in the

87

6.3 Characterizing and sampling transpositions and inverted
transpositions

Figure 6.4: The possible visiting order of three reality edges on which a transpo-

sition increases the number of cycles by two

permutation such that 3 and 1 will be swapped, and all signs will change to the

other sign. For example, on Figure 6.4 the cases on the right column will turn to

the cases on the left column if the cycle is traversed in a reverse order. Dotted

arcs are not necessarily reality edges but alternating paths of reality and desire

edges.

6.3.1.3 The 1, 2, 3 case

The 1, 2, 3 permutation is the easy case for any signs. The algorithm traverses

again the reality edges in a reverse position order, and calculates

s2 max s3 max(i) = max
j≥i
{π(j)|π(j) ≤ s3 max(j) & sign(j) = s2} (6.3)

There is a 1, 2, 3 permutation with a good sign pattern for a position i if sign(i) =

s1 and π(i) ≤ s2 max s3 max(i).

The pseudocode of the 1, 2, 3 case can be found in Algorithm 3.

88

6.3 Characterizing and sampling transpositions and inverted
transpositions

Algorithm 3 The 1, 2, 3 case

execute Preprocessing1, Preprocessing2

s2 max s3 max(n)← null

for i = n to 1 do

if sign(i) = s2 then

if π(i) ≤ s3 max(i) then

if s2 max s3 max(i) = null then

s2 max s3 max(i)← π(i)

else

if π(i) > s2 max s3 max(i) then

s2 max s3 max(i)← π(i)

else

s2 max s3 max(i)← s2 max s3 max(i + 1)

i← i− 1

for i = 1 to n do

if sign(i) = s1 ∧ π(i) < s2 max s3 max(i) then

return There is a requested signed permutation starting in pos(i).

else

return There is no requested signed permutation starting in pos(i).

i← i + 1

6.3.1.4 The 2, 1, 3 case

The algorithm runs an index i from 1 to n and is in the rightmost position j for

which π(j) < i, sign(j) = s2 and s3 max(j) > i. If pos(i) < j and sign(i) = s1,

then there is a 2, 1, 3 case with proper signs starting in position pos(i), otherwise

such configuration does not exist in that position. Knowing the pos() and s3 max()

arrays, it is easy to jump to the proper rightmost position until i > s3 max(j).

Then the algorithm must go back to the proper position j for which π(j) < i <

s3 max(j). Directly traversing back the positions would take O(n) time and such

traversing back might be necessary O(n) times, giving the algorithm an O(n2)

running time. Therefore some preprocessing is necessary.

In the preprocessing, the algorithm marks the anchor points of the s3 max

89

6.3 Characterizing and sampling transpositions and inverted
transpositions

threshold function (rectangles on Figure 6.5). Then for each interval between

two consecutive anchor points, it traverses backwards the interval, and creates

the chained list of the local s2 min anchor points (black circles on Figure 6.5,

locality also means that it checks only points which are smaller than the right

anchor s3 max value). For the local minimum, it finds on the previous chained list

the first anchor point which is smaller than the actual local minimum, traversing

the chain from up to down. The actual list is then augmented with the rest of

the list, however, with up-to-down search, each anchor point is visited only once

while searching, providing the O(n) running time of the preprocessing algorithm.

Figure 6.5: Explanatory figure for the 2, 1, 3 algorithm

Increasement of i is indicated with a double line on Figure 6.5, jumping in

positions is indicated with a dashed line. While there is no j for which π(j) <

i < s3 max(j) and sign(j) = s2, the algorithm remains in position 1 and marks

all pos(i) having no good 2, 1, 3 configuration. The algorithm jumps positions

toward the right end of the permutation whenever a good position j appears,

until i > s3 max(j). Then it jumps to the next s3 max anchor point to the left,

and slides down on the s2 min chained list until for the current position j, π(j) < i.

Each edge of the s2 min anchor chains is used at most once for back-traversing. To

see this suppose, that we are in the position j of an s2 min anchor chain, such that

π(j) < i < s3 max(j). Increasement of i ensures the validity of condition π(j) < i,

90

6.3 Characterizing and sampling transpositions and inverted
transpositions

but it can indicate that i > s3 max(j). However in this case the algorithm jumps

the next s3 max anchor point to the left, and in the following it uses only the

edges of the s2 min anchor chain starting in this s3 max anchor point, which are

unused edges all. Since the total size of the chained s2 min anchor list is O(n),

the algorithm spends only O(n) time with back-traversing, and hence, has only

O(n) running time altogether

The pseudocode of the 2, 1, 3 case can be found in Algorithm 4.

Algorithm 4 The 2, 1, 3 case

execute Preprocessing1, Preprocessing2

create ChainedList(s3 maxAnchor) and ChainedList(Locals2 minAnchor)

j ← 1

for i = 1 to n do

if π(j) < i < s3 max(j) then

if pos(i) < j ∧ sign(i) = s1 then

return There is a requested signed permutation starting in pos(i).

else

return There is no requested signed permutation starting in pos(i).

else

increase j in ChainedList(s3 maxAnchor) until i > s3 max(j)

jump to Prevs3 maxAnchor

decrease j in ChainedList(Locals2 minAnchor) until π(j) < i

if pos(i) < j ∧ sign(i) = s1 then

return There is a requested signed permutation starting in pos(i).

else

return There is no requested signed permutation starting in pos(i).

i← i + 1

6.3.1.5 The 1, 3, 2 case

For this case, the preprocessing creates a double chained list of the numbers form

1 to n, and if s2 6= s3, then the the signs of the numbers in the permutation

are also denoted on the chained structure, and there are pointers to the next

and previous numbers both with the same and with the other signs. Then the

91

6.3 Characterizing and sampling transpositions and inverted
transpositions

preprocessing traverses the positions of the permutation from left to right, and

pulls out the visited numbers from the chained list. Before pulling out a number

i having sign s2, it checks which number is the next number in the chained list

with sign s3. This is the biggest number on the permutation with sign s3 which

is smaller than i and whose position is bigger than pos(i). These numbers are

stored in an additional array maxmin(i). After the preprocessing, the algorithm

traverses the permutation in reverse position order, and notes the maximum of

the maxmin values, denoted by M . There is a proper configuration for position

i if sign(i) = s1 and π(i) < M .

The pseudocode of the 1, 3, 2 case can be found in Algorithm 5.

Algorithm 5 The 1, 3, 2 case

execute Preprocessing1, Preprocessing2

maxmin(n)← −1, maxmin(n− 1)← −1, M ← −1

create DoubleChainedList(π()) with SignPointers(s3Prev, s3Next)

for i = 1 to n− 2 do

if sign(i) = s2 then

read s3Next from DoubleChainedList(π())

maxmin(i)← s3Next

else

maxmin(i)← −1

pull out π(i) from DoubleChainedList(π())

i← i + 1

for i = n− 2 to 1 do

while maxmin(i) = −1 do

i← i− 1

if maxmin(i) > M then

M ← maxmin(i)

if sign(i) = s1 ∧ π(i) < M then

return There is a requested signed permutation starting in pos(i).

else

return There is no requested signed permutation starting in pos(i).

i← i− 1

92

6.4 Discussion

6.3.1.6 Mutations with leftmost reality edge of position 1, and sam-

pling the middle and rightmost edges

The abovementioned algorithms work for the reality edge in position 1, with

the notation that the given permutation patterns must be compared with the

configurations in Table 6.1.

Once we choose a rightmost edge in position i and the type of the mutation,

deciding whether or not a reality edge can be in a pattern being good for the

prescribed mutation is very easy, one should only check the s3 min and s3 max

values with the possible restriction they might not be bigger or smaller than π(i),

depending on the searched permutation pattern. Similarly, once the rightmost

and middle edge have been chosen, it is very easy to find the list of possible

leftmost reality edges.

6.3.1.7 Weighting the reality edges

Sampling from the uniform list of possible rightmost edges might lead to a very

skewed distribution where mutations on the right ends of cycles are preferred.

This is because at the left end of a cycle, there might be significantly more

mutations of a category with a leftmost reality edge than at the right end of

a cycle. Therefore some sophisticated weighting yields better distribution also

in terms of acceptance ratios. However one can get algorithms of running-time

O(n log n) arising this purpose using some divide-and-conquer arguments.

6.3.1.8 “Rest” mutations

We must mention that mutations acting on more than one cycle all fall into the

“rest” category. Knowing whether or not there are reality edges being in other

cycles, it is trivial to decide whether or not mutations acting on different cycles

and having the current reality edges as leftmost edge exists is a trivial problem.

6.4 Discussion

We introduced a new strategy for efficient sampling of transpositions and inverted

transpositions. The algorithm runs in O(n) time and memory, and can be used

93

6.5 Open problems

in Bayesian MCMC. With this sampling algorithm, one MCMC step can be

performed in O(n2) time and in linear memory, which is a significant improvement

to the so far available algorithm having O(n4) running time and O(n3) memory.

We hope that we could convince the readers that designing Markov chain

Monte Carlo methods in bioinformatics is not only a statistical problem but an

at least as important algorithmic problem, too.

6.5 Open problems

Problem 82 Other approaches of genome rearrangement.

As a finishing of the thesis we present a problem of theory of graph-algorithms

which is equivalent with a statistical problem of genome rearrangement.

Suppose that there is a connected graph with two kinds of vertices: the black

ones and the white ones, furthermore there is an operation on the black vertices.

The operation changes an arbitrary black vertex to white and alters both the

colors and the adjacencies of all of its neighbors. Bergeron [8] showed that every

graph with at least on black vertex can be transformed into isolated white vertices

only via a series of operations above and determined the minimal number of such

operations.

The problem is to determine the number of the different operation-series being

of minimal.

Surprisingly, this question is motivated by genome rearrangement. To see this

consider the breakpoint graph G of the permutation π with oriented desire edges

and presence of transpositions only: every vertex of G corresponds to a desire

edge, which is black if the edge is oriented and white otherwise. Two vertices

are connected in G if the corresponding desire edges intersect. It is easy to see,

that an operation toward isolated white vertices only in G can never increase the

number of breakpoints in the graph of desire and reality, hence it is equivalent to

sorting the permutation π.

As we mentioned in 6.3.1.7, the number of different sortings of a permutation

is a necessary quantity in the statistical examination of genome rearrangement

which equals to the number of different minimal operation-series in a graph G.

94

The results of the thesis are

based on the following papers:

[L1] P.L. Erdős, P. Ligeti, P. Sziklai, and D.C. Torney. Subwords in

reverse-complement order. Annals of Combinatorics, 10:415–430, 2006.

[L2] G. Kós, P. Ligeti, and P. Sziklai. Reconstructing matrices from sub-

matrices. Manuscript.

[L3] P. Ligeti. Matrix-posets and automorphisms. Manuscript.

[L4] P. Ligeti and P. Sziklai. Automorphisms of subword-posets. Discrete

Math., 305(1-3):372–378, 2003.

[L5] P. Ligeti and P. Sziklai. Generalized bounds for reconstruction of words.

In 5th Hungarian-Japanese Symposium on Discrete Mathematics and Its Ap-

plications, pages 252–256, 2007.

[L6] I. Miklós, T.P. Brooks, and P. Ligeti. Efficient sampling of trans-

positions and inverted transpositions for Bayesian MCMC. In Proceedings

of WABI2006, 4175 of Lecture Notes in Computer Science, pages 174–185,

2006.

95

Further papers of the author not

related to the thesis:

[N1] M. Bárász, P. Ligeti, L. Mérai, and D.A. Nagy. Boardroom voting

using devices with limited computational resources. Submitted to Financial

Cryptography and Data Security ’08.

[N2] M. Bárász, P. Ligeti, L. Mérai, D.A. Nagy, and P. Sziklai. Hun-

garian Patent Submission Nr.P0700548: Szavazatszámláló rendszer, 2007.

[N3] M. Bárász, P. Ligeti, K. Lója, L. Mérai, and D.A. Nagy. Anony-

mous sealed bid auction protocol. Submitted to EUROCRYPT 2008.

[N4] M. Bárász, P. Ligeti, K. Lója, L. Mérai, D.A. Nagy, and P. Szik-

lai. Hungarian Patent Submission Nr. P0700596: Árverező rendszer, 2007.

[N5] Sz. L. Fancsali and P. Ligeti. Some applications of finite geometry for

secure network coding. Submitted to Journal of Math. Cryptology.

96

Bibliography

[1] P.G. Aleksanjan. The reconstruction of vectors by their fragments. Akad.

Nauk. Armyan. SSR Inst. Mat., 68:39–41, 1979. 11

[2] J. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse se-

quence. In Sequences and their applications, Proceedings of SETA’98, 2,

pages 1–16. Springer, 199. 12

[3] N. Alon, Y. Caro, I. Krasikov, and Y. Roditty. Combinatorial re-

construction problems. J. Comb. Theory Ser. B, 47(2):153–161, 1989. 10

[4] L. Babai. Automorphism groups, isomorphism, reconstruction. In Handbook

of combinatorics (vol. 2), pages 1447–1540. MIT Press, Cambridge, MA, USA,

1995. 9

[5] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for

computing inversion distance between signed permutations with an experi-

mental study. J. Comp. Biol., 8(5):483–491, 2001. 78

[6] M. Bader and E. Ohlebusch. Sorting by weighted reversals, transposi-

tions and inverted transpositions. In Proceedings of RECOMB2006, 3909 of

Lecture Notes in Bioinformatics, pages 563–577, 2006. 78

[7] V. Bafna and A. Pevzner. Sorting by transpositions. SIAM J. Disc.

Math., 11(2):224–240, 1998. 78

[8] A. Bergeron. A very elementary presentation of the Hannenhalli-Pevzner

theory. In Proceedings of CPM2001, pages 106–117, 2001. 78, 94

97

BIBLIOGRAPHY

[9] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation

algorithm for sorting by reversals. In Proceedings of ESA2002, pages 200–210,

2002. 78

[10] M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome

rearrangement. Gene, 172:11–17, 1996. 78

[11] P. Borwein, T. Erdélyi, and G. Kós. Littlewood-type problems on

[0,1]. Proceedings of the London Mathematical Society, 79(1):22–46, 1999. 13,

67, 69

[12] G. Burosch, H-D. O.F. Gronau, and J-M. Laborde. The automor-

phism group of the subsequence poset Bm,n. Order, 12:179–194, 2000. 6,

27

[13] A. Carpi and A. deLuca. Words and special factors. Theoret. Comp.

Sci., 259:145–182, 2001. 31

[14] P. Chase. Subsequence numbers and logarithmic concavity. Discrete Math.,

16:123–140, 1976. 27

[15] C. Choffrut and J. Karhumäki. Combinatorics of words. In G. Rozen-

berg and A. Salomaa, editors, Handbook on Formal Languages, I.

Springer, 1997. 12

[16] A. Dress and P.L. Erdős. Reconstructing words from subwords in linear

time. Ann. Comb., 8(4):457–462, 2004. 14, 33

[17] M. Dud́ık and L.J. Schulman. Reconstruction from subsequences. J.

Comb. Theory Ser. A, 103(2):337–348, 2003. 12

[18] R. Durrett, R. Nielsen, and T.L. York. Bayesian estimation of ge-

nomic distance. Genetics, 166:621–629, 2004. 78

[19] A.G. D’yachkov, P.L. Erdős, A.J. Macula, V.V. Rykov, D.C.

Torney, C.-S. Tung, P.A. Vilenkin, and P. S. White. Exordium

for DNA codes. J. Comb. Opt., 7:369–379, 2003. 4, 37

98

BIBLIOGRAPHY

[20] P.L. Erdős, P. Sziklai, and D. Torney. The word poset and insertion-

deletion codes. Electronic Journal of Combinatorics, 8:10 pp., 2001. 27

[21] N. Eriksen. (1+ε)-approximation of sorting by reversals and transposi-

tions. In Proceedings of WABI2001, 2149 of Lecture Notes in Computer

Science, pages 227–237, 2001. 78

[22] W.H. Foster and I. Krasikov. An improvement of a Borwein-Erdélyi-

Kós result. Methods Appl. Anal., 7(4):605–614, 2000. 13

[23] Q-P. Gu, S. Peng, and H.I. Sudborough. A 2-approximation algorithm

for genome rearrangements by reversals and transpositions. Theor. Comp.

Sci., 210(2):327–339, 1999. 78

[24] S. Hannenhalli. Polynomial algorithm for computing translocation dis-

tance between genomes. In Proceedings of CPM1996, pages 168–185, 1996.

78

[25] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip:

Polynomial algorithm for sorting signed permutations by reversals. Journal

of ACM, 46(1):1–27, 1999. 78

[26] F. Harary. On the reconstruction of a graph from a collection of subgraphs.

In Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963),

pages 47–52. Publ. House Czechoslovak Acad. Sci., Prague, 1964. 10

[27] W.K. Hastings. Monte Carlo sampling methods using Markov chains and

their applications. Biometrika, 57(1):97–109, 1970. 82

[28] L.O. Kalashnik. The reconstruction of a word from fragments. Numerical

Mathematics and Computer Technology, Akad. Nauk. Ukrain. SSR Inst. Mat.,

Preprint IV:56–57, 1973. 3, 11

[29] H. Kaplan, R. Shamir, and R. Tarjan. A faster and simpler algorithm

for sorting signed permutations by reversals. SIAM J. Comput., 29(3):880–

892, 1999. 78

99

BIBLIOGRAPHY

[30] J.D. Kececioglu and D. Sankoff. Exact and approximation algorithms

for sorting by reversals, with application to genome rearrangement. Algorith-

mica, 13(1/2):180–210, 1995. 78

[31] P.J. Kelly. On Isometric Transformations. PhD thesis, University of

Wisconsin, 1942. 5, 8, 61

[32] I. Krasikov and Y. Roditty. On a reconstruction problem for sequences.

J. Combin. Theory Ser. A, 77(2):344–348, 1997. 12, 62, 63

[33] B. Larget, D.L. Simon, and B.J. Kadane. Bayesian phylogenetic in-

ference from animal mitochondrial genome arrangements. J. Roy. Stat. Soc.

B., 64(4):681–695, 2002. 78

[34] V.K. Leont’ev and Y.G. Smetanin. Problems of information on the set

of words. Journal of Mathematical Sciences, 108(1):49–70, 2002. 13, 14, 33

[35] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. J. Soviet Phys.-Doklady, 10:707–710, 1966. 4

[36] V. I. Levenshtein. Efficient reconstruction of sequences from their subse-

quences or supersequences. J. Combin. Theory Ser. A, 93(2):310–332, 2001.

14

[37] V.I. Levenshtein. On perfect codes in deletion and insertion metric. Dis-

crete Math. Appl., 2:241–258, 1992. 14

[38] V.I. Levenshtein. Efficient reconstruction of sequences. IEEE Tr. Inf.

Theory, 47(1):2–22, 2001. 14

[39] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.

82, 84

[40] M. Lothaire. Combinatorics on Words, 17 of Encylopedia of Mathematics

and its Applications. Addison-Wesley, Reading, 1985. 1, 6, 13, 32, 40, 104,

105

100

BIBLIOGRAPHY

[41] M. Lothaire. Applied Combinatorics on Words, 105 of Encylopedia of

Mathematics and its Applications. Cambridge University Press, 2005. 1, 5

[42] B. Manvel, A. Meyerowitz, A. Schwenk, and K. Smith. P. Stock-

meyer. Reconstruction of sequences. Discrete Math., 94(3):209–219, 1994.

11

[43] B. Manvel and P.K. Stockmeyer. On reconstruction of matrices. Math-

ematics Magazine, 44(4):218–221, 1971. 5, 61

[44] A. Marcus and G. Tardos. Excluded permutation matrices and the

Stanley–Wilf conjecture. J. Combin. Theory Ser. A, 107(1):153–160, 2004.

10

[45] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.

Teller, and E. Teller. Equations of state calculations by fast computing

machines. J. Chem. Phys., 21(6):1087–1091, 1953. 82

[46] I. Miklós. MCMC genome rearrangement. Bioinformatics, 19:130–137,

2003. 79, 82

[47] I. Miklós and J. Hein. Genome rearrangement in mitochondria and its

computational biology. In Proceedings of the 2nd RECOMB Satellite Work-

shop on Computational Genomics, 3388 of Lecture Notes in Computer Sci-

ence, pages 85–96, 2004. 79, 82, 84

[48] I. Miklós, P. Ittzés, and J. Hein. ParIS genome rearrangement server.

Bioinformatics, 21(6):817–820, 2005. 79, 82

[49] J. Pach and G. Tardos. Forbidden patterns and unit distances. In

SCG ’05: Proceedings of the twenty-first annual symposium on Computational

geometry, pages 1–9, New York, NY, USA, 2005. ACM Press. 10

[50] J.D. Palmer and L.A. Herbon. Plant mitochondrial DNA evolves

rapidly in structure, but slowly in sequence. J. Mol. Evol., 28:87–97, 1988.

78

101

BIBLIOGRAPHY

[51] A.D. Scott. Reconstructing sequences. Discrete Math., 175(1):231–238,

1997. 12

[52] A. Siepel. An algorithm to find all sorting reversals. In Proceedings of

RECOMB2002, pages 281–290, 2002. 78

[53] I. Simon. Piecewise testable events. In Proceedings of the 2nd GI Conference

on Automata Theory and Formal Languages, 33 of Lecture Notes in Computer

Science, pages 214–222, 1975. 6, 13, 32, 104, 105

[54] I. Simon. Words distinguished by their subwords. In Proceedings of

WORDS’03, the 4th International Conference on Combinatorics on Words,

pages 6–13, 2003. 14, 33

[55] J. Spencer, E. Szemerédi, and W.T. Trotter. Unit distances in the

Euclidean plane. In Graph Theory and Combinatorics (B. Bollobás ed.), pages

293–303. Academic Press, New York, 1984. 10

[56] A.H. Sturtevant and E. Novitski. The homologies of chromosome

elements in the genus drosophila. Genetics, 26:517–541, 1941. 78

[57] E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time.

In Proccedings of the 15th CPM, 3109 of Lecture Notes in Computer Science,

pages 1–13, 2004. 78

[58] G. Tardos. Extremal problems for finite point configurations and 0-1 ma-

trices. Doctoral Thesis, Alfréd Rényi Institute of Mathematics, Hungarian

Academy of Sciences, 2005. 10, 61

[59] G. Tardos. On 0-1 matrices and small excluded submatrices. J. Comb.

Theory Ser. A, 111(2):266–288, 2005. 10

[60] S. M. Ulam. A collection of mathematical problems. Interscience Tracts in

Pure and Applied Mathematics. Interscience, New York, 1960. 5, 8, 61

[61] T.L. York, R. Durrett, and R. Nielsen. Bayesian estimation of in-

versions in the history of two chromosomes. J. Comp. Biol., 9:808–818, 2002.

78

102

BIBLIOGRAPHY

[62] A.I. Zenkin and V.K. Leont’ev. On a nonclassical recognition problem.

USSR Comput. Maths Math. Phys., 24(3):189–193, 1984. 11

103

Summary
Combinatorics on words is a relatively new research area of discrete mathematics

partly inspired by problems in theoretical computer science and other fields of

mathematics, such as number theory, group theory and probability theory.

In mathematics, there is a notable number of problems that deal with recon-

struction either of an object by some incomplete information about it or of a

whole by its parts. In a substantial part of this thesis we will examine different

generalizations and applications of the following reconstruction problem:

Basic problem Let the length n of a word and an alphabet Σ be given. Determine

the smallest k such that every word w ∈ Σn can be reconstructed from the k-deck

of its subwords.

In Chapter 2 we examine the most simple version of reconstruction from dif-

ferent subwords in the case of DNA-words and matrices (i.e. the reconstruction

from the n − 1-deck) and as an application of these kind of results we deter-

mine the automorphism groups of posets consisting of DNA-words and matrices

partially ordered by the substrand and the submatrix relation, resp.

In Chapter 3 we give an improvement of the result of Simon [53] and Lothaire

[40] (i.e. the reconstruction from different subwords of length at most dn+1
2
e) for a

general alphabet and with lower and upper bounds for the number of occurrences

of letters in the words.

In Chapter 4 we examine the reconstruction of DNA-words from set of its

different substrands. We prove that every DNA-word of length n can be recon-

structed from its different substrands of length at most b2(n+1)
3
c.

In Chapter 5 we consider the reconstruction of square matrices from the mul-

tiset of its square submatrices and from its sum-matrix. The main results of this

chapter are an asymptotical upper bound of order of magnitude O(n2/3) and a

lower bound which differs in a factor O(3
√

log n) only from the upper bound.

In Chapter 6 we present an algorithm on words which has an application to

bioinformatics which determines the evolutionary distance between two organ-

isms. The algorithm runs in O(n) time and uses O(n) memory, where n is the

size of the genome. This is a significant improvement compared with the so far

available brute force method with O(n3) running time and memory usage.

Összefoglaló
A szavak kombinatorikája egy viszonylag fiatal kutatási ága a diszkrét mate-

matikának, melyet részben számelméleti, csoportelméleti, valósźınűségszámı́tási,

valamint elméleti számı́tástudományi problémák ihlettek.

Matematikai problémák sokasága foglalkozik egy objektum rekonstruálásával

annak részeiből, vagy a rá vonatkozó információ-töredékekből. Az értekezés

legnagyobb részében az alábbi rekonstrukciós feladat általánośıtásaival és alkal-

mazásaival foglalkozunk:

Alapprobléma Legyen adva egy Σ abécé és egy n szóhossz. Határozzuk meg a

legkisebb k értéket, amire tetszőleges Σ feletti n hosszú szót rekonstruálni lehet a

k-hosszú részszavaiból!

Az 2. fejezetben a különböző részszavakból rekonstruálásnak a lehető leg-

egyszerűbb esetének - rekonstruálás az n−1-hosszú részszavakból - általánośıtásait

vizsgáljuk DNS-szavak es mátrixok esetén. Ezen álĺıtások alkalmazásaiként külön-

böző részbenrendezett halmazok (röviden poset-ek) automorfizmus csoportjait

határozzuk meg.

A 3. fejezetben a különböző részszavakból történő rekonstruálásnál a Simon

[53] és Lothaire [40] által adott dn+1
2
e-es korlátot jav́ıtjuk meg tetszőleges méretű

ábécé, valamint a szavakat alkotó betűk számára elő́ırt (alsó és felső) korlátok

esetén.

A 4. fejezetben DNS-szavaknak különböző részszálaiból történő rekonstruálá-

sát vizsgáljuk. Megmutatjuk, hogy minden n hosszú DNS-szó rekonstruálható a

legfeljebb b2(n+1)
3
c-hosszú részszálaiból.

Az 5. fejezetben egy négyzetes mátrixot a sorainak és oszlopainak tetszőleges-

, vagy szimmetrikus törlésével keletkező részmátrixaiból, illetve ezek összegéből

ḱıvánunk rekonstruálni. A fejezet fő eredményei egy aszimptotikusan O(n2/3)-os

felső korlát, valamint az összeg-mátrixból való rekonstrukcióra adott alsó korlát,

mely ettől mindössze egy O(3
√

log n)-es szorzóban tér el.

A 6. fejezetben célunk két faj közötti evolúciós távolság meghatározása egy

szó-algoritmus seǵıtségével. Fő eredményünk egy, a genomok hosszában lineáris

időt és tárhelyet használó algoritmus, melynek seǵıtségével az evolúciós távolságot

meghatározó MCMC módszer egy lépéséhez szükséges futási idő O(n2)-re, a

tárhely pedig O(n)-re csökken, az eddigi O(n4), illetve O(n3)-ről.

	1 Introduction
	1.1 Motivation and notation
	1.2 Overview of the thesis
	1.3 Mathematical background
	1.3.1 Combinatorial reconstruction problems
	1.3.2 Preliminary results on reconstruction of words

	1.4 Biological background
	1.4.1 The structure of the DNA
	1.4.2 Genome rearrangement

	2 Reconstruction from the n-1-deck and automorphism groups
	2.1 DNA-words
	2.1.1 Motivation and notation
	2.1.2 Reconstruction from the n-1-deck
	2.1.3 The automorphism group of the DNA poset

	2.2 Matrices
	2.2.1 Motivation and notation
	2.2.2 Reconstruction from the n-1-deck
	2.2.3 The automorphism group of the matrix poset

	2.3 A short proof for a theorem of Burosch, Gronau and Laborde
	2.3.1 Motivation and notation
	2.3.2 The automorphism group of the Burosch poset

	2.4 Open problems

	3 Generalized bounds for reconstruction of words
	3.1 Motivation and notation
	3.2 General bounds for the number of letters
	3.3 Examples

	4 Reconstruction of DNA-words
	4.1 Motivation and notation
	4.2 Main results
	4.3 Easy consequences and preliminary results
	4.4 The proof of Theorem 40 for DNA-words composed of one complement pair
	4.4.1 The case < A
	4.4.2 The case = A

	4.5 The proof of Theorem 41 for DNA-words composed of two complement pairs
	4.5.1 The case q=1
	4.5.2 The case 1 < q m+1
	4.5.3 The case q > m+1

	4.6 Open problems

	5 Reconstruction of matrices
	5.1 Motivation and notation
	5.2 The limitation of the method
	5.3 Rephrasing the reconstruction problem
	5.3.1 The symmetric case
	5.3.2 The non-symmetric case

	5.4 Construction of the polynomial
	5.4.1 Main results
	5.4.2 Proof of the upper bound

	5.5 Conclusion
	5.6 Open problems

	6 An algorithm for words and its application to genome rearrangement
	6.1 Motivation and notation
	6.2 Preliminaries
	6.2.1 Mathematical description of genome rearrangement
	6.2.2 The graph of reality and desire
	6.2.3 Stochastic modeling and Bayesian MCMC

	6.3 Characterizing and sampling transpositions and inverted transpositions
	6.3.1 Sampler based on the change of cycles
	6.3.1.1 Preprocessing
	6.3.1.2 Existence of mutations
	6.3.1.3 The 1,2,3 case
	6.3.1.4 The 2,1,3 case
	6.3.1.5 The 1,3,2 case
	6.3.1.6 Mutations with leftmost reality edge of position 1, and sampling the middle and rightmost edges
	6.3.1.7 Weighting the reality edges
	6.3.1.8 ``Rest'' mutations

	6.4 Discussion
	6.5 Open problems

	Bibliography

