Dynamic aspects of deterministic chemical systems

Balázs Boros

University of Wisconsin-Madison

Applied Mathematics Seminar at West Virginia University
Morgantown, West Virginia, March 9, 2020
MASS-ACTION SYSTEMS

\[\begin{align*}
 X + Y & \xrightarrow{\kappa_{12}} 2Y \\
 & \xrightarrow{\kappa_{23}} X \\
 & \xrightarrow{\kappa_{31}} X
\end{align*} \]

\[\begin{align*}
 \dot{x} &= -\kappa_{12}xy + \kappa_{23}y^2 \\
 \dot{y} &= +\kappa_{12}xy - 2\kappa_{23}y^2 + \kappa_{31}x
\end{align*} \]

\[
\begin{bmatrix}
 \dot{x} \\
 \dot{y}
\end{bmatrix} = \kappa_{12}xy \begin{bmatrix}
 -1 \\
 +1
\end{bmatrix} + \kappa_{23}y^2 \begin{bmatrix}
 +1 \\
 -2
\end{bmatrix} + \kappa_{31}x \begin{bmatrix}
 0 \\
 +1
\end{bmatrix}
\]
Mass-action systems

\[\begin{align*}
X + Y & \xrightarrow{\kappa_{12}} Z \\
& \xrightarrow{\kappa_{31}} \quad \xrightarrow{\kappa_{23}} 2X \\
\end{align*} \]

\[\begin{align*}
\dot{x} &= -\kappa_{12}xy + 2\kappa_{23}z - \kappa_{31}x^2 \\
\dot{y} &= -\kappa_{12}xy + \kappa_{31}x^2 \\
\dot{z} &= +\kappa_{12}xy - \kappa_{23}z \\
\end{align*} \]

\[\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \kappa_{12}xy \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} + \kappa_{23}z \begin{bmatrix} +2 \\ 0 \\ -1 \end{bmatrix} + \kappa_{31}x^2 \begin{bmatrix} -1 \\ +1 \\ 0 \end{bmatrix} \]

Since \(\dot{x} + \dot{y} + 2\dot{z} = 0 \),

\[x(\tau) + y(\tau) + 2z(\tau) \equiv x(0) + y(0) + 2z(0) \]
COMPLEXES ↔ VECTORS

\[
\begin{align*}
X + Y & \rightarrow Z \\
2X & \\
y_1 & \rightarrow y_2 \\
y_3 & \\
y_1 &= \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \\
y_2 &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\
y_3 &= \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}
\end{align*}
\]
MASS-ACTION ODE

- for a single reaction:
 \[
 a_1 X_1 + a_2 X_2 + \cdots + a_n X_n \xrightarrow{\kappa} b_1 X_1 + b_2 X_2 + \cdots + b_n X_n
 \]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\vdots \\
\dot{x}_n
\end{bmatrix} = \kappa x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix} -
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix}
\]

- for a collection \(\mathcal{R} \) of reactions:

\[
\dot{x} = \sum_{(i,j) \in \mathcal{R}} \kappa_{ij} x^y y_i (y_j - y_i)
\]

with state space \(\mathbb{R}^n_+ \) or \(\mathbb{R}^n_{\geq 0} \)
Mass-action ODE

- for a single reaction:

\[
a_1 X_1 + a_2 X_2 + \cdots + a_n X_n \xrightarrow{\kappa} b_1 X_1 + b_2 X_2 + \cdots + b_n X_n
\]

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\vdots \\
\dot{x}_n
\end{bmatrix} = \kappa \prod_{i=1}^n x_i^{a_i} \begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{pmatrix} - \begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{pmatrix}
\]

- for a collection \(R \) of reactions:

\[
\dot{x} = \sum_{(i,j)\in R} \kappa_{ij} x_i^{y_j} (y_j - y_i)
\]

with state space \(\mathbb{R}_+^n \) or \(\mathbb{R}_{\geq 0}^n \)
Questions

- existence/uniqueness/number of equilibria
- periodic solutions, limit cycles
- local/global asymptotic stability
- local/global centers
- multistability
- boundedness of solutions
- persistence
- permanence
STOICHIOMETRIC SUBSPACE

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix} = \kappa_{12} xy \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} + \kappa_{23} z \begin{bmatrix} +2 \\ 0 \\ -1 \end{bmatrix} + \kappa_{31} x^2 \begin{bmatrix} -1 \\ +1 \\ 0 \end{bmatrix}
\]

\[
S = \text{span} \left\{ \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix}, \begin{bmatrix} +2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ +1 \\ 0 \end{bmatrix} \right\} \leq \mathbb{R}^3
\]
\textbf{STOICHIOMETRIC SUBSPACE}

\[
\begin{bmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{bmatrix} = \kappa_{12} xy \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix} + \kappa_{23} z \begin{bmatrix} +2 \\ 0 \\ -1 \end{bmatrix} + \kappa_{31} x^2 \begin{bmatrix} -1 \\ +1 \\ 0 \end{bmatrix}
\]

\[S = \text{span} \left\{ \begin{bmatrix} -1 \\ -1 \\ +1 \end{bmatrix}, \begin{bmatrix} +2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ +1 \\ 0 \end{bmatrix} \right\} \leq \mathbb{R}^3\]

Rest of this talk:
for simplicity, assume \(S = \mathbb{R}^n \)
Complex-balanced equilibria

Rate constant:

\[\begin{align*}
 & X \\
 & \quad \overset{1}{\longrightarrow} \quad \overset{3}{\longrightarrow} \\
 3Y & \quad \underset{1}{\overleftarrow{\longrightarrow}} \quad \underset{29}{\longrightarrow} \\
 & Y + Z \\
 & \quad \overset{5}{\longrightarrow} \quad \overset{6}{\longrightarrow} \\
 & X + Z \quad \underset{1}{\overleftarrow{\longrightarrow}} \quad \underset{5}{\longrightarrow} \\
 & 2X + Y
\end{align*} \]

Flow at:

\[\begin{bmatrix} x^* \\ y^* \\ z^* \end{bmatrix} \in \mathbb{R}_+^3 \]
Complex-balanced equilibria

Flow at

\[\begin{bmatrix} x^* \\ y^* \\ z^* \end{bmatrix} \in \mathbb{R}^3_+ \]

Flow with

\[\begin{bmatrix} x^* \\ y^* \\ z^* \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix} \]
LYAPUNOV FUNCTION FOR COMPLEX-BALANCED SYSTEMS

\[V(x_1, \ldots, x_n) = \left[x_1 \left(\log \frac{x_1}{x_1^*} - 1 \right) + x_1^* \right] + \cdots + \left[x_n \left(\log \frac{x_n}{x_n^*} - 1 \right) + x_n^* \right] \]

THEOREM (HORN, JACKSON, 1972)

Assume

- \(S = \mathbb{R}^n \),
- there exists a complex-balanced equilibrium \(x^* \).

Then

\[\frac{d}{d\tau} V(x(\tau)) < 0 \text{ whenever } x(\tau) \neq x^*. \]
THE HORN-JACKSON FUNCTION FOR $n = 2$

$$V(x, y) = \left[x \left(\log \frac{x}{x^*} - 1 \right) + x^* \right] + \left[y \left(\log \frac{y}{y^*} - 1 \right) + y^* \right]$$
Horn-Jackson level sets for $n = 3$

\[V(x, y, z) = \left[x \left(\log \frac{x}{x^*} - 1 \right) + x^* \right] + \left[y \left(\log \frac{y}{y^*} - 1 \right) + y^* \right] + \left[z \left(\log \frac{z}{z^*} - 1 \right) + z^* \right] \]
Corollary (Horn, Jackson, 1972)

Assume

- $S = \mathbb{R}^n$,
- there exists a complex-balanced equilibrium x^*.

Then

- x^* is the only positive equilibrium,
- x^* is locally asymptotically stable,
- all solutions are bounded,
- no solution converges to the origin,
- there is no periodic solution.

Conjecture (Horn, 1974)

x^* is globally asymptotically stable
Corollary (Horn, Jackson, 1972)

Assume
- \(S = \mathbb{R}^n \),
- there exists a complex-balanced equilibrium \(x^* \).

Then
- \(x^* \) is the only positive equilibrium,
- \(x^* \) is locally asymptotically stable,
- all solutions are bounded,
- no solution converges to the origin,
- there is no periodic solution.

Conjecture (Horn, 1974)

\(x^* \) is globally asymptotically stable
Global Attractor Conjecture (allow $S \subseteq \mathbb{R}^n$)

Conjecture (Craciun, Dickenstein, Shiu, Sturmfels, 2009)

complex-balanced equilibria are globally asymptotically stable

- detailed balance, $\dim S = 2$, conservative

 Craciun, Dickenstein, Shiu, Sturmfels, 2009

- all boundary equilibria are facet-interior or vertices of \overline{P}

 Anderson, Shiu, 2010

- $\dim S = 2$

 Anderson, Shiu, 2010

- single connected component

 Anderson, 2011; Gopalkrishnan, Miller, Shiu, 2014; BB, Hofbauer, 2019

- $\dim S = 3$

 Pantea, 2012

- $n = 3$

 Craciun, Nazarov, Pantea, 2013

- full generality

 Craciun, 202?
Extend the class of complex-balanced systems

Definition (Weak Reversibility)

A directed graph is said to be *weakly reversible* if a partition $V = V_1 \cup V_2$ of its vertex set as follows is not possible:

![Diagram of weakly reversible partition]

Lemma

Every complex-balanced system is weakly reversible.

Proof

The inflow is the same as the outflow not just at each vertex, but for each subset of vertices. However, the above type of partition would result in a subset V_1 with zero inflow and positive outflow.
Definition (Weak Reversibility)

A directed graph is said to be *weakly reversible* if a partition
\(V = V_1 \cup V_2 \) of its vertex set as follows is **not** possible:

\[
\begin{array}{c}
V_1 \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
V_2
\end{array}
\]

Lemma

Every complex-balanced system is weakly reversible.

Proof

The inflow is the same as the outflow not just at each vertex, but for each subset of vertices. However, the above type of partition would result in a subset \(V_1 \) with zero inflow and positive outflow.
Characterizations of Weak Reversibility

Example of a weakly reversible graph:

Equivalent formulations of weak reversibility:

- Every directed edge is part of a directed cycle.
- Every weak component is strongly connected.
- Existence of a directed path from $i \in V$ to $j \in V$ implies the existence of a directed path from j to i.
Dynamics of weakly reversible systems?

- Uniqueness of a positive equilibrium does not hold true in general.
- Even a unique positive equilibrium can be unstable.
- There could be limit cycles.
Uniqueness of a positive equilibrium does not hold true in general.

Even a unique positive equilibrium can be unstable.

There could be limit cycles.

However, some more global properties (are conjectured to) hold true!
PERSISTENCE

- **persistence**: for positive initial conditions,
 \[\liminf_{\tau \to \infty} x_{s}(\tau) > 0 \text{ for all } 1 \leq s \leq n \]

- if all the trajectories are bounded then persistence is equivalent to
 \[\omega(\bar{x}) \cap \partial \mathbb{R}^n_{\geq 0} = \emptyset \text{ for each positive initial condition } \bar{x} \in \mathbb{R}^n_+ \]

- persistence is the missing part of the Global Attractor Conjecture

Conjecture (Craciun, Nazarov, Pantea, 2013)

weak reversibility \(\iff\) persistence
PERSISTENCE

- **persistence:** for positive initial conditions,
 \[\liminf_{\tau \to \infty} x_s(\tau) > 0 \text{ for all } 1 \leq s \leq n \]

- if all the trajectories are bounded then persistence is equivalent to
 \[\omega(\bar{x}) \cap \partial \mathbb{R}^n_{\geq 0} = \emptyset \text{ for each positive initial condition } \bar{x} \in \mathbb{R}^n_+ \]

- persistence is the missing part of the Global Attractor Conjecture

Conjecture (Craciun, Nazarov, Pantea, 2013)

weak reversibility \(\implies\) *persistence*
Boundedness

boundedness: for positive initial conditions,

\[
\limsup_{\tau \to \infty} |x(\tau)| < \infty
\]

Conjecture (Anderson, 2011)

weak reversibility \(\implies\) boundedness

Theorem (Anderson, 2011)

weak reversibility and single connected component \(\implies\) boundedness
boundedness: for positive initial conditions,

\[\limsup_{\tau \to \infty} |x(\tau)| < \infty \]

Conjecture (Anderson, 2011)

weak reversibility \(\Rightarrow\) boundedness

Theorem (Anderson, 2011)

weak reversibility and single connected component \(\Rightarrow\) boundedness
Lotka reactions
(solutions are persistent and bounded)

\[\begin{align*}
 x & \xrightarrow{\kappa_1} 2x \\
 x + y & \xrightarrow{\kappa_2} 2y \\
 y & \xrightarrow{\kappa_3} 0
\end{align*} \]

\[\begin{align*}
 \dot{x} &= \kappa_1 x - \kappa_2 xy \\
 \dot{y} &= \kappa_2 xy - \kappa_3 y
\end{align*} \]
PERMANENCE (more than persistence + boundedness)

permanence: there exists a compact set $K \subseteq \mathbb{R}_+^n$ such that every forward trajectory with positive initial condition ends up in K

Conjecture (Craciun, Nazarov, Pantea, 2013)

weak reversibility \implies permanence

Theorem (Simon, 1995)

$n = 2$, reversibility \implies permanence
PERMANENCE (more than persistence + boundedness)

permanence: there exists a compact set \(K \subseteq \mathbb{R}_+^n \) such that every forward trajectory with positive initial condition ends up in \(K \)

CONJECTURE (CRAICIUN, NAZAROV, PANTEA, 2013)
\[
\text{weak reversibility} \implies \text{permanence}
\]

THEOREM (SIMON, 1995)
\[
n = 2, \text{ reversibility} \implies \text{permanence}
\]
EXTENSION OF WEAK REVERSIBILITY: ENDOTACTICITY

Def. of *endotactic* networks is by Craciun, Nazarov, Pantea, 2013
Def. of *strongly endotactic* networks is by Gopalkrishnan, Miller, Shiu, 2014
time-dependent rate constants:

there exists an $0 < \varepsilon < 1$ such that $\varepsilon \leq \kappa_{ij}(\tau) \leq \frac{1}{\varepsilon}$

for all $\tau \geq 0$ and for all $(i, j) \in \mathcal{R}$
The Extended Permanence Conjecture

time-dependent rate constants:

there exists an $0 < \varepsilon < 1$ such that $\varepsilon \leq \kappa_{ij}(\tau) \leq \frac{1}{\varepsilon}$

for all $\tau \geq 0$ and for all $(i, j) \in \mathcal{R}$

Conjecture (Craciun, Nazarov, Pantea, 2013)

$\text{endotactic} \iff \text{permanence (even for time-dependent } \kappa)$
PERSISTENCE/PERMANENCE RESULTS (ALLOW $S \subseteq \mathbb{R}^n$)

- $n = 2$, reversible \implies permanence
 Simon, 1995

- $\dim S = 2$, WR \implies bounded trajectories are persistent
 Pantea, 2012

- $n = 2$, endotactic \implies permanence (even for time-dependent κ)
 Craciun, Nazarov, Pantea, 2013

- If the origin is repelling and all trajectories are bounded for all endotactic mass-action systems then the persistence conjecture holds
 Gopalkrishnan, Miller, Shiu, 2013

- Strongly endotactic \implies permanence (even for time-dependent κ)
 Gopalkrishnan, Miller, Shiu, 2014; Anderson, Cappelletti, Kim, Nguyen, 2018

- WR, $\ell = 1$ \implies permanence (even for time-dependent κ)
 Gopalkrishnan, Miller, Shiu, 2014; Anderson, Cappelletti, Kim, Nguyen, 2018; BB, Hofbauer, 2019

- $n = 2$, tropically endotactic \implies permanence (even for time-dependent κ)
 Brunner, Craciun, 2018
Sanity test for permanence ✓

Theorem (BB, 2019)

weak reversibility \implies existence of positive equilibria
A weakly reversible example with a continuum of positive equilibria (BB, Craciun, Yu, 2019)

\[
\begin{align*}
\dot{x} & = (1 + x^2 + x^2 y^2 + y^2 - 5xy)(1 - xy) \\
\dot{y} & = (1 + x^2 + x^2 y^2 + y^2 - 5xy)(x - y)
\end{align*}
\]
Relation of the Big Conjectures

Extended Permanence Conjecture

Permanence Conjecture

Boundedness Conjecture

Persistence Conjecture

Existence of Positive Equilibria Theorem

Global Attractor Conjecture
EXTENSION OF MASS-ACTION KINETICS

Classical mass-action kinetics:

\[
a_1X_1 + \cdots + a_nX_n \xrightarrow{\kappa} b_1X_1 + \cdots + b_nX_n
\]

\[
\begin{bmatrix}
\dot{x}_1 \\
\vdots \\
\dot{x}_n
\end{bmatrix} = \kappa \underbrace{x_1^{a_1} \cdots x_n^{a_n}}_{\chi^a} \left(\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \right)
\]

Generalized mass-action kinetics (Müller, Regensburger, 2012):

\[
a_1X_1 + \cdots + a_nX_n \xrightarrow{\kappa} b_1X_1 + \cdots + b_nX_n
\]

\[
(\alpha_1X_1 + \cdots + \alpha_nX_n) \xrightarrow{\kappa} b_1X_1 + \cdots + b_nX_n
\]

\[
\begin{bmatrix}
\dot{x}_1 \\
\vdots \\
\dot{x}_n
\end{bmatrix} = \kappa \underbrace{x_1^{\alpha_1} \cdots x_n^{\alpha_n}}_{\chi^\alpha} \left(\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \right)
\]
Extension of Mass-action Kinetics

Classical mass-action kinetics:

\[
\begin{align*}
a_1X_1 + \cdots + a_nX_n & \quad \xrightarrow{\kappa} \quad b_1X_1 + \cdots + b_nX_n \\
\begin{bmatrix}
\dot{x}_1 \\
\vdots \\
\dot{x}_n
\end{bmatrix} & = \kappa \underbrace{x_1^{a_1} \cdots x_n^{a_n}}_{\chi^a} \left(\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \right)
\end{align*}
\]

Generalized mass-action kinetics (Müller, Regensburger, 2012):

\[
\begin{align*}
a_1X_1 + \cdots + a_nX_n & \quad (\alpha_1X_1 + \cdots + \alpha_nX_n) \quad \xrightarrow{\kappa} \quad b_1X_1 + \cdots + b_nX_n \\
\begin{bmatrix}
\dot{x}_1 \\
\vdots \\
\dot{x}_n
\end{bmatrix} & = \kappa \underbrace{x_1^{\alpha_1} \cdots x_n^{\alpha_n}}_{\chi^\alpha} \left(\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} - \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \right)
\end{align*}
\]
Matrix Form of the Mass-Action ODE

Classical mass-action:

\[
\dot{x} = \sum_{(i,j) \in \mathcal{R}} \kappa_{ij} x^y_i (y_j - y_i) \iff \dot{x} = YA_\kappa x^Y
\]

Lemma

\(x^* \in \mathbb{R}^n_+\) is a complex-balanced equilibrium if and only if \(A_\kappa(x^*)^Y = 0\)

Generalized mass-action:

\[
\dot{x} = \sum_{(i,j) \in \mathcal{R}} \kappa_{ij} x^\tilde{y}_i (y_j - y_i) \iff \dot{x} = YA_\kappa x^{\tilde{Y}}
\]

Lemma

\(x^* \in \mathbb{R}^n_+\) is a complex-balanced equilibrium if and only if \(A_\kappa(x^*)^{\tilde{Y}} = 0\)
Matrix form of the mass-action ODE

Classical mass-action:

\[
\dot{x} = \sum_{(i,j) \in \mathcal{R}} \kappa_{ij} x^y_i (y_j - y_i) \quad \iff \quad \dot{x} = Y A_{\kappa} x^Y
\]

Lemma

\(x^* \in \mathbb{R}^n_+\) is a complex-balanced equilibrium if and only if \(A_{\kappa}(x^*)^Y = 0\)

Generalized mass-action:

\[
\dot{x} = \sum_{(i,j) \in \mathcal{R}} \kappa_{ij} x^{\tilde{y}}_i (y_j - y_i) \quad \iff \quad \dot{x} = Y A_{\kappa} x^{\tilde{Y}}
\]

Lemma

\(x^* \in \mathbb{R}^n_+\) is a complex-balanced equilibrium if and only if \(A_{\kappa}(x^*)^{\tilde{Y}} = 0\)
Stability of linear ODEs

Theorem (Lyapunov)

Let $A \in \mathbb{R}^{n \times n}$ and consider the linear ODE

$$\dot{x} (\tau) = Ax (\tau).$$

Then the following are equivalent.

1. $0 \in \mathbb{R}^n$ is asymptotically stable
2. each eigenvalue of A has negative real part
3. there exists a $P = P^\top > 0$ for which the quadratic function $V(x) = x^\top Px$ is a strict Lyapunov function:

$$\frac{d}{d\tau} V(x(\tau)) < 0 \text{ whenever } x(\tau) \neq 0 \in \mathbb{R}^n$$

4. there exists a $P = P^\top > 0$ such that $PA + A^\top P < 0$
Theorem (Hartman-Grobman)

An equilibrium $x^* \in \mathbb{R}^n$ of the ODE $\dot{x}(\tau) = f(x(\tau))$ is asymptotically stable if each eigenvalue of the Jacobian matrix $J(x^*) \in \mathbb{R}^{n \times n}$ has negative real part.

In this case, x^* is said to be *linearly stable*.
\[
\dot{x} = YA_x x^Y \\
J(x) = YA_x \text{diag}(x^Y) Y^\top \text{diag}(1/x)
\]

Theorem (Johnston, 2011)

Assume \(S = \mathbb{R}^n \) and let \(x^* \) be a complex-balanced equilibrium. Then \(x^* \) is linearly stable (i.e., \(\sigma(J(x^*)) \subseteq \mathbb{C}_- \)).

In fact, \(x^* \) is even *diagonally stable*:
there exists a positive diagonal matrix \(D \) such that

\[
DJ(x^*) + J(x^*)^\top D < 0.
\]
Linear stability of complex-balanced equilibria:

Generalized mass-action

\[
\dot{x} = YA_\kappa x \tilde{Y}
\]

\[
J(x) = YA_\kappa \text{diag}(x \tilde{Y}) \tilde{Y}^\top \text{diag}(1/x)
\]

Theorem (BB, Müller, Regensburger, 2020)

Assume \(S = \mathbb{R}^n \) and that the reaction graph is a cycle. Then the following are equivalent.

- Complex-balanced equilibria are linearly stable (for all complex-balancing \(\kappa \)).
- The matrix \(YA_\kappa \equiv 1 \tilde{Y}^\top \) is D-stable.

Definition (D-stability)

A matrix \(A \in \mathbb{R}^{n \times n} \) is said to be D-stable if \(\sigma(AD) \subseteq \mathbb{C}_- \) for all positive diagonal matrix \(D \).