
DOUBLE AND TRIPLE SUMS MODULO A PRIMEKATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSAAbstra
t. We study the 
onne
tion between the sizes of 2A and 3A (twofold andthreefold sums), where A is a set of residues modulo a prime p.1. Introdu
tionLev [3℄ observed that for a set A of integers the quantityjkAj � 1kis in
reasing. The �rst 
ases of this result assert that(1.1) j2Aj � 2jAj � 1and(1.2) j3Aj � 32 j2Aj � 12 :Inequality (1.1) 
an be extended to di�erent summands as(1.3) jA+Bj � jAj+ jBj � 1;and this inequality 
an be extended to sets of residues modulo a prime p, the onlyobstru
tion being that a 
ardinality 
annot ex
eed p:(1.4) jA+Bj � min(jAj+ jBj � 1; p);this familiar result is known as the Cau
hy-Davenport inequality.In this paper we deal with the possibility of extending inequality (1.2) to residues.We also have the obstru
tion at p, and the third author initially hoped that this is theonly one, so an inequality likej3Aj � min�32 j2Aj � 12 ; p�may hold; in parti
ular, this would imply 3A = Zp for j2Aj > 2p=3. M. Garaev asked(personal 
ommuni
ation) whether this holds at least under the stronger assumptionj2Aj > 
p with some absolute 
onstant 
 < 1. It turned out that the answer even to thisquestion is negative, and the relationship between the sizes of 2A and 3A is seemingly
ompli
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2 KATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSATheorem 1.1. Let p be a prime.(a) For every m < pp=3 there is a set A � Zp su
h that j3Aj � p � m2 andj2Aj � p�m(2pp�m + 3)� Cp1=4. Here C is a positive absolute 
onstant.(b) In parti
ular, there is a set A � Zp su
h that 3A 6= Zp and j2Aj � p�2pp�Cp1=4.Our positive results are as follows. (Sin
e the stru
ture of sumsets is trivial when theset has 1 or 2 elements, we assume jAj � 3.)Theorem 1.2. Let p � 29 be a prime, A � Zp, jAj � 3 and write j2Aj = n, j3Aj = s.(a) There is a positive absolute 
onstant 
 su
h that for n < 
p we haves � 3n� 12 :(b) For 6 � n < p=2 we have s > p2n.(
) If n = (p+ 1)=2, then s � 3n� 12 = 3p+ 14 :(d) For n � (p+ 3)=2 we have s � n(2p� n)p :(e) If n > p�p2p+ 2, then 3A = Zp.A drawba
k of this theorem is the dis
ontinuous nature of the bounds in (a){(b){(
). It is possible to modify the argument in the proof of (
) to get a 
ontinuouslydeteriorating bound for n just below p=2, but it is hardly worth the trouble. It isunlikely that the a
tual behaviour of min s 
hanges in this interval, so it seems safe to
onje
ture the following.Conje
ture 1.3. If n � (p+ 1)=2, then s � (3n� 1)=2.To �nd the smallest value of n provided by Theorem 1.1 for whi
h s < (3n � 1)=2
an happen we have to solve a quadrati
 inequality for m. This gives m � pp=5 andn � 16p=25.Theorem 1.1 and part (d) of Theorem 1.2 des
ribe the quadrati
 
onne
tion betweenn and s for large values of n. Indeed, (d) 
an be reformulated as follows: if s � p�m2,then n � p � mpp, thus the di�eren
e is the 
oeÆ
ient 1 or 2 of mpp. Similarly,the theorems lo
ate the point after whi
h ne
essarily 3A = Zp between p � 2pp andp�p2p. We do not have a plausible 
onje
ture about the 
orre
t 
oeÆ
ient of pp inthese results. 2. Constru
tionWe prove Theorem 1.1.Without loss of generality we may assume that p is large enough.We will use the integers 0; : : : ; p�1 to represent the residues modulo p. We will write[a; b℄ to denote a dis
rete interval, that is, the set of integers a � i � b.Take an integer q � pp, and write p = qt + r with 1 � r � q � 1. We will 
onsidersets of the form A = K [ L, whereK = [0; k � 1℄; jKj = k � q � 1



DOUBLE AND TRIPLE SUMS MODULO A PRIME 3and L = f0; q; 2q; : : : ; (l � 1)qg; jLj = l � t� 1:Our parameters will satisfy k > q=2 + 3 and l � 2t=3 + 2. We assume that t > 6.All the sums x + y, x 2 K, y 2 L are distin
t and hen
e we havej2Aj � jK + Lj = kl:It would not be diÆ
ult to 
al
ulate j2Aj more exa
tly, but it would only minimallya�e
t the �nal result.The set 3A is the union of 3K, 2K + L, K + 2L and 3L. We 
onsider 2K + L �rst.We have 2K = [0; 2k � 2℄. Sin
e 2k � 2 > q, the sets 2K, 2K + q, . . . overlap and wehave 2K + L = [0; q(l � 1) + 2k � 2℄ = [0; ql + (2k � 2� q)℄:So 3A 
ontains [0; ql℄ and we will study in detail the stru
ture in [ql; p� 1℄.We have 3K � [0; 3q℄, so we do not get any new element (assuming l � 3).Now we study K + 2L. The set 2L 
ontains 0; q; : : : ; qt and then q(t + 1) � p =q � r; 2q � r; : : : ; q(2l � 2)� p = q(2l � 2� t)� r. By adding the set K to the se
ondtype of elements we get numbers in[0; q(2l� 1� t)℄ � [0; ql℄;so no new elements again. By adding K to iq we stay in [0; ql℄ as long as i � l� 1, andfor l � i � t we get[ql; ql+k�1℄[[(l+1)q; (l+1)q+k�1℄[� � �[[(t�1)q; (t�1)q+k�1℄[[qt; qt+min(k�1; r)℄:If r � k � 1, the last of the above intervals 
overs [qt; p℄, so we 
an restri
t ourattention to [ql; qt � 1℄. If r > k � 1, then some elements near p � 1 may not be inK + 2L, but as r � k � 1 will typi
ally hold in our 
hoi
e, we will not try to exploitthis possible gain. Note that the �nal segment of 2K +L, that is, [ql; ql+ (2k� 2� q)℄is 
ontained in the �rst of the above intervals.Finally 3L 
onsists of elements of the form iq�jp, where 0 � i � 3l�3 and 0 � j � 2.Those with j = 0 are already listed above. Those with j = 2 are in [0; ql℄, so no newelement. Finally with j = 1 we have iq � p = (i� t)q � r with t+ 1 � i � 2t, and alsowith i = 2t+ 1 if r > q=2. Among these elements the possible new ones are(l + 1)q � r; (l + 2)q � r; : : : ; (t+ 1)q � r:This gives no new element if(2.1) r � q � k + 1:So under this additional assumption the intervals [iq + k; iq + q � 1℄ are disjoint to 3Afor l � i � t� 1, and this givesj3Aj � p� (t� l)(q � k):For a given m we will take l = t�m, k = q�m, hen
e the bound j3Aj � p�m2. Withthis 
hoi
e we have(2.2) j2Aj � kl = (q �m)(t�m) = p�m(q + t�m)� r:Now we sele
t q, t and r. De�ne the integer v by(v � 1)2 < p < v2;



4 KATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSAand write p = v2 � w, 0 < w < 2v. With arbitrary i we havep = (v � i)(v + i) + (i2 � w):Hen
e q = v� i, t = v+ i and r = i2�w may be a good 
hoi
e. We have a lower boundfor r given by (2.1), whi
h now reads r � m+ 1, but otherwise the smaller the value ofr the better the bound on 2A in (2.2), so we takei = 1 + hpw +m + 1i :Then r = m+O(pw +m + 1) = m+O(p1=4). Sin
e q+ t = 2v < 2pp+2, (2.2) yieldsthe bound in part (a) of Theorem 1.1.3. EstimatesHere we prove Theorem 1.2.We will assume that 0 2 A and 
onsequently A � 2A, sin
e this 
an be a
hieved bya translation whi
h does not a�e
t the studied 
ardinalities.The proof will be based on 
ertain Pl�unne
ke-type estimates. These will be quotedfrom [5℄; the basi
 ideas go ba
k to Pl�unne
ke [4℄.Proof of (a).Lemma 3.1. Let i < h be integers, U , V sets in a 
ommutative group and writejU j = m, jU + iV j = �m. We have jhV j � �h=im:This is Corollary 2.4 of [5℄.Take a set A � Zp su
h that j2Aj = n, j3Aj = s and s < 3n=2. We apply the abovelemma with i = 1, h = 4, U = 2A, V = A. We getj4V j < (3=2)4 jU j :Sin
e 4V = 4A = 2U , this means that the set U = 2A has a small doubling property,namely j2U j < (81=16) jU j, and this permits us to \re
tify" it. There are several waysto do this; the most 
omfortable is the following form, taken from [1℄, Theorem 1.2,with some 
hange in the notation.Lemma 3.2. Let p be a prime and let U � Z=pZ be a set with jU j = Æp andmin(j2U j; jU�U j) = �jU j. Suppose that Æ � (16�)�12�2. Then the diameter of U is at most(3.1) 12Æ1=4�2plog(1=Æ)p:The diameter in the above lemma is the length of the shortest arithmeti
al progression
ontaining the set. We apply this lemma for our set U = 2A. We �x � = 81=16 andsele
t 
 so that for Æ � 
 the bound in (3.1) be < p=4, and it should in
lude the upperbound imposed on Æ. (A
tually the se
ond requirement is stronger and it gives the value
 = 2�39=24 .) This will be the 
onstant 
 in (a) of the theorem.The lemma yields that A � 2A � f�kd;�(k � 1)d; : : : ;�d; 0; d; 2d; : : : ; ldg with asuitable d and integers k; l su
h that k + l < p=4. LetA0 = fj : �k � j � l; jd 2 Ag:Then 4A0 � [�4k; 4l℄, still an interval of length < p, hen
e j4Aj = j4A0j and the 
laimfollows from Lev's result (1.2) on sets of integers. �



DOUBLE AND TRIPLE SUMS MODULO A PRIME 5Proof of (b).Lemma 3.3. Let U; V � Zp, jU j � 2, jV j � 2, jU j + jV j � p � 1. Then eitherjU + V j � jU j + jV j, or U; V are arithmeti
 progressions with a 
ommon di�eren
e.This is the Cau
hy-Davenport inequality with Vosper's des
ription of the extremalpairs in
orporated; see e. g. [2℄.Lemma 3.4. If A � Zp and 2A is an arithmeti
 progression, then s � min(p; (3n �1)=2).Proof. First, use a dilation to make the di�eren
e of the arithmeti
 progression 1, andthen a translation to a
hieve 0 2 A; these transformations do not 
hange the size of oursets. In this 
ase A � 2A, so we 
an write2A = fk; k + 1; : : : ;�1; 0; 1; : : : ; lg; k � 0 � l; l � k = n� 1:Let the �rst and last elements of A (in the list above) be a and b. We have k � a � 0 �b � l. Furthermore 2A � [2a; 2b℄, that is, n = j2Aj � 2(b�a)+1 and so b�a � (n�1)=2.Now 3A 
ontains the residue of every integer in the set[k; l℄ + fa; bg = [k + a; l + b℄;an interval of length l+ b� k� a � 3(n� 1)=2 (to see that it is an interval observe thatl + a � k + b), hen
e its 
ardinality is at least the 
ardinality of this interval or p. �Lemma 3.4 allows us to prove slightly stronger results than we would obtain byapplying the Cau
hy-Davenport inequality dire
tly, the main bene�t being that thestatements of the results be
ome simpler.Lemma 3.5. Let i < h be integers, U , V sets in a 
ommutative group and writejU j = m, jU + iV j = �m. There is an X � U , X 6= ; su
h thatjX + hV j � �h=ijXj:This is Theorem 2.3 of [5℄.Now we prove part (b). We apply the above lemma with i = 1, h = 2 for U = 2A,V = A, so that � = s=n. We get that there is a nonempty X � 2A su
h that(3.2) jX + 2Aj � �2 jXj :We will now apply Lemma 3.3 to the sets X and 2A. To 
he
k the 
onditions observethat jXj + j2Aj � 2n � p � 1. The 
ondition jXj � 2 may not hold. If it fails, then(3.2) redu
es to n � �2 and hen
e � � p2. If 2A is an arithmeti
 progression, thenwe get (b) by Lemma 3.4. If none of these happens, then by Lemma 3.3 we know thatjX + 2Aj � jXj+ n, and then (3.2) 
an be rearranged asn � (�2 � 1) jXj � (�2 � 1)n;that is, � � p2 as 
laimed. �Proof of (e). If 3A 6= Zp, then j2Aj + jAj � p (by the Cau
hy-Davenport inequality,or by an appropriate appli
ation of the pigeonhole prin
iple). Write jAj = m. Wehave n � m(m + 1)=2, hen
e m � p2n � 1=2 and the previous inequality impliesn+p2n � p+ 1=2. By solving this as a quadrati
 inequality for pn we obtainn � p�p2p+ 2 + 32 < p�p2p+ 2:



6 KATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSA �Proof of (
) and (d). We will prove thats � min�3n� 12 ; n(2p� n)p � ;whi
h implies both (
) and (d). Indeed, observe that the bound in (
), (3n � 1)=2, issmaller than the bound n(2p� n)=p in (d) for n = (p+ 1)=2 and it is larger otherwise.If s = p, we are done. If s = p� 1, then from part (e) we get that n < p�p2p+2 <p�pp and then n(2p� n)=p < p� 1, and again we are done. So assume s � p� 2.Lemma 3.6. Let i < h be positive integers, U , V;W sets in a 
ommutative group andwrite jU j = m, j(U + iV )n (W +(i�1)V )j � �m. There is an X � U , X 6= ; su
h thatj(X + hV ) n (W + (h� 1)V )j � �h=ijXj:This is Theorem 2.8 of [5℄.Lemma 3.7. Let U , V be sets in a 
ommutative group and write jU j = m, jU + V j ��m. There is an X � U , X 6= ; su
h thatjX + 2V j � �m+ (�� 1)2jXj:Proof. We apply the previous lemma with i = 1, h = 2, W = U + v with an arbitraryv 2 V ; 
learly � = �� 1. We obtain the existen
e of an X � U , X 6= ; su
h thatj(X + 2V ) n (U + V + v)j � (�� 1)2jXj:The 
laim follows by observing that jU + V + vj � �m. �Consider the set D = Zp n (�3A). We have m = jDj = p� s � 2. The set D + A isdisjoint to �2A, hen
e jD + Aj � p � n. We apply the previous lemma with U = D,V = A and � = (p � n)=(p� s). We obtain the existen
e of a nonempty X � D su
hthat(3.3) jX + 2Aj � p� n + (�� 1)2jXj:We have jXj+ j2Aj � p� s+ n � p� 1. By lemma 3.3 either we have(3.4) jX + 2Aj � jXj+ j2Aj ;or jXj = 1, or 2A is an arithmeti
 progression. In the last 
ase the 
laim follows fromLemma 3.4, sin
e n(2n� p)=p < (3n� 1)=2 for n > (p+ 1)=2.If (3.4) holds, then (3.3) implies(3.5) 2n� p � �(�� 2) jXj :Sin
e the left side is positive, so is the right side, that is, ne
essarily � � 2, and thenusing that jXj � jDj = p� s, (3.5) be
omes(3.6) 2n� p � �(�� 2)(p� s):Substituting � = (p� n)=(p� s) and �� 2 = (2s� n� p)=(p� s) this be
omes(2n� p)(p� s) � (p� n)(2s� n� p)whi
h 
an be rearranged to give the bound in (d).If (3.4) fails, then jXj = 1 and (3.3) be
omes(3.7) 2n� p � (�� 1)2:



DOUBLE AND TRIPLE SUMS MODULO A PRIME 7If � is su
h that (� � 1)2 � 2�(� � 2), then, as p � s � 2, (3.6) holds again and we
omplete the proof as before. If this is not the 
ase, then � < 1 +p2, and (3.7) yields2n � p < 2. Sin
e p is odd, this leaves the only possibility n = (p + 1)=2. Now (3.7)be
omes � � 2, that is, p� n � 2(p� s),s � p+ n2 = 3p+ 14as wanted. �A
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