DOUBLE AND TRIPLE SUMS MODULO A PRIME
KATALIN GYARMATI, SERGEI KONYAGIN, AND IMRE Z. RUZSA

ABSTRACT. We study the connection between the sizes of 24 and 34 (twofold and
threefold sums), where A is a set of residues modulo a prime p.

1. INTRODUCTION

Lev [3] observed that for a set A of integers the quantity

kA —1
k
is increasing. The first cases of this result assert that
(1.1) 24| > 2|A| -1
and
3 1
(1.2) 3A| > §|2A| — 5

Inequality (1.1) can be extended to different summands as
(1.3) A+ B| > |A|+|B| -1,

and this inequality can be extended to sets of residues modulo a prime p, the only
obstruction being that a cardinality cannot exceed p:

(1.4) A+ B| > min(4] + B| - 1p);

this familiar result is known as the Cauchy-Davenport inequality.

In this paper we deal with the possibility of extending inequality (1.2) to residues.
We also have the obstruction at p, and the third author initially hoped that this is the
only one, so an inequality like

3 1
3A|[ > min | =|24| — =
341> min (3241 - 1.p)

may hold; in particular, this would imply 34 = Z, for |2A4| > 2p/3. M. Garaev asked
(personal communication) whether this holds at least under the stronger assumption
12A| > ¢p with some absolute constant ¢ < 1. It turned out that the answer even to this
question is negative, and the relationship between the sizes of 24 and 3A is seemingly
complicated.
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Theorem 1.1. Let p be a prime.

(a) For every m < \/p/3 there is a set A C Zy, such that [3A] < p —m?* and
24| > p—m(2/p —m+3) — Cp"/*. Here C is a positive absolute constant.

(b) In particular, there is a set A C Z, such that 3A # Z, and |24| > p—2,/p—Cp'/*.

Our positive results are as follows. (Since the structure of sumsets is trivial when the
set has 1 or 2 elements, we assume |A| > 3.)

Theorem 1.2. Let p > 29 be a prime, A C Z,, |A| > 3 and write |2A| = n, |3A| = s.
(a) There is a positive absolute constant ¢ such that for n < cp we have

3n—1

s 2>

(b) For 6 <n < p/2 we have s > \/2n.
(¢c) Ifn=(p+1)/2, then

3n—1 _ 3p+1
= 2 4

S

(d) Forn > (p+ 3)/2 we have
s> M2 =n)
p
(e) If n>p—/2p+2, then 34 = Z,.

A drawback of this theorem is the discontinuous nature of the bounds in (a)—(b)-
(c). It is possible to modify the argument in the proof of (¢) to get a continuously
deteriorating bound for n just below p/2, but it is hardly worth the trouble. Tt is
unlikely that the actual behaviour of min s changes in this interval, so it seems safe to
conjecture the following.

Conjecture 1.3. If n < (p+1)/2, then s > (3n —1)/2.

To find the smallest value of n provided by Theorem 1.1 for which s < (3n — 1)/2
can happen we have to solve a quadratic inequality for m. This gives m ~ ,/p/5 and
n = 16p/25.

Theorem 1.1 and part (d) of Theorem 1.2 describe the quadratic connection between
n and s for large values of n. Indeed, (d) can be reformulated as follows: if s < p—m?,
then n < p — m,/p, thus the difference is the coefficient 1 or 2 of m,/p. Similarly,
the theorems locate the point after which necessarily 34 = Z, between p — 2,/p and
p — +/2p. We do not have a plausible conjecture about the correct coefficient of VP in
these results.

2. CONSTRUCTION

We prove Theorem 1.1.

Without loss of generality we may assume that p is large enough.

We will use the integers 0, ...,p—1 to represent the residues modulo p. We will write
[a, b] to denote a discrete interval, that is, the set of integers a < i < b.

Take an integer ¢ ~ |/p, and write p = ¢t +r with 1 < r < ¢ — 1. We will consider
sets of the form A = K U L, where

K=[0k—1], |K|=k<q—1
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and
L={0,q,2q,...,(l—1)q}, |L|=1<t—1.
Our parameters will satisfy £ > ¢/2 + 3 and [ > 2¢/3 + 2. We assume that ¢ > 6.
All the sums z 4+ y, © € K, y € L are distinct and hence we have

24| > |K + L| = kL.

It would not be difficult to calculate |2A| more exactly, but it would only minimally
affect the final result.

The set 3A is the union of 3K, 2K + L, K + 2L and 3L. We consider 2K + L first.
We have 2K = [0,2k — 2]. Since 2k — 2 > ¢, the sets 2K, 2K + ¢, ...overlap and we
have

9K + L =10,q(l —1)+ 2k —2] = [0, ¢l + (2k — 2 — q)].
So 3A contains [0, ¢/] and we will study in detail the structure in [gl,p — 1].

We have 3K C [0, 3¢], so we do not get any new element (assuming [ > 3).

Now we study K + 2L. The set 2L contains 0,q,...,qt and then ¢(t + 1) — p =
qg—r,2¢—r1r,...,q(2l —2) —p = q(2l — 2 — t) — r. By adding the set K to the second
type of elements we get numbers in

[07 q(2l —-1- t)] C [07 ql]a
so no new elements again. By adding K to iq we stay in [0, ¢/] as long as i < [— 1, and
for | <i <t we get
lql, ql+k—1]U[(I+1)q, (I4+1)g+k—1]U- - -U[(t—1)gq, (t—1)g+k—1]U[qt, ¢t+min(k—1,7)].

If r < k — 1, the last of the above intervals covers [gt, p], so we can restrict our
attention to [ql,qt — 1]. If » > k — 1, then some elements near p — 1 may not be in
K + 2L, but as r < k — 1 will typically hold in our choice, we will not try to exploit
this possible gain. Note that the final segment of 2K + L, that is, [¢l, ¢l + (2k — 2 — ¢)]
is contained in the first of the above intervals.

Finally 3L consists of elements of the form ig— jp, where 0 < < 3l—3and 0 < j < 2.
Those with j = 0 are already listed above. Those with j = 2 are in [0, ¢{], so no new
element. Finally with j = 1 we have i¢ —p = (i — t)g — r with ¢t + 1 < i < 2¢, and also
with i = 2t + 1 if r > ¢/2. Among these elements the possible new ones are

l+1)g—r,(I+2)g—r,....,(t+1)g—r.
This gives no new element if
(2.1) r>q—k+1.
So under this additional assumption the intervals [ig + k,iq + ¢ — 1] are disjoint to 34
for | <i<t—1, and this gives
BA| <p—(t—1)(g— k).

For a given m we will take [ =t —m, k = ¢ —m, hence the bound [3A| < p—m?. With
this choice we have
(2.2) 24| > kl=(q—m)(t—m)=p—m(qg+t—m)—r.

Now we select ¢, t and r. Define the integer v by

(v—1) <p<?
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and write p = v? — w, 0 < w < 2v. With arbitrary 7 we have

p=(v—1i)(v+1i)+(i* —w).
Hence ¢ = v—i,t = v+iand r = i — w may be a good choice. We have a lower bound
for r given by (2.1), which now reads r > m + 1, but otherwise the smaller the value of

r the better the bound on 24 in (2.2), so we take
=1+ [Vw+m+1|.

Then r =m+ O(vVw +m + 1) = m+ O(p'/*). Since ¢+t =2v < 2,/p+2, (2.2) yields
the bound in part (a) of Theorem 1.1.

3. ESTIMATES

Here we prove Theorem 1.2.

We will assume that 0 € A and consequently A C 2A, since this can be achieved by
a translation which does not affect the studied cardinalities.

The proof will be based on certain Pliinnecke-type estimates. These will be quoted
from [5]; the basic ideas go back to Pliinnecke [4].

Proof of (a).

Lemma 3.1. Let © < h be integers, U, V sets in a commutative group and write
Ul =m, |U+iV|=am. We have
WV | < aim.

This is Corollary 2.4 of [5].

Take a set A C Z, such that [2A| = n, |[3A| = s and s < 3n/2. We apply the above
lemma withi =1, h =4, U =2A, V = A. We get

[4V] < (3/2)*|U].

Since 4V = 4A = 2U, this means that the set U = 2A has a small doubling property,
namely [2U| < (81/16) |U|, and this permits us to “rectify” it. There are several ways

to do this; the most comfortable is the following form, taken from [1], Theorem 1.2,
with some change in the notation.

Lemma 3.2. Let p be a prime and let U C Z/pZ be a set with |U| = §p and min(|2U], |U—
U|) = a|U|. Suppose that § < (16a)"'2®". Then the diameter of U is at most

(3.1) 12674\ flog(1/6)p.

The diameter in the above lemma is the length of the shortest arithmetical progression
containing the set. We apply this lemma for our set U = 2A. We fix o = 81/16 and
select ¢ so that for 4 < ¢ the bound in (3.1) be < p/4, and it should include the upper
bound imposed on §. (Actually the second requirement is stronger and it gives the value
¢ =27%/2") This will be the constant ¢ in (a) of the theorem.

The lemma yields that A C 2A C {—kd,—(k — 1)d,...,—d,0,d,2d,...,ld} with a
suitable d and integers k, [ such that k 4+ < p/4. Let

A'={j:—k<j<ljde A}

Then 4A" C [—4k, 4], still an interval of length < p, hence |[4A| = [4A4'| and the claim
follows from Lev’s result (1.2) on sets of integers. O
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Proof of (b).

Lemma 3.3. Let U,V C Z,, Ul > 2, |V]| > 2, |U| + |V| < p—1. Then either

U+ V| >|U|+|V], or UV are arithmetic progressions with a common difference.
This is the Cauchy-Davenport inequality with Vosper’s description of the extremal

pairs incorporated; see e. g. [2].

Lemma 3.4. If A C Z, and 2A is an arithmetic progression, then s > min(p, (3n —

1)/2).

Proof. First, use a dilation to make the difference of the arithmetic progression 1, and

then a translation to achieve 0 € A; these transformations do not change the size of our
sets. In this case A C 2A, so we can write

2A={k,k+1,...,-1,0,1,...,1}, k<0<, l—k=n-—1.
Let the first and last elements of A (in the list above) be a and b. We have k < a < 0 <
b < [. Furthermore 2A C [2a, 2b], that is, n = [2A| < 2(b—a)+1 and so b—a > (n—1)/2.
Now 3A contains the residue of every integer in the set
[k, 1]+ {a,b} = [k +a,l+ D],
an interval of length [ +b—k—a > 3(n—1)/2 (to see that it is an interval observe that
[+ a > k+0b), hence its cardinality is at least the cardinality of this interval or p. O

Lemma 3.4 allows us to prove slightly stronger results than we would obtain by
applying the Cauchy-Davenport inequality directly, the main benefit being that the
statements of the results become simpler.

Lemma 3.5. Let i < h be integers, U, V sets in a commutative group and write
Ul =m, |U+1iV|=am. Thereis an X C U, X # 0 such that
X +hV| < a™i|X].

This is Theorem 2.3 of [5].
Now we prove part (b). We apply the above lemma with i = 1, h = 2 for U = 2A4,
V = A, so that a = s/n. We get that there is a nonempty X C 2A such that

(3.2) X +24] < o®|X].

We will now apply Lemma 3.3 to the sets X and 2A. To check the conditions observe
that | X| + |24] < 2n < p — 1. The condition |X| > 2 may not hold. If it fails, then
(3.2) reduces to n < o and hence a > /2. If 24 is an arithmetic progression, then
we get (b) by Lemma 3.4. If none of these happens, then by Lemma 3.3 we know that
| X +2A| > | X|+ n, and then (3.2) can be rearranged as

n<(a?—-1)|X| < (a®—1)n,
that is, & > /2 as claimed. OJ

Proof of (e). If 3A # Z,, then [2A| + |A| < p (by the Cauchy-Davenport inequality,
or by an appropriate application of the pigeonhole principle). Write |A| = m. We
have n < m(m + 1)/2, hence m > +/2n — 1/2 and the previous inequality implies
n +v/2n < p+ 1/2. By solving this as a quadratic inequality for \/n we obtain

ngp—\/2p+2+g<p—\/%+2.
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Proof of (¢) and (d). We will prove that

s> min <3n— 1, n(2p—n)> |
2 p
which implies both (¢) and (d). Indeed, observe that the bound in (¢), (3n — 1)/2, is
smaller than the bound n(2p —n)/p in (d) for n = (p+ 1)/2 and it is larger otherwise.
If s = p, we are done. If s = p— 1, then from part (e) we get that n < p—/2p+2 <
p — /P and then n(2p —n)/p < p — 1, and again we are done. So assume s < p — 2.

Lemma 3.6. Let i < h be positive integers, U, V,W sets in a commutative group and

write |U| =m, |(U+iV)\(W+ (i—1)V)| < Sm. Thereis an X C U, X # 0 such that
(XN (W + (h=1)V)| < 81X,
This is Theorem 2.8 of [5].

Lemma 3.7. Let U, V be sets in a commutative group and write [U| =m, (U + V| <
am. There is an X C U, X # () such that

X +2V]| < am+ (a— 1)} X].
Proof. We apply the previous lemma with + =1, h = 2, W = U + v with an arbitrary
v € V; clearly 3 = a — 1. We obtain the existence of an X C U, X # ) such that
(X +2V)\ (U+V +0)] < (a—1)°X].
The claim follows by observing that |U + V + v| < am. O

Consider the set D =Z, \ (—3A). We have m = |D| =p — s > 2. The set D + A is
disjoint to —2A, hence |D + A| < p — n. We apply the previous lemma with U = D,
V=Aand a=(p—n)/(p—s). We obtain the existence of a nonempty X C D such
that

(3.3) X + 24| <p—n+(a—1)7°X|
We have | X| +[24| <p—s+n <p—1. By lemma 3.3 either we have
(3.4) X +2A] > | X ]|+ [24],

or |[X| =1, or 24 is an arithmetic progression. In the last case the claim follows from
Lemma 3.4, since n(2n —p)/p < (3n —1)/2 forn > (p+1)/2.
If (3.4) holds, then (3.3) implies

(3.5) 2n —p < a(a—2)|X]|.

Since the left side is positive, so is the right side, that is, necessarily o > 2, and then
using that |X| < |D|=p—s, (3.5) becomes

(3.6) 2n—p < ala—2)(p—s).
Substituting @« = (p —n)/(p— s) and @« — 2 = (2s —n — p)/(p — s) this becomes
(2n=p)(p—s) < (p—n)(2s —n —p)

which can be rearranged to give the bound in (d).
If (3.4) fails, then | X| =1 and (3.3) becomes

(3.7) 2n —p < (a—1)%
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If a is such that (o — 1)? < 2a(a — 2), then, as p — s > 2, (3.6) holds again and we
complete the proof as before. If this is not the case, then o < 1+ /2, and (3.7) yields
2n — p < 2. Since p is odd, this leaves the only possibility n = (p + 1)/2. Now (3.7)
becomes a > 2, that is, p —n > 2(p — s),
5> p+n _ 3p+1
-2 4

as wanted.
O
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