Welcome to my homepage!



picture

Postal address (office):
Ferenc Izsak
ELTE TTK
Department of Applied Analysis and Computational Mathematics
1518 BUDAPEST
P.O. Box 120

Physical address (office):
ELTE TTK
Department of Applied Analysis and Computational Mathematics
District XI. BUDAPEST
Pazmany P. stny. 1 C (the red building in the campus)
3rd floor, room 705

Phone (office): (36 1)3722500/8428

Fax (office): (36 1)3812158

E-mail: izsakf@cs.elte.hu
Besides English, you can write me sowohl auf Deutsch als ook op Nederlands.



PERSONAL

CV





REPORTS, PRESENTATIONS, PUBLICATIONS

Topic I. Numerical analysis of fractional order elliptic problems and space-fractional diffusion problems

Journal articles:
B.J. Szekeres, F. Izsák, A finite difference method for fractional diffusion equations with Neumann boundary conditions, Open Math. 13(1) (2015), 581-600. Available at https://www.degruyter.com/view/j/math.2015.13.issue-1/math-2015-0056/math-2015-0056.xml?format=INT
B.J. Szekeres, F. Izsák, Finite element approximation of fractional order elliptic boundary value problems, J. Comput. Appl. Math. 292 (2016), 553-561. Available at http://www.sciencedirect.com/science/article/pii/S037704271500388X
B.J. Szekeres, F. Izsák, Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems, Applications of Mathematics, 62(1) (2017), pp. 15-36. A preprint is available here .
B.J. Szekeres, F. Izsák, Finite difference approximation of space-fractional diffusion problems: The matrix transformation method, Computers and Mathematics with Applications, 73(2) (2017), pp. 261-269. A preprint is available here .

Conference proceedings:
B.J. Szekeres, F. Izsák, Fractional derivatives for vortex simulations, Proceedings of ALGORITMY 2016, 175-182 (2016). Available at http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/406

Topic II. Analysis of FE methods, a posteriori error estimations, discontinuous Galerkin methods

Journal articles:
1. Ferenc Izsák, Discontinuous Galerkin methods for partial differential equations in the atmospheric modeling, IDŐJÁRÁS Quarterly Journal of the Hungarian Meteorological Service, Vol. 110 (3-4) 2006, pp. 427-442
2. Jaap J. W. van der Vegt, Ferenc Izsák, and Onno Bokhove, Error Analysis of a Continuous-Discontinuous Galerkin Finite Element Method for Generalized 2D Vorticity Dynamics, SIAM J. Numer. Anal. Vol. 45(4) 2007, pp. 1349-1369
A preprint
of this paper.
3. Izsák, Ferenc; Harutyunyan, Davit; van der Vegt, Jaap J. W. Implicit a posteriori error estimates for the Maxwell equations, Math. Comp. 77(263) 2008, pp. 1355-1386
A preprint with the proofs.
4. Davit Harutyunyan, Ferenc Izsák, Jaap J. W. van der Vegt and Mike A. Botchev, Adaptive finite element techniques for the Maxwell equations using implicit a posteriori error estimates, Comput. Methods Appl. Mech. Eng. 197(17-18) 2008, pp. 1620-1638
A preprint
of this paper.
5. Domokos Sármány, Ferenc Izsák, Jaap J. W. van der Vegt, Optimal penalty parameters for symmetric discontinuous Galerkin discretizations of the time-harmonic Maxwell equations, J. Sci. Comput. 44(3) 2010, pp. 219-254
A preprint
of this paper.
6. Tamás L. Horváth and Ferenc Izsák, Implicit a posteriori error estimation using patch recovery techniques, Cent. Eur. J. Math. 10(1), pp. 55-72 (2012)
A preprint
of this paper.
7. Gábor Csörgő and Ferenc Izsák, Energy norm error estimates for averaged discontinuous Galerkin methods in 1 dimension, International Journal of Numerical Analysis and Modeling 11(3), pp. 567-586. (2014).
A preprint
of this paper.
8. Ferenc Izsák, Energy norm error estimates for averaged discontinuous Galerkin methods: multidimensional case, Comput. Math. Appl., 70:(4) pp. 705-725. (2015)
The manuscript.



Conference talks, seminars, posters:
1. Numerical approximation of output functionals for Maxwell equations conference talk, Sunny beach, Bulgaria, September 2004
2. Implicit a posteriori error estimation for the time harmonic Maxwell equations (poster) 30th Woudschoten Conference, Dribergen-Zeist (Netherlands), October 2005
3. Implicit a posteriori error estimation for the time harmonic Maxwell equations conference talk, MAFELAP 2006, Brunel University (West London), June 2006
4. An h-adaptive vector finite element method for the time harmonic Maxwell equations (poster) 31st Woudschoten Conference, Dribergen-Zeist (Netherlands), October 2006
5. An h-adaptive vector finite element method for the time harmonic Maxwell equations conference talk, RMMM 2007, St. Petersburg, Euler Institute, July 2007
6. Explicit two-sided a posteriori error estimates for the time harmonic Maxwell equations (poster) 32nd Woudschoten Conference, Dribergen-Zeist (Netherlands), October 2007
7. A posteriori error estimation and h-adaptive vector finite element method for the time harmonic Maxwell equations presentation, Doktorandenseminar, Universitat Karlsruhe, 3rd December, 2007
8. Energy norm error estimation for averaged discontinuous Galerkin methods in one space dimension (conference talk, MAFELAP 2013, London, Brunel University)
9. A poster with a summary of the results:
Energy norm error estimation for averaged DG approximations of elliptic problems (38th Woudschoten Conference, October 2013)
10. Interior penalty discontinuous Galerkin methods for second order boundary value problems: a new viewpoint presentation, 13th Finite Element Fair, Prague, June 2015.

Topic III. Simulation of chemical reactions, in particular pattern formation phenomena

Journal articles:
1. F. Izsák and I. Lagzi, Simulation of Liesegang pattern formation using a discrete stochastic model, Chem. Phys. Lett., 371, 321-326, 2003
2. I. Lagzi and F. Izsák, Stochastic description of precipitate pattern formation in an electric field, Phys. Chem. Chem. Phys., 5, 4144-4148, 2003
3. F. Izsák and I. Lagzi Precipitate pattern formation in fluctuating media, J. Chem. Phys., 120, 1837-1840, 2004
4. I. Lagzi and F. Izsák, Stabilization and destabilization effects of the electric field on stochastic precipitate pattern formation, Chem. Phys., 303, 151-155, 2004
5. I. Lagzi, F. Izsák, S.C. Müller and J. Ross, Comment on "Precipitate pattern formation in fluctuating media" [J. Chem. Phys. 120, 1837 (2004)], J. Chem. Phys., 121, 3943-3943, 2004
6. F. Izsak and I. Lagzi, Simulation of a crossover from precipitation wave to moving Liesegang pattern, J. Phys. Chem. A, 109, 730-733, 2005
7. F. Izsák and I. Lagzi, A new universal law for the Liesegang pattern formation, J. Chem. Phys., 122, 184707, 2005
8. M. Ripszám, A. Nagy, A. Volford, F. Izsák and I. Lagzi, The Liesegang eyes phenomenon, Chem. Phys. Lett., 414, 384-388, 2005
9. I. Lagzi and F. Izsák, Regular precipitation patterns and precipitation waves in an open system, Phys. Chem. Chem. Phys., 7, 3845-3850, 2005
10. A. Volford, F. Izsák, M. Ripszám and I. Lagzi Systematic front distortion and presence of consecutive fronts in a precipitation system, J. Phys. Chem. B, 110, 4535-4537, 2006
11. A. Volford, F. Izsák, M. Ripszám and I. Lagzi, Pattern formation and self-organization in a simple precipitation system, Langmuir, 23, 961-964, 2007
12. T. Szakály, I. Lagzi, F. Izsák, L. Roszol and A. Volford, Stochastic cellular automata modeling of excitable systems, Central European Journal of Physics (doi: 10.2478/s11534-007-0032-7)
A preprint
of this paper.
13. F. Molnár Jr, F. Izsák, I. Lagzi, Design of equidistant and revert type precipitation patterns in reaction-diffusion systems, Phys. Chem. Chem. Phys., 10, 2368-2373, 2008
14. P.A. Zegeling, I. Lagzi and F. Izsák, Transition of Liesegang precipitation systems: simulations with an adaptive grid PDE method, Communications in Computational Physics, 10, 867-881, 2011
A preprint
of this paper.
15. F. Molnár, F. Izsák, R. Mészáros and I. Lagzi, Simulation of reaction-diffusion processes in three dimensions using CUDA, Chemometrics and Intelligent Laboratory Systems, 108, 76-85, 2011
16. N. Nagy and F. Izsák, Stability of reaction fronts in random walk simulations, Appl. Math. Res. Express 2011, doi: 10.1093/amrx/abr016
17. R. Mészáros, F. Molnár, F. Izsák, T. Kovács, P. Dombóvári, Á. Steierlein, R. Nagy, I. Lagzi, Environmental modeling using graphical processing unit with CUDA, Időjárás, 116(4), 237-251, 2012
18. Á. Leelőssy, F. Molnár Jr., F. Izsák, Á. Havasi, I. Lagzi and R. Mészáros, Dispersion modeling of air pollutants in the atmosphere: a review, Central European Journal of Geosciences, 6(3), 257-278, 2014.

Conference talks, seminars, posters:
1. I. Lagzi, F. Izsák: Formation of Liesegang patterns: effect of electric field Gordon Research Conferences, Oscillations and Dynamic Instabilities in Chemical Systems, 28 July - 02 August, 2002, Oxford, UK (Poster)
2. I. Lagzi, F. Izsák: A stochastic model of the one-dimensional Liesegang pattern formation Nonlinear Phenomena in Chemistry; ESF REACTOR workshop, 24-27 January, 2003, Budapest, Hungary (Lecture)
3. I. Lagzi, F. Izsák: Crossover from precipitation wave to moving Liesegang pattern Gordon Research Conferences, Oscillations and Dynamic Instabilities in Chemical Systems, 18-23 July, 2004, Lewiston, Maine (Poster)
4. F. Izsák, I. Lagzi: A discrete stochastic model of the Liesegang phenomenon in an electric field Gordon Research Conferences, Oscillations and Dynamic Instabilities in Chemical Systems, 18-23 July, 2004, Lewiston, Maine (Poster)

Conference proceedings:
1. I. Lagzi and F. Izsák, Models of precipitation pattern formation in an electric field, in: 'Selforganization in Nonequilibrium Systems', S. Anic, Z. Cupic, L. Kolar-Anic (eds.), Society of Physical Chemists of Serbia, 166-169, 2004 ISBN 86-82475-15-4
2. I. Lagzi and F. Izsák, Micro and macro level stochastic simulation of reaction-diffusion systems, in: Proceedings of ALGORITMY 2005, Vysoke Tatry-Podbanske, A. Handlovicova, Z. Kriva, K. Mikula and D. Sevcovic (eds.), 185-193, 2005 ISBN 80-227-2192-1

Book sections:
F. Izsák and I. Lagzi, Models of Liesegang pattern formation, in: 'Precipitation Patterns in Reaction-Diffusion Systems', I. Lagzi (ed), pp. 207-217, 2011 ISBN 978-81-308-0420-0
A preprint
of this section.


Topic IV. Delay differential equations

Journal articles:
1. F. Izsák, An existence theorem for Volterra integrodifferential equations with infinite delay, Elect. J. Diff. Eqs., Vol. 2003, No.4.
2. F. Izsák, An existence theorem for a type of functional differential equations with infinite delay, Acta Math. Hung., 108(1-2), 135-151, 2005.

Conference proceedings
1. Izsák, F. Volterra integrodifferential equations with infinite delay. EQUADIFF 2003, 1092--1097, World Sci. Publ., Hackensack, NJ, 2005.

Conference talks, seminars:
1. Volterra integrodifferential equations with infinite delay Equadiff, Hasselt (Belgium), July 2003
2. An existence theorem for a functional differential equation with infinite delay , Analysis Seminar, Leiden, June 2004

PhD thesis, short summary.
1. PhD thesis
2. a summary on 10 pages

Topic V. Further earlier works

Journal articles:
István Faragó, Ferenc Izsák, Tamás Szabó and Ákos Kriston, An IMEX scheme for reaction-diffusion equations: application for a PEM fuel cell model, Cent. Eur. J. Math. 11(4), 746-759, 2013
István Faragó, Ferenc Izsák, Tamás Szabó and Ákos Kriston, An IMEX scheme combined with Richardson extrapolation methods for reaction-diffusion equations, accepted for publication in Időjárás, 2013


Izsak, Ferenc
Last modified: Tue Jun 1 10:03:34 CEST 2010