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Abstract

Szemerédi’s Regularity Lemma is a fundamental tool in graph theory: it has many
applications to extremal graph theory, graph property testing, combinatorial number theory,
etc. The goal of this paper is to point out that Szemerédi’s Lemma can be thought of as a
result in analysis. We show three different analytic interpretations.

1 Introduction

Szemerédi’s Regularity Lemma was first used in his celebrated proof of the Erdős–Turán Con-
jecture on arithmetic progressions in dense sets of integers. Since then, the Lemma has emerged
as a fundamental tool in graph theory: it has many applications in extremal graph theory, in
the area of “Property Testing” in computer science, combinatorial number theory, etc.

Roughly speaking, the Szemereédi Regularity Lemma says that the node set of every (large)
graph can be partitioned into a small number of parts so that the subgraphs between the parts
are “random-like”. There are several ways to make this precise, some equivalent to the original
version, some not (see Section 2 for an exact statement).

The goal of this paper is not to describe the many applications of this Lemma (see [16, 15] for
surveys and discussions of such applications); nor will we discuss extensions to sparse graphs by
[11], or hypergraphs by Frankl–Rödl, Gowers and Tao [9, 14, 20]. Tao [21] describes the lemma
as a result in probability. Our goal is to point out that Szemerédi’s Lemma can be thought of as
a result in analysis. We show three different analytic interpretations. The first one is a general
statement about approximating elements in Hilbert spaces which implies many different versions
of the Regularity Lemma, and also potentially other approximation results. The second one
presents the Regularity Lemma as the compactness of an important metric space of 2-variable
functions. We prove the compactness by using a weak version of the Regularity Lemma but
(somewhat surprisingly) this compactness implies strong versions of the Regularity Lemma very
easily. The third analytic interpretation shows the connection between a weak version of the
Regularity Lemma and covering by small diameter sets, i.e., dimensionality.

We describe two applications of this third version: a lower bound on the number of classes
in the “weak” version of the Szemerédi Lemma, and an algorithm that constructs the “weak”
Szemerédi partition as Voronoi cells in a metric space.

2 Strong and Weak Regularity Lemma

We start with stating a standard version of the Lemma. For a graph G = (V,E) and for
X, Y ⊆ V , let eG(X, Y ) denote the number of edges with one endnode in X and another in Y ;
edges with both endnodes in X ∩ Y are counted twice.
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Let G be a bipartite graph G with bipartition {U,W}. The ratio d = dG(U,W ) = eG(U,W )
|U |·|W |

can be thought of as the density of edges between U and W . On the average, we expect that for
X ⊆ U and Y ⊆ W ,

eG(X, Y ) ≈ d|X| · |Y |.
For two arbitrary subsets of the nodes, eG(X, Y ) may be very far from this “expected value”.
If G is a random graph, then, however, it will be close; random graphs are very “homogeneous”
in this respect. So the following definition captures how “random-like” the bipartite graph G is:
We say that G is ε-regular, if ∣∣∣∣eG(X, Y )

|X| · |Y |
− d

∣∣∣∣ ≤ ε

holds for all subsets X ⊆ U and Y ⊆ W such that |X| > ε|U | and |Y | > ε|W |. Notice that
we could not require the condition to hold for small X and Y : for example, if both have one
element, then the quotient eG(X, Y )/(|X| · |Y |) is either 0 or 1.

Let G = (V,E) be a graph (not necessarily bipartite) and let S, T be disjoint subsets of V .
We denote by G[S, T ] the bipartite graph on S ∪ T obtained by keeping just those edges of G
that connect S and T .

A partition {V1, . . . , Vk} of V is called an equipartition if b|V |/kc ≤ |Vi| ≤ d|Vi|/ke for all
1 ≤ i ≤ k.

With these definitions, the Regularity Lemma can be stated as follows:

Lemma 2.1 (Szemerédi Regularity Lemma, usual form) For every ε > 0 and m > 0
there is a k = k(ε, m) such that every graph G = (V,E) on at least k nodes has an equipartition
{V1, . . . , Vk} (m ≤ k ≤ k(ε, l)) such that for all but εk2 pairs of indices 1 ≤ i < j ≤ k, the
bipartite graph G[Vi, Vj ] is ε-regular.

Let us restate the Regularity Lemma in a form that is more suited for our discussions.
Consider a graph G = (V,E) and two subsets U,W ⊆ V (not necessarily disjoint). We can
measure how non-random the graph between U and W is by its irregularity

irregG(U,W ) = max
X⊆U,Y⊆V

∣∣eG(X, Y )− d|X| · |Y |
∣∣.

(Note that by scaling up by |X| · |Y |, we can maximize over all sets ⊆ U and Y ⊆ W .) Clearly
irregG(U,W ) ≤ |U | · |W |.

Lemma 2.2 (Szemerédi Regularity Lemma, second form) For every ε > 0 there is a
k(ε) > 0 such that every graph G = (V,E) has an equipartition P into k ≤ k(ε) classes V1, . . . , Vk

such that ∑
1≤i<j≤k

irregG(Vi, Vj) ≤ ε|V |2.

The equivalence of the two forms is easy to prove. One can add further requirements (at the
cost of increasing k(ε)), like the requirement that {V1, . . . , Vk} refines a given partition.

We give one more reformulation for further reference. For u, v ∈ V , let aG(u, v) = 1 if
uv ∈ E and aGu, v = 0 otherwise. For a partition P = {S1, . . . , Sk} of V and u, v ∈ V , let
aP(u, v) = dG(Si, Sj) where u ∈ Si and v ∈ Sj .

Lemma 2.3 (Szemerédi Regularity Lemma, third form) For every ε > 0 there is a
k(ε) > 0 such that every graph G = (V,E) has an equipartition P into k ≤ k(ε) classes such that∣∣∣ ∑

uv∈E(H)

(aG(u, v)− aP(u, v)
∣∣∣ ≤ ε

for every graph H on V that is the union of at most k2 complete bipartite graphs.
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To see how this implies the previous form, let X = Xij ⊆ Vi and Y = Xji ⊆ Vj attain the
maximum in the definition of irregG(Vi, Vj), and let Hij be a complete bipartite graph between
Xij and Xji. Let H be the union of those Hij for which eG(Xij , Xji) > dG(Vi, Vj) and let H ′

be the union of the rest. Applying Lemma 2.3 to both H and H ′, we obtain Lemma 2.2.
One feature of the Regularity Lemma, which unfortunately forbids practical applications, is

that k(ε) is very large: the best proof gives a tower of height about 1/ε2, and unfortunately this
is not far from the truth, as was shown by Gowers [13].

A related result with a more reasonable threshold was proved by Frieze and Kannan [10],
but they measure irregularity in a different way. For a partition P = {V1, . . . , Vk} of V , define
dij = eG(Vi,Vj)

|Vi|·|Vj | . For any two sets S, T ⊆ V (G), we expect that the number of edges of G

connecting S to T is about

eP(S, T ) =
k∑

i=1

k∑
j=1

dij |Vi ∩ S| · |Vj ∩ T |.

So we can measure the irregularity of the partition by maxS,T |eG(S, T )− eP(S, T )|. The Weak
Regularity Lemma [10] says the following.

Lemma 2.4 (Weak Regularity Lemma) For every ε > 0 and every graph G = (V,E), V

has a partition P into k ≤ 22/ε2
classes V1, . . . , Vk such that for all S, T ⊆ V ,

|eG(S, T )− eP(S, T )| ≤ ε|V |2.

Note that we do not require here that P is an equipartition; it is not hard to see that this
version implies that we could require P to be an equipartition, at the cost of increasing the
bound on k to 2c/ε2

with a larger absolute constant c.
The partition in the weak lemma has substantially weaker properties than the partition in

the strong lemma; these properties are sufficient in some, but not all, applications. The bound
on the number of partition classes is still rather large (exponential), but at least not a tower.
We’ll see that the proof obtains the partition as an “overlay” of only 2/ε2 sets, which in some
applications can be treated as if there were only about 1/ε2 classes, which makes the weak lemma
quite efficient (see e.g. its applications in [3]). We’ll come back to the sharpness of the threshold
in Section 6.

Other versions of the Regularity Lemma strengthen, rather than weaken, the conclusion (of
course, at the cost of replacing the tower function by an even more formidable value). Such a
“super-strong” Regularity Lemma was proved by Alon, Fisher, Krivelevich and Szegedy [1, 2].
Alon and Shapira [5] used this to obtain very general results in the theory of “Property Testing”
in computer science.

It turns out that the Regularity Lemma has reformulations in other branches of mathematics.
A probabilistic and information theoretic version was given by Tao [21]. Our goal is to describe
three reformulations in analysis.

3 The analytic language

A two-variable function W : [0, 1]2 → R is called symmetric if W (x, y) = W (y, x) for all 0 ≤
x, y ≤ 1. Let W denote the set of all bounded symmetric measurable functions W : [0, 1]2 → R
and let W0 denote the set of symmetric measurable functions W : [0, 1]2 → [0, 1]. We call a
function U ∈ W a stepfunction with at most m steps if there is a partition {S1, . . . , Sm} of [0, 1]
such that U is constant on every Si×Sj . From the analytic point of view, we think of graphs as
0 − 1 valued stepfunctions in W0 such that the steps Si have equal sizes. It is clear that every
such function represents a graph on the vertex set {Si} and every graph arises this way.
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Every W ∈ W can be considered as a kernel operator on the Hilbert space L2([0, 1]2) by

(Wf)(x) =
∫ 1

0

W (x, y)f(y) dy.

Besides the standard L2 and L1 norms, we’ll need the following norm on W:

‖W‖� = sup
S,T⊆[0,1]

∣∣∣∣∣∣
∫

S×T

W (x, y) dx dy

∣∣∣∣∣∣ .
For the case of matrices, and up to scaling, this norm is called the “cut norm”; various important
properties of it were proved by Alon and Naor [4] and by Alon, Fernandez de la Vega, Kannan
and Karpinski [3]. Many of these extend to the infinite case without any change. In particular,
‖W‖� is within absolute constant factors to the L1 → L∞ norm of W as a kernel operator.
Furthermore, the following useful equations and inequalities are easy to verify:

‖W‖� = sup
f,g:[0,1]→[0,1]

|〈f,Wg〉| ≥ sup
f :[0,1]→[0,1]

|〈f,Wf〉|

≥ sup
S⊆[0,1]

∣∣∣∣∣∣
∫

S×S

W (x, y) dx dy

∣∣∣∣∣∣ ≥ 1
2
‖W‖�. (1)

The Weak Regularity Lemma in these terms asserts the following:

Lemma 3.1 (Weak Regularity Lemma, Analytic Form) For every function W ∈ W0 and
ε > 0 there is a stepfunction W ′ ∈ W0 with at most d22/ε2e steps such that ‖W −W ′‖� ≤ ε.

For every W ∈ W and every partition P = {P1, . . . , Pk} of [0, 1] into measurable sets, let
WP : [0, 1]2 → R denote the stepfunction obtained from W by replacing its value at (x, y) ∈
Pi × Pj by the average of W over Pi × Pj . (This is not defined when λ(Pi) = 0 or λ(Pj) = 0,
but this is of measure 0; here λ denotes the Lebesgue measure.)

It was observed in [3] that we can replace the stepfunction W ′ in Lemma 3.1 by the step-
function WP , where P is the partition into the steps of W ′, at the cost of increasing the error ε
by a factor of at most 2. Furthermore, at the cost of replacing the bound 2d2/ε2e on the number
of steps by 2d20/ε2e, we could require that the steps have the same measure.

It can also be shown [8] that finite simple graphs (0-1 valued symmetric stepfunctions) are
dense in the set W0 with respect to the ‖.‖�-norm.

The norm ‖.‖� relates to other norms by the following inequalities. It is trivial that

‖W‖� ≤ ‖W‖1. (2)

The following inequalities, proved in [8], are still simple but less obvious. For every W ∈ W, let
W ◦W denote its square as a kernel operator, i.e.,

(W ◦W )(x, y) =
∫ 1

0

W (x, t)W (t, y) dt.

Then
‖W‖4

� ≤ ‖W ◦W‖2
2 ≤ ‖W‖�‖W‖2

∞‖W‖1. (3)

So for functions in W,
‖W ◦W‖1/2

2 ≤ ‖W‖� ≤ ‖W ◦W‖2
2.

It can be checked that the left hand side, as a function of W , is a norm. Due to its more explicit
form, this is often easier to handle than ‖W‖�.
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We conclude this section with formulating an analytic version of the strong Szemerédi Lemma
(third version). A rectangle in [0, 1] is any set of the form S × T , where S and T are measurable
subsets of [0, 1].

Lemma 3.2 (Strong Regularity Lemma, Analytic Form) For every ε > 0 there is an in-
teger k(ε) > 0 such that for every function W ∈ W0 there is a partition P = {S1, . . . , Sk} of
[0, 1] into k ≤ k(ε) sets of equal measure with the following property: For every set R ⊆ [0, 1]2

that is the union of at most k2 rectangles, we have∣∣∣∫
R

(W −WP) dx dy
∣∣∣ ≤ ε.

4 The Regularity Lemma in Hilbert space

The following lemma is an extension of the Regularity lemma to a very general setting of Hilbert
spaces.

Lemma 4.1 (Regularity Lemma in Hilbert Space) Let K1,K2, . . . be arbitrary nonempty
subsets of a Hilbert space H. Then for every ε > 0 and f ∈ H there is an m ≤ d1/ε2e and there
are fi ∈ Ki (1 ≤ i ≤ m) and γ1, γ2, . . . , γm ∈ R such that for every g ∈ Km+1

|〈g, f − (γ1f1 + · · ·+ γmfm)〉| ≤ ε · ‖g‖ · ‖f‖.

Before proving this lemma, a little discussion is in order. Assume that the sets Kn are
subspaces. Then a natural choice for the function γ1f1 + · · ·+ γmfm is the best approximation
of f in the subspace K1 + · · · + Km (or an approximately best approximation, if the best does
not exist), and the error f − (γ1f1 + · · ·+ γmfm) is orthogonal (or almost orthogonal) to every
g ∈ K1 + · · ·+Km. The main point in this lemma is that it is also almost orthogonal to the next
set Km+1.

Proof. Let

ηk = inf
{γi},{fi}

‖f −
k∑

i=1

γifi‖2,

where the infimum is taken over all γ1, . . . , γk ∈ R and fi ∈ Ki. Clearly we have ‖f‖2 ≥ η1 ≥
η2 ≥ · · · ≥ 0. Hence there is an m ≤ d1/ε2e such that ηm < ηm+1 + ε2‖f‖2. So there are
γ1, . . . , γm ∈ R and fi ∈ Ki such that

‖f −
m∑

i=1

γifi‖2 ≤ ηm+1 + ε2‖f‖2.

Let f∗ =
∑

i γifi, and consider any g ∈ Km+1. By the definition of ηm+1, we have for every
real t that

‖f − (f∗ + tg)‖2 ≥ ηm+1 ≥ ‖f − f∗‖2 − ε2‖f‖2,

or
‖g‖2t2 − 2〈g, f − f∗〉t + ε2‖f‖2 ≥ 0.

The discriminant of this quadratic polynomial must be nonpositive, which proves the lemma. �

We derive some consequences of this Lemma. First, let us apply this lemma to the case when
the Hilbert space is L2([0, 1]2), and each Kn is the set of indicator functions of product sets S×S,
where S is a measurable subset of [0, 1]. Let f ∈ W0, then f∗ =

∑k
i=1 γifi is a stepfunction with
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at most 2k steps, and so we get a stepfunction W ∗ ∈ W with at most 2d1/ε2e steps such that for
every measurable set S ⊆ [0, 1], ∣∣∣∣∫

S×S

(W −W ∗)
∣∣∣∣ ≤ ε.

It is easy to see that the conclusion implies that for any two measurable sets S, T ⊆ [0, 1],∣∣∣∣∫
S×T

(W −W ∗)
∣∣∣∣ ≤ 2ε,

which implies Lemma 3.1 (up to the factor of 2).
We say that a partition P of [0, 1] is a weak Szemerédi partition for W with error ε, if∣∣∣∣∫

S×S

(W −WP)
∣∣∣∣ ≤ ε

holds for every subset S ⊆ [0, 1]. So every function has a weak Szemerédi partition with error ε,
with at most 22/ε2

classes.
To derive the graph theoretic form of the (weak) Regularity Lemma from lemma 4.1, we

represent the graph G on n nodes by a stepfunction WG: we consider the adjacency matrix
A = (aij) of G, and replace each entry aij by a square of size (1/n) × (1/n) with the constant
function aij on this square. Let A be the algebra of subsets of [0, 1] generated by the intervals
corresponding to nodes of G. We let Kn be the set of indicator functions of product sets S × S
(S ∈ A). Analogously to the proof of Lemma 3.1 above, we get a partition P = {S1, . . . , Sm} of
[0, 1] into sets in A such that∣∣∣∣∫

S×T

(WG(x, y)− (WG)P(x, y)) dx dy

∣∣∣∣ ≤ 2ε

for all sets S, T ∈ A. This translates into the conclusion of Lemma 2.4.
Next we show how to get the strong analytic form of the Regularity Lemma 3.2; the graph the-

oretic form can be obtained similarly (just there is a little extra trouble because of divisibilities).
Let us define a sequence s(1), s(2), . . . of positive integers by s(1) = 1 and s(k+1) = 2s(1)4···s(k)4 .
Let us apply Lemma 4.1 to the Hilbert space L2([0, 1]2) and the function W as before, but choose
Kn to be the set of stepfunctions with at most s(n) steps. Lemma 4.1 gives us a function W ∗,
which is a stepfunction with at most m = s(1)s(2) . . . s(k) steps; let S1, . . . Sm be these steps.
This stepfunction has the property that for every stepfunction U with at most s(k + 1) steps,∣∣∣∫

[0,1]2
U(W −W ∗) dx dy ≤ ε.

We further partition each Si into an appropriate number of sets of measure 1/m2 (called good
sets and a ”remainder” of measure less than 1/m2. We combine these remainders into single set,
whose measure is less than 1/m. We partition this into sets of size 1/m2; there will be at most
m such sets, which we call bad sets. So we get a partition Q = {T1, . . . , Tm2} of [0, 1] into m2

equal parts, out of which (say) T1, . . . , Tm2−m are good sets.
Let R ⊆ [0, 1]2 be a set that is the union of m2 rectangles. We claim that∣∣∣∫

R

(W −WQ)
∣∣∣ ≤ 3ε.

We start with removing from R all points in sets Ti × Tj , where either Ti or Tj is bad. The
remaining set R′ is again the union of at most m2 rectangles, and since the measure of R \R′ is
less than 2/m < ε, it suffices to prove that∣∣∣∫

R′
(W −WQ)

∣∣∣ ≤ 2ε.
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Clearly, the indicator function of R′ is a stepfunction with at most 2m4 ≤ s(k + 1) steps, and
hence by the conclusion of Lemma 4.1, we have∣∣∣∫

R′
(W −W ∗)

∣∣∣ ≤ ε.

So it suffices to verify that ∣∣∣∫
R′

(WQ −W ∗)
∣∣∣ ≤ ε. (4)

If Ti and Tj are good sets, then both W ∗ and WQ are constant on Ti × Tj , so we can either
include or exclude the rectangle Ti×Tj from R′, and not decrease the left hand side of (4). Doing
so for every pair of good sets, we obtain a set R′′, which is the union of certain sets Ti × Tj ,
where both Ti and Tj are good. Thus by the definition of WQ, we have∣∣∣∫

R′′
(WQ −W ∗)

∣∣∣ = ∣∣∣∫
R′′

(W −W ∗)
∣∣∣ ≤ ε

(by the assertion of Lemma 4.1). This concludes the proof of the strong Szemerédi Lemma.
There may be further interesting choices of the Hilbert space H and subsets Kn. For example,

let H = L2[0, 1], and let Kn be the set of polynomials of degree at most 2n. Then we get:

Corollary 4.2 For every ε > 0 and every function f ∈ L2[0, 1] there is a polynomial p ∈ R[x]
of degree d ≤ 2d1/ε2e such that

〈g, f − p〉 ≤ ε‖f‖ · ‖g‖

for every polynomial g of degree at most 2d.

5 The Regularity Lemma as compactness

In this chapter we show that the Regularity Lemma can be formulated as a compactness theorem.
Recall that a map φ : [0, 1] → [0, 1] is measure preserving if λ(φ−1(U)) = λ(U) for every

measurable set U ⊆ [0, 1]. We say that φ is a measure preserving bijection if it is bijective and
its inverse is also measure preserving.

Let W be a function from W. We define Wφ by Wφ(x, y) = W (φ(x), φ(y)). We define a
“distance” on the space W by

δ�(U,W ) = inf
φ
‖Uφ −W‖�,

where φ ranges over all measure preserving bijections [0, 1] → [0, 1]. It is not hard to check
that δ�(U,W ) = δ�(W,U), and that this distance satisfies the triangle inequality. Furthermore,
δ�(U,W ) = δ�(Uφ,W ) for every measure preserving bijection φ.

The distance of two different functions can be 0; various characterizations of when the δ�

distance is 0 are given in [7] and [18].
We construct a metric space X from (W, δ�) by identifying functions U and W with

δ�(U,W ) = 0. Let X0 denote the image of W0 under this identification. Informally speak-
ing, the elements of X0 are the isomorphism classes of functions in W0. Clearly the distance δ�

is well defined on X0.
The following fact can be regarded as a topological interpretation of the Regularity Lemma.

(We prove it by the methods in [17].)

Theorem 5.1 The metric space X0 is compact.
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Proof. Let W1,W2, . . . be a sequence of functions in W0. We want to construct a subsequence
that has a limit in X0.

Using Lemma 3.1 and the remarks after it, for each k and n we construct a partition Pn,k

such that these partitions and the corresponding stepfunctions Wn,k = WPn,k
∈ W0 satisfy the

following.

• ‖Wn −Wn,k‖� ≤ 1/k.

• |Pn,k| = mk (where mk depends only on k).

• The partition Pn,k+1 refines Pn,k for every k.

We’ll only use that δ�(Wn,Wn,k) ≤ 1/k, which means that we can rearrange the range of
Wn,k as we wish; in particular, we may assume that all steps are intervals.

Now we can select a subsequence of the Wn for which the length of the i-th interval of Wn,1

converges for every i, and also the value of Wn,1 on the product of the i-th and j-th intervals
converges for every i and j (as n → ∞). It follows then that the sequence Wn,1 converges to a
limit U1 almost everywhere, which itself is a stepfunction with m1 steps that are intervals.

We repeat this for k = 2, 3, . . . , to get subsequences for which Wk,n → Uk almost everywhere,
where Uk is a stepfunction with mk steps that are intervals.

For every k < l, the partition into the steps of Wn,l is a refinement of the partition into the
steps of Wn,k, and hence it is easy to see that the same relation holds for the partitions into the
steps of Ul and Uk. Furthermore, the function Wn,k can be obtained from the function Wn,l by
averaging its value over each step, and it follows that a similar relation holds for Ul and Uk.

Let (X, Y ) be a random point in [0, 1]2 chosen uniformly, then this property of the functions
Uk implies that the sequence (U1(X, Y ), U2(X, Y ), . . . ) is a martingale. Since the random vari-
ables Ui(X, Y ) remain bounded, the Martingale Convergence Theorem (see e.g. [22], Theorem
11.5) implies that this martingale is convergent with probability 1. In other words, the sequence
(U1, U2, . . . ) is convergent almost everywhere. Let U be its limit.

Fix any ε > 0. Then there is a k > 3/ε such that ‖U − Uk‖1 < ε/3. Fixing this k, there is
an n0 such that ‖Uk −Wn,k‖1 < ε/3 for all n ≥ n0. Then

δ�(U,Wn) ≤ δ�(U,Uk) + δ�(Uk,Wn,k) + δ�(Wn,k,Wn)
≤ ‖U − Uk‖1 + ‖Uk −Wn,k‖1 + δ�(Wn,k,Wn)

≤ ε

3
+

ε

3
+

ε

3
= ε.

This proves that Wn → U in the metric space X0. �

Note that in the proof above, the explicit bound on the number of partition classes in the Reg-
ularity Lemma was not used, only that their number is bounded by a function of ε, independent
of the function. This is quite often the case with applications of the Lemma.

Now we show how this compactness statement implies the following strong form of the Reg-
ularity Lemma.

Lemma 5.2 (Very Strong Regularity Lemma) Let h(ε, t) > 0, (ε > 0, t ∈ N) be an arbi-
trary fixed function. Then for every ε > 0 there is a threshold k(ε) such that for every function
W ∈ W0 there are two functions W ′, U ∈ W0 such that U is a stepfunction with l ≤ k(ε) steps,
and

‖W −W ′‖� ≤ h(ε, l), ‖W ′ − U‖1 ≤ ε.

The role of the two norms could be interchanged: the function W ′′ = U −W ′ + W satisfies

‖W −W ′′‖1 ≤ ε, ‖W ′′ − U‖� ≤ h(ε, 1).
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Choosing h(ε, t) = ε, we get Lemma 3.1. Choosing h(ε, t) = ε/t2, it is not hard to see that
the strong form of Szemerédi’s Lemma follows. Choosing h(ε, t) appropriately small, we get the
“super-strong” Regularity Lemma from [1, 2] mentioned in the introduction. Our Lemma is very
closely related to a version of the regularity lemma given by Tao [21].

Proof. We may assume that h is monotone decreasing in its second variable. Let us fix a
number ε > 0. Every function U ∈ W0 is the limit of stepfunctions in the ‖.‖1 norm, hence
there is a stepfunction U ′ ∈ W0 with ‖U − U ′‖1 ≤ ε. Let f(U) denote the minimum number
of steps in such a stepfunction U ′. For a function U ∈ W0, let B(U) denote the open ball
{W | δ�(U,W ) < h(ε, f(U))}. Using Theorem 5.1, we obtain that there is a finite set of
functions W1,W2, . . . ,Wt ∈ W0 with ∪t

i=1B(Wi) = W0. This means that for every function
W ∈ W0 there is a function Wm (1 ≤ m ≤ t) and a stepfunction U0 ∈ W0 with f(Wm) steps
such that δ�(W,Wm) < h(ε, f(Wm)) and ‖Wm − U0‖1 < ε.

Set l = f(Wm) and k(ε) = maxt
i=1 f(Wi). There is a measure preserving bijection φ : [0, 1] 7→

[0, 1] such that ‖W−Wφ
m‖� < h(ε, l). Then U = Uφ

0 is a stepfunction with l steps, and W ′ = Wφ
m

satisfies
‖W ′ − U‖1 = ‖Wφ

m − Uφ
0 ‖1 = ‖Wm − U0‖1 < ε

and
δ�(W,W ′) = δ�(W,Wφ

m) = δ�(W,Wm) ≤ h(ε, l),

which completes the proof. �

6 The Regularity Lemma and covering by small balls

Every function W ∈ W gives rise to a metric on [0, 1] by

d1
W (x1, x2) = ‖W (x1, .)−W (x2, .)‖2 =

(∫ 1

0

(W (x1, y)−W (x2, y))2 dy

)1/2

.

It turns out that for our purposes, the following distance function is more important: we square
W as a kernel operator, and then consider the above distance. More precisely, we define

dW (x1, x2) = d1
W◦W (x1, x2)

=
(∫ 1

0

(∫ 1

0

W (x1, y)W (y, z) dy −
∫ 1

0

W (x2, y)W (y, z) dy
)2

dz

)1/2

.

Our goal is to prove that the (weak) Regularity Lemma is equivalent to the assertion that most
of the metric space ([0, 1], δW ) can be covered by a bounded number of small balls. More exactly:

Theorem 6.1 Let W ∈ W0 and let P = {P1, . . . , Pk} be a partition of [0, 1] into measurable
sets.

(a) If P is a weak Szemerédi partition with error ε2/8, then there is a set S ⊆ [0, 1] with
λ(S) ≤ ε such that for each partition class, Pi \ S has diameter at most ε in the dW metric.

(b) If there is a set S ⊆ [0, 1] with λ(S) ≤ (ε/5)4 such that for each partition class, Pi \ S
has diameter at most (ε/5)2 in the dW metric, then P is a weak Szemerédi partition with error
ε.

Combining this fact with the existence of weak Szemerédi partitions, we get the following:

Corollary 6.2 For every function W ∈ W and every ε > 0 there is a partition P =
{P0, P1, . . . , Pk} of [0, 1] into measurable sets with k ≤ 2d64/ε4e such that λ(P0) ≤ ε and for
1 ≤ i ≤ k, Pi has diameter at most ε in the dW metric.
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It is straightforward to formulate this theorem for graphs instead of functions W ∈ W: We
define the distance of two nodes u, v of a graph G by squaring the adjacency matrix, and taking
the euclidean distance between the row vectors corresponding to u and v, divided by n3/2. Then
the statement of the Theorem is analogous, and the proof is the same.

Proof. (a) Suppose that P is a weak Szemerédi partition with error ε2/8. Let R = W −WP ,
then we know that ‖R‖� ≤ ε2/8.

For every x ∈ [0, 1], define

F (x) =
∫ 1

0

(∫ 1

0

R(x, s)W (s, z) ds
)2

dz.

Then we have∫ 1

0

F (x) dx =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

R(x, t)R(x, s)W (s, z)W (t, z) dx ds dt dz.

Fix z and t, then since −1 ≤ R(x, t) ≤ 1 and 0 ≤ W (s, z) ≤ 1, we have∫ 1

0

∫ 1

0

R(x, t)R(x, s)W (s, z) dx ds ≤ ε2/4,

and so ∫ 1

0

F (x) dx ≤ ε2/4.

Hence there is a set S ⊆ [0, 1] with measure at most ε such that for x ∈ [0, 1] \ S, we have
F (x) ≤ ε/4.

Let x, y ∈ [0, 1]\S be two points in the same partition class of P. Then WP(x, s) = WP(y, s)
for every s ∈ [0, 1], and hence

dW (x, y)2 =
∫ 1

0

(∫ 1

0

(W (x, s)−W (y, s))W (s, z) ds
)2

dz

=
∫ 1

0

(∫ 1

0

(R(x, s)−R(y, s))W (s, z) ds
)2

dz

=
∫ 1

0

(∫ 1

0

R(x, s)W (s, z) ds−
∫ 1

0

R(y, s))W (s, z) ds
)2

dz

≤ 2
∫ 1

0

(∫ 1

0

R(x, s)W (s, z) ds
)2

dz + 2
∫ 1

0

(∫ 1

0

R(y, s)W (s, z) ds
)2

dz

= 2F (x) + 2F (y) ≤ ε.

(b) We want to show that ‖W − WP‖� < ε. By (1), it suffices to show that for any 0-1
valued function f ,

〈f, (W −WP)f〉 ≤ 1
2
ε. (5)

Let us write f = fP + g, where fP(x) is obtained by replacing f(x) by the average of f over the
class Pi containing x. It is easy to check that we have

〈f, (W −WP)f〉 = 〈f + fP ,Wg〉. (6)

By Cauchy-Schwartz,

〈f + fP ,Wg〉 ≤ ‖f + fP‖ · ‖Wg‖ ≤ 2‖Wg‖. (7)
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We have
‖Wg‖2 = 〈g,W 2g〉 =

∫
[0,1]3

g(x)W (x, y)W (y, z)g(z) dx dy dz.

For each x, let φ(x) be an arbitrary, but fixed, element of the class Pi containing x such that
x /∈ S (if Pi ⊆ S then we define φ(x) to be 0). Then∫

[0,1]3
g(x)W (x, y)W (y, z)g(z) dx dy dz

=
∫

[0,1]3
g(x)

(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)
g(z) dx dy dz

+
∫

[0,1]3
g(x)W (x, y)W (y, φ(z))g(z) dx dy dz .

Here the last integral is 0, since the integral of g over each partition class is 0. Furthermore,∫
[0,1]3

g(x)
(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)
g(z) dx dy dz

≤

(∫
[0,1]3

g(x)2g(z)2 dx dy dz

)1/2

×

(∫
[0,1]3

(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)2
dx dy dz

)1/2

.

Here the first factor is at most 1, and∫
[0,1]3

(
W (x, y)W (y, z)−W (x, y)W (y, φ(z))

)2
dx dy dz =

∫ 1

0

dW (z, φ(z))2 dz

=
∫

[0,1]/S

dW (z, φ(z))2 dz +
∫

S

dW (z, φ(z))2 dz ≤ 2(ε/5)4.

Thus ∫
[0,1]3

g(x)W (x, y)W (y, z)g(z) dx dy dz ≤ 21/2(ε/5)2,

and so ‖Wg‖ ≤ 1
521/4ε < 1

4ε. By (6) and (7), this proves (5), and completes the proof. �

7 Two applications

We conclude with two applications of this characterization of weak Szemerédi partitions. First we
prove that the exponential dependence of the number of classes on ε in Lemma 3.1 is necessary.
Taking an appropriately dense finite subgraph of our construction, one can prove a similar bound
on the threshold in the finite version Lemma 2.4.

Let Sd be the d-dimensional sphere, endowed with the uniform probability measure µ (it
does not matter which probability space we consider as the domain of W , so we may consider
Sd instead of [0, 1]). For x, y ∈ Sd, let

W (x, y) =

{
1, if xTy ≥ 0,

0 otherwise.

We prove:

11



Proposition 7.1 Every weak Szemerédi partition of W with error ε ≤ 1/(8d + 8) contains at
least 2d−1 classes.

Proof. We may assume that d ≥ 3. Let ^(x, y) denote the angle (spherical distance) between
the points x, y ∈ Sd. Then clearly

W (2)(x, y) =
1
2
− ^(x, y)

π
.

From this it is routine to verify that for any two points x, y ∈ Sd,

dW (x, y) ≥ 2√
d + 1

^(x, y). (8)

Let P = {P1, . . . , Pk} be a weak Szemerédi partition of Ω for the function W , with error ε.
Then by Theorem 6.1(a), there is a set T ⊆ Sd with λ(T ) ≤ (8ε)1/2 such that the diameter of
Pi \ T in the dW metric is at most (8ε)1/2 for every i. By (8), this implies that the diameter of
Pi \ T in spherical distance is at most

√
2ε(d + 1), and hence its measure satisfies λ(Pi \ T ) ≤

(
√

2ε(d + 1))d ≤ 2−d. Since the sets Pi \ T (i = 1, . . . , k) and T cover Sd, we get

k2−d + (8ε)1/2 ≥ 1,

which implies that k ≥ 2d−1. �

Thus for a given ε > 0, we get weak Szemerédi partitions with error at most ε with 22/ε2

classes, and for some functions we need at least (1/4)21/(8ε) classes. It is not clear whether the
best threshold has 1/ε or 1/ε2 in the exponent.

As a second application of Theorem 6.1, we sketch a (somewhat surprising) algorithm to
construct a weak Szemerédi partition.

Let W ∈ W0 and ε2/5 > 0. Set

m =
⌈

80
ε2

ln
80
ε2

⌉
2d10

12/ε16e.

Choose independent uniform random points X1, . . . , Xm from [0, 1]. Let S1, . . . , Sm be the
Voronoi cells of these points with respect to the metric δW ; in other words, let x ∈ Si if x is
closer to Xi than to any other Xj ; if there are more than one points Xj at minimum distance from
x, then we assign x to that with smallest subscript. This way get a partition S(X1, . . . , Xm) =
{S1, . . . , Sm} of [0, 1].

Theorem 7.2 With probability at least 3/4, the partition S(X1, . . . , Xm) is a weak Szemerédi
partition with error at most ε.

We have described this algorithm as applied to a function W ∈ W0, but it is straightforward
to modify it so that it applies to a graph G. Our algorithm gives a larger number of classes than
that of Frieze and Kannan [10], and it is also slower (primarily because of the cost of squaring
the adjacency matrix at the beginning). Our purpose with this formulation is to illuminate this
geometric connection.

Proof. Let k = 2d10
12/ε16e. By Corollary 6.2, there is a partition {T0, T1, . . . , Tk} of [0, 1] into

k + 1 measurable sets such that λ(T0) ≤ ε2/10 and for 1 ≤ i ≤ k, Ti has diameter at most ε2/10
in the dW metric. let αi = λ(Ti). Let I be the set of those indices i ∈ {1, . . . , k} for which Ti

contains at least one sample point Xj (we don’t care whether T0 contains a sample point). Then

E
(
λ(∪i/∈ITi)

)
=

k∑
i=1

αi(1− αi)m.
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To estimate this sum, let c = ε2/(80k). Then we have

E
(
λ(∪i/∈ITi)

)
=

∑
i: αi≤c

αi(1− αi)m +
∑

i: αi>c

αi(1− αi)m ≤ ck + (1− c)m

≤ ε2

80
+ e−ε2m/(80k) ≤ ε2

80
+

ε2

80
=

ε2

40
.

So with probability at least 3/4, we have λ(∪i/∈ITi) ≤ ε2/10. In such a case, the set S =
∪i∈ITi ∪ T0 has measure λ(S) ≤ ε2/5.

We claim that for j = 1, . . . ,m, the diameter of Sj \ S is at most ε2/5. It suffices to
prove that dW (x, Xj) ≤ ε2/10 for every point x ∈ Sj \ S. Indeed, there is an i ∈ I such that
x ∈ Ti. The set Ti has diameter at most ε2/10, and (since i ∈ I) there is a sample point
Xh ∈ Ti. Thus dW (x,Xh) ≤ ε2/10, but since x belongs to the Voronoi cell of Xj , it follows that
dW (x, Xj) ≤ ε2/10.

We are done by Theorem 6.1(b). �
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