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0. Introduction

The objective of this paper is to study the geometry of admissible rook configura-
tions on a general m×n chessboard. An admissible configuration is any non-taking
placement of rooks, i.e., a placement which does not allow any two of them to be in
the same row or in the same column. The collection of all these placements forms a
simplicial complex, called the chessboard complex, which will be denoted by ∆m,n.

Chessboard complexes appeared for the first time in the thesis of P. Garst [7],
where they were obtained as special coset complexes of the symmetric group Sn. Re-
call (see e.g. [3], §2), that for every finite group G and collectionH = {H1, . . . ,Hm}
of subgroups, one defines the corresponding coset complex ∆(G,H) as the nerve
of the family of cosets F = {gHi : g ∈ G, 1 ≤ i ≤ m}. Many important and natu-
ral complexes arise in this way, notable examples are Coxeter complexes and Tits
buildings. Garst [7] obtained ∆m,n,m ≤ n, as the coset complex ∆(Sn,Hm), where
Sn is the symmetric group and Hm = {Stab(i) : 1 ≤ i ≤ m}. He showed that ∆m,n

is Cohen-Macaulay if and only if 2m ≤ n + 1.
The chessboard complex m,n seems to us a very natural object, and it is amusing

to see how it arises in situations and constructions apparently unrelated to its
definition or group-theoretical characterization.

A graph theorist might prefer to view ∆m,n as the complex of all partial match-
ings in the complete bipartite graph Km,n. In Section 4 we adopt this point of view
and study also the matching complexes of the complete hypergraphs.

The complex ∆m,n was obtained in [11] as the deleted join [n](m)
∆ and described

as the complex Pm,n of all injective, partial, nonempty functions f ⊆ [m] × [n],
[m] = {1, 2, . . . , m}. The complex Pm,n appeared in [11] in connection with some
combinatorial geometric problems, namely the so called “Colored Tverberg’s prob-
lem” and the problem of estimating the number of halving hyperplanes of a finite set
of points in d. Further applications of the Colored Tverberg’s theorem can be found
in [1]. A key technical fact was, see [11, Theorem 3], that Pm,2m−k

∼= ∆m,2m−k

is (m − k − 1)-connected for all 1 ≤ k < m, and that Pm,n is (m − 2)-connected
for n ≥ 2m − 1. The last result can be seen as a corollary of the result of Garst
mentioned above and the fact that π1(∆m,n) = 0 if m ≥ 3, n ≥ 5.

These examples show that aside from being interesting objects on their own,
chessboard complexes, and in particular their connectivity properties, turn out to
be important from the point of view of certain applications. They, together with
their higher-dimensional analogues and the closely related matching complexes of
graphs and hypergraphs, are possible candidates for configuration spaces in various
Combinatorial Geometric problems.
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Here is a brief description of the content of this paper. Section 1 is devoted to
the proof that every chessboard complex ∆m,n is at least (ν − 2)-connected, where
ν = min{m, n, [m+n+1

3 ]}. In Section 2 a detailed analysis of some small chessboard
complexes is given, showing in particular that the bound found in the previous
section cannot in general be improved. The section ends with a brief discussion
of manifolds which arise in connection with “almost square” chessboard complexes
∆n,n+1. The results established in the first two sections permit us to make some
observations concerning the depth of the associated Stanley-Reisner rings. For ex-
ample, it is shown in Section 2 that the depth of the Stanley-Reisner ring k[∆m,n]
in general depends on the characteristic of the field k. Higher-dimensional chess-
board complexes ∆n1,... ,nk

, and the class of matching complexes of complete k-
hypergraphs, are introduced and studied in Sections 3 and 4. The main objective
of study are their connectivity properties, and nontrivial lower bounds are estab-
lished, containing the result about chessboard complexes m,n as a special case.

Convention: We use the “matrix” notation for denoting (m × n)-chessboards
and the corresponding complexes ∆m,n, see Figure 1. So, we tacitly assume through-
out the paper, that if (i, j) are coordinates of an elementary square ai,j in a chess-
board [m]× [n], then i denotes the row and j the column of ai,j .

Figure 1.

1. Connectivity and depth of chessboard complexes

The following theorem gives a lower bound for the connectivity of a chessboard
complex.

Theorem 1.1. The chessboard complex ∆m,n is (ν − 2)-connected, where

ν = min
{

m,n,

[
m + n + 1

3

]}
.

The proof of Theorem 1.1 relies on the following lemma, which is a slightly
sharper version of [5, Theorem 4.10]. We will give an elementary proof, patterned



3

on that used in [5]. The lemma can also be proved by a simple spectral sequence
argument combined with the usual use of the Seifert-Van Kampen and Hurewicz
theorems.

Lemma 1.2 (Nerve lemma). Let ∆ be a simplicial complex and {Li}n
i=1 a family

of subcomplexes such that ∆ = ∪n
i=1 Li. Suppose that every nonempty intersection

Li1 ∩Li2 ∩ . . .∩Lit
is (k− t+1)-connected for t ≥ 1. Then ∆ is k-connected if and

only if N ({Li}n
i=1), the nerve of the covering {Li}n

i=1, is k-connected.

Proof. Our argument is based on the following two facts (here Avert ()):
(i) If ∩2A is (k − 1)-connected and is k-connected, then ∪2A is k-connected.
(ii) If ∩2A and ∪2A are k-connected, then is k-connected.

These facts are easily deduced from the Mayer-Vietoris exact sequence and the
Seifert-Van Kampen and Hurewicz theorems. For a completely elementary proof,
see Lemmas 4.8 and 4.9 of [5].

We may without loss of generality assume that the subcomplexes Li are induced,
i.e., that Li = ∩2Ai where Ai = vert (Li). This can always be achieved by passing
to the barycentric subdivision. Then satisifes the following two conditions:

(iii) 2A1 ∪ . . . ∪ 2An ,
(iv) if Ai1 ∩ . . . ∩Ait 6= ∅ then ∩2Ai1∩...∩Ait is (k − t + 1)-connected, for t ≥ 1.

It follows from (i) and (ii) that is k-connected if and only if ∗ = ∪2A1 is k-
connected. Furthermore, ∗ also satisfies conditions (iii) and (iv). Let us check (iv),
and for this assume that B = Ai1 ∩ . . . ∩Ait 6= ∅. We have

(v) ∗ ∩ 2B = ∩2B ∪ 2A1∩B .

If A1∩B = ∅, then ∗∩2B = ∩2B is (k−t+1)-connected by (iv). If A1∩B 6= ∅, then
since ∩2B is (k− t + 1)-connected and ∩2B ∩ 2A1∩B = ∩2A1∩B is (k− t)-connected
by (iv), we conclude from (i) and (v) that ∗ ∩ 2B is (k − t + 1)-connected.

The same argument can now be repeated, showing that ∗ is k-connected if and
only if ∗∗ =∗ ∪2A2 is k-connected, and that ∗∗ satisfies conditions (iii) and (iv), and
so on. In the end this leads to the conclusion that is k-connected if and only if the
complex ′ = 2A1 ∪ 2A2 ∪ . . . ∪ 2An is k-connected. But the ordinary nerve lemma
(see [4,(10.6)] or [5, Theorem 4.3]) shows that ′ is homotopy equivalent to the nerve
{Ai}n

i=1, which is the same as the nerve {Li}n
i=1.
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Proof of Theorem 1.1. Let us assume that m ≤ n. The proof will be carried out
by induction on m, starting at m = 2. The chessboard complex ∆2,n is clearly
connected if n > 2 and otherwise non-empty.

We will cover the complex ∆m,n by the following family of subcomplexes. Let
Li, i = 1, ..., n, be the collection of all rook placements on a m × n chessboard
which either contain the square (1, i) or else can be legally extended to contain
that square.

Every proper subfamily of {Li}n
i=1 has nonempty intersection, so the nerve of

the covering {Li}n
i=1 is the boundary of an (n − 1)-simplex, i.e. topologically an

(n− 2)-sphere. Hence the nerve is (n− 3)-connected, and certainly n− 3 ≥ ν − 2.
For the induction step we must verify that Li1 ∩ . . .∩Lit is (ν− t−1)-connected.

For t = 1 this follows from the observation that each Li is a cone, and hence
contractible. For t ≥ 2, any intersection Li1 ∩ . . . ∩ Lit is again a chessboard
complex ∆m−1,n−t which is, by the induction hypothesis, (µ−2)-connected, where
µ = min

{
m− 1, n− t,

[
m+n−t

3

]}
. It is now easy to check that µ− 2 ≥ ν − t− 1.

A simplicial complex ∆ is called homotopy-Cohen-Macaulay if link∆(σ) = {τ ∈
∆ | τ ∪ σ ∈ ∆, τ ∩ σ = ∅} is (dim link∆(σ) − 1)-connected for all σ ∈ ∆ ∪ {∅}.
For background and references concerning this and related notions of topological
Cohen-Macaulayness, see [4] and [10]. The following is implied by Theorem 1.1.

Corollary 1.3. The (ν−1)-skeleton of the chessboard complex ∆m,n is homotopy-
Cohen-Macaulay.

Proof. If σ ∈ ∆(ν−1)
m,n and |σ| = s, then link

∆
(ν−1)
m,n

(σ) ∼= ∆(ν−s−1)
m−s,n−s. Now ∆m−s,n−s

is (µ − 2)-connected with µ = min
{
m − s, n − s,

[
m+n+1−2s

3

]} ≥ ν − s, so its
(ν − s− 1)-skeleton is certainly (ν − s− 2)-connected.

The Stanley-Reisner ring k[∆m,n] of ∆m,n, k a field, can be described as follows.
Take the polynomial ring k[xij ] over an m× n matrix of indeterminates xij , 1 ≤
i ≤ m, 1 ≤ j ≤ n, and let I be the ideal generated by relations xabxcd = 0
whenever exactly one of a = c or b = d hold. Then, k[∆m,n] = k[xij ]/I. See [10]
for the basic theory of Stanley-Reisner rings k[∆].

Corollary 1.4. depth(k[∆m,n]) ≥ ν, for every field k.

Proof. A result of Smith [9] (also proved in [6]) characterizes the depth of a Stanley-
Reisner ring k[∆] in terms of the skeleta ∆(j) as follows:

depth(k[∆]) = 1 + max{j | ∆(j) is Cohen-Macaulay over k}.

Hence, the result follows from Corollary 1.3.
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We will show in the next section that depth(k[∆m,n]) is sensitive to the char-
acteristic of k and hence not a combinatorial invariant. However, we believe that
the results of this section are sharp in the following sense.

Conjecture 1.5. For all m, n :
(i) The chessboard complex ∆m,n is not (ν − 1)-connected,
(ii) depth(k[∆m,n]) = ν , for some field k.

The second part of the conjecture can be shown to be equivalent to the statement:
(iii) ∆(ν)

m,n is not homotopy-Cohen-Macaulay.
For this one must use Smith’s characterization of depth [9] together with the

1-connec-tivity of links that can be derived from Theorem 1.1. Hence, part (i) of
the conjecture implies part (ii).

We have verified Conjecture 1.5 for all m ≤ n with m ≤ 5, with three exceptions:

4,6, ∆5,7 and ∆5,8. See the next section for the details. Also, both parts of the
conjecture are true when n ≥ 2m − 1. In that case ν = m, ∆m,n is (m − 2)-
connected, and it is easy to see that its Euler characteristic is not equal to 1, so
∆m,n cannot be (m− 1)-connected. Also, since depth(k[∆m,n]) ≤ dim(k[∆m,n]) =
dim(∆m,n) + 1 = m, Corollary 1.4 shows that depth(k[∆m,n]) = m for all fields k.

This statement about depth is equivalent to the Cohen-Macaulayness of m,n when
n ≥ 2m− 1, which was proved by Garst [7].

A smaller chessboard can be embedded in a larger one in many ways. The sim-
plest are the embeddings in one of the corners of the larger chessboard. Each of these
embeddings defines in a natural way an embedding of the corresponding chessboard
complexes. If
A ⊂ [m] and B ⊂ [n], where [m] = {1, . . . ,m}, then the complex ∆A,B(m,n) =
∆A,B is defined as the subcomplex of ∆m,n which consists of all simplices con-
tained in A × B. Obviously, if A = k and B = ` then ∆A,B

∼= ∆k,`. Since
∆A,B ∗ ∆Ac,Bc ⊂ ∆m,n we observe that also joins of chessboard complexes can
be naturally embedded in bigger chessboard complexes. Since ∆1,2,∆2,1,∆2,3,∆3,2

are spheres, we obtain by this construction many useful embeddings of spheres in
chessboard complexes. The spheres obtained by this construction together with the
complexes of the form ∆m,m+1, seem to be natural candidates for subcomplexes
which support nontrivial homology classes in ∆m,n. In light of Theorem 1.1, where
the mod 3 congruence class of m+n+1 played an important role, we select the fol-
lowing two special cases. Let Σ1

k = ∆2,3 ∗(∆2,1 ∗∆1,2)∗(k) be a (2k+1)-dimensional
sphere embedded in ∆3k+2,3k+3, and Σ2

k = ∆2,3 ∗ (∆2,1 ∗∆1,2)∗(k−1) ∗∆2,1 a (2k)-
dimensional sphere embedded in ∆3k+1,3k+1. Since ∆3k+2,3k+3 is (2k)-connected
and ∆3k+1,3k+1 is (2k − 1)-connected (Theorem 1.1), one is led to the following
conjecture, which also suggests an approach to Conjecture 1.5.
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Conjecture 1.6. The spheres Σ1
k and Σ2

k represent nontrivial homology classes in
the chessboard complexes ∆3k+2,3k+3 and ∆3k+1,3k+1.

2. Some special chessboard complexes

Here we will make a detailed study of some small chessboard complexes ∆m,n.

Since the topology of ∆m,n is relatively well understood when n ≥ 2m − 1 (the
Cohen-Macaulay case) we will focus on chessboards which are square ∆m,m, or
nearly-square ∆m,m+1.

The Euler-Poincaré relation for ∆m,n (m ≤ n) has the form

m∑

k=1

(−1)k−1

(
m

k

)(
n

k

)
k! = βm,n

0 − βm,n
1 + βm,n

2 − . . . + (−1)m−1βm,n
m−1 ,

where βm,n
i = rank(Hi(∆m,n; ). We observe that βm,m

m−1 = 0, since every codimension
one simplex of ∆m,m is contained in exactly one top-dimensional simplex. Also,
βm,m+1

m−1 = 1, since ∆m,m+1 is an orientable pseudomanifold, the orientation coming
from the signs of the permutations of the set {1, . . . , m + 1} determined by the
maximal simplices. Finally, Theorem 1.1 shows that βm,n

i = 0 for 1 ≤ i ≤ ν − 2 ,

and βm,n
0 = 1 if ν ≥ 2. Putting this information together in some interesting cases,

we obtain the following:

χ(∆3,3) = −3 3,3
1 = 4

χ(∆3,4) = 0 3,4
1 = 2

χ(∆4,4) = 16 ⇒ β4,4
2 = 15

χ(∆4,5) = 20 ⇒ β4,5
2 = 20

χ(∆5,6) = −150 ⇒ β5,6
3 = 152

This verifies Conjecture 1.5 in these cases. The verification for ∆5,5 will be a
consequence of Proposition 2.3 below.

By deleting the last (or any other) row of the (m×n)-chessboard one obtains an
(m − 1) × n-chessboard, so the complex ∆m−1,n can be seen as a subcomplex of
∆m,n. Similarly, ∆m,n−1 can be realized as a subcomplex of ∆m,n by deleting a
column from the chessboard [m]× [n].

The following simple proposition gives a description of the quotient CW-complex
of these two complexes. The proof is not difficult and will be left to the reader.

Proposition 2.1. The quotient space ∆m,n/∆m−1,n is homeomorphic to the wedge
of n copies of the suspension S(∆m−1,n−1), i.e.

∆m,n/∆m−1,n ≈
n∨

S(∆m−1,n−1).
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Let us now make a detailed analysis of the complex ∆3,4. The links of its vertices
and edges are isomorphic to ∆2,3 and ∆1,2 respectively, which shows that ∆3,4 is
a triangulation of a two-dimensional manifold. This manifold is orientable, as is
any ∆n,n+1 (see above). The Euler characteristic of ∆3,4 is 0, so we conclude that
∆3,4 is a triangulation of a torus. A more informative way to reach this conclusion
is via Figure 2, which shows that the universal covering of ∆3,4 is a triangulated
honeycomb tesselation of the plane. So, we have the isomorphism ∆3,4

∼=2 /Γ
where Γ is the two dimensional lattice in 2 generated by vectors x =

−→
AB and

y =
−→
AC. Occasionally, it will be convenient to identify the group Γ, via the obvious

isomorphism, with the group π1(∆3,4) ∼= H1(∆3,4). Let a =
−→
AX and b =

−→
AY .

Figure 2.

Figure 2 makes it possible to give a complete analysis of which subcomplexes
of the form ∆2,3 and ∆3,2 contribute nontrivial classes to H1(∆3,4). Also, it gives
a transparent picture of how the symmetric groups S4 and S3 act on ∆3,4 and
H1(∆3,4). This and other related facts that will be needed later are recorded in the
following lemma.

Lemma 2.2. Let e : ∆3,3 → ∆3,4 be the natural inclusion map and ē : H1(∆3,3) →
H1(∆3,4) the induced homomorphism. Then the “horizontal” classes in H1(∆3,3),
i.e. those classes determined by subchessboards ([3] \ {i})× [3], 1 ≤ i ≤ 3, generate
the kernel of ē. The “vertical” classes in H1(∆3,3), i.e. those classes determined
by subchessboards of the form [3] × ([3] \ {i}), 1 ≤ i ≤ 3, are mapped to nonzero
elements in H1(∆3,4) and in fact span a subgroup F of index 3 in H1(∆3,4). More
precisely, having in mind the identification of H1(∆3,4) and Γ above, F is generated
by the vectors 6a and 6b. The group F is invariant under the obvious action of the
symmetric group S4 on H1(∆3,4), which implies that F is independent of the choice
of embedding e : ∆3,3 → ∆3,4.

Proof. Since ∆3,4 contains cones over every “horizontal” circle, the corresponding
classes in H1(3,4) must vanish. Using Proposition 2.1, it is easy to see from the
exact sequence of the pair (∆3,4,∆3,3)

3 ∼= H2(S(∆2,3))⊕3 → H1(∆3,3)ēH1(∆3,4) → H1(S(∆2,3))⊕3 ∼= 0
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that ē is an epimorphism. Its kernel is generated by the images of the three gen-
erators of H2(S(∆2,3))⊕3, i.e. by the three horizontal classes. One can check by
careful inspection of the triangulation of ∆3,4, see Figure 2, that the images of the
vertical classes indeed generate the group F spanned by 6a and 6b. Knowing that Γ
is the group generated by x = 4a + 2b and y = 4b + 2a, it is not difficult to deduce
that F is a subgroup of index 3 in . The action of the group S4 on ∆3,4 and Γ is
described as follows. Let H be the reflection group generated by reflections in the
sides of the triangle with vertices (1, 1), (3, 4), (2, 3). Then Γ is a normal subgroup
of H and the quotient group H/Γ ∼= S4 acts on both ∆3,4 and Γ, which are exactly
the actions we are interested in. This can be deduced directly from Figure 2. For
example, the transposition of the second and the third column of the complex ∆3,4,

can be identified as the reflection in the line determined by points (1, 1) and (3, 4).
Indeed, the points (1, 2), (2, 3), (3, 3) are mapped to (1, 3), (2, 2), (3, 2) respectively,
whereas all other vertices are not moved. From here it is easily seen that F is an
invariant subgroup of Γ. The rest of the lemma follows from these observations.

Proposition 2.3. H2(∆5,5) ∼=3 ⊕3 ⊕3 ⊕3.

Proof. Using Proposition 2.1 one sees that the long exact sequence of the pair
(∆5,5,∆4,5) has the following form:

→ ⊕5
i=1 H2(∆i

4,4)H2(∆4,5) → H2(∆5,5) → ⊕5
i=1 H1(∆i

4,4)

Here, ∆i
4,4
∼= ∆4,4 denotes the chessboard complex obtained from the chessboard

[4]× ([5] \ {i}), and α = ⊕5
i=1 αi where αi : H2(∆i

4,4) → H2(∆4,5) is the homomor-
phism induced by the inclusion map ei : ∆i

4,4 → ∆4,5. Since H1(∆4,4) = 0, in order
to determine the group H2(∆5,5) it will be necessary to determine the cokernel of α.

In other words, we want to determine which classes in H2(∆4,5) can be represented
as sums of classes coming from all of the groups H2(∆i

4,4), i = 1, .., 5. In fact, we
will show that it suffices to take two of these groups, say H2(∆4

4,4) and H2(∆5
4,4).

Let ∆i
3,4 be the complex based on the chessboard ([4] \ {i}) × [4], 1 ≤ i ≤ 4, and

∆i
3,3, 1 ≤ i ≤ 4, the complex determined by the chessboard ([4] \ {i})× [3]. Obvi-

ously ∆4
4,4 ∩∆i

3,4 = ∆i
3,3. Let ∆4,3 = ∆4

4,4 ∩∆5
4,4
∼= ∆4,3. Then the inclusion map

(∆4
4,4,∆4,3) → (∆4,5, ∆5

4,4) and the naturality of the exact sequence of the pair give
rise to the following commutative diagram with exact rows:

H2(∆4,3) → H2(∆4
4,4) µ ⊕4

i=1 H1(∆i
3,3) γ H1(∆4,3) → 0

↓ α4 ↓ ↓ β
H2(∆5

4,4) →
α5

H2(∆4,5)
ν

⊕4
i=1 H1(∆i

3,4) → 0

We want to find H2(∆4,5)/(im(α4)+im(α5)). For this purpose it is enough to find
the image of ν◦α4 = β◦µ in ⊕4

i=1 H1(∆i
3,4). Since β = ⊕4

i=1 βi, where βi is induced
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by the corresponding inclusion maps, it is enough to find im(βi◦µ) in H1(∆i
3,4). For

notational convenience, we will assume i = 4, in the other cases the proof is similar.
Let us first identify im(µ)∩H1(∆4

3,3) = ker(γ)∩H1(∆4
3,3). By Lemma 2.2 we know

that im(µ) ∩ H1(∆4
3,3) consists of sums of classes determined by the complexes

coming from chessboards [3]× ([3]\{i}), 1 ≤ i ≤ 3. On the other hand, this lemma
implies that the images of these classes in H1(∆4

3,4) generate a subgroup Fi of
index 3, hence there is an isomorphism H2(∆4,5)/(im(α4) + im(5)) ∼= (3)⊕4. A key
observation in Lemma 2.2 was that the group F does not depend on the embedding
e : ∆3,3 → ∆3,4. This implies that Fi does not change if ∆4

4,4 is replaced above by
any of the complexes ∆1

4,4, ∆
2
4,4 or ∆3

4,4. This leads immediately to the conclusion
that H2(∆4,5)/im(α) ∼= (3)⊕4.

As a consequence of Proposition 2.3 one has β5,5
2 = 0, and we know from before

that β5,5
0 = 1 and β5,5

1 = β5,5
4 = 0. Hence, from χ(∆5,5) = −55 we conclude that

β5,5
3 = 56. It follows that depth(k[∆5,5]) ≤ 4 for all fields k. On the other hand,

Corollary 1.4 shows that depth(k[∆5,5]) ≥ 3.

Proposition 2.4.

depth(k[∆5,5]) =
{

3 , if char k = 3
4 , if char k 6= 3.

Proof. The characteristic 3 case follows directly from Smith’s [9] characterization
of depth and Proposition 2.3. In the other case we must show that ∆(3)

5,5 is Cohen-
Macaulay over k. The required vanishing of homology with coefficients in k, char
k 6= 3, is implied by Proposition 2.3 and the Universal Coefficient Theorem for the
1-connected complex ∆(3)

5,5, and by Theorem 1.1 for all its proper links.

The only manifolds among chessboard complexes are ∆1,2,∆2,3, ∆3,4 and their
“twin” complexes obtained by interchanging the indices. However, it is interesting
to note that ∆n,n+1, n ≥ 4, is almost a manifold, having singularities only at
the points lying on its codimension three skeleton. For example, every point in
∆4,5 which is not a vertex possesses a neighborhood homeomorphic to a three
dimensional ball. The star of each of the vertices in ∆4,5 is homeomorphic to a cone
over a torus ∆3,4

∼= T 2, so by removing a small open neighborhood around each of
them one obtains a compact, orientable three-manifold M with boundary consisting
of twenty copies of T 2. One can glue twenty solid torii along this boundary to obtain
a closed three-dimensional manifold. This manifold can be used to obtain additional
information about the homology of ∆4,5. One would hope that something similar
can be done in higher dimensions, but that remains an interesting open problem.

3. Higher-dimensional chessboard complexes
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In this section we will consider a higher-dimensional chessboard of shape n1 ×
n2 × ... × nk, where we suppose that n1 ≤ n2 ≤ ... ≤ nk. Here we assume that
two rooks are in a non-taking position if and only if they do not belong to the
same (k − 1)-dimensional plane orthogonal to one of the axes of the chessboard.
Again, we can in the same way assign to this chessboard its chessboard complex
∆n1,n2,...,nk

, where the vertices are the boxes of the chessboard and the simplices
are the supports of non-taking rook placements. We determine an estimate for the
connectivity of these complexes which generalizes Theorem 1.1. At the moment we
are unable to provide either a proof or a counterexample for the claim that this
estimate is sharp.

Theorem 3.1. The chessboard complex ∆n1,n2,...,nk
is (ν − 2)-connected, where

ν = min
{

n1,

[
n1 + n2 + 1

3

]
, ...,

[
n1 + n2 + ... + nk + k − 1

2k − 1

]}
.

Proof. The chessboard complex is always non-empty, which verifies the n1 = 1
and n1 = n2 = 2 cases. Furthermore, it is easy to see that the chessboard complex
∆n1,n2,...,nk

is connected when n1 ≥ 2 and n2 ≥ 3. Therefore we may assume
that n1 ≥ 3. We will use an induction argument. Let us suppose the statement
of the theorem to be true for all chessboards whose sides are all smaller (and at
least one strictly smaller) than for the given chessboard [n1]× [n2]× ...× [nk], with
3 ≤ n1 ≤ n2 ≤ ... ≤ nk.

Let us think of the vertices of the chessboard complex as the boxes of a chess-
board, and let us consider all the boxes in the first hyperplane (among n1 of them)
orthogonal to the first and the shortest of the axes. Let us assign to each of these
boxes the subcomplex Li of all rook placements which could be extended to a rook
placement including the particular box i that we consider. Every such subcomplex
is a cone with the vertex i as apex, and so all of them are contractible and therefore
certainly (ν − 2)-connected. The subcomplexes Li form a covering of ∆n1,n2,...,nk

.

The intersection of any two of these subcomplexes is the chessboard complex
associated to a chessboard whose sides (not necessarily in increasing order) are at
least n1− 1, n2− 2, n3− 2, ..., nk − 2. The intersection of any three elements of this
covering is the chessboard complex associated to a chessboard whose sides are at
least n1 − 1, n2 − 3, n3 − 3, ..., nk − 3, and so on. The intersection of every n2 − 1
elements of this covering is non-empty, and so its nerve has full (n2 − 2)-skeleton
and therefore is (n2 − 3)-connected. It is easy to see that n2 − 3 ≥ ν − 2. So, it
is enough to prove, by Lemma 1.2, that every intersection Li1 ∩ Li2 ∩ ... ∩ Lit is
(ν − t− 1)-connected for 2 ≤ t ≤ ν.

Let us first consider the case t ≥ 3. The intersection Li1 ∩ ... ∩ Lit is again a
chessboard complex associated to a chessboard whose sides are at least n1−1, n2−
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t, ..., nk − t. By the induction hypothesis it is at least (µ− 2)-connected, where

µ = min
{

m1,

[
m1 + m2 + 1

3

]
, ...,

[
m1 + m2 + ... + mk + k − 1

2k − 1

]}

and m1,m2, ..., mk are the numbers n1 − 1, n2 − t, ..., nk − t in increasing order.
We want to show that µ ≥ ν − t + 1. Since t ≥ 3, it is easy to see that for i ≥ 2
we have ti

2i−1 ≤ t− 1, and therefore

m1 + ... + mi + i− 1
2i− 1

≥ n1 + ... + ni − ti + i− 1
2i− 1

≥ n1 + ... + ni + i− 1
2i− 1

−t+1 ≥ ν−t+1.

So,
[

m1+m2+...+mi+i−1
2i−1

] ≥ ν − t + 1 for i ≥ 2. For i = 1 we have two cases:
(i) if m1 = n1 − 1, then certainly m1 ≥ n1 − t + 1 ≥ ν − t + 1;
(ii) if m1 = n2 − t and if we suppose m1 < n1 − t + 1, then we have n1 = n2

and ν ≤ [
2n2+1

3

] ≤ n2 − 1. Then again m1 ≥ ν − t + 1.
All this means that µ ≥ ν − t + 1.
Let us now assume t = 2. The intersection Li1 ∩ Li2 is a chessboard complex

associated to a chessboard whose sides are at least n1 − 1, n2 − 2, ..., nk − 2, and it
is at least (µ− 2)-connected where

µ = min
{

m1,

[
m1 + m2 + 1

3

]
, ...,

[
m1 + m2 + ... + mk + k − 1

2k − 1

]}

and m1,m2, ..., mk are the numbers n1 − 1, n2 − 2, ..., nk − 2 in increasing order.
We want to show that µ ≥ ν−1. We can see that m1 ≥ ν−1 as in the case t ≥ 3.

Let us now prove that m1+m2+...+mi+i−1
2i−1 ≥ ν − 1 for 2 ≤ i ≤ k. If one among

the numbers m1,m2, ...,mi equals n1− 1, this is trivial, since in this case we have

m1 + ... + mi + i− 1
2i− 1

≥ n1 + ... + ni − (2i− 1) + i− 1
2i− 1

=
n1 + ... + ni + i− 1

2i− 1
−1 ≥ ν−1.

So, let us suppose that m1 = n2− 2,m2 = n3− 2, ..., mi = ni+1− 2 < n1− 1. But,
this is possible only if i ≤ k−1 and if n1 = n2 = ... = ni+1. Let us denote this last
number by n. We want to prove that

[
m1+...+mi+i−1

2i−1

] ≥ [n1+...+ni+1+i
2i+1

] − 1, i.e.[ i(n−1)−1
2i−1

] ≥ [ (i+1)(n−1)
2i+1

]
, which would imply the required inequality. If n ≥ 2i+2,

then
i(n− 1)− 1

2i− 1
− (i + 1)(n− 1)

2i + 1
=

n− 1− (2i + 1)
(2i− 1)(2i + 1)

≥ 0,

and certainly
[ i(n−1)−1

2i−1

] ≥ [ (i+1)(n−1)
2i+1

]
. So, we are left with the case 3 ≤ n ≤ 2i+1.

Since (i+1)(n−1)
2i+1 = (n− 1)1

2 + 1
2(2i+1) , the 2i− 1 numbers

{ (i+1)(n−1)
2i+1 | 3 ≤ n ≤

2i + 1
}

are distributed equidistantly in i intervals [1, 2], [2, 3], . . . , [i, i + 1], where
the distance is 1

2 + 1
2(2i+1) > 1

2 and there are exactly two numbers in each interval
except for the last one, which contains only one of these numbers. It is easy to see
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that the minimal value of the expression (n−1) i+1
2i+1− [(n−1) i+1

2i+1 ], 3 ≤ n ≤ 2i+1,
is attained for n = 3. So,

(n− 1)
i + 1
2i + 1

−
[
(n− 1)

i + 1
2i + 1

]
≥ 1 +

1
2i + 1

−
[
1 +

1
2i + 1

]
=

1
2i + 1

.

Since n ≥ 3, we have (n−1) i+1
2i+1− i(n−1)−1

2i−1 = 2i+2−n
(2i−1)(2i+1) ≤ 1

2i+1 , and therefore[
(n− 1) i+1

2i+1

] ≤ [ i(n−1)−1
2i−1

]
.

The following consequences are proved just like Corollaries 1.3 and 1.4, which
they generalize.

Corollary 3.2. The (ν−1)-skeleton of ∆n1,n2,...,nk
is homotopy-Cohen-Macaulay.

Corollary 3.3. depth(k[∆n1,n2,...,nk
]) ≥ ν, for every field k.

We believe that these results are sharp, in the sense that Conjecture 1.5 extends
to the higher-dimensional chessboard complexes ∆n1,n2,...,nk

.

¿From Theorem 3.1 it is clear that the connectivity of the complex ∆n1,n2,...,nk

is not greater than the connectivity of ∆n1,n2 . Actually, one can say something
more.

Proposition 3.4. H∗(∆n1,n2) is a direct summand of H∗(∆n1,n2,...,nk
).

Proof. We consider the projection mapping π : ∆n1,n2,...,nk
−→ ∆n1,n2 and the

inclusion mapping i : ∆n1,n2 −→ ∆n1,n2,...,nk
, where i is defined on vertices by

i(x1, x2) = (x1, x2, ..., x2). It is easy to see that i can be extended over all simplices
of ∆n1,n2 . More-
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over, it is a trivial observation that π ◦ i = 1. Therefore π∗ ◦ i∗ = 1, which implies
our statement.

4. Matching complexes

The matching complex M(G) of a graph or hypergraph G is defined as the
collection of all of its partial matchings (i.e. systems of pairwise disjoint edges).
See [8] for general information about matchings.

As was mentioned in the introduction it is easy to see that the matching com-
plex of the complete bipartite graph Kn1,n2 is exactly the chessboard complex
∆n1,n2 . Namely, the edges of Kn1,n2 are in bijective correspondence with the ver-
tices of ∆n1,n2 , and every partial matching of Kn1,n2 defines a non-taking rook
placement on the n1 × n2 chessboard, i.e. a simplex of ∆n1,n2 , and vice-versa.
Moreover, chessboard complexes of higher-dimensional chessboards can be seen as
the matching complexes of complete multipartite hypergraphs. The complete k-
partite hypergraph Kn1,n2,...,nk

is defined as the hypergraph whose set of vertices
is the union of pairwise disjoint sets V1, ..., Vk of cardinalities n1, ..., nk, and whose
k-edges are defined by sets of k vertices, one from each of the sets V1, V2, ..., Vk.
Again, the simplices of the matching complex M(Kn1,...,nk

) are the collections of
pairwise disjoint k-edges, which correspond to the non-taking rook placements on
the higher-dimensional chessboard [n1]× . . .× [nk], i.e. to the simplices of n1,... ,nk

,
and vice-versa.

In this section we shall treat the case of the complete k-graph on n vertices,
which we denote by Kk

n, and especially the case of the complete graph Kn on n

vertices which is the particular case obtained when k = 2. Let us remind the reader
that the complete k-graph on n vertices is defined as the hypergraph with n vertices
each k vertices of which span a k-multi-edge. Clearly, the matching complex of Kk

n

could be described as the complex whose vertices are all the k-element subsets of
an n-element set, and for which some vertices span a simplex if and only if the
associated k-tuples are pairwise disjoint. Skeleta of the matching complex M(Kk

n)
are closely related to so called “Kneser hypergraphs”, see [2].

Theorem 4.1. The matching complex M(Kk
n) is (ν − 2)-connected, with

ν =
[

n+2k−3
2k−1

]
.

Proof. The proof is carried out by induction on n, again using the nerve lemma.
It is easy to check that the statement is true for n ≤ 4k − 1. Namely, all we have
to show is that M(Kk

n) is non-empty when k ≤ n ≤ 2k and connected when
2k + 1 ≤ n ≤ 4k − 1. But, having n ≥ 2k + 1, it is easy to connect any two
vertices of M(Kk

n) by a path of consecutive edges, exchanging in each two steps
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one element from the k-set associated to the first vertex with one element from the
set associated with the second vertex.

So, let us take n ≥ 4k and assume that the statement of the theorem is true for
all numbers smaller than n.

Let Li2,...,ik
(for 2 ≤ i2 < i3 < · · · < ik ≤ n) be the collection of all simplices

σ of M(Kk
n) such that σ ∪ {{1, i2, i3, ..., ik}} ∈ M(Kk

n). Then {Li2,...,ik
| 2 ≤

i2 < i3 < · · · < ik ≤ n} is a covering of a certain subcomplex M ′ of M(Kk
n).

If k divides n then M ′ = M(Kk
n), and if n = dk + r with 0 < r < k, then

M ′ excludes all (d − 1)-simplices (A1, ..., Ad), Ai ∩ Aj = ∅, of M(Kk
n) such that

1 /∈ A1 ∪ ... ∪ Ad. In any case, the
([

n
k

] − 2
)
-skeleta of M ′ and of M(Kk

n) are
the same. Since

[
n
k

] − 3 ≥ ν − 2 (this requires our assumption that n ≥ 4k), it
suffices to prove that M ′ is (ν − 2)-connected, which we will do by applying the
nerve lemma to its covering by the subcomplexes Li2,i3,...,ik

.

It is elementary to see that already n ≥ 4k − 3 implies

n− (ν(k − 1) + 1) = n−
([

n + 2k − 3
2k − 1

]
(k − 1) + 1

)
≥ k.

Since every ν elements of the covering determine at most ν(k−1)+1 points, their
intersection is a matching complex M(Kk

t ), where t ≥ k, hence non-empty. So,
the nerve of this covering has full (ν−1)-skeleton, therefore it is (ν−2)-connected.
By the nerve lemma, it is therefore enough to prove that the intersection of every
t elements of the covering is (ν − t− 1)-connected for 2 ≤ t ≤ ν.

Any t elements of the covering determine at most t(k − 1) + 1 points, so their
intersection is a matching complex M(Kk

r ) where r ≥ n− t(k− 1)− 1. Therefore,
by the induction hypothesis, this intersection is

([n−t(k−1)−1+2k−3
2k−1

]−2
)
-connected.

It is again elementary to see that
[
n− t(k − 1)− 1 + 2k − 3

2k − 1

]
−2 =

[
n + 2k − 3

2k − 1
+

(t− 2)k
2k − 1

]
−t−1 ≥

[
n + 2k − 3

2k − 1

]
−t−1,

which proves the theorem.

Corollary 4.2. The (ν − 1)-skeleton of M(Kk
n) is homotopy-Cohen-Macaulay.

Proof. Let σ ∈ M(Kk
n)(ν−1), and |σ| = s. Then link(σ) ∼= M(Kk

n−sk)(ν−s−1).

Since M(Kk
n−sk) is (µ−2)-connected with µ =

[
n−sk+2k−3

2k−1

] ≥ ν−s, it follows that
M(Kk

n−sk)(ν−s−1) is (ν − s− 2)-connected.

The Stanley-Reisner ring of the matching complex M(Kk
n) has the following

concrete description. Take the polynomial ring k[xA, ...], with one indeterminate
xA for each k-element subset A of {1, 2, ..., n}. Then k[M(Kk

n)] is the quotient
modulo the ideal generated by all products xAxB for distinct subsets A and B

such that A ∩B 6= ∅.
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Corollary 4.3. depth(k[M(Kk
n)]) ≥ ν, for every field k.

We conjecture that the bounds obtained in this section are sharp, in the same
sense as in Conjecture 1.5.

The following argument verifies this in case of the complex M(K8). The Euler
characteristic of the complex M(K8) is :

χ(M(K8)) =
4∑

i=1

(−1)i−1

(
8
2

)
· · · · ·

(
8− 2i + 2

2

)
· 1

i!
= 133.

Since we have shown that M(K8) is 1-connected and since H3(M(K8)) = 0
(because each 2-dimensional simplex is contained in exactly one 3-dimensional sim-
plex), this relation implies by the Euler-Poincaré formula that the second Betti
number equals 132. Therefore, M(K8) is not 2-connected.

By similar reasoning one can check that the bound in Theorem 4.1 is sharp for
M(Kn), n ≤ 6. We have not been able to settle the case n = 7, i.e. to determine
whether M(K7) is 1-connected.

It is easy to see that the matching complex M(Kn) contains, as a subcomplex,
the chessboard complex ∆n1,n2 whenever n1 + n2 = n (it is enough to partition
the vertices of Kn in two groups of n1 and n2 elements respectively). Similarly,
the matching complex of the complete k-graph on n vertices M(Kk

n) contains, as
a subcomplex, the chessboard complex ∆n1,...,nk

whenever n1 + ... + nk = n.
It is interesting to observe that our estimates on the connectivity of the match-

ing complex and the embedded chessboard complexes are closely related. More
precisely, we have proved that the connectivity of the matching complex M(Kk

n)
is not smaller than the connectivity of the embedded chessboard complex obtained
when n1 ≤ n2 ≤ ... ≤ nk ≤ n1 + 1. Namely, by Theorem 3.1, the lower bound
for the connectivity of the embedded chessboard complex is

[
n+k−1
2k−1

] − 2, and
Theorem 4.1 shows that the connectivity of the matching complex M(Kk

n) is at
least

[
n+2k−3

2k−1

] − 2 =
[

n+k−1
2k−1 + k−2

2k−1

] − 2. This estimate is better, and in some
cases strictly better. However, it should be noticed that for k = 2 these estimates
coincide.

5. Final remark

In view of Corollary 1.3 it seems plausible to conjecture that the complex ∆(ν−1)
m,n

is shellable. This is not known even for the case when n ≥ 2m− 1, i.e. the Cohen-
Macaulay chessboard complexes considered by Garst [7]. Similarly we suspect that
the complexes described in Corollaries 3.2 and 4.2 are shellable. This suggests as
a special instance the following “recreational” challenge: Arrange all non-taking
placements of 5 rooks on the 8× 8 chessboard in a shelling order.
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