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Abstract

We present results on the structure of graphs with polynomial
growth. For certain classes of these graphs we prove that they contain
subgraphs which are similar to the lattice graph Ld. These results are
then applied to investigate isoperimetric properties of certain classes
of graphs with polynomial growth. In addition these structural results
can also be applied to percolation problems.

1 Introduction

In [Tr2] Trofimov characterizes the automorphism groups of graphs with
polynomial growth. In [Tr1] he gives an even stronger characterization of
those graphs with polynomial growth on which a group of bounded auto-
morphisms acts transitively. He shows that these graphs are quite similar to
Cayley graphs of Zd. In this paper we investigate this relationship in detail.

Our results are then applied to the investigation the isoperimetric proper-
ties of infinite graphs, a topic which already obtained considerable attention
in the literature (see e.g. [BSz], [Va]). We apply structural properties of
certain classes of graphs with polynomial growth to obtain new bounds for
their isoperimetric numbers. These structural properties are furthermore also
applied to obtain results about percolation problems in these graphs.

2 Terminology and premilinary results

We call a graph X = (V,E) vertex-transitive (sometimes briefly transitive) if
for every pair x, y ∈ V (X) there is an automorphism g such that y = g(x).
By Aut(X) we denote the group of all automorphisms of the graph X.

The concept of growth plays an important role throughout this paper.
By

fX(v, n) = |{w ∈ V (X)|d(v, w) ≤ n}| , n ≥ 1,

we denote the growth function of the graph X with respect to some v ∈
V (X). If X is transitive this function clearly does not depend on a particular
vertex, therefore we denote it by fX(n). If there are constants c1, c2, and an
integer d ≥ 1 such that c1n

d ≤ fX(n) ≤ c2n
d holds, then we say that X has

polynomial growth and d is called the growth degree of X.
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If a group G ≤ Aut(X) acts transitively on V (X), then an imprimitivity
system of G on X is a partition τ of V (X) into subsets called blocks, such
that every element of G induces a permutation on the blocks of τ . The
corresponding quotient graph of X is denoted by Xτ . If M1 and M2 are two
blocks of τ then (M1,M2) is an edge of Xτ if and only if some vertex in M1

is adjacent to some vertex in M2. Denote by Gτ the homomorphic image of
G. For simplicity we denote this homomorphism also by τ : G → Gτ . We
mention that the orbits of a normal subgroup N/G, where G acts transitively
on X, always give rise to an imprimitivity system of G on X.

An element g ∈ Aut(X) is called bounded if there exists a constant
k, depending upon g, such that d(x, g(x)) ≤ k for every x ∈ V (X). By
B(X) ⊆ Aut(X) we denote the group of all bounded automorphisms of X,
by B0(X) ⊆ B(X) the set of all bounded automorphisms of finite order.

In [Tr1] the following characterization of those graphs which admit a
transitive group of bounded automorphisms was given:

Theorem 2.1. Let X be a connected, locally finite graph. Then B(X) acts
transitively on X if and only if there is an imprimitivity system τ with finite
blocks of B(X) on X such that B(X)τ is a finitely generated free Abelian
group.

We remark that the blocks of τ may be chosen as the orbits of B0(X)
on X. Refining Trofimov’s result it was shown in [GISW2] that B0(X) is a
normal locally finite periodic subgroup of Aut(X) which has finite orbits on
V (X).

For convenience we call a two-way infinite path a 2-path. An automor-
phism which acts with infinite orbits on a graph X is called a type 2 auto-
morphism.

We call the Cayley graph Ld, d ≥ 1, of the free Abelian group Zd with re-
spect to its free generators the d-dimensional lattice. Let Y be a graph home-
omorphic to some Ld, d ≥ 1, where {a1, . . . , ad} denotes a free generating set
of Zd (the edges of Ld). If Y in addition has the property that it is obtained
from Ld by replacing each edge corresponding to some ai, 1 ≤ i ≤ d, by a path
of fixed length li, respectively, then Y is called (l1, . . . , ld) - homeomorphic to
Ld. If Ld is a Cayley graph of Zd with respect to the generators {a1, . . . , ad}
then any subgraph of Ld corresponding to generators {ai1 , . . . , aid−1

} is called
a hyperplane H of Ld. We also say that H is orthogonal to the direction aid .
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3 Subgraphs

We recall a Lemma from [Se]. It can be seen as a first look at the subgraph
structure. For the sake of completeness we include its proof.

Lemma 3.1. Let X be a graph and let T1 and T2, |T1| = |T2| ≥ 1, denote
two finite orbits of a group G ≤ Aut(X) on X. By Y we denote the bipartite
subgraph of X spanned by T1 and T2. ( V (Y ) = T1 ∪ T2, E(Y ) = {(v, w) ∈
E(X)|v ∈ T1, w ∈ T2}.) If E(Y ) 6= ∅ then there exists a complete matching
of Y .

Proof. For each pair v0, v ∈ T1 there is an automorphism α ∈ G such that
α(v0) = v. Denote by N(v0) the vertices of T2 which are adjacent to v0.
Since α(N(v0)) ⊂ T2 every v ∈ T1 has the same number of neighbours in T2.
Analogously this holds for the vertices in T2. Since |T1| = |T2| we obtain that
Y is a regular graph. 2

Under additional assumptions on the automorphisms of the graphs in
consideration we can show much more:

Theorem 3.2. Let X be a connected, locally finite, vertex-transitive graph
of quadratic growth, such that the group of bounded automorphisms B(X)
acts transitively on V (X). Then X is spanned by a finite number of pairwise
disjoint, isomorphic subgraphs which are (l1, 1) - homeomorphic to L2.

To fix notation we mention that a denotes a preimage of aτ under τ−1 if
aτ is an automorphism of Xτ . We need the following two technical lemmas
to prove this theorem.

Lemma 3.3. Let τ be an imprimitivity system with finite blocks of cardi-
nality m of a graph X and let aτ ∈ Aut(Xτ ) be a type 2 automorphism
which leaves invariant a 2-path Pτ in Xτ . Then there exists an integer p,
1 ≤ p ≤ m!, such that some ap ∈ τ−1(apτ ) leaves invariant m disjoint 2-paths
in X.

Proof. By Lemma 3.1, the 2-path Pτ can be lifted to m disjoint 2-
paths P 1

1 , . . . , P
1
m. Let Pτ = (. . . , pτ−1, p

τ
0, p

τ
1, . . .). Each of the vertices
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pτi , i ∈ Z, represents a finite set Ti ⊂ V (X), |Ti| = m, and every 2-
path P 1

1 , . . . , P
1
m meets each of these sets in exactly one vertex. We denote

P 1
j = (. . . , tj−1, t

j
0, t

j
1, . . .), 1 ≤ j ≤ m.

Without loss of generality we can also assume that aτ (p
τ
i ) = pτi+1 holds.

Then b(Ti) = Ti+1, i ∈ Z, holds for each b ∈ τ−1(aτ ). Let a now denote one
particular preimage of aτ under τ−1. Since a acts with m orbits on S =

⋃
i∈Z

Ti,

such that each orbit of a on S contains exactly one vertex of each Ti, we can
find an integer q such that aq maps a vertex of a 2-path P 1

k , k ∈ {1, . . . ,m},
onto a vertex of the same path. Without loss of generality we can assume
that aq(t10) = t1q holds. Then P 2

1 =
⋃
i∈Z

aiq(P 1
1 (t10, t

1
q)) is a 2-path which is left

invariant by aq. Also the 2-paths P 2
j =

⋃
i∈Z

aiq(P 1
j (tj0, t

j
q)), 1 ≤ j ≤ m, are

pairwise disjoint, since the finite paths P 1
j (tj0, t

j
q) are pairwise disjoint.

We now assume that we have already found an integer s and 2-paths
P n+1

1 , . . . , P n+1
n such that as(P n+1

j ) = P n+1
j , 1 ≤ j ≤ n, holds for some

n, 1 ≤ n < m. Renumbering the vertices, we again assume that P n+1
k =

(. . . , tk−1, t
k
0, t

k
1, . . .), 1 ≤ k ≤ n. Repeating the above procedure with as

instead of a and the 2-paths P n+1
k instead of P 1

k we thus obtain an integer
r (a multiple of s) and at least one additional 2-path P n+2

n+1 such that the
2-paths P n+2

1 , . . . , P n+2
n+1 are left invariant by ar. (We emphasize that P n+2

1 =
P n+1

1 , . . . , P n+2
n = P n+1

n hold.)
Since the Ti, i ∈ Z, all have cardinality m we conclude that q ≤ m.

Also, if we have already determined the 2-paths P n+1
1 , . . . , P n+1

n it is clear
that r ≤ m− n. Hence p ≤ m! holds for every integer p such that ap leaves
invariant our m disjoint 2-paths. 2

Lemma 3.4. Let τ be an imprimitivity system with finite blocks of cardi-
nality m of a graph X and let aτ ∈ Aut(Xτ ) be a type 2 automorphism
which leaves invariant the 2-paths . . . , P τ

−1, P
τ
0 , P

τ
1 , . . . in Xτ . Then there

exists an integer 1 ≤ q ≤ m! such that some aq ∈ τ−1(aqτ ) leaves invariant
the 2-paths . . . , P−1

1 , . . . , P−1
m , P 0

1 , . . . , P
0
m, P

1
1 , . . . , P

1
m, . . . in X, where the P i

j ,
i ∈ Z, 1 ≤ j ≤ m, are pairwise disjoint preimages of the P i

τ under τ−1, re-
spectively.

Proof. By Lemma 3.3, we can find sets P i
j , i ∈ Z, 1 ≤ j ≤ m, such that

there is a pi ≤ m! such that api leaves invariant every P i
j , respectively. Hence,
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there are only finitely many different pi and therefore the least common
multiple q of all pi has the required properties. Obviously q ≤ m! also holds.

2

Proof of Theorem 3.2. By Theorem 2.1 there exists an imprimitivity
system τ of B(X) on X with finite blocks of cardinality m ≥ 1, such that Xτ

is a Cayley graph of Z2. Hence there are two automorphisms aτ , bτ ∈ Bτ (X)
such that H = 〈aτ , bτ 〉 ∼= Z2 acts transitively on Xτ . Obviously there exist
infinitely many pairwise disjoint 2-paths . . . , P−1

τ , P 0
τ , P

1
τ , . . . in Xτ which are

left invariant by aτ and span Xτ . By Lemma 3.4 these paths can be lifted
to 2-paths . . . , P−1

1 , . . . , P−1
m , P 0

1 , . . . , P
0
m, P

1
1 , . . . , P

1
m, . . . in X which are left

invariant by some ap, a ∈ τ−1(aτ ).
Futhermore, let P i

τ = (. . . , vi−1, v
i
0, v

i
1, . . .), i ∈ Z. Then Xτ contains

a 2-path Qτ = (. . . , v−1
0 , v0

0, v
1
0, . . .) such that b(vi0) = vi+1

0 for all i ∈ Z.
Clearly Q can be lifted to m disjoint 2-paths Q1, . . . , Qm in X. Moreover
each Qj, 1 ≤ j ≤ m, meets exactly one 2-path of each set Pi = {P i

1, . . . , P
i
m},

i ∈ Z. Since ap leaves invariant every P i
j , i ∈ Z, 1 ≤ j ≤ m, each ap(Qj)

meets exactly the same 2-path P i
j as Qj. Let W j denote the set of 2-paths

intersecting with Qj. Then each Yj =
⋃
i∈Z

aip(Qj) ∪ W j spans a subgraph

homeomorphic to the 2-dimensional lattice. Also the Qj, 1 ≤ j ≤ m, are
pairwise disjoint and they span X. In addition every vertex of the aip(Qj),
i ∈ Z, has valency 4, which means that only in the direction of a, the edges
of the 2-dimensional lattice are substituted by paths of length 1 ≤ l1 ≤ m!.

2

A simple example of a graph X which satisfies all assumptions of Theorem
3.2 and contains a subgraph homeomorphic to the 2-dimensional lattice only
with l1 = 3 is given as follows:

X has vertex-set V (X) = Z×Z×Z3 = {(r, s, t)|r ∈ Z, s ∈ Z, t ∈ {0, 1, 2}}
and edge-set E = E1 ∪ E2 where

E1 = {((r, s, t), (r + 1, s, t) for all (r, s) ∈ Z× Z and t ∈ {0, 1, 2}}

and

E2 = {((r, s, t), (r, s+1, t+|r| mod 3)) for all (r, s) ∈ Z×Z and t ∈ {0, 1, 2}}.
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To illustrate the proof of Theorem 3.2 we mention that in this example
the sets {(r, s, t)|t = 0, 1, 2} give rise to the finite blocks of an imprimitivity
system τ of B(X) on X. The graph Xτ then is a Cayley graph of Z2 with
respect to a free generating set {aτ , bτ}. Let the paths P i

j be the 2-paths
induced by the edges of E1 and let Qj be a 2-path induced by the edges
((r, s, t), (r, s+ 1, t)) ∈ E2. Then ap for p = 3 leaves invariant the 2-paths P i

j

if aτ leaves invariant P i
τ .

4 Applications

4.1 Expansion

Here we investigate the isoperimetric properties of vertex-transitive graphs
with polynomial growth. LeX be a graph. Denote by ∂S the vertex-boundary
of S ⊂ V (X), that is, the set of those vertices which are adjacent to vertices
of S, but are not contained in S. The isoperimetric number is defined as

i(X) = inf
S

|∂S|
|S|

,

where S runs over all finite vertex sets of X. For graphs with non-exponential
growth, and hence for graphs with polynomial growth, i(X) = 0 holds (see
e. g. [MW]). Hence, to study isoperimetric properties of these graphs, we
need a different concept, the so called d-dimensional isoperimetric number

i(d)(X) = inf
S

|∂S|
|S|

(d−1)
d

,

where S is given as above. Varopoulous [Va] (see also [VSC]) showed that
if X is a locally finite Cayley graph of an infinite group G with polynomial
growth of degree d, then i(d)(X) ≥ C, where C depends on the generators
which define the edges of X. This result was extended to locally finite,
vertex-transitive graphs by Saloff-Coste [Sa].

A possible other approach is using the diameter diam(S) (instead of
|S|1/d) as a parameter in estimation of the isoperimetric ratio |∂S|/|S| of
an arbitary vertex set S. The first results in this direction were obtained by
Aldous [Al], Babai [Ba], Babai and Szegedy [BSz].

The following tight estimation holds for infinite vertex-transitive graphs
with polynomial growth [Lu]:
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Theorem 4.1. If X is an infinite, connected, locally finite graph with poly-
nomial growth, then

|∂S|
|S|
≥ 2

diam(S) + 1

for every S ⊂ V (X).

This bound is not sensitive to the growth degree of the graphs in question.
Using Lemma 3.1 we prove a lower bound for the isoperimetric ratio, which
increases with the growth degree of the graph.

Theorem 4.2. Let X be a connected, locally finite graph, such that the group
of bounded automorphisms B(X) acts transitively on V (X). If X has poly-
nomial growth of degree d, then

|∂S|
|S|
≥

d∑
i=1

2

(diam(S) + 1)i

for every finite set S ⊂ V (X).

Proof. By Theorem 2.1 there exists an imprimitivity system τ of B(X)
on X with finite blocks of cardinality m such that Xτ is a Cayley graph of
Zd. Consequently Xτ contains a d-dimensional lattice Ld as a subgraph. By
Lemma 3.1 for two vertices connected in Ld (blocks of B(X) on X) there
exists a matching in X between the vertices of the blocks in question. Hence
the lifting of a simple path of Xτ (and so of Ld) contains m vertex disjoint
paths in X. The union of these matchings forms a connected subgraph Y of
X. Clearly V (Y ) = V (X). Without loss of generality we can assume that
X = Y .

We prove our result by induction on d. If d = 1, then Y consists of
m pairwise disjoint 2-paths and Theorem 4.1 completes the proof. Let our
result hold for d − 1 and let H be a family of the preimages of the (d − 1)-
dimensional hyperplanes of Ld which are orthogonal to an arbitrary fixed
direction. By H we denote that preimage of a hyperplane of Ld which has
maximal intersection with S, i.e. S ′ = S∩H has maximal cardinality among
all S ∩K,K ∈ τ−1H. Let ∂HS = ∂S ∩H. Then |∂S| ≥ |∂HS ′|+ 2 |S ′|. This
inequality holds since there exist |S ′| pairwise disjoint 2-paths each of which
contains exactly one vertex of S ′ but no other vertex of H (these are 2-paths
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in the d−th direction). Hence on each of these |S ′| 2−paths we find at least 2
vertices contained in ∂S. In addition ∂S clearly contains all vertices of ∂HS

′.
Of course |S| ≤ |S ′| (diam(S) + 1) also holds. By our induction hypotheses
for H we get

|∂S|
|S|
≥ 1

diam(S) + 1

(
2 +
|∂HS ′|
|S ′|

)
≥

d∑
i=1

2

(diam(S) + 1)i
.

2

We mention that this bound is tight for all Ld, d ≥ 1, if |S| = 1. Nev-
ertheless we are convinced that it can be significantly improved. The next
result indicates that we might not be wrong:

Proposition 4.3. Denote by S(m), S(m) = {w ∈ V (Ld)|d(0, w) ≤ m} the
ball of the d-dimensional lattice Ld. Then for every m and d

|∂S(m)|
|S(m)|

≥ d

m+ 1
.

Proof. We define the generating function f(z) of the number of lattice
points having distance exactly m from the origin:

f(z) =
∞∑
m=0

amz
m, am = |{w ∈ V (Ld)|d(0, w) = m}|.

It is easy to see that

f(z) = (1 + 2
∞∑
m=1

zm)d =
(

1 + z

1− z

)d
.

(This function is called the nu function in [So].) f(z) satisfies the differential
equation

(1 + z)f ′(z) = 2d
f(z)

1− z
in a small neighbourhood of z = 0. Comparing the coefficents of zm of both
sides of this equation we obtain

(m+ 1)am+1 +mam = 2d
m∑
i=0

ai

9
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Since
am+1 ≥ am

we have the lower bound
am+1
m∑
i=0

ai

≥ d

m+ 1
.

2

Continuing the remarks before Proposition 4.3 we conjecture here that
the bound given in this proposition is the best possible bound for the isoperi-
metric ratio in lattices:

Conjecture 1. For all finite sets S ⊂ V (Ld) with diameter 2m, the balls
S(m) are those with the smallest isoperimetric ratio.

Remark. We can alternatively define ∂S as the edge boundary of S ⊂
V (X), the set of edges having one vertex in S. For a result like that in [Va]
we obtain no essential difference. On the other hand, to prove a bound as in
Theorem 4.2 we would have to choose an approach different from the above.

4.2 Percolation

Here we consider the Bernoulli bond percolation on some transitive infinite
graphs. In bond percolation the edges of the graph X are independently open
(or preserved) with probability p and closed (or deleted) with probability
1− p. The corresponding product measure on the set of the edges is denoted
by Pp. C(x), named open cluster, is the component of the vertex x in the
random subgraph; it is the set of vertices connected by open (preserved)
edges. Denote by θ(p) = θ(p,X, bond) the percolation probability: θ(p) =
Pp{C(x) is infinite}. It is clear that θ(p) does not depend on the vertex x. If
θ(p) > 0 it is known that there exists - with probability 1 - a unique infinite
open cluster. In this case we also say that percolation occurs. It is proved
that there exists a critical probability pc = sup{p : θ(p) = 0}, for which
0 < pc < 1, θ(p) = 0 if p < pc and θ(p) > 0 if p > pc.

As a general reference see e.g. [Gr] and for vertex-transitive graphs [M2S].
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By Theorem 3.2 we can obtain a bound for pc. Using directly the fact
that under the assumptions of Theorem 3.2 there exist (l1, 1)−homeomorphs
of Ld we can derive an upper bound on the critical probability.

For this purpose we consider the following bond percolation on L2: Each
horizontal edge is open with probability ph and each vertical edge is open
with probability pv. Kesten proved for the above anisotropic bond percolation
process ([Ke] pp. 54) that if ph + pv < 1 then all open clusters are almost
surely finite, and if ph + pv > 1 then there almost surely exists a unique
infinite cluster. Using this result we get:

Theorem 4.4. Let X be a connected, locally finite, vertex-transitive graph
of quadratic growth, such that the group of bounded automorphisms B(X)
acts transitively on V (X). If m is the size of the orbits of B0(X) on X then
pc(p

m!−1
c + 1) ≤ 1 holds for the critical probability pc of the bond percolation

problem on X. 2

This bound may be rather poor, but it only depends on an algebraic
constant of the graph in consideration. Of course improvements on the upper
bound of l1 in Theorem 3.2 would also improve this bound.

5 Concluding remarks

A result like Theorem 3.2 cannot be easily generalized to graphs X which
satisfy the assumptions of Theorem 3.2 but have growth degree d ≥ 3. This
could only be done if we would know that the automorphism groups of such
graphs always contain subgroups isomorphic to Zd whenever B(X) acts tran-
sitively on them. But this seems to be a property which is quite difficult to
prove. Nevertheless we want to formulate it as a conjecture:

Conjecture 2. Let X be a locally finite, connected graph of polynomial growth
upon which B(X) acts transitively. Then Aut(X) always contains a subgroup
isomorphic to Zd where d is the growth degree of X.

What can be easily shown for the lattice structure of those graphs is
summarized in the following result:

11
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Proposition 5.1. Let X be as in Conjecture 2. Then X contains a subgraph
contractible onto Ld.

Proof. Follows immediately from Theorem 2.1, Lemma 3.1 and the fact that
all blocks of τ have the same finite diameter in X. 2
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